1 //===--- NoRecursionCheck.cpp - clang-tidy --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "NoRecursionCheck.h"
10 #include "clang/AST/ASTContext.h"
11 #include "clang/ASTMatchers/ASTMatchFinder.h"
12 #include "clang/Analysis/CallGraph.h"
13 #include "llvm/ADT/DenseMapInfo.h"
14 #include "llvm/ADT/SCCIterator.h"
16 using namespace clang::ast_matchers
;
18 namespace clang::tidy::misc
{
22 /// Much like SmallSet, with two differences:
23 /// 1. It can *only* be constructed from an ArrayRef<>. If the element count
24 /// is small, there is no copy and said storage *must* outlive us.
25 /// 2. it is immutable, the way it was constructed it will stay.
26 template <typename T
, unsigned SmallSize
> class ImmutableSmallSet
{
28 llvm::DenseSet
<T
> Set
;
30 static_assert(SmallSize
<= 32, "N should be small");
32 bool isSmall() const { return Set
.empty(); }
35 using size_type
= size_t;
37 ImmutableSmallSet() = delete;
38 ImmutableSmallSet(const ImmutableSmallSet
&) = delete;
39 ImmutableSmallSet(ImmutableSmallSet
&&) = delete;
40 T
&operator=(const ImmutableSmallSet
&) = delete;
41 T
&operator=(ImmutableSmallSet
&&) = delete;
43 // WARNING: Storage *must* outlive us if we decide that the size is small.
44 ImmutableSmallSet(ArrayRef
<T
> Storage
) {
45 // Is size small-enough to just keep using the existing storage?
46 if (Storage
.size() <= SmallSize
) {
51 // We've decided that it isn't performant to keep using vector.
52 // Let's migrate the data into Set.
53 Set
.reserve(Storage
.size());
54 Set
.insert(Storage
.begin(), Storage
.end());
57 /// count - Return 1 if the element is in the set, 0 otherwise.
58 size_type
count(const T
&V
) const {
60 // Since the collection is small, just do a linear search.
61 return llvm::is_contained(Vector
, V
) ? 1 : 0;
68 /// Much like SmallSetVector, but with one difference:
69 /// when the size is \p SmallSize or less, when checking whether an element is
70 /// already in the set or not, we perform linear search over the vector,
71 /// but if the size is larger than \p SmallSize, we look in set.
72 /// FIXME: upstream this into SetVector/SmallSetVector itself.
73 template <typename T
, unsigned SmallSize
> class SmartSmallSetVector
{
75 using size_type
= size_t;
78 SmallVector
<T
, SmallSize
> Vector
;
79 llvm::DenseSet
<T
> Set
;
81 static_assert(SmallSize
<= 32, "N should be small");
83 // Are we still using Vector for uniqness tracking?
84 bool isSmall() const { return Set
.empty(); }
86 // Will one more entry cause Vector to switch away from small-size storage?
87 bool entiretyOfVectorSmallSizeIsOccupied() const {
88 assert(isSmall() && Vector
.size() <= SmallSize
&&
89 "Shouldn't ask if we have already [should have] migrated into Set.");
90 return Vector
.size() == SmallSize
;
94 assert(Set
.empty() && "Should not have already utilized the Set.");
95 // Magical growth factor prediction - to how many elements do we expect to
96 // sanely grow after switching away from small-size storage?
97 const size_t NewMaxElts
= 4 * Vector
.size();
98 Vector
.reserve(NewMaxElts
);
99 Set
.reserve(NewMaxElts
);
100 Set
.insert(Vector
.begin(), Vector
.end());
103 /// count - Return 1 if the element is in the set, 0 otherwise.
104 size_type
count(const T
&V
) const {
106 // Since the collection is small, just do a linear search.
107 return llvm::is_contained(Vector
, V
) ? 1 : 0;
109 // Look-up in the Set.
113 bool setInsert(const T
&V
) {
115 return false; // Already exists.
116 // Does not exist, Can/need to record it.
117 if (isSmall()) { // Are we still using Vector for uniqness tracking?
118 // Will one more entry fit within small-sized Vector?
119 if (!entiretyOfVectorSmallSizeIsOccupied())
120 return true; // We'll insert into vector right afterwards anyway.
121 // Time to switch to Set.
125 // Note that this must be after `populateSet()` might have been called.
126 bool SetInsertionSucceeded
= Set
.insert(V
).second
;
127 (void)SetInsertionSucceeded
;
128 assert(SetInsertionSucceeded
&& "We did check that no such value existed");
133 /// Insert a new element into the SmartSmallSetVector.
134 /// \returns true if the element was inserted into the SmartSmallSetVector.
135 bool insert(const T
&X
) {
136 bool Result
= setInsert(X
);
142 /// Clear the SmartSmallSetVector and return the underlying vector.
143 decltype(Vector
) takeVector() {
145 return std::move(Vector
);
149 constexpr unsigned SmallCallStackSize
= 16;
150 constexpr unsigned SmallSCCSize
= 32;
153 llvm::SmallVector
<CallGraphNode::CallRecord
, SmallCallStackSize
>;
155 // In given SCC, find *some* call stack that will be cyclic.
156 // This will only find *one* such stack, it might not be the smallest one,
157 // and there may be other loops.
158 CallStackTy
pathfindSomeCycle(ArrayRef
<CallGraphNode
*> SCC
) {
159 // We'll need to be able to performantly look up whether some CallGraphNode
160 // is in SCC or not, so cache all the SCC elements in a set.
161 const ImmutableSmallSet
<CallGraphNode
*, SmallSCCSize
> SCCElts(SCC
);
163 // Is node N part if the current SCC?
164 auto NodeIsPartOfSCC
= [&SCCElts
](CallGraphNode
*N
) {
165 return SCCElts
.count(N
) != 0;
168 // Track the call stack that will cause a cycle.
169 SmartSmallSetVector
<CallGraphNode::CallRecord
, SmallCallStackSize
>
172 // Arbitrarily take the first element of SCC as entry point.
173 CallGraphNode::CallRecord
EntryNode(SCC
.front(), /*CallExpr=*/nullptr);
174 // Continue recursing into subsequent callees that are part of this SCC,
175 // and are thus known to be part of the call graph loop, until loop forms.
176 CallGraphNode::CallRecord
*Node
= &EntryNode
;
178 // Did we see this node before?
179 if (!CallStackSet
.insert(*Node
))
180 break; // Cycle completed! Note that didn't insert the node into stack!
181 // Else, perform depth-first traversal: out of all callees, pick first one
182 // that is part of this SCC. This is not guaranteed to yield shortest cycle.
183 Node
= llvm::find_if(Node
->Callee
->callees(), NodeIsPartOfSCC
);
186 // Note that we failed to insert the last node, that completes the cycle.
187 // But we really want to have it. So insert it manually into stack only.
188 CallStackTy CallStack
= CallStackSet
.takeVector();
189 CallStack
.emplace_back(*Node
);
196 void NoRecursionCheck::registerMatchers(MatchFinder
*Finder
) {
197 Finder
->addMatcher(translationUnitDecl().bind("TUDecl"), this);
200 void NoRecursionCheck::handleSCC(ArrayRef
<CallGraphNode
*> SCC
) {
201 assert(!SCC
.empty() && "Empty SCC does not make sense.");
203 // First of all, call out every strongly connected function.
204 for (CallGraphNode
*N
: SCC
) {
205 FunctionDecl
*D
= N
->getDefinition();
206 diag(D
->getLocation(), "function %0 is within a recursive call chain") << D
;
209 // Now, SCC only tells us about strongly connected function declarations in
210 // the call graph. It doesn't *really* tell us about the cycles they form.
211 // And there may be more than one cycle in SCC.
212 // So let's form a call stack that eventually exposes *some* cycle.
213 const CallStackTy EventuallyCyclicCallStack
= pathfindSomeCycle(SCC
);
214 assert(!EventuallyCyclicCallStack
.empty() && "We should've found the cycle");
216 // While last node of the call stack does cause a loop, due to the way we
217 // pathfind the cycle, the loop does not necessarily begin at the first node
218 // of the call stack, so drop front nodes of the call stack until it does.
219 const auto CyclicCallStack
=
220 ArrayRef
<CallGraphNode::CallRecord
>(EventuallyCyclicCallStack
)
221 .drop_until([LastNode
= EventuallyCyclicCallStack
.back()](
222 CallGraphNode::CallRecord FrontNode
) {
223 return FrontNode
== LastNode
;
225 assert(CyclicCallStack
.size() >= 2 && "Cycle requires at least 2 frames");
227 // Which function we decided to be the entry point that lead to the recursion?
228 FunctionDecl
*CycleEntryFn
= CyclicCallStack
.front().Callee
->getDefinition();
229 // And now, for ease of understanding, let's print the call sequence that
230 // forms the cycle in question.
231 diag(CycleEntryFn
->getLocation(),
232 "example recursive call chain, starting from function %0",
235 for (int CurFrame
= 1, NumFrames
= CyclicCallStack
.size();
236 CurFrame
!= NumFrames
; ++CurFrame
) {
237 CallGraphNode::CallRecord PrevNode
= CyclicCallStack
[CurFrame
- 1];
238 CallGraphNode::CallRecord CurrNode
= CyclicCallStack
[CurFrame
];
240 Decl
*PrevDecl
= PrevNode
.Callee
->getDecl();
241 Decl
*CurrDecl
= CurrNode
.Callee
->getDecl();
243 diag(CurrNode
.CallExpr
->getBeginLoc(),
244 "Frame #%0: function %1 calls function %2 here:", DiagnosticIDs::Note
)
245 << CurFrame
<< cast
<NamedDecl
>(PrevDecl
) << cast
<NamedDecl
>(CurrDecl
);
248 diag(CyclicCallStack
.back().CallExpr
->getBeginLoc(),
249 "... which was the starting point of the recursive call chain; there "
250 "may be other cycles",
251 DiagnosticIDs::Note
);
254 void NoRecursionCheck::check(const MatchFinder::MatchResult
&Result
) {
255 // Build call graph for the entire translation unit.
256 const auto *TU
= Result
.Nodes
.getNodeAs
<TranslationUnitDecl
>("TUDecl");
258 CG
.addToCallGraph(const_cast<TranslationUnitDecl
*>(TU
));
260 // Look for cycles in call graph,
261 // by looking for Strongly Connected Components (SCC's)
262 for (llvm::scc_iterator
<CallGraph
*> SCCI
= llvm::scc_begin(&CG
),
263 SCCE
= llvm::scc_end(&CG
);
264 SCCI
!= SCCE
; ++SCCI
) {
265 if (!SCCI
.hasCycle()) // We only care about cycles, not standalone nodes.
271 } // namespace clang::tidy::misc