Revert "[InstCombine] Support gep nuw in icmp folds" (#118698)
[llvm-project.git] / clang / lib / Analysis / IntervalPartition.cpp
blob41199f358c5b97276ae94d7917e8f5f72f6b7952
1 //===- IntervalPartition.cpp - CFG Partitioning into Intervals --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines functionality for partitioning a CFG into intervals.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Analysis/Analyses/IntervalPartition.h"
14 #include "clang/Analysis/CFG.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include <optional>
18 #include <queue>
19 #include <vector>
21 namespace clang {
23 // Intermediate data used in constructing a CFGIntervalNode.
24 template <typename Node> struct BuildResult {
25 // Use a vector to maintain the insertion order. Given the expected small
26 // number of nodes, vector should be sufficiently efficient. Elements must not
27 // be null.
28 std::vector<const Node *> Nodes;
29 // Elements must not be null.
30 llvm::SmallDenseSet<const Node *> Successors;
33 namespace internal {
34 static unsigned getID(const CFGBlock &B) { return B.getBlockID(); }
35 static unsigned getID(const CFGIntervalNode &I) { return I.ID; }
37 // `Node` must be one of `CFGBlock` or `CFGIntervalNode`.
38 template <typename Node>
39 static BuildResult<Node> buildInterval(llvm::BitVector &Partitioned,
40 const Node *Header) {
41 assert(Header != nullptr);
42 BuildResult<Node> Interval;
43 Interval.Nodes.push_back(Header);
44 Partitioned.set(getID(*Header));
46 // FIXME: Compare performance against using RPO to consider nodes, rather than
47 // following successors.
49 // Elements must not be null. Duplicates are prevented using `Workset`, below.
50 std::queue<const Node *> Worklist;
51 llvm::BitVector Workset(Partitioned.size(), false);
52 for (const Node *S : Header->succs())
53 if (S != nullptr)
54 if (auto SID = getID(*S); !Partitioned.test(SID)) {
55 // Successors are unique, so we don't test against `Workset` before
56 // adding to `Worklist`.
57 Worklist.push(S);
58 Workset.set(SID);
61 // Contains successors of blocks in the interval that couldn't be added to the
62 // interval on their first encounter. This occurs when they have a predecessor
63 // that is either definitively outside the interval or hasn't been considered
64 // yet. In the latter case, we'll revisit the block through some other path
65 // from the interval. At the end of processing the worklist, we filter out any
66 // that ended up in the interval to produce the output set of interval
67 // successors. Elements are never null.
68 std::vector<const Node *> MaybeSuccessors;
70 while (!Worklist.empty()) {
71 const auto *B = Worklist.front();
72 auto ID = getID(*B);
73 Worklist.pop();
74 Workset.reset(ID);
76 // Check whether all predecessors are in the interval, in which case `B`
77 // is included as well.
78 bool AllInInterval = llvm::all_of(B->preds(), [&](const Node *P) {
79 return llvm::is_contained(Interval.Nodes, P);
80 });
81 if (AllInInterval) {
82 Interval.Nodes.push_back(B);
83 Partitioned.set(ID);
84 for (const Node *S : B->succs())
85 if (S != nullptr)
86 if (auto SID = getID(*S);
87 !Partitioned.test(SID) && !Workset.test(SID)) {
88 Worklist.push(S);
89 Workset.set(SID);
91 } else {
92 MaybeSuccessors.push_back(B);
96 // Any block successors not in the current interval are interval successors.
97 for (const Node *B : MaybeSuccessors)
98 if (!llvm::is_contained(Interval.Nodes, B))
99 Interval.Successors.insert(B);
101 return Interval;
104 template <typename Node>
105 static void fillIntervalNode(CFGIntervalGraph &Graph,
106 std::vector<CFGIntervalNode *> &Index,
107 std::queue<const Node *> &Successors,
108 llvm::BitVector &Partitioned, const Node *Header) {
109 BuildResult<Node> Result = buildInterval(Partitioned, Header);
110 for (const auto *S : Result.Successors)
111 Successors.push(S);
113 CFGIntervalNode &Interval = Graph.emplace_back(Graph.size());
115 // Index the nodes of the new interval. The index maps nodes from the input
116 // graph (specifically, `Result.Nodes`) to identifiers of nodes in the output
117 // graph. In this case, the new interval has identifier `ID` so all of its
118 // nodes (`Result.Nodes`) map to `ID`.
119 for (const auto *N : Result.Nodes) {
120 assert(N != nullptr);
121 assert(getID(*N) < Index.size());
122 Index[getID(*N)] = &Interval;
125 if constexpr (std::is_same_v<std::decay_t<Node>, CFGBlock>)
126 Interval.Nodes = std::move(Result.Nodes);
127 else {
128 std::vector<const CFGBlock *> Nodes;
129 // Flatten the sub vectors into a single list.
130 size_t Count = 0;
131 for (auto &N : Result.Nodes)
132 Count += N->Nodes.size();
133 Nodes.reserve(Count);
134 for (auto &N : Result.Nodes)
135 Nodes.insert(Nodes.end(), N->Nodes.begin(), N->Nodes.end());
136 Interval.Nodes = std::move(Nodes);
140 template <typename Node>
141 static CFGIntervalGraph partitionIntoIntervalsImpl(unsigned NumBlockIDs,
142 const Node *EntryBlock) {
143 assert(EntryBlock != nullptr);
144 CFGIntervalGraph Graph;
145 // `Index` maps all of the nodes of the input graph to the interval to which
146 // they are assigned in the output graph. The values (interval pointers) are
147 // never null.
148 std::vector<CFGIntervalNode *> Index(NumBlockIDs, nullptr);
150 // Lists header nodes (from the input graph) and their associated
151 // interval. Since header nodes can vary in type and are only needed within
152 // this function, we record them separately from `CFGIntervalNode`. This
153 // choice enables to express `CFGIntervalNode` without using a variant.
154 std::vector<std::pair<const Node *, CFGIntervalNode *>> Intervals;
155 llvm::BitVector Partitioned(NumBlockIDs, false);
156 std::queue<const Node *> Successors;
158 fillIntervalNode(Graph, Index, Successors, Partitioned, EntryBlock);
159 Intervals.emplace_back(EntryBlock, &Graph.back());
161 while (!Successors.empty()) {
162 const auto *B = Successors.front();
163 Successors.pop();
164 assert(B != nullptr);
165 if (Partitioned.test(getID(*B)))
166 continue;
168 // B has not been partitioned, but it has a predecessor that has. Create a
169 // new interval from `B`.
170 fillIntervalNode(Graph, Index, Successors, Partitioned, B);
171 Intervals.emplace_back(B, &Graph.back());
174 // Go back and patch up all the Intervals -- the successors and predecessors.
175 for (auto [H, N] : Intervals) {
176 // Map input-graph predecessors to output-graph nodes and mark those as
177 // predecessors of `N`. Then, mark `N` as a successor of said predecessor.
178 for (const Node *P : H->preds()) {
179 if (P == nullptr)
180 continue;
182 assert(getID(*P) < NumBlockIDs);
183 CFGIntervalNode *Pred = Index[getID(*P)];
184 if (Pred == nullptr)
185 // Unreachable node.
186 continue;
187 if (Pred != N // Not a backedge.
188 && N->Predecessors.insert(Pred).second)
189 // Note: given the guard above, which guarantees we only ever insert
190 // unique elements, we could use a simple list (like `vector`) for
191 // `Successors`, rather than a set.
192 Pred->Successors.insert(N);
196 return Graph;
199 std::vector<const CFGBlock *> buildInterval(const CFGBlock *Header) {
200 llvm::BitVector Partitioned(Header->getParent()->getNumBlockIDs(), false);
201 return buildInterval(Partitioned, Header).Nodes;
204 CFGIntervalGraph partitionIntoIntervals(const CFG &Cfg) {
205 return partitionIntoIntervalsImpl(Cfg.getNumBlockIDs(), &Cfg.getEntry());
208 CFGIntervalGraph partitionIntoIntervals(const CFGIntervalGraph &Graph) {
209 return partitionIntoIntervalsImpl(Graph.size(), &Graph[0]);
211 } // namespace internal
213 std::optional<std::vector<const CFGBlock *>> getIntervalWTO(const CFG &Cfg) {
214 // Backing storage for the allocated nodes in each graph.
215 unsigned PrevSize = Cfg.size();
216 if (PrevSize == 0)
217 return {};
218 internal::CFGIntervalGraph Graph = internal::partitionIntoIntervals(Cfg);
219 unsigned Size = Graph.size();
220 while (Size > 1 && Size < PrevSize) {
221 PrevSize = Graph.size();
222 Graph = internal::partitionIntoIntervals(Graph);
223 Size = Graph.size();
225 if (Size > 1)
226 // Not reducible.
227 return std::nullopt;
229 assert(Size != 0);
230 return std::move(Graph[0].Nodes);
233 WTOCompare::WTOCompare(const WeakTopologicalOrdering &WTO) {
234 if (WTO.empty())
235 return;
236 auto N = WTO[0]->getParent()->getNumBlockIDs();
237 BlockOrder.resize(N, 0);
238 for (unsigned I = 0, S = WTO.size(); I < S; ++I)
239 BlockOrder[WTO[I]->getBlockID()] = I + 1;
241 } // namespace clang