[NFC][Fuzzer] Extract CreateGateBranch method. (#117236)
[llvm-project.git] / clang / lib / AST / APValue.cpp
blob4f5d14cbd59bbf63be16d36ba31481b9b66e4281
1 //===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the APValue class.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/APValue.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/Type.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/raw_ostream.h"
23 using namespace clang;
25 /// The identity of a type_info object depends on the canonical unqualified
26 /// type only.
27 TypeInfoLValue::TypeInfoLValue(const Type *T)
28 : T(T->getCanonicalTypeUnqualified().getTypePtr()) {}
30 void TypeInfoLValue::print(llvm::raw_ostream &Out,
31 const PrintingPolicy &Policy) const {
32 Out << "typeid(";
33 QualType(getType(), 0).print(Out, Policy);
34 Out << ")";
37 static_assert(
38 1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <=
39 alignof(Type),
40 "Type is insufficiently aligned");
42 APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V)
43 : Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{I, V} {}
44 APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V)
45 : Ptr(P), Local{I, V} {}
47 APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV,
48 QualType Type) {
49 LValueBase Base;
50 Base.Ptr = LV;
51 Base.DynamicAllocType = Type.getAsOpaquePtr();
52 return Base;
55 APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV,
56 QualType TypeInfo) {
57 LValueBase Base;
58 Base.Ptr = LV;
59 Base.TypeInfoType = TypeInfo.getAsOpaquePtr();
60 return Base;
63 QualType APValue::LValueBase::getType() const {
64 if (!*this) return QualType();
65 if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) {
66 // FIXME: It's unclear where we're supposed to take the type from, and
67 // this actually matters for arrays of unknown bound. Eg:
69 // extern int arr[]; void f() { extern int arr[3]; };
70 // constexpr int *p = &arr[1]; // valid?
72 // For now, we take the most complete type we can find.
73 for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
74 Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
75 QualType T = Redecl->getType();
76 if (!T->isIncompleteArrayType())
77 return T;
79 return D->getType();
82 if (is<TypeInfoLValue>())
83 return getTypeInfoType();
85 if (is<DynamicAllocLValue>())
86 return getDynamicAllocType();
88 const Expr *Base = get<const Expr*>();
90 // For a materialized temporary, the type of the temporary we materialized
91 // may not be the type of the expression.
92 if (const MaterializeTemporaryExpr *MTE =
93 llvm::dyn_cast<MaterializeTemporaryExpr>(Base)) {
94 SmallVector<const Expr *, 2> CommaLHSs;
95 SmallVector<SubobjectAdjustment, 2> Adjustments;
96 const Expr *Temp = MTE->getSubExpr();
97 const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
98 Adjustments);
99 // Keep any cv-qualifiers from the reference if we generated a temporary
100 // for it directly. Otherwise use the type after adjustment.
101 if (!Adjustments.empty())
102 return Inner->getType();
105 return Base->getType();
108 unsigned APValue::LValueBase::getCallIndex() const {
109 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0
110 : Local.CallIndex;
113 unsigned APValue::LValueBase::getVersion() const {
114 return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version;
117 QualType APValue::LValueBase::getTypeInfoType() const {
118 assert(is<TypeInfoLValue>() && "not a type_info lvalue");
119 return QualType::getFromOpaquePtr(TypeInfoType);
122 QualType APValue::LValueBase::getDynamicAllocType() const {
123 assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue");
124 return QualType::getFromOpaquePtr(DynamicAllocType);
127 void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const {
128 ID.AddPointer(Ptr.getOpaqueValue());
129 if (is<TypeInfoLValue>() || is<DynamicAllocLValue>())
130 return;
131 ID.AddInteger(Local.CallIndex);
132 ID.AddInteger(Local.Version);
135 namespace clang {
136 bool operator==(const APValue::LValueBase &LHS,
137 const APValue::LValueBase &RHS) {
138 if (LHS.Ptr != RHS.Ptr)
139 return false;
140 if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>())
141 return true;
142 return LHS.Local.CallIndex == RHS.Local.CallIndex &&
143 LHS.Local.Version == RHS.Local.Version;
147 APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) {
148 if (const Decl *D = BaseOrMember.getPointer())
149 BaseOrMember.setPointer(D->getCanonicalDecl());
150 Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue());
153 void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const {
154 ID.AddInteger(Value);
157 APValue::LValuePathSerializationHelper::LValuePathSerializationHelper(
158 ArrayRef<LValuePathEntry> Path, QualType ElemTy)
159 : Ty((const void *)ElemTy.getTypePtrOrNull()), Path(Path) {}
161 QualType APValue::LValuePathSerializationHelper::getType() {
162 return QualType::getFromOpaquePtr(Ty);
165 namespace {
166 struct LVBase {
167 APValue::LValueBase Base;
168 CharUnits Offset;
169 unsigned PathLength;
170 bool IsNullPtr : 1;
171 bool IsOnePastTheEnd : 1;
175 void *APValue::LValueBase::getOpaqueValue() const {
176 return Ptr.getOpaqueValue();
179 bool APValue::LValueBase::isNull() const {
180 return Ptr.isNull();
183 APValue::LValueBase::operator bool () const {
184 return static_cast<bool>(Ptr);
187 clang::APValue::LValueBase
188 llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() {
189 clang::APValue::LValueBase B;
190 B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey();
191 return B;
194 clang::APValue::LValueBase
195 llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() {
196 clang::APValue::LValueBase B;
197 B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey();
198 return B;
201 namespace clang {
202 llvm::hash_code hash_value(const APValue::LValueBase &Base) {
203 if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>())
204 return llvm::hash_value(Base.getOpaqueValue());
205 return llvm::hash_combine(Base.getOpaqueValue(), Base.getCallIndex(),
206 Base.getVersion());
210 unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue(
211 const clang::APValue::LValueBase &Base) {
212 return hash_value(Base);
215 bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual(
216 const clang::APValue::LValueBase &LHS,
217 const clang::APValue::LValueBase &RHS) {
218 return LHS == RHS;
221 struct APValue::LV : LVBase {
222 static const unsigned InlinePathSpace =
223 (DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry);
225 /// Path - The sequence of base classes, fields and array indices to follow to
226 /// walk from Base to the subobject. When performing GCC-style folding, there
227 /// may not be such a path.
228 union {
229 LValuePathEntry Path[InlinePathSpace];
230 LValuePathEntry *PathPtr;
233 LV() { PathLength = (unsigned)-1; }
234 ~LV() { resizePath(0); }
236 void resizePath(unsigned Length) {
237 if (Length == PathLength)
238 return;
239 if (hasPathPtr())
240 delete [] PathPtr;
241 PathLength = Length;
242 if (hasPathPtr())
243 PathPtr = new LValuePathEntry[Length];
246 bool hasPath() const { return PathLength != (unsigned)-1; }
247 bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; }
249 LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; }
250 const LValuePathEntry *getPath() const {
251 return hasPathPtr() ? PathPtr : Path;
255 namespace {
256 struct MemberPointerBase {
257 llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember;
258 unsigned PathLength;
262 struct APValue::MemberPointerData : MemberPointerBase {
263 static const unsigned InlinePathSpace =
264 (DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*);
265 typedef const CXXRecordDecl *PathElem;
266 union {
267 PathElem Path[InlinePathSpace];
268 PathElem *PathPtr;
271 MemberPointerData() { PathLength = 0; }
272 ~MemberPointerData() { resizePath(0); }
274 void resizePath(unsigned Length) {
275 if (Length == PathLength)
276 return;
277 if (hasPathPtr())
278 delete [] PathPtr;
279 PathLength = Length;
280 if (hasPathPtr())
281 PathPtr = new PathElem[Length];
284 bool hasPathPtr() const { return PathLength > InlinePathSpace; }
286 PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; }
287 const PathElem *getPath() const {
288 return hasPathPtr() ? PathPtr : Path;
292 // FIXME: Reduce the malloc traffic here.
294 APValue::Arr::Arr(unsigned NumElts, unsigned Size) :
295 Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]),
296 NumElts(NumElts), ArrSize(Size) {}
297 APValue::Arr::~Arr() { delete [] Elts; }
299 APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) :
300 Elts(new APValue[NumBases+NumFields]),
301 NumBases(NumBases), NumFields(NumFields) {}
302 APValue::StructData::~StructData() {
303 delete [] Elts;
306 APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {}
307 APValue::UnionData::~UnionData () {
308 delete Value;
311 APValue::APValue(const APValue &RHS) : Kind(None) {
312 switch (RHS.getKind()) {
313 case None:
314 case Indeterminate:
315 Kind = RHS.getKind();
316 break;
317 case Int:
318 MakeInt();
319 setInt(RHS.getInt());
320 break;
321 case Float:
322 MakeFloat();
323 setFloat(RHS.getFloat());
324 break;
325 case FixedPoint: {
326 APFixedPoint FXCopy = RHS.getFixedPoint();
327 MakeFixedPoint(std::move(FXCopy));
328 break;
330 case Vector:
331 MakeVector();
332 setVector(((const Vec *)(const char *)&RHS.Data)->Elts,
333 RHS.getVectorLength());
334 break;
335 case ComplexInt:
336 MakeComplexInt();
337 setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag());
338 break;
339 case ComplexFloat:
340 MakeComplexFloat();
341 setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag());
342 break;
343 case LValue:
344 MakeLValue();
345 if (RHS.hasLValuePath())
346 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(),
347 RHS.isLValueOnePastTheEnd(), RHS.isNullPointer());
348 else
349 setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(),
350 RHS.isNullPointer());
351 break;
352 case Array:
353 MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize());
354 for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I)
355 getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I);
356 if (RHS.hasArrayFiller())
357 getArrayFiller() = RHS.getArrayFiller();
358 break;
359 case Struct:
360 MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields());
361 for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I)
362 getStructBase(I) = RHS.getStructBase(I);
363 for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I)
364 getStructField(I) = RHS.getStructField(I);
365 break;
366 case Union:
367 MakeUnion();
368 setUnion(RHS.getUnionField(), RHS.getUnionValue());
369 break;
370 case MemberPointer:
371 MakeMemberPointer(RHS.getMemberPointerDecl(),
372 RHS.isMemberPointerToDerivedMember(),
373 RHS.getMemberPointerPath());
374 break;
375 case AddrLabelDiff:
376 MakeAddrLabelDiff();
377 setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS());
378 break;
382 APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) {
383 RHS.Kind = None;
386 APValue &APValue::operator=(const APValue &RHS) {
387 if (this != &RHS)
388 *this = APValue(RHS);
389 return *this;
392 APValue &APValue::operator=(APValue &&RHS) {
393 if (this != &RHS) {
394 if (Kind != None && Kind != Indeterminate)
395 DestroyDataAndMakeUninit();
396 Kind = RHS.Kind;
397 Data = RHS.Data;
398 RHS.Kind = None;
400 return *this;
403 void APValue::DestroyDataAndMakeUninit() {
404 if (Kind == Int)
405 ((APSInt *)(char *)&Data)->~APSInt();
406 else if (Kind == Float)
407 ((APFloat *)(char *)&Data)->~APFloat();
408 else if (Kind == FixedPoint)
409 ((APFixedPoint *)(char *)&Data)->~APFixedPoint();
410 else if (Kind == Vector)
411 ((Vec *)(char *)&Data)->~Vec();
412 else if (Kind == ComplexInt)
413 ((ComplexAPSInt *)(char *)&Data)->~ComplexAPSInt();
414 else if (Kind == ComplexFloat)
415 ((ComplexAPFloat *)(char *)&Data)->~ComplexAPFloat();
416 else if (Kind == LValue)
417 ((LV *)(char *)&Data)->~LV();
418 else if (Kind == Array)
419 ((Arr *)(char *)&Data)->~Arr();
420 else if (Kind == Struct)
421 ((StructData *)(char *)&Data)->~StructData();
422 else if (Kind == Union)
423 ((UnionData *)(char *)&Data)->~UnionData();
424 else if (Kind == MemberPointer)
425 ((MemberPointerData *)(char *)&Data)->~MemberPointerData();
426 else if (Kind == AddrLabelDiff)
427 ((AddrLabelDiffData *)(char *)&Data)->~AddrLabelDiffData();
428 Kind = None;
431 bool APValue::needsCleanup() const {
432 switch (getKind()) {
433 case None:
434 case Indeterminate:
435 case AddrLabelDiff:
436 return false;
437 case Struct:
438 case Union:
439 case Array:
440 case Vector:
441 return true;
442 case Int:
443 return getInt().needsCleanup();
444 case Float:
445 return getFloat().needsCleanup();
446 case FixedPoint:
447 return getFixedPoint().getValue().needsCleanup();
448 case ComplexFloat:
449 assert(getComplexFloatImag().needsCleanup() ==
450 getComplexFloatReal().needsCleanup() &&
451 "In _Complex float types, real and imaginary values always have the "
452 "same size.");
453 return getComplexFloatReal().needsCleanup();
454 case ComplexInt:
455 assert(getComplexIntImag().needsCleanup() ==
456 getComplexIntReal().needsCleanup() &&
457 "In _Complex int types, real and imaginary values must have the "
458 "same size.");
459 return getComplexIntReal().needsCleanup();
460 case LValue:
461 return reinterpret_cast<const LV *>(&Data)->hasPathPtr();
462 case MemberPointer:
463 return reinterpret_cast<const MemberPointerData *>(&Data)->hasPathPtr();
465 llvm_unreachable("Unknown APValue kind!");
468 void APValue::swap(APValue &RHS) {
469 std::swap(Kind, RHS.Kind);
470 std::swap(Data, RHS.Data);
473 /// Profile the value of an APInt, excluding its bit-width.
474 static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) {
475 for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32)
476 ID.AddInteger((uint32_t)V.extractBitsAsZExtValue(std::min(32u, N - I), I));
479 void APValue::Profile(llvm::FoldingSetNodeID &ID) const {
480 // Note that our profiling assumes that only APValues of the same type are
481 // ever compared. As a result, we don't consider collisions that could only
482 // happen if the types are different. (For example, structs with different
483 // numbers of members could profile the same.)
485 ID.AddInteger(Kind);
487 switch (Kind) {
488 case None:
489 case Indeterminate:
490 return;
492 case AddrLabelDiff:
493 ID.AddPointer(getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl());
494 ID.AddPointer(getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl());
495 return;
497 case Struct:
498 for (unsigned I = 0, N = getStructNumBases(); I != N; ++I)
499 getStructBase(I).Profile(ID);
500 for (unsigned I = 0, N = getStructNumFields(); I != N; ++I)
501 getStructField(I).Profile(ID);
502 return;
504 case Union:
505 if (!getUnionField()) {
506 ID.AddInteger(0);
507 return;
509 ID.AddInteger(getUnionField()->getFieldIndex() + 1);
510 getUnionValue().Profile(ID);
511 return;
513 case Array: {
514 if (getArraySize() == 0)
515 return;
517 // The profile should not depend on whether the array is expanded or
518 // not, but we don't want to profile the array filler many times for
519 // a large array. So treat all equal trailing elements as the filler.
520 // Elements are profiled in reverse order to support this, and the
521 // first profiled element is followed by a count. For example:
523 // ['a', 'c', 'x', 'x', 'x'] is profiled as
524 // [5, 'x', 3, 'c', 'a']
525 llvm::FoldingSetNodeID FillerID;
526 (hasArrayFiller() ? getArrayFiller()
527 : getArrayInitializedElt(getArrayInitializedElts() - 1))
528 .Profile(FillerID);
529 ID.AddNodeID(FillerID);
530 unsigned NumFillers = getArraySize() - getArrayInitializedElts();
531 unsigned N = getArrayInitializedElts();
533 // Count the number of elements equal to the last one. This loop ends
534 // by adding an integer indicating the number of such elements, with
535 // N set to the number of elements left to profile.
536 while (true) {
537 if (N == 0) {
538 // All elements are fillers.
539 assert(NumFillers == getArraySize());
540 ID.AddInteger(NumFillers);
541 break;
544 // No need to check if the last element is equal to the last
545 // element.
546 if (N != getArraySize()) {
547 llvm::FoldingSetNodeID ElemID;
548 getArrayInitializedElt(N - 1).Profile(ElemID);
549 if (ElemID != FillerID) {
550 ID.AddInteger(NumFillers);
551 ID.AddNodeID(ElemID);
552 --N;
553 break;
557 // This is a filler.
558 ++NumFillers;
559 --N;
562 // Emit the remaining elements.
563 for (; N != 0; --N)
564 getArrayInitializedElt(N - 1).Profile(ID);
565 return;
568 case Vector:
569 for (unsigned I = 0, N = getVectorLength(); I != N; ++I)
570 getVectorElt(I).Profile(ID);
571 return;
573 case Int:
574 profileIntValue(ID, getInt());
575 return;
577 case Float:
578 profileIntValue(ID, getFloat().bitcastToAPInt());
579 return;
581 case FixedPoint:
582 profileIntValue(ID, getFixedPoint().getValue());
583 return;
585 case ComplexFloat:
586 profileIntValue(ID, getComplexFloatReal().bitcastToAPInt());
587 profileIntValue(ID, getComplexFloatImag().bitcastToAPInt());
588 return;
590 case ComplexInt:
591 profileIntValue(ID, getComplexIntReal());
592 profileIntValue(ID, getComplexIntImag());
593 return;
595 case LValue:
596 getLValueBase().Profile(ID);
597 ID.AddInteger(getLValueOffset().getQuantity());
598 ID.AddInteger((isNullPointer() ? 1 : 0) |
599 (isLValueOnePastTheEnd() ? 2 : 0) |
600 (hasLValuePath() ? 4 : 0));
601 if (hasLValuePath()) {
602 ID.AddInteger(getLValuePath().size());
603 // For uniqueness, we only need to profile the entries corresponding
604 // to union members, but we don't have the type here so we don't know
605 // how to interpret the entries.
606 for (LValuePathEntry E : getLValuePath())
607 E.Profile(ID);
609 return;
611 case MemberPointer:
612 ID.AddPointer(getMemberPointerDecl());
613 ID.AddInteger(isMemberPointerToDerivedMember());
614 for (const CXXRecordDecl *D : getMemberPointerPath())
615 ID.AddPointer(D);
616 return;
619 llvm_unreachable("Unknown APValue kind!");
622 static double GetApproxValue(const llvm::APFloat &F) {
623 llvm::APFloat V = F;
624 bool ignored;
625 V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
626 &ignored);
627 return V.convertToDouble();
630 static bool TryPrintAsStringLiteral(raw_ostream &Out,
631 const PrintingPolicy &Policy,
632 const ArrayType *ATy,
633 ArrayRef<APValue> Inits) {
634 if (Inits.empty())
635 return false;
637 QualType Ty = ATy->getElementType();
638 if (!Ty->isAnyCharacterType())
639 return false;
641 // Nothing we can do about a sequence that is not null-terminated
642 if (!Inits.back().isInt() || !Inits.back().getInt().isZero())
643 return false;
645 Inits = Inits.drop_back();
647 llvm::SmallString<40> Buf;
648 Buf.push_back('"');
650 // Better than printing a two-digit sequence of 10 integers.
651 constexpr size_t MaxN = 36;
652 StringRef Ellipsis;
653 if (Inits.size() > MaxN && !Policy.EntireContentsOfLargeArray) {
654 Ellipsis = "[...]";
655 Inits =
656 Inits.take_front(std::min(MaxN - Ellipsis.size() / 2, Inits.size()));
659 for (auto &Val : Inits) {
660 if (!Val.isInt())
661 return false;
662 int64_t Char64 = Val.getInt().getExtValue();
663 if (!isASCII(Char64))
664 return false; // Bye bye, see you in integers.
665 auto Ch = static_cast<unsigned char>(Char64);
666 // The diagnostic message is 'quoted'
667 StringRef Escaped = escapeCStyle<EscapeChar::SingleAndDouble>(Ch);
668 if (Escaped.empty()) {
669 if (!isPrintable(Ch))
670 return false;
671 Buf.emplace_back(Ch);
672 } else {
673 Buf.append(Escaped);
677 Buf.append(Ellipsis);
678 Buf.push_back('"');
680 if (Ty->isWideCharType())
681 Out << 'L';
682 else if (Ty->isChar8Type())
683 Out << "u8";
684 else if (Ty->isChar16Type())
685 Out << 'u';
686 else if (Ty->isChar32Type())
687 Out << 'U';
689 Out << Buf;
690 return true;
693 void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx,
694 QualType Ty) const {
695 printPretty(Out, Ctx.getPrintingPolicy(), Ty, &Ctx);
698 void APValue::printPretty(raw_ostream &Out, const PrintingPolicy &Policy,
699 QualType Ty, const ASTContext *Ctx) const {
700 // There are no objects of type 'void', but values of this type can be
701 // returned from functions.
702 if (Ty->isVoidType()) {
703 Out << "void()";
704 return;
707 if (const auto *AT = Ty->getAs<AtomicType>())
708 Ty = AT->getValueType();
710 switch (getKind()) {
711 case APValue::None:
712 Out << "<out of lifetime>";
713 return;
714 case APValue::Indeterminate:
715 Out << "<uninitialized>";
716 return;
717 case APValue::Int:
718 if (Ty->isBooleanType())
719 Out << (getInt().getBoolValue() ? "true" : "false");
720 else
721 Out << getInt();
722 return;
723 case APValue::Float:
724 Out << GetApproxValue(getFloat());
725 return;
726 case APValue::FixedPoint:
727 Out << getFixedPoint();
728 return;
729 case APValue::Vector: {
730 Out << '{';
731 QualType ElemTy = Ty->castAs<VectorType>()->getElementType();
732 getVectorElt(0).printPretty(Out, Policy, ElemTy, Ctx);
733 for (unsigned i = 1; i != getVectorLength(); ++i) {
734 Out << ", ";
735 getVectorElt(i).printPretty(Out, Policy, ElemTy, Ctx);
737 Out << '}';
738 return;
740 case APValue::ComplexInt:
741 Out << getComplexIntReal() << "+" << getComplexIntImag() << "i";
742 return;
743 case APValue::ComplexFloat:
744 Out << GetApproxValue(getComplexFloatReal()) << "+"
745 << GetApproxValue(getComplexFloatImag()) << "i";
746 return;
747 case APValue::LValue: {
748 bool IsReference = Ty->isReferenceType();
749 QualType InnerTy
750 = IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType();
751 if (InnerTy.isNull())
752 InnerTy = Ty;
754 LValueBase Base = getLValueBase();
755 if (!Base) {
756 if (isNullPointer()) {
757 Out << (Policy.Nullptr ? "nullptr" : "0");
758 } else if (IsReference) {
759 Out << "*(" << InnerTy.stream(Policy) << "*)"
760 << getLValueOffset().getQuantity();
761 } else {
762 Out << "(" << Ty.stream(Policy) << ")"
763 << getLValueOffset().getQuantity();
765 return;
768 if (!hasLValuePath()) {
769 // No lvalue path: just print the offset.
770 CharUnits O = getLValueOffset();
771 CharUnits S = Ctx ? Ctx->getTypeSizeInCharsIfKnown(InnerTy).value_or(
772 CharUnits::Zero())
773 : CharUnits::Zero();
774 if (!O.isZero()) {
775 if (IsReference)
776 Out << "*(";
777 if (S.isZero() || O % S) {
778 Out << "(char*)";
779 S = CharUnits::One();
781 Out << '&';
782 } else if (!IsReference) {
783 Out << '&';
786 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
787 Out << *VD;
788 else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
789 TI.print(Out, Policy);
790 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
791 Out << "{*new "
792 << Base.getDynamicAllocType().stream(Policy) << "#"
793 << DA.getIndex() << "}";
794 } else {
795 assert(Base.get<const Expr *>() != nullptr &&
796 "Expecting non-null Expr");
797 Base.get<const Expr*>()->printPretty(Out, nullptr, Policy);
800 if (!O.isZero()) {
801 Out << " + " << (O / S);
802 if (IsReference)
803 Out << ')';
805 return;
808 // We have an lvalue path. Print it out nicely.
809 if (!IsReference)
810 Out << '&';
811 else if (isLValueOnePastTheEnd())
812 Out << "*(&";
814 QualType ElemTy = Base.getType();
815 if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
816 Out << *VD;
817 } else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
818 TI.print(Out, Policy);
819 } else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
820 Out << "{*new " << Base.getDynamicAllocType().stream(Policy) << "#"
821 << DA.getIndex() << "}";
822 } else {
823 const Expr *E = Base.get<const Expr*>();
824 assert(E != nullptr && "Expecting non-null Expr");
825 E->printPretty(Out, nullptr, Policy);
828 ArrayRef<LValuePathEntry> Path = getLValuePath();
829 const CXXRecordDecl *CastToBase = nullptr;
830 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
831 if (ElemTy->isRecordType()) {
832 // The lvalue refers to a class type, so the next path entry is a base
833 // or member.
834 const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer();
835 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) {
836 CastToBase = RD;
837 // Leave ElemTy referring to the most-derived class. The actual type
838 // doesn't matter except for array types.
839 } else {
840 const ValueDecl *VD = cast<ValueDecl>(BaseOrMember);
841 Out << ".";
842 if (CastToBase)
843 Out << *CastToBase << "::";
844 Out << *VD;
845 ElemTy = VD->getType();
847 } else if (ElemTy->isAnyComplexType()) {
848 // The lvalue refers to a complex type
849 Out << (Path[I].getAsArrayIndex() == 0 ? ".real" : ".imag");
850 ElemTy = ElemTy->castAs<ComplexType>()->getElementType();
851 } else {
852 // The lvalue must refer to an array.
853 Out << '[' << Path[I].getAsArrayIndex() << ']';
854 ElemTy = ElemTy->castAsArrayTypeUnsafe()->getElementType();
858 // Handle formatting of one-past-the-end lvalues.
859 if (isLValueOnePastTheEnd()) {
860 // FIXME: If CastToBase is non-0, we should prefix the output with
861 // "(CastToBase*)".
862 Out << " + 1";
863 if (IsReference)
864 Out << ')';
866 return;
868 case APValue::Array: {
869 const ArrayType *AT = Ty->castAsArrayTypeUnsafe();
870 unsigned N = getArrayInitializedElts();
871 if (N != 0 && TryPrintAsStringLiteral(Out, Policy, AT,
872 {&getArrayInitializedElt(0), N}))
873 return;
874 QualType ElemTy = AT->getElementType();
875 Out << '{';
876 unsigned I = 0;
877 switch (N) {
878 case 0:
879 for (; I != N; ++I) {
880 Out << ", ";
881 if (I == 10 && !Policy.EntireContentsOfLargeArray) {
882 Out << "...}";
883 return;
885 [[fallthrough]];
886 default:
887 getArrayInitializedElt(I).printPretty(Out, Policy, ElemTy, Ctx);
890 Out << '}';
891 return;
893 case APValue::Struct: {
894 Out << '{';
895 const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
896 bool First = true;
897 if (unsigned N = getStructNumBases()) {
898 const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD);
899 CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin();
900 for (unsigned I = 0; I != N; ++I, ++BI) {
901 assert(BI != CD->bases_end());
902 if (!First)
903 Out << ", ";
904 getStructBase(I).printPretty(Out, Policy, BI->getType(), Ctx);
905 First = false;
908 for (const auto *FI : RD->fields()) {
909 if (!First)
910 Out << ", ";
911 if (FI->isUnnamedBitField())
912 continue;
913 getStructField(FI->getFieldIndex()).
914 printPretty(Out, Policy, FI->getType(), Ctx);
915 First = false;
917 Out << '}';
918 return;
920 case APValue::Union:
921 Out << '{';
922 if (const FieldDecl *FD = getUnionField()) {
923 Out << "." << *FD << " = ";
924 getUnionValue().printPretty(Out, Policy, FD->getType(), Ctx);
926 Out << '}';
927 return;
928 case APValue::MemberPointer:
929 // FIXME: This is not enough to unambiguously identify the member in a
930 // multiple-inheritance scenario.
931 if (const ValueDecl *VD = getMemberPointerDecl()) {
932 Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD;
933 return;
935 Out << "0";
936 return;
937 case APValue::AddrLabelDiff:
938 Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName();
939 Out << " - ";
940 Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName();
941 return;
943 llvm_unreachable("Unknown APValue kind!");
946 std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const {
947 std::string Result;
948 llvm::raw_string_ostream Out(Result);
949 printPretty(Out, Ctx, Ty);
950 return Result;
953 bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy,
954 const ASTContext &Ctx) const {
955 if (isInt()) {
956 Result = getInt();
957 return true;
960 if (isLValue() && isNullPointer()) {
961 Result = Ctx.MakeIntValue(Ctx.getTargetNullPointerValue(SrcTy), SrcTy);
962 return true;
965 if (isLValue() && !getLValueBase()) {
966 Result = Ctx.MakeIntValue(getLValueOffset().getQuantity(), SrcTy);
967 return true;
970 return false;
973 const APValue::LValueBase APValue::getLValueBase() const {
974 assert(isLValue() && "Invalid accessor");
975 return ((const LV *)(const void *)&Data)->Base;
978 bool APValue::isLValueOnePastTheEnd() const {
979 assert(isLValue() && "Invalid accessor");
980 return ((const LV *)(const void *)&Data)->IsOnePastTheEnd;
983 CharUnits &APValue::getLValueOffset() {
984 assert(isLValue() && "Invalid accessor");
985 return ((LV *)(void *)&Data)->Offset;
988 bool APValue::hasLValuePath() const {
989 assert(isLValue() && "Invalid accessor");
990 return ((const LV *)(const char *)&Data)->hasPath();
993 ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const {
994 assert(isLValue() && hasLValuePath() && "Invalid accessor");
995 const LV &LVal = *((const LV *)(const char *)&Data);
996 return llvm::ArrayRef(LVal.getPath(), LVal.PathLength);
999 unsigned APValue::getLValueCallIndex() const {
1000 assert(isLValue() && "Invalid accessor");
1001 return ((const LV *)(const char *)&Data)->Base.getCallIndex();
1004 unsigned APValue::getLValueVersion() const {
1005 assert(isLValue() && "Invalid accessor");
1006 return ((const LV *)(const char *)&Data)->Base.getVersion();
1009 bool APValue::isNullPointer() const {
1010 assert(isLValue() && "Invalid usage");
1011 return ((const LV *)(const char *)&Data)->IsNullPtr;
1014 void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath,
1015 bool IsNullPtr) {
1016 assert(isLValue() && "Invalid accessor");
1017 LV &LVal = *((LV *)(char *)&Data);
1018 LVal.Base = B;
1019 LVal.IsOnePastTheEnd = false;
1020 LVal.Offset = O;
1021 LVal.resizePath((unsigned)-1);
1022 LVal.IsNullPtr = IsNullPtr;
1025 MutableArrayRef<APValue::LValuePathEntry>
1026 APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size,
1027 bool IsOnePastTheEnd, bool IsNullPtr) {
1028 assert(isLValue() && "Invalid accessor");
1029 LV &LVal = *((LV *)(char *)&Data);
1030 LVal.Base = B;
1031 LVal.IsOnePastTheEnd = IsOnePastTheEnd;
1032 LVal.Offset = O;
1033 LVal.IsNullPtr = IsNullPtr;
1034 LVal.resizePath(Size);
1035 return {LVal.getPath(), Size};
1038 void APValue::setLValue(LValueBase B, const CharUnits &O,
1039 ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd,
1040 bool IsNullPtr) {
1041 MutableArrayRef<APValue::LValuePathEntry> InternalPath =
1042 setLValueUninit(B, O, Path.size(), IsOnePastTheEnd, IsNullPtr);
1043 if (Path.size()) {
1044 memcpy(InternalPath.data(), Path.data(),
1045 Path.size() * sizeof(LValuePathEntry));
1049 void APValue::setUnion(const FieldDecl *Field, const APValue &Value) {
1050 assert(isUnion() && "Invalid accessor");
1051 ((UnionData *)(char *)&Data)->Field =
1052 Field ? Field->getCanonicalDecl() : nullptr;
1053 *((UnionData *)(char *)&Data)->Value = Value;
1056 const ValueDecl *APValue::getMemberPointerDecl() const {
1057 assert(isMemberPointer() && "Invalid accessor");
1058 const MemberPointerData &MPD =
1059 *((const MemberPointerData *)(const char *)&Data);
1060 return MPD.MemberAndIsDerivedMember.getPointer();
1063 bool APValue::isMemberPointerToDerivedMember() const {
1064 assert(isMemberPointer() && "Invalid accessor");
1065 const MemberPointerData &MPD =
1066 *((const MemberPointerData *)(const char *)&Data);
1067 return MPD.MemberAndIsDerivedMember.getInt();
1070 ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const {
1071 assert(isMemberPointer() && "Invalid accessor");
1072 const MemberPointerData &MPD =
1073 *((const MemberPointerData *)(const char *)&Data);
1074 return llvm::ArrayRef(MPD.getPath(), MPD.PathLength);
1077 void APValue::MakeLValue() {
1078 assert(isAbsent() && "Bad state change");
1079 static_assert(sizeof(LV) <= DataSize, "LV too big");
1080 new ((void *)(char *)&Data) LV();
1081 Kind = LValue;
1084 void APValue::MakeArray(unsigned InitElts, unsigned Size) {
1085 assert(isAbsent() && "Bad state change");
1086 new ((void *)(char *)&Data) Arr(InitElts, Size);
1087 Kind = Array;
1090 MutableArrayRef<APValue::LValuePathEntry>
1091 setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size,
1092 bool OnePastTheEnd, bool IsNullPtr);
1094 MutableArrayRef<const CXXRecordDecl *>
1095 APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember,
1096 unsigned Size) {
1097 assert(isAbsent() && "Bad state change");
1098 MemberPointerData *MPD = new ((void *)(char *)&Data) MemberPointerData;
1099 Kind = MemberPointer;
1100 MPD->MemberAndIsDerivedMember.setPointer(
1101 Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr);
1102 MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember);
1103 MPD->resizePath(Size);
1104 return {MPD->getPath(), MPD->PathLength};
1107 void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember,
1108 ArrayRef<const CXXRecordDecl *> Path) {
1109 MutableArrayRef<const CXXRecordDecl *> InternalPath =
1110 setMemberPointerUninit(Member, IsDerivedMember, Path.size());
1111 for (unsigned I = 0; I != Path.size(); ++I)
1112 InternalPath[I] = Path[I]->getCanonicalDecl();
1115 LinkageInfo LinkageComputer::getLVForValue(const APValue &V,
1116 LVComputationKind computation) {
1117 LinkageInfo LV = LinkageInfo::external();
1119 auto MergeLV = [&](LinkageInfo MergeLV) {
1120 LV.merge(MergeLV);
1121 return LV.getLinkage() == Linkage::Internal;
1123 auto Merge = [&](const APValue &V) {
1124 return MergeLV(getLVForValue(V, computation));
1127 switch (V.getKind()) {
1128 case APValue::None:
1129 case APValue::Indeterminate:
1130 case APValue::Int:
1131 case APValue::Float:
1132 case APValue::FixedPoint:
1133 case APValue::ComplexInt:
1134 case APValue::ComplexFloat:
1135 case APValue::Vector:
1136 break;
1138 case APValue::AddrLabelDiff:
1139 // Even for an inline function, it's not reasonable to treat a difference
1140 // between the addresses of labels as an external value.
1141 return LinkageInfo::internal();
1143 case APValue::Struct: {
1144 for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I)
1145 if (Merge(V.getStructBase(I)))
1146 break;
1147 for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I)
1148 if (Merge(V.getStructField(I)))
1149 break;
1150 break;
1153 case APValue::Union:
1154 if (V.getUnionField())
1155 Merge(V.getUnionValue());
1156 break;
1158 case APValue::Array: {
1159 for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
1160 if (Merge(V.getArrayInitializedElt(I)))
1161 break;
1162 if (V.hasArrayFiller())
1163 Merge(V.getArrayFiller());
1164 break;
1167 case APValue::LValue: {
1168 if (!V.getLValueBase()) {
1169 // Null or absolute address: this is external.
1170 } else if (const auto *VD =
1171 V.getLValueBase().dyn_cast<const ValueDecl *>()) {
1172 if (VD && MergeLV(getLVForDecl(VD, computation)))
1173 break;
1174 } else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) {
1175 if (MergeLV(getLVForType(*TI.getType(), computation)))
1176 break;
1177 } else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) {
1178 // Almost all expression bases are internal. The exception is
1179 // lifetime-extended temporaries.
1180 // FIXME: These should be modeled as having the
1181 // LifetimeExtendedTemporaryDecl itself as the base.
1182 // FIXME: If we permit Objective-C object literals in template arguments,
1183 // they should not imply internal linkage.
1184 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
1185 if (!MTE || MTE->getStorageDuration() == SD_FullExpression)
1186 return LinkageInfo::internal();
1187 if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation)))
1188 break;
1189 } else {
1190 assert(V.getLValueBase().is<DynamicAllocLValue>() &&
1191 "unexpected LValueBase kind");
1192 return LinkageInfo::internal();
1194 // The lvalue path doesn't matter: pointers to all subobjects always have
1195 // the same visibility as pointers to the complete object.
1196 break;
1199 case APValue::MemberPointer:
1200 if (const NamedDecl *D = V.getMemberPointerDecl())
1201 MergeLV(getLVForDecl(D, computation));
1202 // Note that we could have a base-to-derived conversion here to a member of
1203 // a derived class with less linkage/visibility. That's covered by the
1204 // linkage and visibility of the value's type.
1205 break;
1208 return LV;