1 //===- ThreadSafety.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
15 //===----------------------------------------------------------------------===//
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
57 #include <type_traits>
61 using namespace clang
;
62 using namespace threadSafety
;
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler
&Handler
,
69 const Expr
*MutexExp
, const NamedDecl
*D
,
70 const Expr
*DeclExp
, StringRef Kind
) {
73 Loc
= DeclExp
->getExprLoc();
75 // FIXME: add a note about the attribute location in MutexExp or D
77 Handler
.handleInvalidLockExp(Loc
);
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet
: public SmallVector
<CapabilityExpr
, 4> {
86 /// Push M onto list, but discard duplicates.
87 void push_back_nodup(const CapabilityExpr
&CapE
) {
88 if (llvm::none_of(*this, [=](const CapabilityExpr
&CapE2
) {
89 return CapE
.equals(CapE2
);
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution. Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry
: public CapabilityExpr
{
106 /// Where a fact comes from.
108 Acquired
, ///< The fact has been directly acquired.
109 Asserted
, ///< The fact has been asserted to be held.
110 Declared
, ///< The fact is assumed to be held by callers.
111 Managed
, ///< The fact has been acquired through a scoped capability.
115 /// Exclusive or shared.
118 // How it was acquired.
119 SourceKind Source
: 8;
121 /// Where it was acquired.
122 SourceLocation AcquireLoc
;
125 FactEntry(const CapabilityExpr
&CE
, LockKind LK
, SourceLocation Loc
,
127 : CapabilityExpr(CE
), LKind(LK
), Source(Src
), AcquireLoc(Loc
) {}
128 virtual ~FactEntry() = default;
130 LockKind
kind() const { return LKind
; }
131 SourceLocation
loc() const { return AcquireLoc
; }
133 bool asserted() const { return Source
== Asserted
; }
134 bool declared() const { return Source
== Declared
; }
135 bool managed() const { return Source
== Managed
; }
138 handleRemovalFromIntersection(const FactSet
&FSet
, FactManager
&FactMan
,
139 SourceLocation JoinLoc
, LockErrorKind LEK
,
140 ThreadSafetyHandler
&Handler
) const = 0;
141 virtual void handleLock(FactSet
&FSet
, FactManager
&FactMan
,
142 const FactEntry
&entry
,
143 ThreadSafetyHandler
&Handler
) const = 0;
144 virtual void handleUnlock(FactSet
&FSet
, FactManager
&FactMan
,
145 const CapabilityExpr
&Cp
, SourceLocation UnlockLoc
,
147 ThreadSafetyHandler
&Handler
) const = 0;
149 // Return true if LKind >= LK, where exclusive > shared
150 bool isAtLeast(LockKind LK
) const {
151 return (LKind
== LK_Exclusive
) || (LK
== LK_Shared
);
155 using FactID
= unsigned short;
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
161 std::vector
<std::unique_ptr
<const FactEntry
>> Facts
;
164 FactID
newFact(std::unique_ptr
<FactEntry
> Entry
) {
165 Facts
.push_back(std::move(Entry
));
166 return static_cast<unsigned short>(Facts
.size() - 1);
169 const FactEntry
&operator[](FactID F
) const { return *Facts
[F
]; }
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point. FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup. Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
181 using FactVec
= SmallVector
<FactID
, 4>;
186 using iterator
= FactVec::iterator
;
187 using const_iterator
= FactVec::const_iterator
;
189 iterator
begin() { return FactIDs
.begin(); }
190 const_iterator
begin() const { return FactIDs
.begin(); }
192 iterator
end() { return FactIDs
.end(); }
193 const_iterator
end() const { return FactIDs
.end(); }
195 bool isEmpty() const { return FactIDs
.size() == 0; }
197 // Return true if the set contains only negative facts
198 bool isEmpty(FactManager
&FactMan
) const {
199 for (const auto FID
: *this) {
200 if (!FactMan
[FID
].negative())
206 void addLockByID(FactID ID
) { FactIDs
.push_back(ID
); }
208 FactID
addLock(FactManager
&FM
, std::unique_ptr
<FactEntry
> Entry
) {
209 FactID F
= FM
.newFact(std::move(Entry
));
210 FactIDs
.push_back(F
);
214 bool removeLock(FactManager
& FM
, const CapabilityExpr
&CapE
) {
215 unsigned n
= FactIDs
.size();
219 for (unsigned i
= 0; i
< n
-1; ++i
) {
220 if (FM
[FactIDs
[i
]].matches(CapE
)) {
221 FactIDs
[i
] = FactIDs
[n
-1];
226 if (FM
[FactIDs
[n
-1]].matches(CapE
)) {
233 iterator
findLockIter(FactManager
&FM
, const CapabilityExpr
&CapE
) {
234 return std::find_if(begin(), end(), [&](FactID ID
) {
235 return FM
[ID
].matches(CapE
);
239 const FactEntry
*findLock(FactManager
&FM
, const CapabilityExpr
&CapE
) const {
240 auto I
= std::find_if(begin(), end(), [&](FactID ID
) {
241 return FM
[ID
].matches(CapE
);
243 return I
!= end() ? &FM
[*I
] : nullptr;
246 const FactEntry
*findLockUniv(FactManager
&FM
,
247 const CapabilityExpr
&CapE
) const {
248 auto I
= std::find_if(begin(), end(), [&](FactID ID
) -> bool {
249 return FM
[ID
].matchesUniv(CapE
);
251 return I
!= end() ? &FM
[*I
] : nullptr;
254 const FactEntry
*findPartialMatch(FactManager
&FM
,
255 const CapabilityExpr
&CapE
) const {
256 auto I
= std::find_if(begin(), end(), [&](FactID ID
) -> bool {
257 return FM
[ID
].partiallyMatches(CapE
);
259 return I
!= end() ? &FM
[*I
] : nullptr;
262 bool containsMutexDecl(FactManager
&FM
, const ValueDecl
* Vd
) const {
263 auto I
= std::find_if(begin(), end(), [&](FactID ID
) -> bool {
264 return FM
[ID
].valueDecl() == Vd
;
270 class ThreadSafetyAnalyzer
;
275 namespace threadSafety
{
279 using BeforeVect
= SmallVector
<const ValueDecl
*, 4>;
285 BeforeInfo() = default;
286 BeforeInfo(BeforeInfo
&&) = default;
290 llvm::DenseMap
<const ValueDecl
*, std::unique_ptr
<BeforeInfo
>>;
291 using CycleMap
= llvm::DenseMap
<const ValueDecl
*, bool>;
294 BeforeSet() = default;
296 BeforeInfo
* insertAttrExprs(const ValueDecl
* Vd
,
297 ThreadSafetyAnalyzer
& Analyzer
);
299 BeforeInfo
*getBeforeInfoForDecl(const ValueDecl
*Vd
,
300 ThreadSafetyAnalyzer
&Analyzer
);
302 void checkBeforeAfter(const ValueDecl
* Vd
,
304 ThreadSafetyAnalyzer
& Analyzer
,
305 SourceLocation Loc
, StringRef CapKind
);
312 } // namespace threadSafety
317 class LocalVariableMap
;
319 using LocalVarContext
= llvm::ImmutableMap
<const NamedDecl
*, unsigned>;
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide
{ CBS_Entry
, CBS_Exit
};
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG. See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo
{
328 // Lockset held at entry to block
331 // Lockset held at exit from block
334 // Context held at entry to block
335 LocalVarContext EntryContext
;
337 // Context held at exit from block
338 LocalVarContext ExitContext
;
340 // Location of first statement in block
341 SourceLocation EntryLoc
;
343 // Location of last statement in block.
344 SourceLocation ExitLoc
;
346 // Used to replay contexts later
349 // Is this block reachable?
350 bool Reachable
= false;
352 const FactSet
&getSet(CFGBlockSide Side
) const {
353 return Side
== CBS_Entry
? EntrySet
: ExitSet
;
356 SourceLocation
getLocation(CFGBlockSide Side
) const {
357 return Side
== CBS_Entry
? EntryLoc
: ExitLoc
;
361 CFGBlockInfo(LocalVarContext EmptyCtx
)
362 : EntryContext(EmptyCtx
), ExitContext(EmptyCtx
) {}
365 static CFGBlockInfo
getEmptyBlockInfo(LocalVariableMap
&M
);
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions. It provides SSA-like functionality when traversing the
370 // CFG. Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names. Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name. This map
376 // changes with each assignment.
378 // The map is computed in a single pass over the CFG. Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap
{
383 using Context
= LocalVarContext
;
385 /// A VarDefinition consists of an expression, representing the value of the
386 /// variable, along with the context in which that expression should be
387 /// interpreted. A reference VarDefinition does not itself contain this
388 /// information, but instead contains a pointer to a previous VarDefinition.
389 struct VarDefinition
{
391 friend class LocalVariableMap
;
393 // The original declaration for this variable.
394 const NamedDecl
*Dec
;
396 // The expression for this variable, OR
397 const Expr
*Exp
= nullptr;
399 // Reference to another VarDefinition
402 // The map with which Exp should be interpreted.
405 bool isReference() const { return !Exp
; }
408 // Create ordinary variable definition
409 VarDefinition(const NamedDecl
*D
, const Expr
*E
, Context C
)
410 : Dec(D
), Exp(E
), Ctx(C
) {}
412 // Create reference to previous definition
413 VarDefinition(const NamedDecl
*D
, unsigned R
, Context C
)
414 : Dec(D
), Ref(R
), Ctx(C
) {}
418 Context::Factory ContextFactory
;
419 std::vector
<VarDefinition
> VarDefinitions
;
420 std::vector
<std::pair
<const Stmt
*, Context
>> SavedContexts
;
424 // index 0 is a placeholder for undefined variables (aka phi-nodes).
425 VarDefinitions
.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
428 /// Look up a definition, within the given context.
429 const VarDefinition
* lookup(const NamedDecl
*D
, Context Ctx
) {
430 const unsigned *i
= Ctx
.lookup(D
);
433 assert(*i
< VarDefinitions
.size());
434 return &VarDefinitions
[*i
];
437 /// Look up the definition for D within the given context. Returns
438 /// NULL if the expression is not statically known. If successful, also
439 /// modifies Ctx to hold the context of the return Expr.
440 const Expr
* lookupExpr(const NamedDecl
*D
, Context
&Ctx
) {
441 const unsigned *P
= Ctx
.lookup(D
);
447 if (VarDefinitions
[i
].Exp
) {
448 Ctx
= VarDefinitions
[i
].Ctx
;
449 return VarDefinitions
[i
].Exp
;
451 i
= VarDefinitions
[i
].Ref
;
456 Context
getEmptyContext() { return ContextFactory
.getEmptyMap(); }
458 /// Return the next context after processing S. This function is used by
459 /// clients of the class to get the appropriate context when traversing the
460 /// CFG. It must be called for every assignment or DeclStmt.
461 Context
getNextContext(unsigned &CtxIndex
, const Stmt
*S
, Context C
) {
462 if (SavedContexts
[CtxIndex
+1].first
== S
) {
464 Context Result
= SavedContexts
[CtxIndex
].second
;
470 void dumpVarDefinitionName(unsigned i
) {
472 llvm::errs() << "Undefined";
475 const NamedDecl
*Dec
= VarDefinitions
[i
].Dec
;
477 llvm::errs() << "<<NULL>>";
480 Dec
->printName(llvm::errs());
481 llvm::errs() << "." << i
<< " " << ((const void*) Dec
);
484 /// Dumps an ASCII representation of the variable map to llvm::errs()
486 for (unsigned i
= 1, e
= VarDefinitions
.size(); i
< e
; ++i
) {
487 const Expr
*Exp
= VarDefinitions
[i
].Exp
;
488 unsigned Ref
= VarDefinitions
[i
].Ref
;
490 dumpVarDefinitionName(i
);
491 llvm::errs() << " = ";
492 if (Exp
) Exp
->dump();
494 dumpVarDefinitionName(Ref
);
495 llvm::errs() << "\n";
500 /// Dumps an ASCII representation of a Context to llvm::errs()
501 void dumpContext(Context C
) {
502 for (Context::iterator I
= C
.begin(), E
= C
.end(); I
!= E
; ++I
) {
503 const NamedDecl
*D
= I
.getKey();
504 D
->printName(llvm::errs());
505 llvm::errs() << " -> ";
506 dumpVarDefinitionName(I
.getData());
507 llvm::errs() << "\n";
511 /// Builds the variable map.
512 void traverseCFG(CFG
*CFGraph
, const PostOrderCFGView
*SortedGraph
,
513 std::vector
<CFGBlockInfo
> &BlockInfo
);
516 friend class VarMapBuilder
;
518 // Get the current context index
519 unsigned getContextIndex() { return SavedContexts
.size()-1; }
521 // Save the current context for later replay
522 void saveContext(const Stmt
*S
, Context C
) {
523 SavedContexts
.push_back(std::make_pair(S
, C
));
526 // Adds a new definition to the given context, and returns a new context.
527 // This method should be called when declaring a new variable.
528 Context
addDefinition(const NamedDecl
*D
, const Expr
*Exp
, Context Ctx
) {
529 assert(!Ctx
.contains(D
));
530 unsigned newID
= VarDefinitions
.size();
531 Context NewCtx
= ContextFactory
.add(Ctx
, D
, newID
);
532 VarDefinitions
.push_back(VarDefinition(D
, Exp
, Ctx
));
536 // Add a new reference to an existing definition.
537 Context
addReference(const NamedDecl
*D
, unsigned i
, Context Ctx
) {
538 unsigned newID
= VarDefinitions
.size();
539 Context NewCtx
= ContextFactory
.add(Ctx
, D
, newID
);
540 VarDefinitions
.push_back(VarDefinition(D
, i
, Ctx
));
544 // Updates a definition only if that definition is already in the map.
545 // This method should be called when assigning to an existing variable.
546 Context
updateDefinition(const NamedDecl
*D
, Expr
*Exp
, Context Ctx
) {
547 if (Ctx
.contains(D
)) {
548 unsigned newID
= VarDefinitions
.size();
549 Context NewCtx
= ContextFactory
.remove(Ctx
, D
);
550 NewCtx
= ContextFactory
.add(NewCtx
, D
, newID
);
551 VarDefinitions
.push_back(VarDefinition(D
, Exp
, Ctx
));
557 // Removes a definition from the context, but keeps the variable name
558 // as a valid variable. The index 0 is a placeholder for cleared definitions.
559 Context
clearDefinition(const NamedDecl
*D
, Context Ctx
) {
560 Context NewCtx
= Ctx
;
561 if (NewCtx
.contains(D
)) {
562 NewCtx
= ContextFactory
.remove(NewCtx
, D
);
563 NewCtx
= ContextFactory
.add(NewCtx
, D
, 0);
568 // Remove a definition entirely frmo the context.
569 Context
removeDefinition(const NamedDecl
*D
, Context Ctx
) {
570 Context NewCtx
= Ctx
;
571 if (NewCtx
.contains(D
)) {
572 NewCtx
= ContextFactory
.remove(NewCtx
, D
);
577 Context
intersectContexts(Context C1
, Context C2
);
578 Context
createReferenceContext(Context C
);
579 void intersectBackEdge(Context C1
, Context C2
);
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo
CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap
&M
) {
586 return CFGBlockInfo(M
.getEmptyContext());
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder
: public ConstStmtVisitor
<VarMapBuilder
> {
594 LocalVariableMap
* VMap
;
595 LocalVariableMap::Context Ctx
;
597 VarMapBuilder(LocalVariableMap
*VM
, LocalVariableMap::Context C
)
598 : VMap(VM
), Ctx(C
) {}
600 void VisitDeclStmt(const DeclStmt
*S
);
601 void VisitBinaryOperator(const BinaryOperator
*BO
);
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt
*S
) {
608 bool modifiedCtx
= false;
609 const DeclGroupRef DGrp
= S
->getDeclGroup();
610 for (const auto *D
: DGrp
) {
611 if (const auto *VD
= dyn_cast_or_null
<VarDecl
>(D
)) {
612 const Expr
*E
= VD
->getInit();
614 // Add local variables with trivial type to the variable map
615 QualType T
= VD
->getType();
616 if (T
.isTrivialType(VD
->getASTContext())) {
617 Ctx
= VMap
->addDefinition(VD
, E
, Ctx
);
623 VMap
->saveContext(S
, Ctx
);
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator
*BO
) {
628 if (!BO
->isAssignmentOp())
631 Expr
*LHSExp
= BO
->getLHS()->IgnoreParenCasts();
633 // Update the variable map and current context.
634 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(LHSExp
)) {
635 const ValueDecl
*VDec
= DRE
->getDecl();
636 if (Ctx
.lookup(VDec
)) {
637 if (BO
->getOpcode() == BO_Assign
)
638 Ctx
= VMap
->updateDefinition(VDec
, BO
->getRHS(), Ctx
);
640 // FIXME -- handle compound assignment operators
641 Ctx
= VMap
->clearDefinition(VDec
, Ctx
);
642 VMap
->saveContext(BO
, Ctx
);
647 // Computes the intersection of two contexts. The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1
, Context C2
) {
653 for (const auto &P
: C1
) {
654 const NamedDecl
*Dec
= P
.first
;
655 const unsigned *i2
= C2
.lookup(Dec
);
656 if (!i2
) // variable doesn't exist on second path
657 Result
= removeDefinition(Dec
, Result
);
658 else if (*i2
!= P
.second
) // variable exists, but has different definition
659 Result
= clearDefinition(Dec
, Result
);
664 // For every variable in C, create a new variable that refers to the
665 // definition in C. Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context
LocalVariableMap::createReferenceContext(Context C
) {
668 Context Result
= getEmptyContext();
669 for (const auto &P
: C
)
670 Result
= addReference(P
.first
, P
.second
, Result
);
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions. C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1
, Context C2
) {
678 for (const auto &P
: C1
) {
679 unsigned i1
= P
.second
;
680 VarDefinition
*VDef
= &VarDefinitions
[i1
];
681 assert(VDef
->isReference());
683 const unsigned *i2
= C2
.lookup(P
.first
);
684 if (!i2
|| (*i2
!= i1
))
685 VDef
->Ref
= 0; // Mark this variable as undefined
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself. At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
699 // { Context | VarDefinitions }
700 // int x = 0; { x -> x1 | x1 = 0 }
701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm. Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block. We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass. Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals. (These correspond to places where SSA
717 // might have to insert a phi node.) On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.) E.g.
721 // { Context | VarDefinitions }
722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG
*CFGraph
,
727 const PostOrderCFGView
*SortedGraph
,
728 std::vector
<CFGBlockInfo
> &BlockInfo
) {
729 PostOrderCFGView::CFGBlockSet
VisitedBlocks(CFGraph
);
731 for (const auto *CurrBlock
: *SortedGraph
) {
732 unsigned CurrBlockID
= CurrBlock
->getBlockID();
733 CFGBlockInfo
*CurrBlockInfo
= &BlockInfo
[CurrBlockID
];
735 VisitedBlocks
.insert(CurrBlock
);
737 // Calculate the entry context for the current block
738 bool HasBackEdges
= false;
740 for (CFGBlock::const_pred_iterator PI
= CurrBlock
->pred_begin(),
741 PE
= CurrBlock
->pred_end(); PI
!= PE
; ++PI
) {
742 // if *PI -> CurrBlock is a back edge, so skip it
743 if (*PI
== nullptr || !VisitedBlocks
.alreadySet(*PI
)) {
748 unsigned PrevBlockID
= (*PI
)->getBlockID();
749 CFGBlockInfo
*PrevBlockInfo
= &BlockInfo
[PrevBlockID
];
752 CurrBlockInfo
->EntryContext
= PrevBlockInfo
->ExitContext
;
756 CurrBlockInfo
->EntryContext
=
757 intersectContexts(CurrBlockInfo
->EntryContext
,
758 PrevBlockInfo
->ExitContext
);
762 // Duplicate the context if we have back-edges, so we can call
763 // intersectBackEdges later.
765 CurrBlockInfo
->EntryContext
=
766 createReferenceContext(CurrBlockInfo
->EntryContext
);
768 // Create a starting context index for the current block
769 saveContext(nullptr, CurrBlockInfo
->EntryContext
);
770 CurrBlockInfo
->EntryIndex
= getContextIndex();
772 // Visit all the statements in the basic block.
773 VarMapBuilder
VMapBuilder(this, CurrBlockInfo
->EntryContext
);
774 for (const auto &BI
: *CurrBlock
) {
775 switch (BI
.getKind()) {
776 case CFGElement::Statement
: {
777 CFGStmt CS
= BI
.castAs
<CFGStmt
>();
778 VMapBuilder
.Visit(CS
.getStmt());
785 CurrBlockInfo
->ExitContext
= VMapBuilder
.Ctx
;
787 // Mark variables on back edges as "unknown" if they've been changed.
788 for (CFGBlock::const_succ_iterator SI
= CurrBlock
->succ_begin(),
789 SE
= CurrBlock
->succ_end(); SI
!= SE
; ++SI
) {
790 // if CurrBlock -> *SI is *not* a back edge
791 if (*SI
== nullptr || !VisitedBlocks
.alreadySet(*SI
))
794 CFGBlock
*FirstLoopBlock
= *SI
;
795 Context LoopBegin
= BlockInfo
[FirstLoopBlock
->getBlockID()].EntryContext
;
796 Context LoopEnd
= CurrBlockInfo
->ExitContext
;
797 intersectBackEdge(LoopBegin
, LoopEnd
);
801 // Put an extra entry at the end of the indexed context array
802 unsigned exitID
= CFGraph
->getExit().getBlockID();
803 saveContext(nullptr, BlockInfo
[exitID
].ExitContext
);
806 /// Find the appropriate source locations to use when producing diagnostics for
807 /// each block in the CFG.
808 static void findBlockLocations(CFG
*CFGraph
,
809 const PostOrderCFGView
*SortedGraph
,
810 std::vector
<CFGBlockInfo
> &BlockInfo
) {
811 for (const auto *CurrBlock
: *SortedGraph
) {
812 CFGBlockInfo
*CurrBlockInfo
= &BlockInfo
[CurrBlock
->getBlockID()];
814 // Find the source location of the last statement in the block, if the
815 // block is not empty.
816 if (const Stmt
*S
= CurrBlock
->getTerminatorStmt()) {
817 CurrBlockInfo
->EntryLoc
= CurrBlockInfo
->ExitLoc
= S
->getBeginLoc();
819 for (CFGBlock::const_reverse_iterator BI
= CurrBlock
->rbegin(),
820 BE
= CurrBlock
->rend(); BI
!= BE
; ++BI
) {
821 // FIXME: Handle other CFGElement kinds.
822 if (std::optional
<CFGStmt
> CS
= BI
->getAs
<CFGStmt
>()) {
823 CurrBlockInfo
->ExitLoc
= CS
->getStmt()->getBeginLoc();
829 if (CurrBlockInfo
->ExitLoc
.isValid()) {
830 // This block contains at least one statement. Find the source location
831 // of the first statement in the block.
832 for (const auto &BI
: *CurrBlock
) {
833 // FIXME: Handle other CFGElement kinds.
834 if (std::optional
<CFGStmt
> CS
= BI
.getAs
<CFGStmt
>()) {
835 CurrBlockInfo
->EntryLoc
= CS
->getStmt()->getBeginLoc();
839 } else if (CurrBlock
->pred_size() == 1 && *CurrBlock
->pred_begin() &&
840 CurrBlock
!= &CFGraph
->getExit()) {
841 // The block is empty, and has a single predecessor. Use its exit
843 CurrBlockInfo
->EntryLoc
= CurrBlockInfo
->ExitLoc
=
844 BlockInfo
[(*CurrBlock
->pred_begin())->getBlockID()].ExitLoc
;
845 } else if (CurrBlock
->succ_size() == 1 && *CurrBlock
->succ_begin()) {
846 // The block is empty, and has a single successor. Use its entry
848 CurrBlockInfo
->EntryLoc
= CurrBlockInfo
->ExitLoc
=
849 BlockInfo
[(*CurrBlock
->succ_begin())->getBlockID()].EntryLoc
;
856 class LockableFactEntry
: public FactEntry
{
858 LockableFactEntry(const CapabilityExpr
&CE
, LockKind LK
, SourceLocation Loc
,
859 SourceKind Src
= Acquired
)
860 : FactEntry(CE
, LK
, Loc
, Src
) {}
863 handleRemovalFromIntersection(const FactSet
&FSet
, FactManager
&FactMan
,
864 SourceLocation JoinLoc
, LockErrorKind LEK
,
865 ThreadSafetyHandler
&Handler
) const override
{
866 if (!asserted() && !negative() && !isUniversal()) {
867 Handler
.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc
,
872 void handleLock(FactSet
&FSet
, FactManager
&FactMan
, const FactEntry
&entry
,
873 ThreadSafetyHandler
&Handler
) const override
{
874 Handler
.handleDoubleLock(entry
.getKind(), entry
.toString(), loc(),
878 void handleUnlock(FactSet
&FSet
, FactManager
&FactMan
,
879 const CapabilityExpr
&Cp
, SourceLocation UnlockLoc
,
881 ThreadSafetyHandler
&Handler
) const override
{
882 FSet
.removeLock(FactMan
, Cp
);
883 if (!Cp
.negative()) {
884 FSet
.addLock(FactMan
, std::make_unique
<LockableFactEntry
>(
885 !Cp
, LK_Exclusive
, UnlockLoc
));
890 class ScopedLockableFactEntry
: public FactEntry
{
892 enum UnderlyingCapabilityKind
{
893 UCK_Acquired
, ///< Any kind of acquired capability.
894 UCK_ReleasedShared
, ///< Shared capability that was released.
895 UCK_ReleasedExclusive
, ///< Exclusive capability that was released.
898 struct UnderlyingCapability
{
900 UnderlyingCapabilityKind Kind
;
903 SmallVector
<UnderlyingCapability
, 2> UnderlyingMutexes
;
906 ScopedLockableFactEntry(const CapabilityExpr
&CE
, SourceLocation Loc
)
907 : FactEntry(CE
, LK_Exclusive
, Loc
, Acquired
) {}
909 void addLock(const CapabilityExpr
&M
) {
910 UnderlyingMutexes
.push_back(UnderlyingCapability
{M
, UCK_Acquired
});
913 void addExclusiveUnlock(const CapabilityExpr
&M
) {
914 UnderlyingMutexes
.push_back(UnderlyingCapability
{M
, UCK_ReleasedExclusive
});
917 void addSharedUnlock(const CapabilityExpr
&M
) {
918 UnderlyingMutexes
.push_back(UnderlyingCapability
{M
, UCK_ReleasedShared
});
922 handleRemovalFromIntersection(const FactSet
&FSet
, FactManager
&FactMan
,
923 SourceLocation JoinLoc
, LockErrorKind LEK
,
924 ThreadSafetyHandler
&Handler
) const override
{
925 if (LEK
== LEK_LockedAtEndOfFunction
|| LEK
== LEK_NotLockedAtEndOfFunction
)
928 for (const auto &UnderlyingMutex
: UnderlyingMutexes
) {
929 const auto *Entry
= FSet
.findLock(FactMan
, UnderlyingMutex
.Cap
);
930 if ((UnderlyingMutex
.Kind
== UCK_Acquired
&& Entry
) ||
931 (UnderlyingMutex
.Kind
!= UCK_Acquired
&& !Entry
)) {
932 // If this scoped lock manages another mutex, and if the underlying
933 // mutex is still/not held, then warn about the underlying mutex.
934 Handler
.handleMutexHeldEndOfScope(UnderlyingMutex
.Cap
.getKind(),
935 UnderlyingMutex
.Cap
.toString(), loc(),
941 void handleLock(FactSet
&FSet
, FactManager
&FactMan
, const FactEntry
&entry
,
942 ThreadSafetyHandler
&Handler
) const override
{
943 for (const auto &UnderlyingMutex
: UnderlyingMutexes
) {
944 if (UnderlyingMutex
.Kind
== UCK_Acquired
)
945 lock(FSet
, FactMan
, UnderlyingMutex
.Cap
, entry
.kind(), entry
.loc(),
948 unlock(FSet
, FactMan
, UnderlyingMutex
.Cap
, entry
.loc(), &Handler
);
952 void handleUnlock(FactSet
&FSet
, FactManager
&FactMan
,
953 const CapabilityExpr
&Cp
, SourceLocation UnlockLoc
,
955 ThreadSafetyHandler
&Handler
) const override
{
956 assert(!Cp
.negative() && "Managing object cannot be negative.");
957 for (const auto &UnderlyingMutex
: UnderlyingMutexes
) {
958 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
959 // on double unlocking/locking if we're not destroying the scoped object.
960 ThreadSafetyHandler
*TSHandler
= FullyRemove
? nullptr : &Handler
;
961 if (UnderlyingMutex
.Kind
== UCK_Acquired
) {
962 unlock(FSet
, FactMan
, UnderlyingMutex
.Cap
, UnlockLoc
, TSHandler
);
964 LockKind kind
= UnderlyingMutex
.Kind
== UCK_ReleasedShared
967 lock(FSet
, FactMan
, UnderlyingMutex
.Cap
, kind
, UnlockLoc
, TSHandler
);
971 FSet
.removeLock(FactMan
, Cp
);
975 void lock(FactSet
&FSet
, FactManager
&FactMan
, const CapabilityExpr
&Cp
,
976 LockKind kind
, SourceLocation loc
,
977 ThreadSafetyHandler
*Handler
) const {
978 if (const FactEntry
*Fact
= FSet
.findLock(FactMan
, Cp
)) {
980 Handler
->handleDoubleLock(Cp
.getKind(), Cp
.toString(), Fact
->loc(),
983 FSet
.removeLock(FactMan
, !Cp
);
984 FSet
.addLock(FactMan
,
985 std::make_unique
<LockableFactEntry
>(Cp
, kind
, loc
, Managed
));
989 void unlock(FactSet
&FSet
, FactManager
&FactMan
, const CapabilityExpr
&Cp
,
990 SourceLocation loc
, ThreadSafetyHandler
*Handler
) const {
991 if (FSet
.findLock(FactMan
, Cp
)) {
992 FSet
.removeLock(FactMan
, Cp
);
993 FSet
.addLock(FactMan
, std::make_unique
<LockableFactEntry
>(
994 !Cp
, LK_Exclusive
, loc
));
995 } else if (Handler
) {
996 SourceLocation PrevLoc
;
997 if (const FactEntry
*Neg
= FSet
.findLock(FactMan
, !Cp
))
998 PrevLoc
= Neg
->loc();
999 Handler
->handleUnmatchedUnlock(Cp
.getKind(), Cp
.toString(), loc
, PrevLoc
);
1004 /// Class which implements the core thread safety analysis routines.
1005 class ThreadSafetyAnalyzer
{
1006 friend class BuildLockset
;
1007 friend class threadSafety::BeforeSet
;
1009 llvm::BumpPtrAllocator Bpa
;
1010 threadSafety::til::MemRegionRef Arena
;
1011 threadSafety::SExprBuilder SxBuilder
;
1013 ThreadSafetyHandler
&Handler
;
1014 const FunctionDecl
*CurrentFunction
;
1015 LocalVariableMap LocalVarMap
;
1016 // Maps constructed objects to `this` placeholder prior to initialization.
1017 llvm::SmallDenseMap
<const Expr
*, til::LiteralPtr
*> ConstructedObjects
;
1018 FactManager FactMan
;
1019 std::vector
<CFGBlockInfo
> BlockInfo
;
1021 BeforeSet
*GlobalBeforeSet
;
1024 ThreadSafetyAnalyzer(ThreadSafetyHandler
&H
, BeforeSet
* Bset
)
1025 : Arena(&Bpa
), SxBuilder(Arena
), Handler(H
), GlobalBeforeSet(Bset
) {}
1027 bool inCurrentScope(const CapabilityExpr
&CapE
);
1029 void addLock(FactSet
&FSet
, std::unique_ptr
<FactEntry
> Entry
,
1030 bool ReqAttr
= false);
1031 void removeLock(FactSet
&FSet
, const CapabilityExpr
&CapE
,
1032 SourceLocation UnlockLoc
, bool FullyRemove
, LockKind Kind
);
1034 template <typename AttrType
>
1035 void getMutexIDs(CapExprSet
&Mtxs
, AttrType
*Attr
, const Expr
*Exp
,
1036 const NamedDecl
*D
, til::SExpr
*Self
= nullptr);
1038 template <class AttrType
>
1039 void getMutexIDs(CapExprSet
&Mtxs
, AttrType
*Attr
, const Expr
*Exp
,
1041 const CFGBlock
*PredBlock
, const CFGBlock
*CurrBlock
,
1042 Expr
*BrE
, bool Neg
);
1044 const CallExpr
* getTrylockCallExpr(const Stmt
*Cond
, LocalVarContext C
,
1047 void getEdgeLockset(FactSet
&Result
, const FactSet
&ExitSet
,
1048 const CFGBlock
* PredBlock
,
1049 const CFGBlock
*CurrBlock
);
1051 bool join(const FactEntry
&a
, const FactEntry
&b
, bool CanModify
);
1053 void intersectAndWarn(FactSet
&EntrySet
, const FactSet
&ExitSet
,
1054 SourceLocation JoinLoc
, LockErrorKind EntryLEK
,
1055 LockErrorKind ExitLEK
);
1057 void intersectAndWarn(FactSet
&EntrySet
, const FactSet
&ExitSet
,
1058 SourceLocation JoinLoc
, LockErrorKind LEK
) {
1059 intersectAndWarn(EntrySet
, ExitSet
, JoinLoc
, LEK
, LEK
);
1062 void runAnalysis(AnalysisDeclContext
&AC
);
1064 void warnIfMutexNotHeld(const FactSet
&FSet
, const NamedDecl
*D
,
1065 const Expr
*Exp
, AccessKind AK
, Expr
*MutexExp
,
1066 ProtectedOperationKind POK
, til::LiteralPtr
*Self
,
1067 SourceLocation Loc
);
1068 void warnIfMutexHeld(const FactSet
&FSet
, const NamedDecl
*D
, const Expr
*Exp
,
1069 Expr
*MutexExp
, til::LiteralPtr
*Self
,
1070 SourceLocation Loc
);
1072 void checkAccess(const FactSet
&FSet
, const Expr
*Exp
, AccessKind AK
,
1073 ProtectedOperationKind POK
);
1074 void checkPtAccess(const FactSet
&FSet
, const Expr
*Exp
, AccessKind AK
,
1075 ProtectedOperationKind POK
);
1080 /// Process acquired_before and acquired_after attributes on Vd.
1081 BeforeSet::BeforeInfo
* BeforeSet::insertAttrExprs(const ValueDecl
* Vd
,
1082 ThreadSafetyAnalyzer
& Analyzer
) {
1083 // Create a new entry for Vd.
1084 BeforeInfo
*Info
= nullptr;
1086 // Keep InfoPtr in its own scope in case BMap is modified later and the
1087 // reference becomes invalid.
1088 std::unique_ptr
<BeforeInfo
> &InfoPtr
= BMap
[Vd
];
1090 InfoPtr
.reset(new BeforeInfo());
1091 Info
= InfoPtr
.get();
1094 for (const auto *At
: Vd
->attrs()) {
1095 switch (At
->getKind()) {
1096 case attr::AcquiredBefore
: {
1097 const auto *A
= cast
<AcquiredBeforeAttr
>(At
);
1099 // Read exprs from the attribute, and add them to BeforeVect.
1100 for (const auto *Arg
: A
->args()) {
1102 Analyzer
.SxBuilder
.translateAttrExpr(Arg
, nullptr);
1103 if (const ValueDecl
*Cpvd
= Cp
.valueDecl()) {
1104 Info
->Vect
.push_back(Cpvd
);
1105 const auto It
= BMap
.find(Cpvd
);
1106 if (It
== BMap
.end())
1107 insertAttrExprs(Cpvd
, Analyzer
);
1112 case attr::AcquiredAfter
: {
1113 const auto *A
= cast
<AcquiredAfterAttr
>(At
);
1115 // Read exprs from the attribute, and add them to BeforeVect.
1116 for (const auto *Arg
: A
->args()) {
1118 Analyzer
.SxBuilder
.translateAttrExpr(Arg
, nullptr);
1119 if (const ValueDecl
*ArgVd
= Cp
.valueDecl()) {
1120 // Get entry for mutex listed in attribute
1121 BeforeInfo
*ArgInfo
= getBeforeInfoForDecl(ArgVd
, Analyzer
);
1122 ArgInfo
->Vect
.push_back(Vd
);
1135 BeforeSet::BeforeInfo
*
1136 BeforeSet::getBeforeInfoForDecl(const ValueDecl
*Vd
,
1137 ThreadSafetyAnalyzer
&Analyzer
) {
1138 auto It
= BMap
.find(Vd
);
1139 BeforeInfo
*Info
= nullptr;
1140 if (It
== BMap
.end())
1141 Info
= insertAttrExprs(Vd
, Analyzer
);
1143 Info
= It
->second
.get();
1144 assert(Info
&& "BMap contained nullptr?");
1148 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1149 void BeforeSet::checkBeforeAfter(const ValueDecl
* StartVd
,
1150 const FactSet
& FSet
,
1151 ThreadSafetyAnalyzer
& Analyzer
,
1152 SourceLocation Loc
, StringRef CapKind
) {
1153 SmallVector
<BeforeInfo
*, 8> InfoVect
;
1155 // Do a depth-first traversal of Vd.
1156 // Return true if there are cycles.
1157 std::function
<bool (const ValueDecl
*)> traverse
= [&](const ValueDecl
* Vd
) {
1161 BeforeSet::BeforeInfo
*Info
= getBeforeInfoForDecl(Vd
, Analyzer
);
1163 if (Info
->Visited
== 1)
1166 if (Info
->Visited
== 2)
1169 if (Info
->Vect
.empty())
1172 InfoVect
.push_back(Info
);
1174 for (const auto *Vdb
: Info
->Vect
) {
1175 // Exclude mutexes in our immediate before set.
1176 if (FSet
.containsMutexDecl(Analyzer
.FactMan
, Vdb
)) {
1177 StringRef L1
= StartVd
->getName();
1178 StringRef L2
= Vdb
->getName();
1179 Analyzer
.Handler
.handleLockAcquiredBefore(CapKind
, L1
, L2
, Loc
);
1181 // Transitively search other before sets, and warn on cycles.
1182 if (traverse(Vdb
)) {
1183 if (CycMap
.try_emplace(Vd
, true).second
) {
1184 StringRef L1
= Vd
->getName();
1185 Analyzer
.Handler
.handleBeforeAfterCycle(L1
, Vd
->getLocation());
1195 for (auto *Info
: InfoVect
)
1199 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1200 static const ValueDecl
*getValueDecl(const Expr
*Exp
) {
1201 if (const auto *CE
= dyn_cast
<ImplicitCastExpr
>(Exp
))
1202 return getValueDecl(CE
->getSubExpr());
1204 if (const auto *DR
= dyn_cast
<DeclRefExpr
>(Exp
))
1205 return DR
->getDecl();
1207 if (const auto *ME
= dyn_cast
<MemberExpr
>(Exp
))
1208 return ME
->getMemberDecl();
1215 template <typename Ty
>
1216 class has_arg_iterator_range
{
1217 using yes
= char[1];
1220 template <typename Inner
>
1221 static yes
& test(Inner
*I
, decltype(I
->args()) * = nullptr);
1224 static no
& test(...);
1227 static const bool value
= sizeof(test
<Ty
>(nullptr)) == sizeof(yes
);
1232 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr
&CapE
) {
1233 const threadSafety::til::SExpr
*SExp
= CapE
.sexpr();
1234 assert(SExp
&& "Null expressions should be ignored");
1236 if (const auto *LP
= dyn_cast
<til::LiteralPtr
>(SExp
)) {
1237 const ValueDecl
*VD
= LP
->clangDecl();
1238 // Variables defined in a function are always inaccessible.
1239 if (!VD
|| !VD
->isDefinedOutsideFunctionOrMethod())
1241 // For now we consider static class members to be inaccessible.
1242 if (isa
<CXXRecordDecl
>(VD
->getDeclContext()))
1244 // Global variables are always in scope.
1248 // Members are in scope from methods of the same class.
1249 if (const auto *P
= dyn_cast
<til::Project
>(SExp
)) {
1250 if (!isa_and_nonnull
<CXXMethodDecl
>(CurrentFunction
))
1252 const ValueDecl
*VD
= P
->clangDecl();
1253 return VD
->getDeclContext() == CurrentFunction
->getDeclContext();
1259 /// Add a new lock to the lockset, warning if the lock is already there.
1260 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1261 void ThreadSafetyAnalyzer::addLock(FactSet
&FSet
,
1262 std::unique_ptr
<FactEntry
> Entry
,
1264 if (Entry
->shouldIgnore())
1267 if (!ReqAttr
&& !Entry
->negative()) {
1268 // look for the negative capability, and remove it from the fact set.
1269 CapabilityExpr NegC
= !*Entry
;
1270 const FactEntry
*Nen
= FSet
.findLock(FactMan
, NegC
);
1272 FSet
.removeLock(FactMan
, NegC
);
1275 if (inCurrentScope(*Entry
) && !Entry
->asserted())
1276 Handler
.handleNegativeNotHeld(Entry
->getKind(), Entry
->toString(),
1277 NegC
.toString(), Entry
->loc());
1281 // Check before/after constraints
1282 if (Handler
.issueBetaWarnings() &&
1283 !Entry
->asserted() && !Entry
->declared()) {
1284 GlobalBeforeSet
->checkBeforeAfter(Entry
->valueDecl(), FSet
, *this,
1285 Entry
->loc(), Entry
->getKind());
1288 // FIXME: Don't always warn when we have support for reentrant locks.
1289 if (const FactEntry
*Cp
= FSet
.findLock(FactMan
, *Entry
)) {
1290 if (!Entry
->asserted())
1291 Cp
->handleLock(FSet
, FactMan
, *Entry
, Handler
);
1293 FSet
.addLock(FactMan
, std::move(Entry
));
1297 /// Remove a lock from the lockset, warning if the lock is not there.
1298 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1299 void ThreadSafetyAnalyzer::removeLock(FactSet
&FSet
, const CapabilityExpr
&Cp
,
1300 SourceLocation UnlockLoc
,
1301 bool FullyRemove
, LockKind ReceivedKind
) {
1302 if (Cp
.shouldIgnore())
1305 const FactEntry
*LDat
= FSet
.findLock(FactMan
, Cp
);
1307 SourceLocation PrevLoc
;
1308 if (const FactEntry
*Neg
= FSet
.findLock(FactMan
, !Cp
))
1309 PrevLoc
= Neg
->loc();
1310 Handler
.handleUnmatchedUnlock(Cp
.getKind(), Cp
.toString(), UnlockLoc
,
1315 // Generic lock removal doesn't care about lock kind mismatches, but
1316 // otherwise diagnose when the lock kinds are mismatched.
1317 if (ReceivedKind
!= LK_Generic
&& LDat
->kind() != ReceivedKind
) {
1318 Handler
.handleIncorrectUnlockKind(Cp
.getKind(), Cp
.toString(), LDat
->kind(),
1319 ReceivedKind
, LDat
->loc(), UnlockLoc
);
1322 LDat
->handleUnlock(FSet
, FactMan
, Cp
, UnlockLoc
, FullyRemove
, Handler
);
1325 /// Extract the list of mutexIDs from the attribute on an expression,
1326 /// and push them onto Mtxs, discarding any duplicates.
1327 template <typename AttrType
>
1328 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet
&Mtxs
, AttrType
*Attr
,
1329 const Expr
*Exp
, const NamedDecl
*D
,
1331 if (Attr
->args_size() == 0) {
1332 // The mutex held is the "this" object.
1333 CapabilityExpr Cp
= SxBuilder
.translateAttrExpr(nullptr, D
, Exp
, Self
);
1334 if (Cp
.isInvalid()) {
1335 warnInvalidLock(Handler
, nullptr, D
, Exp
, Cp
.getKind());
1339 if (!Cp
.shouldIgnore())
1340 Mtxs
.push_back_nodup(Cp
);
1344 for (const auto *Arg
: Attr
->args()) {
1345 CapabilityExpr Cp
= SxBuilder
.translateAttrExpr(Arg
, D
, Exp
, Self
);
1346 if (Cp
.isInvalid()) {
1347 warnInvalidLock(Handler
, nullptr, D
, Exp
, Cp
.getKind());
1351 if (!Cp
.shouldIgnore())
1352 Mtxs
.push_back_nodup(Cp
);
1356 /// Extract the list of mutexIDs from a trylock attribute. If the
1357 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1359 template <class AttrType
>
1360 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet
&Mtxs
, AttrType
*Attr
,
1361 const Expr
*Exp
, const NamedDecl
*D
,
1362 const CFGBlock
*PredBlock
,
1363 const CFGBlock
*CurrBlock
,
1364 Expr
*BrE
, bool Neg
) {
1365 // Find out which branch has the lock
1366 bool branch
= false;
1367 if (const auto *BLE
= dyn_cast_or_null
<CXXBoolLiteralExpr
>(BrE
))
1368 branch
= BLE
->getValue();
1369 else if (const auto *ILE
= dyn_cast_or_null
<IntegerLiteral
>(BrE
))
1370 branch
= ILE
->getValue().getBoolValue();
1372 int branchnum
= branch
? 0 : 1;
1374 branchnum
= !branchnum
;
1376 // If we've taken the trylock branch, then add the lock
1378 for (CFGBlock::const_succ_iterator SI
= PredBlock
->succ_begin(),
1379 SE
= PredBlock
->succ_end(); SI
!= SE
&& i
< 2; ++SI
, ++i
) {
1380 if (*SI
== CurrBlock
&& i
== branchnum
)
1381 getMutexIDs(Mtxs
, Attr
, Exp
, D
);
1385 static bool getStaticBooleanValue(Expr
*E
, bool &TCond
) {
1386 if (isa
<CXXNullPtrLiteralExpr
>(E
) || isa
<GNUNullExpr
>(E
)) {
1389 } else if (const auto *BLE
= dyn_cast
<CXXBoolLiteralExpr
>(E
)) {
1390 TCond
= BLE
->getValue();
1392 } else if (const auto *ILE
= dyn_cast
<IntegerLiteral
>(E
)) {
1393 TCond
= ILE
->getValue().getBoolValue();
1395 } else if (auto *CE
= dyn_cast
<ImplicitCastExpr
>(E
))
1396 return getStaticBooleanValue(CE
->getSubExpr(), TCond
);
1400 // If Cond can be traced back to a function call, return the call expression.
1401 // The negate variable should be called with false, and will be set to true
1402 // if the function call is negated, e.g. if (!mu.tryLock(...))
1403 const CallExpr
* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt
*Cond
,
1409 if (const auto *CallExp
= dyn_cast
<CallExpr
>(Cond
)) {
1410 if (CallExp
->getBuiltinCallee() == Builtin::BI__builtin_expect
)
1411 return getTrylockCallExpr(CallExp
->getArg(0), C
, Negate
);
1414 else if (const auto *PE
= dyn_cast
<ParenExpr
>(Cond
))
1415 return getTrylockCallExpr(PE
->getSubExpr(), C
, Negate
);
1416 else if (const auto *CE
= dyn_cast
<ImplicitCastExpr
>(Cond
))
1417 return getTrylockCallExpr(CE
->getSubExpr(), C
, Negate
);
1418 else if (const auto *FE
= dyn_cast
<FullExpr
>(Cond
))
1419 return getTrylockCallExpr(FE
->getSubExpr(), C
, Negate
);
1420 else if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Cond
)) {
1421 const Expr
*E
= LocalVarMap
.lookupExpr(DRE
->getDecl(), C
);
1422 return getTrylockCallExpr(E
, C
, Negate
);
1424 else if (const auto *UOP
= dyn_cast
<UnaryOperator
>(Cond
)) {
1425 if (UOP
->getOpcode() == UO_LNot
) {
1427 return getTrylockCallExpr(UOP
->getSubExpr(), C
, Negate
);
1431 else if (const auto *BOP
= dyn_cast
<BinaryOperator
>(Cond
)) {
1432 if (BOP
->getOpcode() == BO_EQ
|| BOP
->getOpcode() == BO_NE
) {
1433 if (BOP
->getOpcode() == BO_NE
)
1437 if (getStaticBooleanValue(BOP
->getRHS(), TCond
)) {
1438 if (!TCond
) Negate
= !Negate
;
1439 return getTrylockCallExpr(BOP
->getLHS(), C
, Negate
);
1442 if (getStaticBooleanValue(BOP
->getLHS(), TCond
)) {
1443 if (!TCond
) Negate
= !Negate
;
1444 return getTrylockCallExpr(BOP
->getRHS(), C
, Negate
);
1448 if (BOP
->getOpcode() == BO_LAnd
) {
1449 // LHS must have been evaluated in a different block.
1450 return getTrylockCallExpr(BOP
->getRHS(), C
, Negate
);
1452 if (BOP
->getOpcode() == BO_LOr
)
1453 return getTrylockCallExpr(BOP
->getRHS(), C
, Negate
);
1455 } else if (const auto *COP
= dyn_cast
<ConditionalOperator
>(Cond
)) {
1457 if (getStaticBooleanValue(COP
->getTrueExpr(), TCond
) &&
1458 getStaticBooleanValue(COP
->getFalseExpr(), FCond
)) {
1459 if (TCond
&& !FCond
)
1460 return getTrylockCallExpr(COP
->getCond(), C
, Negate
);
1461 if (!TCond
&& FCond
) {
1463 return getTrylockCallExpr(COP
->getCond(), C
, Negate
);
1470 /// Find the lockset that holds on the edge between PredBlock
1471 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1472 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1473 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet
& Result
,
1474 const FactSet
&ExitSet
,
1475 const CFGBlock
*PredBlock
,
1476 const CFGBlock
*CurrBlock
) {
1479 const Stmt
*Cond
= PredBlock
->getTerminatorCondition();
1480 // We don't acquire try-locks on ?: branches, only when its result is used.
1481 if (!Cond
|| isa
<ConditionalOperator
>(PredBlock
->getTerminatorStmt()))
1484 bool Negate
= false;
1485 const CFGBlockInfo
*PredBlockInfo
= &BlockInfo
[PredBlock
->getBlockID()];
1486 const LocalVarContext
&LVarCtx
= PredBlockInfo
->ExitContext
;
1488 const auto *Exp
= getTrylockCallExpr(Cond
, LVarCtx
, Negate
);
1492 auto *FunDecl
= dyn_cast_or_null
<NamedDecl
>(Exp
->getCalleeDecl());
1493 if(!FunDecl
|| !FunDecl
->hasAttrs())
1496 CapExprSet ExclusiveLocksToAdd
;
1497 CapExprSet SharedLocksToAdd
;
1499 // If the condition is a call to a Trylock function, then grab the attributes
1500 for (const auto *Attr
: FunDecl
->attrs()) {
1501 switch (Attr
->getKind()) {
1502 case attr::TryAcquireCapability
: {
1503 auto *A
= cast
<TryAcquireCapabilityAttr
>(Attr
);
1504 getMutexIDs(A
->isShared() ? SharedLocksToAdd
: ExclusiveLocksToAdd
, A
,
1505 Exp
, FunDecl
, PredBlock
, CurrBlock
, A
->getSuccessValue(),
1509 case attr::ExclusiveTrylockFunction
: {
1510 const auto *A
= cast
<ExclusiveTrylockFunctionAttr
>(Attr
);
1511 getMutexIDs(ExclusiveLocksToAdd
, A
, Exp
, FunDecl
, PredBlock
, CurrBlock
,
1512 A
->getSuccessValue(), Negate
);
1515 case attr::SharedTrylockFunction
: {
1516 const auto *A
= cast
<SharedTrylockFunctionAttr
>(Attr
);
1517 getMutexIDs(SharedLocksToAdd
, A
, Exp
, FunDecl
, PredBlock
, CurrBlock
,
1518 A
->getSuccessValue(), Negate
);
1526 // Add and remove locks.
1527 SourceLocation Loc
= Exp
->getExprLoc();
1528 for (const auto &ExclusiveLockToAdd
: ExclusiveLocksToAdd
)
1529 addLock(Result
, std::make_unique
<LockableFactEntry
>(ExclusiveLockToAdd
,
1530 LK_Exclusive
, Loc
));
1531 for (const auto &SharedLockToAdd
: SharedLocksToAdd
)
1532 addLock(Result
, std::make_unique
<LockableFactEntry
>(SharedLockToAdd
,
1538 /// We use this class to visit different types of expressions in
1539 /// CFGBlocks, and build up the lockset.
1540 /// An expression may cause us to add or remove locks from the lockset, or else
1541 /// output error messages related to missing locks.
1542 /// FIXME: In future, we may be able to not inherit from a visitor.
1543 class BuildLockset
: public ConstStmtVisitor
<BuildLockset
> {
1544 friend class ThreadSafetyAnalyzer
;
1546 ThreadSafetyAnalyzer
*Analyzer
;
1548 // The fact set for the function on exit.
1549 const FactSet
&FunctionExitFSet
;
1550 LocalVariableMap::Context LVarCtx
;
1555 void checkAccess(const Expr
*Exp
, AccessKind AK
,
1556 ProtectedOperationKind POK
= POK_VarAccess
) {
1557 Analyzer
->checkAccess(FSet
, Exp
, AK
, POK
);
1559 void checkPtAccess(const Expr
*Exp
, AccessKind AK
,
1560 ProtectedOperationKind POK
= POK_VarAccess
) {
1561 Analyzer
->checkPtAccess(FSet
, Exp
, AK
, POK
);
1564 void handleCall(const Expr
*Exp
, const NamedDecl
*D
,
1565 til::LiteralPtr
*Self
= nullptr,
1566 SourceLocation Loc
= SourceLocation());
1567 void examineArguments(const FunctionDecl
*FD
,
1568 CallExpr::const_arg_iterator ArgBegin
,
1569 CallExpr::const_arg_iterator ArgEnd
,
1570 bool SkipFirstParam
= false);
1573 BuildLockset(ThreadSafetyAnalyzer
*Anlzr
, CFGBlockInfo
&Info
,
1574 const FactSet
&FunctionExitFSet
)
1575 : ConstStmtVisitor
<BuildLockset
>(), Analyzer(Anlzr
), FSet(Info
.EntrySet
),
1576 FunctionExitFSet(FunctionExitFSet
), LVarCtx(Info
.EntryContext
),
1577 CtxIndex(Info
.EntryIndex
) {}
1579 void VisitUnaryOperator(const UnaryOperator
*UO
);
1580 void VisitBinaryOperator(const BinaryOperator
*BO
);
1581 void VisitCastExpr(const CastExpr
*CE
);
1582 void VisitCallExpr(const CallExpr
*Exp
);
1583 void VisitCXXConstructExpr(const CXXConstructExpr
*Exp
);
1584 void VisitDeclStmt(const DeclStmt
*S
);
1585 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr
*Exp
);
1586 void VisitReturnStmt(const ReturnStmt
*S
);
1591 /// Warn if the LSet does not contain a lock sufficient to protect access
1592 /// of at least the passed in AccessKind.
1593 void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1594 const FactSet
&FSet
, const NamedDecl
*D
, const Expr
*Exp
, AccessKind AK
,
1595 Expr
*MutexExp
, ProtectedOperationKind POK
, til::LiteralPtr
*Self
,
1596 SourceLocation Loc
) {
1597 LockKind LK
= getLockKindFromAccessKind(AK
);
1598 CapabilityExpr Cp
= SxBuilder
.translateAttrExpr(MutexExp
, D
, Exp
, Self
);
1599 if (Cp
.isInvalid()) {
1600 warnInvalidLock(Handler
, MutexExp
, D
, Exp
, Cp
.getKind());
1602 } else if (Cp
.shouldIgnore()) {
1606 if (Cp
.negative()) {
1607 // Negative capabilities act like locks excluded
1608 const FactEntry
*LDat
= FSet
.findLock(FactMan
, !Cp
);
1610 Handler
.handleFunExcludesLock(Cp
.getKind(), D
->getNameAsString(),
1611 (!Cp
).toString(), Loc
);
1615 // If this does not refer to a negative capability in the same class,
1617 if (!inCurrentScope(Cp
))
1620 // Otherwise the negative requirement must be propagated to the caller.
1621 LDat
= FSet
.findLock(FactMan
, Cp
);
1623 Handler
.handleNegativeNotHeld(D
, Cp
.toString(), Loc
);
1628 const FactEntry
*LDat
= FSet
.findLockUniv(FactMan
, Cp
);
1629 bool NoError
= true;
1631 // No exact match found. Look for a partial match.
1632 LDat
= FSet
.findPartialMatch(FactMan
, Cp
);
1634 // Warn that there's no precise match.
1635 std::string PartMatchStr
= LDat
->toString();
1636 StringRef
PartMatchName(PartMatchStr
);
1637 Handler
.handleMutexNotHeld(Cp
.getKind(), D
, POK
, Cp
.toString(), LK
, Loc
,
1640 // Warn that there's no match at all.
1641 Handler
.handleMutexNotHeld(Cp
.getKind(), D
, POK
, Cp
.toString(), LK
, Loc
);
1645 // Make sure the mutex we found is the right kind.
1646 if (NoError
&& LDat
&& !LDat
->isAtLeast(LK
)) {
1647 Handler
.handleMutexNotHeld(Cp
.getKind(), D
, POK
, Cp
.toString(), LK
, Loc
);
1651 /// Warn if the LSet contains the given lock.
1652 void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet
&FSet
,
1653 const NamedDecl
*D
, const Expr
*Exp
,
1655 til::LiteralPtr
*Self
,
1656 SourceLocation Loc
) {
1657 CapabilityExpr Cp
= SxBuilder
.translateAttrExpr(MutexExp
, D
, Exp
, Self
);
1658 if (Cp
.isInvalid()) {
1659 warnInvalidLock(Handler
, MutexExp
, D
, Exp
, Cp
.getKind());
1661 } else if (Cp
.shouldIgnore()) {
1665 const FactEntry
*LDat
= FSet
.findLock(FactMan
, Cp
);
1667 Handler
.handleFunExcludesLock(Cp
.getKind(), D
->getNameAsString(),
1668 Cp
.toString(), Loc
);
1672 /// Checks guarded_by and pt_guarded_by attributes.
1673 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1674 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1675 /// Similarly, we check if the access is to an expression that dereferences
1676 /// a pointer marked with pt_guarded_by.
1677 void ThreadSafetyAnalyzer::checkAccess(const FactSet
&FSet
, const Expr
*Exp
,
1679 ProtectedOperationKind POK
) {
1680 Exp
= Exp
->IgnoreImplicit()->IgnoreParenCasts();
1682 SourceLocation Loc
= Exp
->getExprLoc();
1684 // Local variables of reference type cannot be re-assigned;
1685 // map them to their initializer.
1686 while (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Exp
)) {
1687 const auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()->getCanonicalDecl());
1688 if (VD
&& VD
->isLocalVarDecl() && VD
->getType()->isReferenceType()) {
1689 if (const auto *E
= VD
->getInit()) {
1690 // Guard against self-initialization. e.g., int &i = i;
1700 if (const auto *UO
= dyn_cast
<UnaryOperator
>(Exp
)) {
1702 if (UO
->getOpcode() == UO_Deref
)
1703 checkPtAccess(FSet
, UO
->getSubExpr(), AK
, POK
);
1707 if (const auto *BO
= dyn_cast
<BinaryOperator
>(Exp
)) {
1708 switch (BO
->getOpcode()) {
1709 case BO_PtrMemD
: // .*
1710 return checkAccess(FSet
, BO
->getLHS(), AK
, POK
);
1711 case BO_PtrMemI
: // ->*
1712 return checkPtAccess(FSet
, BO
->getLHS(), AK
, POK
);
1718 if (const auto *AE
= dyn_cast
<ArraySubscriptExpr
>(Exp
)) {
1719 checkPtAccess(FSet
, AE
->getLHS(), AK
, POK
);
1723 if (const auto *ME
= dyn_cast
<MemberExpr
>(Exp
)) {
1725 checkPtAccess(FSet
, ME
->getBase(), AK
, POK
);
1727 checkAccess(FSet
, ME
->getBase(), AK
, POK
);
1730 const ValueDecl
*D
= getValueDecl(Exp
);
1731 if (!D
|| !D
->hasAttrs())
1734 if (D
->hasAttr
<GuardedVarAttr
>() && FSet
.isEmpty(FactMan
)) {
1735 Handler
.handleNoMutexHeld(D
, POK
, AK
, Loc
);
1738 for (const auto *I
: D
->specific_attrs
<GuardedByAttr
>())
1739 warnIfMutexNotHeld(FSet
, D
, Exp
, AK
, I
->getArg(), POK
, nullptr, Loc
);
1742 /// Checks pt_guarded_by and pt_guarded_var attributes.
1743 /// POK is the same operationKind that was passed to checkAccess.
1744 void ThreadSafetyAnalyzer::checkPtAccess(const FactSet
&FSet
, const Expr
*Exp
,
1746 ProtectedOperationKind POK
) {
1748 if (const auto *PE
= dyn_cast
<ParenExpr
>(Exp
)) {
1749 Exp
= PE
->getSubExpr();
1752 if (const auto *CE
= dyn_cast
<CastExpr
>(Exp
)) {
1753 if (CE
->getCastKind() == CK_ArrayToPointerDecay
) {
1754 // If it's an actual array, and not a pointer, then it's elements
1755 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1756 checkAccess(FSet
, CE
->getSubExpr(), AK
, POK
);
1759 Exp
= CE
->getSubExpr();
1765 // Pass by reference warnings are under a different flag.
1766 ProtectedOperationKind PtPOK
= POK_VarDereference
;
1767 if (POK
== POK_PassByRef
) PtPOK
= POK_PtPassByRef
;
1768 if (POK
== POK_ReturnByRef
)
1769 PtPOK
= POK_PtReturnByRef
;
1771 const ValueDecl
*D
= getValueDecl(Exp
);
1772 if (!D
|| !D
->hasAttrs())
1775 if (D
->hasAttr
<PtGuardedVarAttr
>() && FSet
.isEmpty(FactMan
))
1776 Handler
.handleNoMutexHeld(D
, PtPOK
, AK
, Exp
->getExprLoc());
1778 for (auto const *I
: D
->specific_attrs
<PtGuardedByAttr
>())
1779 warnIfMutexNotHeld(FSet
, D
, Exp
, AK
, I
->getArg(), PtPOK
, nullptr,
1783 /// Process a function call, method call, constructor call,
1784 /// or destructor call. This involves looking at the attributes on the
1785 /// corresponding function/method/constructor/destructor, issuing warnings,
1786 /// and updating the locksets accordingly.
1788 /// FIXME: For classes annotated with one of the guarded annotations, we need
1789 /// to treat const method calls as reads and non-const method calls as writes,
1790 /// and check that the appropriate locks are held. Non-const method calls with
1791 /// the same signature as const method calls can be also treated as reads.
1793 /// \param Exp The call expression.
1794 /// \param D The callee declaration.
1795 /// \param Self If \p Exp = nullptr, the implicit this argument or the argument
1796 /// of an implicitly called cleanup function.
1797 /// \param Loc If \p Exp = nullptr, the location.
1798 void BuildLockset::handleCall(const Expr
*Exp
, const NamedDecl
*D
,
1799 til::LiteralPtr
*Self
, SourceLocation Loc
) {
1800 CapExprSet ExclusiveLocksToAdd
, SharedLocksToAdd
;
1801 CapExprSet ExclusiveLocksToRemove
, SharedLocksToRemove
, GenericLocksToRemove
;
1802 CapExprSet ScopedReqsAndExcludes
;
1804 // Figure out if we're constructing an object of scoped lockable class
1808 const auto *TagT
= Exp
->getType()->getAs
<TagType
>();
1809 if (TagT
&& Exp
->isPRValue()) {
1810 std::pair
<til::LiteralPtr
*, StringRef
> Placeholder
=
1811 Analyzer
->SxBuilder
.createThisPlaceholder(Exp
);
1812 [[maybe_unused
]] auto inserted
=
1813 Analyzer
->ConstructedObjects
.insert({Exp
, Placeholder
.first
});
1814 assert(inserted
.second
&& "Are we visiting the same expression again?");
1815 if (isa
<CXXConstructExpr
>(Exp
))
1816 Self
= Placeholder
.first
;
1817 if (TagT
->getDecl()->hasAttr
<ScopedLockableAttr
>())
1818 Scp
= CapabilityExpr(Placeholder
.first
, Placeholder
.second
, false);
1821 assert(Loc
.isInvalid());
1822 Loc
= Exp
->getExprLoc();
1825 for(const Attr
*At
: D
->attrs()) {
1826 switch (At
->getKind()) {
1827 // When we encounter a lock function, we need to add the lock to our
1829 case attr::AcquireCapability
: {
1830 const auto *A
= cast
<AcquireCapabilityAttr
>(At
);
1831 Analyzer
->getMutexIDs(A
->isShared() ? SharedLocksToAdd
1832 : ExclusiveLocksToAdd
,
1837 // An assert will add a lock to the lockset, but will not generate
1838 // a warning if it is already there, and will not generate a warning
1839 // if it is not removed.
1840 case attr::AssertExclusiveLock
: {
1841 const auto *A
= cast
<AssertExclusiveLockAttr
>(At
);
1843 CapExprSet AssertLocks
;
1844 Analyzer
->getMutexIDs(AssertLocks
, A
, Exp
, D
, Self
);
1845 for (const auto &AssertLock
: AssertLocks
)
1847 FSet
, std::make_unique
<LockableFactEntry
>(
1848 AssertLock
, LK_Exclusive
, Loc
, FactEntry::Asserted
));
1851 case attr::AssertSharedLock
: {
1852 const auto *A
= cast
<AssertSharedLockAttr
>(At
);
1854 CapExprSet AssertLocks
;
1855 Analyzer
->getMutexIDs(AssertLocks
, A
, Exp
, D
, Self
);
1856 for (const auto &AssertLock
: AssertLocks
)
1858 FSet
, std::make_unique
<LockableFactEntry
>(
1859 AssertLock
, LK_Shared
, Loc
, FactEntry::Asserted
));
1863 case attr::AssertCapability
: {
1864 const auto *A
= cast
<AssertCapabilityAttr
>(At
);
1865 CapExprSet AssertLocks
;
1866 Analyzer
->getMutexIDs(AssertLocks
, A
, Exp
, D
, Self
);
1867 for (const auto &AssertLock
: AssertLocks
)
1868 Analyzer
->addLock(FSet
, std::make_unique
<LockableFactEntry
>(
1870 A
->isShared() ? LK_Shared
: LK_Exclusive
,
1871 Loc
, FactEntry::Asserted
));
1875 // When we encounter an unlock function, we need to remove unlocked
1876 // mutexes from the lockset, and flag a warning if they are not there.
1877 case attr::ReleaseCapability
: {
1878 const auto *A
= cast
<ReleaseCapabilityAttr
>(At
);
1880 Analyzer
->getMutexIDs(GenericLocksToRemove
, A
, Exp
, D
, Self
);
1881 else if (A
->isShared())
1882 Analyzer
->getMutexIDs(SharedLocksToRemove
, A
, Exp
, D
, Self
);
1884 Analyzer
->getMutexIDs(ExclusiveLocksToRemove
, A
, Exp
, D
, Self
);
1888 case attr::RequiresCapability
: {
1889 const auto *A
= cast
<RequiresCapabilityAttr
>(At
);
1890 for (auto *Arg
: A
->args()) {
1891 Analyzer
->warnIfMutexNotHeld(FSet
, D
, Exp
,
1892 A
->isShared() ? AK_Read
: AK_Written
,
1893 Arg
, POK_FunctionCall
, Self
, Loc
);
1894 // use for adopting a lock
1895 if (!Scp
.shouldIgnore())
1896 Analyzer
->getMutexIDs(ScopedReqsAndExcludes
, A
, Exp
, D
, Self
);
1901 case attr::LocksExcluded
: {
1902 const auto *A
= cast
<LocksExcludedAttr
>(At
);
1903 for (auto *Arg
: A
->args()) {
1904 Analyzer
->warnIfMutexHeld(FSet
, D
, Exp
, Arg
, Self
, Loc
);
1905 // use for deferring a lock
1906 if (!Scp
.shouldIgnore())
1907 Analyzer
->getMutexIDs(ScopedReqsAndExcludes
, A
, Exp
, D
, Self
);
1912 // Ignore attributes unrelated to thread-safety
1918 // Remove locks first to allow lock upgrading/downgrading.
1919 // FIXME -- should only fully remove if the attribute refers to 'this'.
1920 bool Dtor
= isa
<CXXDestructorDecl
>(D
);
1921 for (const auto &M
: ExclusiveLocksToRemove
)
1922 Analyzer
->removeLock(FSet
, M
, Loc
, Dtor
, LK_Exclusive
);
1923 for (const auto &M
: SharedLocksToRemove
)
1924 Analyzer
->removeLock(FSet
, M
, Loc
, Dtor
, LK_Shared
);
1925 for (const auto &M
: GenericLocksToRemove
)
1926 Analyzer
->removeLock(FSet
, M
, Loc
, Dtor
, LK_Generic
);
1929 FactEntry::SourceKind Source
=
1930 !Scp
.shouldIgnore() ? FactEntry::Managed
: FactEntry::Acquired
;
1931 for (const auto &M
: ExclusiveLocksToAdd
)
1932 Analyzer
->addLock(FSet
, std::make_unique
<LockableFactEntry
>(M
, LK_Exclusive
,
1934 for (const auto &M
: SharedLocksToAdd
)
1936 FSet
, std::make_unique
<LockableFactEntry
>(M
, LK_Shared
, Loc
, Source
));
1938 if (!Scp
.shouldIgnore()) {
1939 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1940 auto ScopedEntry
= std::make_unique
<ScopedLockableFactEntry
>(Scp
, Loc
);
1941 for (const auto &M
: ExclusiveLocksToAdd
)
1942 ScopedEntry
->addLock(M
);
1943 for (const auto &M
: SharedLocksToAdd
)
1944 ScopedEntry
->addLock(M
);
1945 for (const auto &M
: ScopedReqsAndExcludes
)
1946 ScopedEntry
->addLock(M
);
1947 for (const auto &M
: ExclusiveLocksToRemove
)
1948 ScopedEntry
->addExclusiveUnlock(M
);
1949 for (const auto &M
: SharedLocksToRemove
)
1950 ScopedEntry
->addSharedUnlock(M
);
1951 Analyzer
->addLock(FSet
, std::move(ScopedEntry
));
1955 /// For unary operations which read and write a variable, we need to
1956 /// check whether we hold any required mutexes. Reads are checked in
1958 void BuildLockset::VisitUnaryOperator(const UnaryOperator
*UO
) {
1959 switch (UO
->getOpcode()) {
1964 checkAccess(UO
->getSubExpr(), AK_Written
);
1971 /// For binary operations which assign to a variable (writes), we need to check
1972 /// whether we hold any required mutexes.
1973 /// FIXME: Deal with non-primitive types.
1974 void BuildLockset::VisitBinaryOperator(const BinaryOperator
*BO
) {
1975 if (!BO
->isAssignmentOp())
1978 // adjust the context
1979 LVarCtx
= Analyzer
->LocalVarMap
.getNextContext(CtxIndex
, BO
, LVarCtx
);
1981 checkAccess(BO
->getLHS(), AK_Written
);
1984 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1985 /// need to ensure we hold any required mutexes.
1986 /// FIXME: Deal with non-primitive types.
1987 void BuildLockset::VisitCastExpr(const CastExpr
*CE
) {
1988 if (CE
->getCastKind() != CK_LValueToRValue
)
1990 checkAccess(CE
->getSubExpr(), AK_Read
);
1993 void BuildLockset::examineArguments(const FunctionDecl
*FD
,
1994 CallExpr::const_arg_iterator ArgBegin
,
1995 CallExpr::const_arg_iterator ArgEnd
,
1996 bool SkipFirstParam
) {
1997 // Currently we can't do anything if we don't know the function declaration.
2001 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2002 // only turns off checking within the body of a function, but we also
2003 // use it to turn off checking in arguments to the function. This
2004 // could result in some false negatives, but the alternative is to
2005 // create yet another attribute.
2006 if (FD
->hasAttr
<NoThreadSafetyAnalysisAttr
>())
2009 const ArrayRef
<ParmVarDecl
*> Params
= FD
->parameters();
2010 auto Param
= Params
.begin();
2014 // There can be default arguments, so we stop when one iterator is at end().
2015 for (auto Arg
= ArgBegin
; Param
!= Params
.end() && Arg
!= ArgEnd
;
2017 QualType Qt
= (*Param
)->getType();
2018 if (Qt
->isReferenceType())
2019 checkAccess(*Arg
, AK_Read
, POK_PassByRef
);
2023 void BuildLockset::VisitCallExpr(const CallExpr
*Exp
) {
2024 if (const auto *CE
= dyn_cast
<CXXMemberCallExpr
>(Exp
)) {
2025 const auto *ME
= dyn_cast
<MemberExpr
>(CE
->getCallee());
2026 // ME can be null when calling a method pointer
2027 const CXXMethodDecl
*MD
= CE
->getMethodDecl();
2030 if (ME
->isArrow()) {
2031 // Should perhaps be AK_Written if !MD->isConst().
2032 checkPtAccess(CE
->getImplicitObjectArgument(), AK_Read
);
2034 // Should perhaps be AK_Written if !MD->isConst().
2035 checkAccess(CE
->getImplicitObjectArgument(), AK_Read
);
2039 examineArguments(CE
->getDirectCallee(), CE
->arg_begin(), CE
->arg_end());
2040 } else if (const auto *OE
= dyn_cast
<CXXOperatorCallExpr
>(Exp
)) {
2041 OverloadedOperatorKind OEop
= OE
->getOperator();
2048 case OO_PercentEqual
:
2052 case OO_LessLessEqual
:
2053 case OO_GreaterGreaterEqual
:
2054 checkAccess(OE
->getArg(1), AK_Read
);
2058 checkAccess(OE
->getArg(0), AK_Written
);
2064 if (!(OEop
== OO_Star
&& OE
->getNumArgs() > 1)) {
2065 // Grrr. operator* can be multiplication...
2066 checkPtAccess(OE
->getArg(0), AK_Read
);
2070 // TODO: get rid of this, and rely on pass-by-ref instead.
2071 const Expr
*Obj
= OE
->getArg(0);
2072 checkAccess(Obj
, AK_Read
);
2073 // Check the remaining arguments. For method operators, the first
2074 // argument is the implicit self argument, and doesn't appear in the
2075 // FunctionDecl, but for non-methods it does.
2076 const FunctionDecl
*FD
= OE
->getDirectCallee();
2077 examineArguments(FD
, std::next(OE
->arg_begin()), OE
->arg_end(),
2078 /*SkipFirstParam*/ !isa
<CXXMethodDecl
>(FD
));
2083 examineArguments(Exp
->getDirectCallee(), Exp
->arg_begin(), Exp
->arg_end());
2086 auto *D
= dyn_cast_or_null
<NamedDecl
>(Exp
->getCalleeDecl());
2087 if(!D
|| !D
->hasAttrs())
2092 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr
*Exp
) {
2093 const CXXConstructorDecl
*D
= Exp
->getConstructor();
2094 if (D
&& D
->isCopyConstructor()) {
2095 const Expr
* Source
= Exp
->getArg(0);
2096 checkAccess(Source
, AK_Read
);
2098 examineArguments(D
, Exp
->arg_begin(), Exp
->arg_end());
2100 if (D
&& D
->hasAttrs())
2104 static const Expr
*UnpackConstruction(const Expr
*E
) {
2105 if (auto *CE
= dyn_cast
<CastExpr
>(E
))
2106 if (CE
->getCastKind() == CK_NoOp
)
2107 E
= CE
->getSubExpr()->IgnoreParens();
2108 if (auto *CE
= dyn_cast
<CastExpr
>(E
))
2109 if (CE
->getCastKind() == CK_ConstructorConversion
||
2110 CE
->getCastKind() == CK_UserDefinedConversion
)
2111 E
= CE
->getSubExpr();
2112 if (auto *BTE
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
2113 E
= BTE
->getSubExpr();
2117 void BuildLockset::VisitDeclStmt(const DeclStmt
*S
) {
2118 // adjust the context
2119 LVarCtx
= Analyzer
->LocalVarMap
.getNextContext(CtxIndex
, S
, LVarCtx
);
2121 for (auto *D
: S
->getDeclGroup()) {
2122 if (auto *VD
= dyn_cast_or_null
<VarDecl
>(D
)) {
2123 const Expr
*E
= VD
->getInit();
2126 E
= E
->IgnoreParens();
2128 // handle constructors that involve temporaries
2129 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(E
))
2130 E
= EWC
->getSubExpr()->IgnoreParens();
2131 E
= UnpackConstruction(E
);
2133 if (auto Object
= Analyzer
->ConstructedObjects
.find(E
);
2134 Object
!= Analyzer
->ConstructedObjects
.end()) {
2135 Object
->second
->setClangDecl(VD
);
2136 Analyzer
->ConstructedObjects
.erase(Object
);
2142 void BuildLockset::VisitMaterializeTemporaryExpr(
2143 const MaterializeTemporaryExpr
*Exp
) {
2144 if (const ValueDecl
*ExtD
= Exp
->getExtendingDecl()) {
2145 if (auto Object
= Analyzer
->ConstructedObjects
.find(
2146 UnpackConstruction(Exp
->getSubExpr()));
2147 Object
!= Analyzer
->ConstructedObjects
.end()) {
2148 Object
->second
->setClangDecl(ExtD
);
2149 Analyzer
->ConstructedObjects
.erase(Object
);
2154 void BuildLockset::VisitReturnStmt(const ReturnStmt
*S
) {
2155 if (Analyzer
->CurrentFunction
== nullptr)
2157 const Expr
*RetVal
= S
->getRetValue();
2161 // If returning by reference, check that the function requires the appropriate
2163 const QualType ReturnType
=
2164 Analyzer
->CurrentFunction
->getReturnType().getCanonicalType();
2165 if (ReturnType
->isLValueReferenceType()) {
2166 Analyzer
->checkAccess(
2167 FunctionExitFSet
, RetVal
,
2168 ReturnType
->getPointeeType().isConstQualified() ? AK_Read
: AK_Written
,
2173 /// Given two facts merging on a join point, possibly warn and decide whether to
2174 /// keep or replace.
2176 /// \param CanModify Whether we can replace \p A by \p B.
2177 /// \return false if we should keep \p A, true if we should take \p B.
2178 bool ThreadSafetyAnalyzer::join(const FactEntry
&A
, const FactEntry
&B
,
2180 if (A
.kind() != B
.kind()) {
2181 // For managed capabilities, the destructor should unlock in the right mode
2182 // anyway. For asserted capabilities no unlocking is needed.
2183 if ((A
.managed() || A
.asserted()) && (B
.managed() || B
.asserted())) {
2184 // The shared capability subsumes the exclusive capability, if possible.
2185 bool ShouldTakeB
= B
.kind() == LK_Shared
;
2186 if (CanModify
|| !ShouldTakeB
)
2189 Handler
.handleExclusiveAndShared(B
.getKind(), B
.toString(), B
.loc(),
2191 // Take the exclusive capability to reduce further warnings.
2192 return CanModify
&& B
.kind() == LK_Exclusive
;
2194 // The non-asserted capability is the one we want to track.
2195 return CanModify
&& A
.asserted() && !B
.asserted();
2199 /// Compute the intersection of two locksets and issue warnings for any
2200 /// locks in the symmetric difference.
2202 /// This function is used at a merge point in the CFG when comparing the lockset
2203 /// of each branch being merged. For example, given the following sequence:
2204 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2205 /// are the same. In the event of a difference, we use the intersection of these
2206 /// two locksets at the start of D.
2208 /// \param EntrySet A lockset for entry into a (possibly new) block.
2209 /// \param ExitSet The lockset on exiting a preceding block.
2210 /// \param JoinLoc The location of the join point for error reporting
2211 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2212 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2213 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet
&EntrySet
,
2214 const FactSet
&ExitSet
,
2215 SourceLocation JoinLoc
,
2216 LockErrorKind EntryLEK
,
2217 LockErrorKind ExitLEK
) {
2218 FactSet EntrySetOrig
= EntrySet
;
2220 // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2221 for (const auto &Fact
: ExitSet
) {
2222 const FactEntry
&ExitFact
= FactMan
[Fact
];
2224 FactSet::iterator EntryIt
= EntrySet
.findLockIter(FactMan
, ExitFact
);
2225 if (EntryIt
!= EntrySet
.end()) {
2226 if (join(FactMan
[*EntryIt
], ExitFact
,
2227 EntryLEK
!= LEK_LockedSomeLoopIterations
))
2229 } else if (!ExitFact
.managed() || EntryLEK
== LEK_LockedAtEndOfFunction
) {
2230 ExitFact
.handleRemovalFromIntersection(ExitSet
, FactMan
, JoinLoc
,
2235 // Find locks in EntrySet that are not in ExitSet, and remove them.
2236 for (const auto &Fact
: EntrySetOrig
) {
2237 const FactEntry
*EntryFact
= &FactMan
[Fact
];
2238 const FactEntry
*ExitFact
= ExitSet
.findLock(FactMan
, *EntryFact
);
2241 if (!EntryFact
->managed() || ExitLEK
== LEK_LockedSomeLoopIterations
||
2242 ExitLEK
== LEK_NotLockedAtEndOfFunction
)
2243 EntryFact
->handleRemovalFromIntersection(EntrySetOrig
, FactMan
, JoinLoc
,
2245 if (ExitLEK
== LEK_LockedSomePredecessors
)
2246 EntrySet
.removeLock(FactMan
, *EntryFact
);
2251 // Return true if block B never continues to its successors.
2252 static bool neverReturns(const CFGBlock
*B
) {
2253 if (B
->hasNoReturnElement())
2258 CFGElement Last
= B
->back();
2259 if (std::optional
<CFGStmt
> S
= Last
.getAs
<CFGStmt
>()) {
2260 if (isa
<CXXThrowExpr
>(S
->getStmt()))
2266 /// Check a function's CFG for thread-safety violations.
2268 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2269 /// at the end of each block, and issue warnings for thread safety violations.
2270 /// Each block in the CFG is traversed exactly once.
2271 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext
&AC
) {
2272 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2273 // For now, we just use the walker to set things up.
2274 threadSafety::CFGWalker walker
;
2275 if (!walker
.init(AC
))
2278 // AC.dumpCFG(true);
2279 // threadSafety::printSCFG(walker);
2281 CFG
*CFGraph
= walker
.getGraph();
2282 const NamedDecl
*D
= walker
.getDecl();
2283 CurrentFunction
= dyn_cast
<FunctionDecl
>(D
);
2285 if (D
->hasAttr
<NoThreadSafetyAnalysisAttr
>())
2288 // FIXME: Do something a bit more intelligent inside constructor and
2289 // destructor code. Constructors and destructors must assume unique access
2290 // to 'this', so checks on member variable access is disabled, but we should
2291 // still enable checks on other objects.
2292 if (isa
<CXXConstructorDecl
>(D
))
2293 return; // Don't check inside constructors.
2294 if (isa
<CXXDestructorDecl
>(D
))
2295 return; // Don't check inside destructors.
2297 Handler
.enterFunction(CurrentFunction
);
2299 BlockInfo
.resize(CFGraph
->getNumBlockIDs(),
2300 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap
));
2302 // We need to explore the CFG via a "topological" ordering.
2303 // That way, we will be guaranteed to have information about required
2304 // predecessor locksets when exploring a new block.
2305 const PostOrderCFGView
*SortedGraph
= walker
.getSortedGraph();
2306 PostOrderCFGView::CFGBlockSet
VisitedBlocks(CFGraph
);
2308 CFGBlockInfo
&Initial
= BlockInfo
[CFGraph
->getEntry().getBlockID()];
2309 CFGBlockInfo
&Final
= BlockInfo
[CFGraph
->getExit().getBlockID()];
2311 // Mark entry block as reachable
2312 Initial
.Reachable
= true;
2314 // Compute SSA names for local variables
2315 LocalVarMap
.traverseCFG(CFGraph
, SortedGraph
, BlockInfo
);
2317 // Fill in source locations for all CFGBlocks.
2318 findBlockLocations(CFGraph
, SortedGraph
, BlockInfo
);
2320 CapExprSet ExclusiveLocksAcquired
;
2321 CapExprSet SharedLocksAcquired
;
2322 CapExprSet LocksReleased
;
2324 // Add locks from exclusive_locks_required and shared_locks_required
2325 // to initial lockset. Also turn off checking for lock and unlock functions.
2326 // FIXME: is there a more intelligent way to check lock/unlock functions?
2327 if (!SortedGraph
->empty() && D
->hasAttrs()) {
2328 assert(*SortedGraph
->begin() == &CFGraph
->getEntry());
2329 FactSet
&InitialLockset
= Initial
.EntrySet
;
2331 CapExprSet ExclusiveLocksToAdd
;
2332 CapExprSet SharedLocksToAdd
;
2334 SourceLocation Loc
= D
->getLocation();
2335 for (const auto *Attr
: D
->attrs()) {
2336 Loc
= Attr
->getLocation();
2337 if (const auto *A
= dyn_cast
<RequiresCapabilityAttr
>(Attr
)) {
2338 getMutexIDs(A
->isShared() ? SharedLocksToAdd
: ExclusiveLocksToAdd
, A
,
2340 } else if (const auto *A
= dyn_cast
<ReleaseCapabilityAttr
>(Attr
)) {
2341 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2342 // We must ignore such methods.
2343 if (A
->args_size() == 0)
2345 getMutexIDs(A
->isShared() ? SharedLocksToAdd
: ExclusiveLocksToAdd
, A
,
2347 getMutexIDs(LocksReleased
, A
, nullptr, D
);
2348 } else if (const auto *A
= dyn_cast
<AcquireCapabilityAttr
>(Attr
)) {
2349 if (A
->args_size() == 0)
2351 getMutexIDs(A
->isShared() ? SharedLocksAcquired
2352 : ExclusiveLocksAcquired
,
2354 } else if (isa
<ExclusiveTrylockFunctionAttr
>(Attr
)) {
2355 // Don't try to check trylock functions for now.
2357 } else if (isa
<SharedTrylockFunctionAttr
>(Attr
)) {
2358 // Don't try to check trylock functions for now.
2360 } else if (isa
<TryAcquireCapabilityAttr
>(Attr
)) {
2361 // Don't try to check trylock functions for now.
2366 // FIXME -- Loc can be wrong here.
2367 for (const auto &Mu
: ExclusiveLocksToAdd
) {
2368 auto Entry
= std::make_unique
<LockableFactEntry
>(Mu
, LK_Exclusive
, Loc
,
2369 FactEntry::Declared
);
2370 addLock(InitialLockset
, std::move(Entry
), true);
2372 for (const auto &Mu
: SharedLocksToAdd
) {
2373 auto Entry
= std::make_unique
<LockableFactEntry
>(Mu
, LK_Shared
, Loc
,
2374 FactEntry::Declared
);
2375 addLock(InitialLockset
, std::move(Entry
), true);
2379 // Compute the expected exit set.
2380 // By default, we expect all locks held on entry to be held on exit.
2381 FactSet ExpectedFunctionExitSet
= Initial
.EntrySet
;
2383 // Adjust the expected exit set by adding or removing locks, as declared
2384 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2385 // issue the appropriate warning.
2386 // FIXME: the location here is not quite right.
2387 for (const auto &Lock
: ExclusiveLocksAcquired
)
2388 ExpectedFunctionExitSet
.addLock(
2389 FactMan
, std::make_unique
<LockableFactEntry
>(Lock
, LK_Exclusive
,
2391 for (const auto &Lock
: SharedLocksAcquired
)
2392 ExpectedFunctionExitSet
.addLock(
2394 std::make_unique
<LockableFactEntry
>(Lock
, LK_Shared
, D
->getLocation()));
2395 for (const auto &Lock
: LocksReleased
)
2396 ExpectedFunctionExitSet
.removeLock(FactMan
, Lock
);
2398 for (const auto *CurrBlock
: *SortedGraph
) {
2399 unsigned CurrBlockID
= CurrBlock
->getBlockID();
2400 CFGBlockInfo
*CurrBlockInfo
= &BlockInfo
[CurrBlockID
];
2402 // Use the default initial lockset in case there are no predecessors.
2403 VisitedBlocks
.insert(CurrBlock
);
2405 // Iterate through the predecessor blocks and warn if the lockset for all
2406 // predecessors is not the same. We take the entry lockset of the current
2407 // block to be the intersection of all previous locksets.
2408 // FIXME: By keeping the intersection, we may output more errors in future
2409 // for a lock which is not in the intersection, but was in the union. We
2410 // may want to also keep the union in future. As an example, let's say
2411 // the intersection contains Mutex L, and the union contains L and M.
2412 // Later we unlock M. At this point, we would output an error because we
2413 // never locked M; although the real error is probably that we forgot to
2414 // lock M on all code paths. Conversely, let's say that later we lock M.
2415 // In this case, we should compare against the intersection instead of the
2416 // union because the real error is probably that we forgot to unlock M on
2418 bool LocksetInitialized
= false;
2419 for (CFGBlock::const_pred_iterator PI
= CurrBlock
->pred_begin(),
2420 PE
= CurrBlock
->pred_end(); PI
!= PE
; ++PI
) {
2421 // if *PI -> CurrBlock is a back edge
2422 if (*PI
== nullptr || !VisitedBlocks
.alreadySet(*PI
))
2425 unsigned PrevBlockID
= (*PI
)->getBlockID();
2426 CFGBlockInfo
*PrevBlockInfo
= &BlockInfo
[PrevBlockID
];
2428 // Ignore edges from blocks that can't return.
2429 if (neverReturns(*PI
) || !PrevBlockInfo
->Reachable
)
2432 // Okay, we can reach this block from the entry.
2433 CurrBlockInfo
->Reachable
= true;
2435 FactSet PrevLockset
;
2436 getEdgeLockset(PrevLockset
, PrevBlockInfo
->ExitSet
, *PI
, CurrBlock
);
2438 if (!LocksetInitialized
) {
2439 CurrBlockInfo
->EntrySet
= PrevLockset
;
2440 LocksetInitialized
= true;
2442 // Surprisingly 'continue' doesn't always produce back edges, because
2443 // the CFG has empty "transition" blocks where they meet with the end
2444 // of the regular loop body. We still want to diagnose them as loop.
2446 CurrBlockInfo
->EntrySet
, PrevLockset
, CurrBlockInfo
->EntryLoc
,
2447 isa_and_nonnull
<ContinueStmt
>((*PI
)->getTerminatorStmt())
2448 ? LEK_LockedSomeLoopIterations
2449 : LEK_LockedSomePredecessors
);
2453 // Skip rest of block if it's not reachable.
2454 if (!CurrBlockInfo
->Reachable
)
2457 BuildLockset
LocksetBuilder(this, *CurrBlockInfo
, ExpectedFunctionExitSet
);
2459 // Visit all the statements in the basic block.
2460 for (const auto &BI
: *CurrBlock
) {
2461 switch (BI
.getKind()) {
2462 case CFGElement::Statement
: {
2463 CFGStmt CS
= BI
.castAs
<CFGStmt
>();
2464 LocksetBuilder
.Visit(CS
.getStmt());
2467 // Ignore BaseDtor and MemberDtor for now.
2468 case CFGElement::AutomaticObjectDtor
: {
2469 CFGAutomaticObjDtor AD
= BI
.castAs
<CFGAutomaticObjDtor
>();
2470 const auto *DD
= AD
.getDestructorDecl(AC
.getASTContext());
2471 if (!DD
->hasAttrs())
2474 LocksetBuilder
.handleCall(nullptr, DD
,
2475 SxBuilder
.createVariable(AD
.getVarDecl()),
2476 AD
.getTriggerStmt()->getEndLoc());
2480 case CFGElement::CleanupFunction
: {
2481 const CFGCleanupFunction
&CF
= BI
.castAs
<CFGCleanupFunction
>();
2482 LocksetBuilder
.handleCall(/*Exp=*/nullptr, CF
.getFunctionDecl(),
2483 SxBuilder
.createVariable(CF
.getVarDecl()),
2484 CF
.getVarDecl()->getLocation());
2488 case CFGElement::TemporaryDtor
: {
2489 auto TD
= BI
.castAs
<CFGTemporaryDtor
>();
2491 // Clean up constructed object even if there are no attributes to
2492 // keep the number of objects in limbo as small as possible.
2493 if (auto Object
= ConstructedObjects
.find(
2494 TD
.getBindTemporaryExpr()->getSubExpr());
2495 Object
!= ConstructedObjects
.end()) {
2496 const auto *DD
= TD
.getDestructorDecl(AC
.getASTContext());
2498 // TODO: the location here isn't quite correct.
2499 LocksetBuilder
.handleCall(nullptr, DD
, Object
->second
,
2500 TD
.getBindTemporaryExpr()->getEndLoc());
2501 ConstructedObjects
.erase(Object
);
2509 CurrBlockInfo
->ExitSet
= LocksetBuilder
.FSet
;
2511 // For every back edge from CurrBlock (the end of the loop) to another block
2512 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2513 // the one held at the beginning of FirstLoopBlock. We can look up the
2514 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2515 for (CFGBlock::const_succ_iterator SI
= CurrBlock
->succ_begin(),
2516 SE
= CurrBlock
->succ_end(); SI
!= SE
; ++SI
) {
2517 // if CurrBlock -> *SI is *not* a back edge
2518 if (*SI
== nullptr || !VisitedBlocks
.alreadySet(*SI
))
2521 CFGBlock
*FirstLoopBlock
= *SI
;
2522 CFGBlockInfo
*PreLoop
= &BlockInfo
[FirstLoopBlock
->getBlockID()];
2523 CFGBlockInfo
*LoopEnd
= &BlockInfo
[CurrBlockID
];
2524 intersectAndWarn(PreLoop
->EntrySet
, LoopEnd
->ExitSet
, PreLoop
->EntryLoc
,
2525 LEK_LockedSomeLoopIterations
);
2529 // Skip the final check if the exit block is unreachable.
2530 if (!Final
.Reachable
)
2533 // FIXME: Should we call this function for all blocks which exit the function?
2534 intersectAndWarn(ExpectedFunctionExitSet
, Final
.ExitSet
, Final
.ExitLoc
,
2535 LEK_LockedAtEndOfFunction
, LEK_NotLockedAtEndOfFunction
);
2537 Handler
.leaveFunction(CurrentFunction
);
2540 /// Check a function's CFG for thread-safety violations.
2542 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2543 /// at the end of each block, and issue warnings for thread safety violations.
2544 /// Each block in the CFG is traversed exactly once.
2545 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext
&AC
,
2546 ThreadSafetyHandler
&Handler
,
2549 *BSet
= new BeforeSet
;
2550 ThreadSafetyAnalyzer
Analyzer(Handler
, *BSet
);
2551 Analyzer
.runAnalysis(AC
);
2554 void threadSafety::threadSafetyCleanup(BeforeSet
*Cache
) { delete Cache
; }
2556 /// Helper function that returns a LockKind required for the given level
2558 LockKind
threadSafety::getLockKindFromAccessKind(AccessKind AK
) {
2563 return LK_Exclusive
;
2565 llvm_unreachable("Unknown AccessKind");