[AMDGPU] Infer amdgpu-no-flat-scratch-init attribute in AMDGPUAttributor (#94647)
[llvm-project.git] / clang-tools-extra / clang-tidy / utils / ExceptionAnalyzer.cpp
blob0fea7946a59f95486aabb337b3890a78bff35395
1 //===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ExceptionAnalyzer.h"
11 namespace clang::tidy::utils {
13 void ExceptionAnalyzer::ExceptionInfo::registerException(
14 const Type *ExceptionType) {
15 assert(ExceptionType != nullptr && "Only valid types are accepted");
16 Behaviour = State::Throwing;
17 ThrownExceptions.insert(ExceptionType);
20 void ExceptionAnalyzer::ExceptionInfo::registerExceptions(
21 const Throwables &Exceptions) {
22 if (Exceptions.empty())
23 return;
24 Behaviour = State::Throwing;
25 ThrownExceptions.insert(Exceptions.begin(), Exceptions.end());
28 ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge(
29 const ExceptionAnalyzer::ExceptionInfo &Other) {
30 // Only the following two cases require an update to the local
31 // 'Behaviour'. If the local entity is already throwing there will be no
32 // change and if the other entity is throwing the merged entity will throw
33 // as well.
34 // If one of both entities is 'Unknown' and the other one does not throw
35 // the merged entity is 'Unknown' as well.
36 if (Other.Behaviour == State::Throwing)
37 Behaviour = State::Throwing;
38 else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing)
39 Behaviour = State::Unknown;
41 ContainsUnknown = ContainsUnknown || Other.ContainsUnknown;
42 ThrownExceptions.insert(Other.ThrownExceptions.begin(),
43 Other.ThrownExceptions.end());
44 return *this;
47 // FIXME: This could be ported to clang later.
48 namespace {
50 bool isUnambiguousPublicBaseClass(const Type *DerivedType,
51 const Type *BaseType) {
52 const auto *DerivedClass =
53 DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
54 const auto *BaseClass =
55 BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
56 if (!DerivedClass || !BaseClass)
57 return false;
59 CXXBasePaths Paths;
60 Paths.setOrigin(DerivedClass);
62 bool IsPublicBaseClass = false;
63 DerivedClass->lookupInBases(
64 [&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS,
65 CXXBasePath &) {
66 if (BS->getType()
67 ->getCanonicalTypeUnqualified()
68 ->getAsCXXRecordDecl() == BaseClass &&
69 BS->getAccessSpecifier() == AS_public) {
70 IsPublicBaseClass = true;
71 return true;
74 return false;
76 Paths);
78 return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) &&
79 IsPublicBaseClass;
82 inline bool isPointerOrPointerToMember(const Type *T) {
83 return T->isPointerType() || T->isMemberPointerType();
86 std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) {
87 if (T->isAnyPointerType() || T->isMemberPointerType())
88 return T->getPointeeType();
90 if (T->isArrayType())
91 return T->getAsArrayTypeUnsafe()->getElementType();
93 return std::nullopt;
96 bool isBaseOf(const Type *DerivedType, const Type *BaseType) {
97 const auto *DerivedClass = DerivedType->getAsCXXRecordDecl();
98 const auto *BaseClass = BaseType->getAsCXXRecordDecl();
99 if (!DerivedClass || !BaseClass)
100 return false;
102 return !DerivedClass->forallBases(
103 [BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; });
106 // Check if T1 is more or Equally qualified than T2.
107 bool moreOrEquallyQualified(QualType T1, QualType T2) {
108 return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) ||
109 T1.getQualifiers() == T2.getQualifiers();
112 bool isStandardPointerConvertible(QualType From, QualType To) {
113 assert((From->isPointerType() || From->isMemberPointerType()) &&
114 (To->isPointerType() || To->isMemberPointerType()) &&
115 "Pointer conversion should be performed on pointer types only.");
117 if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType()))
118 return false;
120 // (1)
121 // A null pointer constant can be converted to a pointer type ...
122 // The conversion of a null pointer constant to a pointer to cv-qualified type
123 // is a single conversion, and not the sequence of a pointer conversion
124 // followed by a qualification conversion. A null pointer constant of integral
125 // type can be converted to a prvalue of type std::nullptr_t
126 if (To->isPointerType() && From->isNullPtrType())
127 return true;
129 // (2)
130 // A prvalue of type “pointer to cv T”, where T is an object type, can be
131 // converted to a prvalue of type “pointer to cv void”.
132 if (To->isVoidPointerType() && From->isObjectPointerType())
133 return true;
135 // (3)
136 // A prvalue of type “pointer to cv D”, where D is a complete class type, can
137 // be converted to a prvalue of type “pointer to cv B”, where B is a base
138 // class of D. If B is an inaccessible or ambiguous base class of D, a program
139 // that necessitates this conversion is ill-formed.
140 if (const auto *RD = From->getPointeeCXXRecordDecl()) {
141 if (RD->isCompleteDefinition() &&
142 isBaseOf(From->getPointeeType().getTypePtr(),
143 To->getPointeeType().getTypePtr())) {
144 // If B is an inaccessible or ambiguous base class of D, a program
145 // that necessitates this conversion is ill-formed
146 return isUnambiguousPublicBaseClass(From->getPointeeType().getTypePtr(),
147 To->getPointeeType().getTypePtr());
151 return false;
154 bool isFunctionPointerConvertible(QualType From, QualType To) {
155 if (!From->isFunctionPointerType() && !From->isFunctionType() &&
156 !From->isMemberFunctionPointerType())
157 return false;
159 if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType())
160 return false;
162 if (To->isFunctionPointerType()) {
163 if (From->isFunctionPointerType())
164 return To->getPointeeType() == From->getPointeeType();
166 if (From->isFunctionType())
167 return To->getPointeeType() == From;
169 return false;
172 if (To->isMemberFunctionPointerType()) {
173 if (!From->isMemberFunctionPointerType())
174 return false;
176 const auto *FromMember = cast<MemberPointerType>(From);
177 const auto *ToMember = cast<MemberPointerType>(To);
179 // Note: converting Derived::* to Base::* is a different kind of conversion,
180 // called Pointer-to-member conversion.
181 return FromMember->getClass() == ToMember->getClass() &&
182 FromMember->getPointeeType() == ToMember->getPointeeType();
185 return false;
188 // Checks if From is qualification convertible to To based on the current
189 // LangOpts. If From is any array, we perform the array to pointer conversion
190 // first. The function only performs checks based on C++ rules, which can differ
191 // from the C rules.
193 // The function should only be called in C++ mode.
194 bool isQualificationConvertiblePointer(QualType From, QualType To,
195 LangOptions LangOpts) {
197 // [N4659 7.5 (1)]
198 // A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is
199 // cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0,
200 // where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”,
201 // “pointer to member of class C_i of type”, “array of N_i”, or
202 // “array of unknown bound of”.
204 // If P_i designates an array, the cv-qualifiers cv_i+1 on the element type
205 // are also taken as the cv-qualifiers cvi of the array.
207 // The n-tuple of cv-qualifiers after the first one in the longest
208 // cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the
209 // cv-qualification signature of T.
211 auto isValidP_i = [](QualType P) {
212 return P->isPointerType() || P->isMemberPointerType() ||
213 P->isConstantArrayType() || P->isIncompleteArrayType();
216 auto isSameP_i = [](QualType P1, QualType P2) {
217 if (P1->isPointerType())
218 return P2->isPointerType();
220 if (P1->isMemberPointerType())
221 return P2->isMemberPointerType() &&
222 P1->getAs<MemberPointerType>()->getClass() ==
223 P2->getAs<MemberPointerType>()->getClass();
225 if (P1->isConstantArrayType())
226 return P2->isConstantArrayType() &&
227 cast<ConstantArrayType>(P1)->getSize() ==
228 cast<ConstantArrayType>(P2)->getSize();
230 if (P1->isIncompleteArrayType())
231 return P2->isIncompleteArrayType();
233 return false;
236 // (2)
237 // Two types From and To are similar if they have cv-decompositions with the
238 // same n such that corresponding P_i components are the same [(added by
239 // N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown
240 // bound of”], and the types denoted by U are the same.
242 // (3)
243 // A prvalue expression of type From can be converted to type To if the
244 // following conditions are satisfied:
245 // - From and To are similar
246 // - For every i > 0, if const is in cv_i of From then const is in cv_i of
247 // To, and similarly for volatile.
248 // - [(derived from addition by N4849 7.3.5) If P_i of From is “array of
249 // unknown bound of”, P_i of To is “array of unknown bound of”.]
250 // - If the cv_i of From and cv_i of To are different, then const is in every
251 // cv_k of To for 0 < k < i.
253 int I = 0;
254 bool ConstUntilI = true;
255 auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From,
256 const QualType &To) {
257 if (I > 1) {
258 if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI)
259 return false;
262 if (I > 0) {
263 if (From.isConstQualified() && !To.isConstQualified())
264 return false;
266 if (From.isVolatileQualified() && !To.isVolatileQualified())
267 return false;
269 ConstUntilI = To.isConstQualified();
272 return true;
275 while (isValidP_i(From) && isValidP_i(To)) {
276 // Remove every sugar.
277 From = From.getCanonicalType();
278 To = To.getCanonicalType();
280 if (!SatisfiesCVRules(From, To))
281 return false;
283 if (!isSameP_i(From, To)) {
284 if (LangOpts.CPlusPlus20) {
285 if (From->isConstantArrayType() && !To->isIncompleteArrayType())
286 return false;
288 if (From->isIncompleteArrayType() && !To->isIncompleteArrayType())
289 return false;
291 } else {
292 return false;
296 ++I;
297 std::optional<QualType> FromPointeeOrElem =
298 getPointeeOrArrayElementQualType(From);
299 std::optional<QualType> ToPointeeOrElem =
300 getPointeeOrArrayElementQualType(To);
302 assert(FromPointeeOrElem &&
303 "From pointer or array has no pointee or element!");
304 assert(ToPointeeOrElem && "To pointer or array has no pointee or element!");
306 From = *FromPointeeOrElem;
307 To = *ToPointeeOrElem;
310 // In this case the length (n) of From and To are not the same.
311 if (isValidP_i(From) || isValidP_i(To))
312 return false;
314 // We hit U.
315 if (!SatisfiesCVRules(From, To))
316 return false;
318 return From.getTypePtr() == To.getTypePtr();
320 } // namespace
322 static bool canThrow(const FunctionDecl *Func) {
323 // consteval specifies that every call to the function must produce a
324 // compile-time constant, which cannot evaluate a throw expression without
325 // producing a compilation error.
326 if (Func->isConsteval())
327 return false;
329 const auto *FunProto = Func->getType()->getAs<FunctionProtoType>();
330 if (!FunProto)
331 return true;
333 switch (FunProto->canThrow()) {
334 case CT_Cannot:
335 return false;
336 case CT_Dependent: {
337 const Expr *NoexceptExpr = FunProto->getNoexceptExpr();
338 if (!NoexceptExpr)
339 return true; // no noexept - can throw
341 if (NoexceptExpr->isValueDependent())
342 return true; // depend on template - some instance can throw
344 bool Result = false;
345 if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(),
346 /*InConstantContext=*/true))
347 return true; // complex X condition in noexcept(X), cannot validate,
348 // assume that may throw
349 return !Result; // noexcept(false) - can throw
351 default:
352 return true;
356 bool ExceptionAnalyzer::ExceptionInfo::filterByCatch(
357 const Type *HandlerTy, const ASTContext &Context) {
358 llvm::SmallVector<const Type *, 8> TypesToDelete;
359 for (const Type *ExceptionTy : ThrownExceptions) {
360 CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified();
361 CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified();
363 // The handler is of type cv T or cv T& and E and T are the same type
364 // (ignoring the top-level cv-qualifiers) ...
365 if (ExceptionCanTy == HandlerCanTy) {
366 TypesToDelete.push_back(ExceptionTy);
369 // The handler is of type cv T or cv T& and T is an unambiguous public base
370 // class of E ...
371 else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(),
372 HandlerCanTy->getTypePtr())) {
373 TypesToDelete.push_back(ExceptionTy);
376 if (HandlerCanTy->getTypeClass() == Type::RValueReference ||
377 (HandlerCanTy->getTypeClass() == Type::LValueReference &&
378 !HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified()))
379 continue;
380 // The handler is of type cv T or const T& where T is a pointer or
381 // pointer-to-member type and E is a pointer or pointer-to-member type that
382 // can be converted to T by one or more of ...
383 if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
384 isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) {
385 // A standard pointer conversion not involving conversions to pointers to
386 // private or protected or ambiguous classes ...
387 if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
388 TypesToDelete.push_back(ExceptionTy);
390 // A function pointer conversion ...
391 else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
392 TypesToDelete.push_back(ExceptionTy);
394 // A a qualification conversion ...
395 else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy,
396 Context.getLangOpts())) {
397 TypesToDelete.push_back(ExceptionTy);
401 // The handler is of type cv T or const T& where T is a pointer or
402 // pointer-to-member type and E is std::nullptr_t.
403 else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
404 ExceptionCanTy->isNullPtrType()) {
405 TypesToDelete.push_back(ExceptionTy);
409 for (const Type *T : TypesToDelete)
410 ThrownExceptions.erase(T);
412 reevaluateBehaviour();
413 return !TypesToDelete.empty();
416 ExceptionAnalyzer::ExceptionInfo &
417 ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions(
418 const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) {
419 llvm::SmallVector<const Type *, 8> TypesToDelete;
420 // Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible.
421 // Therefore this slightly hacky implementation is required.
422 for (const Type *T : ThrownExceptions) {
423 if (const auto *TD = T->getAsTagDecl()) {
424 if (TD->getDeclName().isIdentifier()) {
425 if ((IgnoreBadAlloc &&
426 (TD->getName() == "bad_alloc" && TD->isInStdNamespace())) ||
427 (IgnoredTypes.contains(TD->getName())))
428 TypesToDelete.push_back(T);
432 for (const Type *T : TypesToDelete)
433 ThrownExceptions.erase(T);
435 reevaluateBehaviour();
436 return *this;
439 void ExceptionAnalyzer::ExceptionInfo::clear() {
440 Behaviour = State::NotThrowing;
441 ContainsUnknown = false;
442 ThrownExceptions.clear();
445 void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() {
446 if (ThrownExceptions.empty())
447 if (ContainsUnknown)
448 Behaviour = State::Unknown;
449 else
450 Behaviour = State::NotThrowing;
451 else
452 Behaviour = State::Throwing;
455 ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
456 const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught,
457 llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
458 if (!Func || CallStack.contains(Func) ||
459 (!CallStack.empty() && !canThrow(Func)))
460 return ExceptionInfo::createNonThrowing();
462 if (const Stmt *Body = Func->getBody()) {
463 CallStack.insert(Func);
464 ExceptionInfo Result = throwsException(Body, Caught, CallStack);
466 // For a constructor, we also have to check the initializers.
467 if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) {
468 for (const CXXCtorInitializer *Init : Ctor->inits()) {
469 ExceptionInfo Excs =
470 throwsException(Init->getInit(), Caught, CallStack);
471 Result.merge(Excs);
475 CallStack.erase(Func);
476 return Result;
479 auto Result = ExceptionInfo::createUnknown();
480 if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) {
481 for (const QualType &Ex : FPT->exceptions())
482 Result.registerException(Ex.getTypePtr());
484 return Result;
487 /// Analyzes a single statement on it's throwing behaviour. This is in principle
488 /// possible except some 'Unknown' functions are called.
489 ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
490 const Stmt *St, const ExceptionInfo::Throwables &Caught,
491 llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
492 auto Results = ExceptionInfo::createNonThrowing();
493 if (!St)
494 return Results;
496 if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) {
497 if (const auto *ThrownExpr = Throw->getSubExpr()) {
498 const auto *ThrownType =
499 ThrownExpr->getType()->getUnqualifiedDesugaredType();
500 if (ThrownType->isReferenceType())
501 ThrownType = ThrownType->castAs<ReferenceType>()
502 ->getPointeeType()
503 ->getUnqualifiedDesugaredType();
504 Results.registerException(
505 ThrownExpr->getType()->getUnqualifiedDesugaredType());
506 } else
507 // A rethrow of a caught exception happens which makes it possible
508 // to throw all exception that are caught in the 'catch' clause of
509 // the parent try-catch block.
510 Results.registerExceptions(Caught);
511 } else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) {
512 ExceptionInfo Uncaught =
513 throwsException(Try->getTryBlock(), Caught, CallStack);
514 for (unsigned I = 0; I < Try->getNumHandlers(); ++I) {
515 const CXXCatchStmt *Catch = Try->getHandler(I);
517 // Everything is caught through 'catch(...)'.
518 if (!Catch->getExceptionDecl()) {
519 ExceptionInfo Rethrown = throwsException(
520 Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack);
521 Results.merge(Rethrown);
522 Uncaught.clear();
523 } else {
524 const auto *CaughtType =
525 Catch->getCaughtType()->getUnqualifiedDesugaredType();
526 if (CaughtType->isReferenceType()) {
527 CaughtType = CaughtType->castAs<ReferenceType>()
528 ->getPointeeType()
529 ->getUnqualifiedDesugaredType();
532 // If the caught exception will catch multiple previously potential
533 // thrown types (because it's sensitive to inheritance) the throwing
534 // situation changes. First of all filter the exception types and
535 // analyze if the baseclass-exception is rethrown.
536 if (Uncaught.filterByCatch(
537 CaughtType, Catch->getExceptionDecl()->getASTContext())) {
538 ExceptionInfo::Throwables CaughtExceptions;
539 CaughtExceptions.insert(CaughtType);
540 ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(),
541 CaughtExceptions, CallStack);
542 Results.merge(Rethrown);
546 Results.merge(Uncaught);
547 } else if (const auto *Call = dyn_cast<CallExpr>(St)) {
548 if (const FunctionDecl *Func = Call->getDirectCallee()) {
549 ExceptionInfo Excs = throwsException(Func, Caught, CallStack);
550 Results.merge(Excs);
552 } else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) {
553 ExceptionInfo Excs =
554 throwsException(Construct->getConstructor(), Caught, CallStack);
555 Results.merge(Excs);
556 } else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) {
557 ExceptionInfo Excs =
558 throwsException(DefaultInit->getExpr(), Caught, CallStack);
559 Results.merge(Excs);
560 } else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) {
561 for (const Stmt *Child : Coro->childrenExclBody()) {
562 if (Child != Coro->getExceptionHandler()) {
563 ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
564 Results.merge(Excs);
567 ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack);
568 Results.merge(throwsException(Coro->getExceptionHandler(),
569 Excs.getExceptionTypes(), CallStack));
570 for (const Type *Throwable : Excs.getExceptionTypes()) {
571 if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) {
572 ExceptionInfo DestructorExcs =
573 throwsException(ThrowableRec->getDestructor(), Caught, CallStack);
574 Results.merge(DestructorExcs);
577 } else {
578 for (const Stmt *Child : St->children()) {
579 ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
580 Results.merge(Excs);
583 return Results;
586 ExceptionAnalyzer::ExceptionInfo
587 ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) {
588 ExceptionInfo ExceptionList;
590 // Check if the function has already been analyzed and reuse that result.
591 const auto CacheEntry = FunctionCache.find(Func);
592 if (CacheEntry == FunctionCache.end()) {
593 llvm::SmallSet<const FunctionDecl *, 32> CallStack;
594 ExceptionList =
595 throwsException(Func, ExceptionInfo::Throwables(), CallStack);
597 // Cache the result of the analysis. This is done prior to filtering
598 // because it is best to keep as much information as possible.
599 // The results here might be relevant to different analysis passes
600 // with different needs as well.
601 FunctionCache.try_emplace(Func, ExceptionList);
602 } else
603 ExceptionList = CacheEntry->getSecond();
605 return ExceptionList;
608 ExceptionAnalyzer::ExceptionInfo
609 ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) {
610 llvm::SmallSet<const FunctionDecl *, 32> CallStack;
611 return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack);
614 template <typename T>
615 ExceptionAnalyzer::ExceptionInfo
616 ExceptionAnalyzer::analyzeDispatch(const T *Node) {
617 ExceptionInfo ExceptionList = analyzeImpl(Node);
619 if (ExceptionList.getBehaviour() == State::NotThrowing ||
620 ExceptionList.getBehaviour() == State::Unknown)
621 return ExceptionList;
623 // Remove all ignored exceptions from the list of exceptions that can be
624 // thrown.
625 ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc);
627 return ExceptionList;
630 ExceptionAnalyzer::ExceptionInfo
631 ExceptionAnalyzer::analyze(const FunctionDecl *Func) {
632 return analyzeDispatch(Func);
635 ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) {
636 return analyzeDispatch(Stmt);
639 } // namespace clang::tidy::utils