[AMDGPU] Infer amdgpu-no-flat-scratch-init attribute in AMDGPUAttributor (#94647)
[llvm-project.git] / clang / lib / Analysis / ThreadSafety.cpp
blob5577f45aa5217f749ef8b25a882c921221904f8b
1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
10 // conditions), based off of an annotation system.
12 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13 // for more information.
15 //===----------------------------------------------------------------------===//
17 #include "clang/Analysis/Analyses/ThreadSafety.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclGroup.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/OperationKinds.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
29 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33 #include "clang/Analysis/AnalysisDeclContext.h"
34 #include "clang/Analysis/CFG.h"
35 #include "clang/Basic/Builtins.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallVector.h"
45 #include "llvm/ADT/StringRef.h"
46 #include "llvm/Support/Allocator.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <functional>
53 #include <iterator>
54 #include <memory>
55 #include <optional>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
61 using namespace clang;
62 using namespace threadSafety;
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
67 /// Issue a warning about an invalid lock expression
68 static void warnInvalidLock(ThreadSafetyHandler &Handler,
69 const Expr *MutexExp, const NamedDecl *D,
70 const Expr *DeclExp, StringRef Kind) {
71 SourceLocation Loc;
72 if (DeclExp)
73 Loc = DeclExp->getExprLoc();
75 // FIXME: add a note about the attribute location in MutexExp or D
76 if (Loc.isValid())
77 Handler.handleInvalidLockExp(Loc);
80 namespace {
82 /// A set of CapabilityExpr objects, which are compiled from thread safety
83 /// attributes on a function.
84 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85 public:
86 /// Push M onto list, but discard duplicates.
87 void push_back_nodup(const CapabilityExpr &CapE) {
88 if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89 return CapE.equals(CapE2);
90 }))
91 push_back(CapE);
95 class FactManager;
96 class FactSet;
98 /// This is a helper class that stores a fact that is known at a
99 /// particular point in program execution. Currently, a fact is a capability,
100 /// along with additional information, such as where it was acquired, whether
101 /// it is exclusive or shared, etc.
103 /// FIXME: this analysis does not currently support re-entrant locking.
104 class FactEntry : public CapabilityExpr {
105 public:
106 /// Where a fact comes from.
107 enum SourceKind {
108 Acquired, ///< The fact has been directly acquired.
109 Asserted, ///< The fact has been asserted to be held.
110 Declared, ///< The fact is assumed to be held by callers.
111 Managed, ///< The fact has been acquired through a scoped capability.
114 private:
115 /// Exclusive or shared.
116 LockKind LKind : 8;
118 // How it was acquired.
119 SourceKind Source : 8;
121 /// Where it was acquired.
122 SourceLocation AcquireLoc;
124 public:
125 FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126 SourceKind Src)
127 : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128 virtual ~FactEntry() = default;
130 LockKind kind() const { return LKind; }
131 SourceLocation loc() const { return AcquireLoc; }
133 bool asserted() const { return Source == Asserted; }
134 bool declared() const { return Source == Declared; }
135 bool managed() const { return Source == Managed; }
137 virtual void
138 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139 SourceLocation JoinLoc, LockErrorKind LEK,
140 ThreadSafetyHandler &Handler) const = 0;
141 virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142 const FactEntry &entry,
143 ThreadSafetyHandler &Handler) const = 0;
144 virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146 bool FullyRemove,
147 ThreadSafetyHandler &Handler) const = 0;
149 // Return true if LKind >= LK, where exclusive > shared
150 bool isAtLeast(LockKind LK) const {
151 return (LKind == LK_Exclusive) || (LK == LK_Shared);
155 using FactID = unsigned short;
157 /// FactManager manages the memory for all facts that are created during
158 /// the analysis of a single routine.
159 class FactManager {
160 private:
161 std::vector<std::unique_ptr<const FactEntry>> Facts;
163 public:
164 FactID newFact(std::unique_ptr<FactEntry> Entry) {
165 Facts.push_back(std::move(Entry));
166 return static_cast<unsigned short>(Facts.size() - 1);
169 const FactEntry &operator[](FactID F) const { return *Facts[F]; }
172 /// A FactSet is the set of facts that are known to be true at a
173 /// particular program point. FactSets must be small, because they are
174 /// frequently copied, and are thus implemented as a set of indices into a
175 /// table maintained by a FactManager. A typical FactSet only holds 1 or 2
176 /// locks, so we can get away with doing a linear search for lookup. Note
177 /// that a hashtable or map is inappropriate in this case, because lookups
178 /// may involve partial pattern matches, rather than exact matches.
179 class FactSet {
180 private:
181 using FactVec = SmallVector<FactID, 4>;
183 FactVec FactIDs;
185 public:
186 using iterator = FactVec::iterator;
187 using const_iterator = FactVec::const_iterator;
189 iterator begin() { return FactIDs.begin(); }
190 const_iterator begin() const { return FactIDs.begin(); }
192 iterator end() { return FactIDs.end(); }
193 const_iterator end() const { return FactIDs.end(); }
195 bool isEmpty() const { return FactIDs.size() == 0; }
197 // Return true if the set contains only negative facts
198 bool isEmpty(FactManager &FactMan) const {
199 for (const auto FID : *this) {
200 if (!FactMan[FID].negative())
201 return false;
203 return true;
206 void addLockByID(FactID ID) { FactIDs.push_back(ID); }
208 FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209 FactID F = FM.newFact(std::move(Entry));
210 FactIDs.push_back(F);
211 return F;
214 bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215 unsigned n = FactIDs.size();
216 if (n == 0)
217 return false;
219 for (unsigned i = 0; i < n-1; ++i) {
220 if (FM[FactIDs[i]].matches(CapE)) {
221 FactIDs[i] = FactIDs[n-1];
222 FactIDs.pop_back();
223 return true;
226 if (FM[FactIDs[n-1]].matches(CapE)) {
227 FactIDs.pop_back();
228 return true;
230 return false;
233 iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234 return std::find_if(begin(), end(), [&](FactID ID) {
235 return FM[ID].matches(CapE);
239 const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240 auto I = std::find_if(begin(), end(), [&](FactID ID) {
241 return FM[ID].matches(CapE);
243 return I != end() ? &FM[*I] : nullptr;
246 const FactEntry *findLockUniv(FactManager &FM,
247 const CapabilityExpr &CapE) const {
248 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249 return FM[ID].matchesUniv(CapE);
251 return I != end() ? &FM[*I] : nullptr;
254 const FactEntry *findPartialMatch(FactManager &FM,
255 const CapabilityExpr &CapE) const {
256 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257 return FM[ID].partiallyMatches(CapE);
259 return I != end() ? &FM[*I] : nullptr;
262 bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263 auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264 return FM[ID].valueDecl() == Vd;
266 return I != end();
270 class ThreadSafetyAnalyzer;
272 } // namespace
274 namespace clang {
275 namespace threadSafety {
277 class BeforeSet {
278 private:
279 using BeforeVect = SmallVector<const ValueDecl *, 4>;
281 struct BeforeInfo {
282 BeforeVect Vect;
283 int Visited = 0;
285 BeforeInfo() = default;
286 BeforeInfo(BeforeInfo &&) = default;
289 using BeforeMap =
290 llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291 using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
293 public:
294 BeforeSet() = default;
296 BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297 ThreadSafetyAnalyzer& Analyzer);
299 BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300 ThreadSafetyAnalyzer &Analyzer);
302 void checkBeforeAfter(const ValueDecl* Vd,
303 const FactSet& FSet,
304 ThreadSafetyAnalyzer& Analyzer,
305 SourceLocation Loc, StringRef CapKind);
307 private:
308 BeforeMap BMap;
309 CycleMap CycMap;
312 } // namespace threadSafety
313 } // namespace clang
315 namespace {
317 class LocalVariableMap;
319 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
321 /// A side (entry or exit) of a CFG node.
322 enum CFGBlockSide { CBS_Entry, CBS_Exit };
324 /// CFGBlockInfo is a struct which contains all the information that is
325 /// maintained for each block in the CFG. See LocalVariableMap for more
326 /// information about the contexts.
327 struct CFGBlockInfo {
328 // Lockset held at entry to block
329 FactSet EntrySet;
331 // Lockset held at exit from block
332 FactSet ExitSet;
334 // Context held at entry to block
335 LocalVarContext EntryContext;
337 // Context held at exit from block
338 LocalVarContext ExitContext;
340 // Location of first statement in block
341 SourceLocation EntryLoc;
343 // Location of last statement in block.
344 SourceLocation ExitLoc;
346 // Used to replay contexts later
347 unsigned EntryIndex;
349 // Is this block reachable?
350 bool Reachable = false;
352 const FactSet &getSet(CFGBlockSide Side) const {
353 return Side == CBS_Entry ? EntrySet : ExitSet;
356 SourceLocation getLocation(CFGBlockSide Side) const {
357 return Side == CBS_Entry ? EntryLoc : ExitLoc;
360 private:
361 CFGBlockInfo(LocalVarContext EmptyCtx)
362 : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
364 public:
365 static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
368 // A LocalVariableMap maintains a map from local variables to their currently
369 // valid definitions. It provides SSA-like functionality when traversing the
370 // CFG. Like SSA, each definition or assignment to a variable is assigned a
371 // unique name (an integer), which acts as the SSA name for that definition.
372 // The total set of names is shared among all CFG basic blocks.
373 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374 // with their SSA-names. Instead, we compute a Context for each point in the
375 // code, which maps local variables to the appropriate SSA-name. This map
376 // changes with each assignment.
378 // The map is computed in a single pass over the CFG. Subsequent analyses can
379 // then query the map to find the appropriate Context for a statement, and use
380 // that Context to look up the definitions of variables.
381 class LocalVariableMap {
382 public:
383 using Context = LocalVarContext;
385 /// A VarDefinition consists of an expression, representing the value of the
386 /// variable, along with the context in which that expression should be
387 /// interpreted. A reference VarDefinition does not itself contain this
388 /// information, but instead contains a pointer to a previous VarDefinition.
389 struct VarDefinition {
390 public:
391 friend class LocalVariableMap;
393 // The original declaration for this variable.
394 const NamedDecl *Dec;
396 // The expression for this variable, OR
397 const Expr *Exp = nullptr;
399 // Reference to another VarDefinition
400 unsigned Ref = 0;
402 // The map with which Exp should be interpreted.
403 Context Ctx;
405 bool isReference() const { return !Exp; }
407 private:
408 // Create ordinary variable definition
409 VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410 : Dec(D), Exp(E), Ctx(C) {}
412 // Create reference to previous definition
413 VarDefinition(const NamedDecl *D, unsigned R, Context C)
414 : Dec(D), Ref(R), Ctx(C) {}
417 private:
418 Context::Factory ContextFactory;
419 std::vector<VarDefinition> VarDefinitions;
420 std::vector<std::pair<const Stmt *, Context>> SavedContexts;
422 public:
423 LocalVariableMap() {
424 // index 0 is a placeholder for undefined variables (aka phi-nodes).
425 VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
428 /// Look up a definition, within the given context.
429 const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430 const unsigned *i = Ctx.lookup(D);
431 if (!i)
432 return nullptr;
433 assert(*i < VarDefinitions.size());
434 return &VarDefinitions[*i];
437 /// Look up the definition for D within the given context. Returns
438 /// NULL if the expression is not statically known. If successful, also
439 /// modifies Ctx to hold the context of the return Expr.
440 const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441 const unsigned *P = Ctx.lookup(D);
442 if (!P)
443 return nullptr;
445 unsigned i = *P;
446 while (i > 0) {
447 if (VarDefinitions[i].Exp) {
448 Ctx = VarDefinitions[i].Ctx;
449 return VarDefinitions[i].Exp;
451 i = VarDefinitions[i].Ref;
453 return nullptr;
456 Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
458 /// Return the next context after processing S. This function is used by
459 /// clients of the class to get the appropriate context when traversing the
460 /// CFG. It must be called for every assignment or DeclStmt.
461 Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462 if (SavedContexts[CtxIndex+1].first == S) {
463 CtxIndex++;
464 Context Result = SavedContexts[CtxIndex].second;
465 return Result;
467 return C;
470 void dumpVarDefinitionName(unsigned i) {
471 if (i == 0) {
472 llvm::errs() << "Undefined";
473 return;
475 const NamedDecl *Dec = VarDefinitions[i].Dec;
476 if (!Dec) {
477 llvm::errs() << "<<NULL>>";
478 return;
480 Dec->printName(llvm::errs());
481 llvm::errs() << "." << i << " " << ((const void*) Dec);
484 /// Dumps an ASCII representation of the variable map to llvm::errs()
485 void dump() {
486 for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487 const Expr *Exp = VarDefinitions[i].Exp;
488 unsigned Ref = VarDefinitions[i].Ref;
490 dumpVarDefinitionName(i);
491 llvm::errs() << " = ";
492 if (Exp) Exp->dump();
493 else {
494 dumpVarDefinitionName(Ref);
495 llvm::errs() << "\n";
500 /// Dumps an ASCII representation of a Context to llvm::errs()
501 void dumpContext(Context C) {
502 for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503 const NamedDecl *D = I.getKey();
504 D->printName(llvm::errs());
505 llvm::errs() << " -> ";
506 dumpVarDefinitionName(I.getData());
507 llvm::errs() << "\n";
511 /// Builds the variable map.
512 void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513 std::vector<CFGBlockInfo> &BlockInfo);
515 protected:
516 friend class VarMapBuilder;
518 // Get the current context index
519 unsigned getContextIndex() { return SavedContexts.size()-1; }
521 // Save the current context for later replay
522 void saveContext(const Stmt *S, Context C) {
523 SavedContexts.push_back(std::make_pair(S, C));
526 // Adds a new definition to the given context, and returns a new context.
527 // This method should be called when declaring a new variable.
528 Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529 assert(!Ctx.contains(D));
530 unsigned newID = VarDefinitions.size();
531 Context NewCtx = ContextFactory.add(Ctx, D, newID);
532 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533 return NewCtx;
536 // Add a new reference to an existing definition.
537 Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538 unsigned newID = VarDefinitions.size();
539 Context NewCtx = ContextFactory.add(Ctx, D, newID);
540 VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541 return NewCtx;
544 // Updates a definition only if that definition is already in the map.
545 // This method should be called when assigning to an existing variable.
546 Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547 if (Ctx.contains(D)) {
548 unsigned newID = VarDefinitions.size();
549 Context NewCtx = ContextFactory.remove(Ctx, D);
550 NewCtx = ContextFactory.add(NewCtx, D, newID);
551 VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552 return NewCtx;
554 return Ctx;
557 // Removes a definition from the context, but keeps the variable name
558 // as a valid variable. The index 0 is a placeholder for cleared definitions.
559 Context clearDefinition(const NamedDecl *D, Context Ctx) {
560 Context NewCtx = Ctx;
561 if (NewCtx.contains(D)) {
562 NewCtx = ContextFactory.remove(NewCtx, D);
563 NewCtx = ContextFactory.add(NewCtx, D, 0);
565 return NewCtx;
568 // Remove a definition entirely frmo the context.
569 Context removeDefinition(const NamedDecl *D, Context Ctx) {
570 Context NewCtx = Ctx;
571 if (NewCtx.contains(D)) {
572 NewCtx = ContextFactory.remove(NewCtx, D);
574 return NewCtx;
577 Context intersectContexts(Context C1, Context C2);
578 Context createReferenceContext(Context C);
579 void intersectBackEdge(Context C1, Context C2);
582 } // namespace
584 // This has to be defined after LocalVariableMap.
585 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586 return CFGBlockInfo(M.getEmptyContext());
589 namespace {
591 /// Visitor which builds a LocalVariableMap
592 class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593 public:
594 LocalVariableMap* VMap;
595 LocalVariableMap::Context Ctx;
597 VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598 : VMap(VM), Ctx(C) {}
600 void VisitDeclStmt(const DeclStmt *S);
601 void VisitBinaryOperator(const BinaryOperator *BO);
604 } // namespace
606 // Add new local variables to the variable map
607 void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608 bool modifiedCtx = false;
609 const DeclGroupRef DGrp = S->getDeclGroup();
610 for (const auto *D : DGrp) {
611 if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612 const Expr *E = VD->getInit();
614 // Add local variables with trivial type to the variable map
615 QualType T = VD->getType();
616 if (T.isTrivialType(VD->getASTContext())) {
617 Ctx = VMap->addDefinition(VD, E, Ctx);
618 modifiedCtx = true;
622 if (modifiedCtx)
623 VMap->saveContext(S, Ctx);
626 // Update local variable definitions in variable map
627 void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628 if (!BO->isAssignmentOp())
629 return;
631 Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
633 // Update the variable map and current context.
634 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635 const ValueDecl *VDec = DRE->getDecl();
636 if (Ctx.lookup(VDec)) {
637 if (BO->getOpcode() == BO_Assign)
638 Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639 else
640 // FIXME -- handle compound assignment operators
641 Ctx = VMap->clearDefinition(VDec, Ctx);
642 VMap->saveContext(BO, Ctx);
647 // Computes the intersection of two contexts. The intersection is the
648 // set of variables which have the same definition in both contexts;
649 // variables with different definitions are discarded.
650 LocalVariableMap::Context
651 LocalVariableMap::intersectContexts(Context C1, Context C2) {
652 Context Result = C1;
653 for (const auto &P : C1) {
654 const NamedDecl *Dec = P.first;
655 const unsigned *i2 = C2.lookup(Dec);
656 if (!i2) // variable doesn't exist on second path
657 Result = removeDefinition(Dec, Result);
658 else if (*i2 != P.second) // variable exists, but has different definition
659 Result = clearDefinition(Dec, Result);
661 return Result;
664 // For every variable in C, create a new variable that refers to the
665 // definition in C. Return a new context that contains these new variables.
666 // (We use this for a naive implementation of SSA on loop back-edges.)
667 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668 Context Result = getEmptyContext();
669 for (const auto &P : C)
670 Result = addReference(P.first, P.second, Result);
671 return Result;
674 // This routine also takes the intersection of C1 and C2, but it does so by
675 // altering the VarDefinitions. C1 must be the result of an earlier call to
676 // createReferenceContext.
677 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678 for (const auto &P : C1) {
679 unsigned i1 = P.second;
680 VarDefinition *VDef = &VarDefinitions[i1];
681 assert(VDef->isReference());
683 const unsigned *i2 = C2.lookup(P.first);
684 if (!i2 || (*i2 != i1))
685 VDef->Ref = 0; // Mark this variable as undefined
689 // Traverse the CFG in topological order, so all predecessors of a block
690 // (excluding back-edges) are visited before the block itself. At
691 // each point in the code, we calculate a Context, which holds the set of
692 // variable definitions which are visible at that point in execution.
693 // Visible variables are mapped to their definitions using an array that
694 // contains all definitions.
696 // At join points in the CFG, the set is computed as the intersection of
697 // the incoming sets along each edge, E.g.
699 // { Context | VarDefinitions }
700 // int x = 0; { x -> x1 | x1 = 0 }
701 // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
702 // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... }
703 // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... }
704 // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... }
706 // This is essentially a simpler and more naive version of the standard SSA
707 // algorithm. Those definitions that remain in the intersection are from blocks
708 // that strictly dominate the current block. We do not bother to insert proper
709 // phi nodes, because they are not used in our analysis; instead, wherever
710 // a phi node would be required, we simply remove that definition from the
711 // context (E.g. x above).
713 // The initial traversal does not capture back-edges, so those need to be
714 // handled on a separate pass. Whenever the first pass encounters an
715 // incoming back edge, it duplicates the context, creating new definitions
716 // that refer back to the originals. (These correspond to places where SSA
717 // might have to insert a phi node.) On the second pass, these definitions are
718 // set to NULL if the variable has changed on the back-edge (i.e. a phi
719 // node was actually required.) E.g.
721 // { Context | VarDefinitions }
722 // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 }
723 // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; }
724 // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... }
725 // ... { y -> y1 | x3 = 2, x2 = 1, ... }
726 void LocalVariableMap::traverseCFG(CFG *CFGraph,
727 const PostOrderCFGView *SortedGraph,
728 std::vector<CFGBlockInfo> &BlockInfo) {
729 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
731 for (const auto *CurrBlock : *SortedGraph) {
732 unsigned CurrBlockID = CurrBlock->getBlockID();
733 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
735 VisitedBlocks.insert(CurrBlock);
737 // Calculate the entry context for the current block
738 bool HasBackEdges = false;
739 bool CtxInit = true;
740 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
742 // if *PI -> CurrBlock is a back edge, so skip it
743 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744 HasBackEdges = true;
745 continue;
748 unsigned PrevBlockID = (*PI)->getBlockID();
749 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
751 if (CtxInit) {
752 CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753 CtxInit = false;
755 else {
756 CurrBlockInfo->EntryContext =
757 intersectContexts(CurrBlockInfo->EntryContext,
758 PrevBlockInfo->ExitContext);
762 // Duplicate the context if we have back-edges, so we can call
763 // intersectBackEdges later.
764 if (HasBackEdges)
765 CurrBlockInfo->EntryContext =
766 createReferenceContext(CurrBlockInfo->EntryContext);
768 // Create a starting context index for the current block
769 saveContext(nullptr, CurrBlockInfo->EntryContext);
770 CurrBlockInfo->EntryIndex = getContextIndex();
772 // Visit all the statements in the basic block.
773 VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774 for (const auto &BI : *CurrBlock) {
775 switch (BI.getKind()) {
776 case CFGElement::Statement: {
777 CFGStmt CS = BI.castAs<CFGStmt>();
778 VMapBuilder.Visit(CS.getStmt());
779 break;
781 default:
782 break;
785 CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
787 // Mark variables on back edges as "unknown" if they've been changed.
788 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
790 // if CurrBlock -> *SI is *not* a back edge
791 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792 continue;
794 CFGBlock *FirstLoopBlock = *SI;
795 Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796 Context LoopEnd = CurrBlockInfo->ExitContext;
797 intersectBackEdge(LoopBegin, LoopEnd);
801 // Put an extra entry at the end of the indexed context array
802 unsigned exitID = CFGraph->getExit().getBlockID();
803 saveContext(nullptr, BlockInfo[exitID].ExitContext);
806 /// Find the appropriate source locations to use when producing diagnostics for
807 /// each block in the CFG.
808 static void findBlockLocations(CFG *CFGraph,
809 const PostOrderCFGView *SortedGraph,
810 std::vector<CFGBlockInfo> &BlockInfo) {
811 for (const auto *CurrBlock : *SortedGraph) {
812 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
814 // Find the source location of the last statement in the block, if the
815 // block is not empty.
816 if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818 } else {
819 for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820 BE = CurrBlock->rend(); BI != BE; ++BI) {
821 // FIXME: Handle other CFGElement kinds.
822 if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823 CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824 break;
829 if (CurrBlockInfo->ExitLoc.isValid()) {
830 // This block contains at least one statement. Find the source location
831 // of the first statement in the block.
832 for (const auto &BI : *CurrBlock) {
833 // FIXME: Handle other CFGElement kinds.
834 if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835 CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836 break;
839 } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840 CurrBlock != &CFGraph->getExit()) {
841 // The block is empty, and has a single predecessor. Use its exit
842 // location.
843 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844 BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845 } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846 // The block is empty, and has a single successor. Use its entry
847 // location.
848 CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849 BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
854 namespace {
856 class LockableFactEntry : public FactEntry {
857 public:
858 LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859 SourceKind Src = Acquired)
860 : FactEntry(CE, LK, Loc, Src) {}
862 void
863 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864 SourceLocation JoinLoc, LockErrorKind LEK,
865 ThreadSafetyHandler &Handler) const override {
866 if (!asserted() && !negative() && !isUniversal()) {
867 Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868 LEK);
872 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873 ThreadSafetyHandler &Handler) const override {
874 Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875 entry.loc());
878 void handleUnlock(FactSet &FSet, FactManager &FactMan,
879 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880 bool FullyRemove,
881 ThreadSafetyHandler &Handler) const override {
882 FSet.removeLock(FactMan, Cp);
883 if (!Cp.negative()) {
884 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885 !Cp, LK_Exclusive, UnlockLoc));
890 class ScopedLockableFactEntry : public FactEntry {
891 private:
892 enum UnderlyingCapabilityKind {
893 UCK_Acquired, ///< Any kind of acquired capability.
894 UCK_ReleasedShared, ///< Shared capability that was released.
895 UCK_ReleasedExclusive, ///< Exclusive capability that was released.
898 struct UnderlyingCapability {
899 CapabilityExpr Cap;
900 UnderlyingCapabilityKind Kind;
903 SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
905 public:
906 ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907 : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
909 void addLock(const CapabilityExpr &M) {
910 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
913 void addExclusiveUnlock(const CapabilityExpr &M) {
914 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
917 void addSharedUnlock(const CapabilityExpr &M) {
918 UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
921 void
922 handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923 SourceLocation JoinLoc, LockErrorKind LEK,
924 ThreadSafetyHandler &Handler) const override {
925 if (LEK == LEK_LockedAtEndOfFunction || LEK == LEK_NotLockedAtEndOfFunction)
926 return;
928 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
929 const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
930 if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
931 (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
932 // If this scoped lock manages another mutex, and if the underlying
933 // mutex is still/not held, then warn about the underlying mutex.
934 Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
935 UnderlyingMutex.Cap.toString(), loc(),
936 JoinLoc, LEK);
941 void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
942 ThreadSafetyHandler &Handler) const override {
943 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
944 if (UnderlyingMutex.Kind == UCK_Acquired)
945 lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
946 &Handler);
947 else
948 unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
952 void handleUnlock(FactSet &FSet, FactManager &FactMan,
953 const CapabilityExpr &Cp, SourceLocation UnlockLoc,
954 bool FullyRemove,
955 ThreadSafetyHandler &Handler) const override {
956 assert(!Cp.negative() && "Managing object cannot be negative.");
957 for (const auto &UnderlyingMutex : UnderlyingMutexes) {
958 // Remove/lock the underlying mutex if it exists/is still unlocked; warn
959 // on double unlocking/locking if we're not destroying the scoped object.
960 ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
961 if (UnderlyingMutex.Kind == UCK_Acquired) {
962 unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
963 } else {
964 LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
965 ? LK_Shared
966 : LK_Exclusive;
967 lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
970 if (FullyRemove)
971 FSet.removeLock(FactMan, Cp);
974 private:
975 void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
976 LockKind kind, SourceLocation loc,
977 ThreadSafetyHandler *Handler) const {
978 if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
979 if (Handler)
980 Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
981 loc);
982 } else {
983 FSet.removeLock(FactMan, !Cp);
984 FSet.addLock(FactMan,
985 std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
989 void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
990 SourceLocation loc, ThreadSafetyHandler *Handler) const {
991 if (FSet.findLock(FactMan, Cp)) {
992 FSet.removeLock(FactMan, Cp);
993 FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
994 !Cp, LK_Exclusive, loc));
995 } else if (Handler) {
996 SourceLocation PrevLoc;
997 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
998 PrevLoc = Neg->loc();
999 Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
1004 /// Class which implements the core thread safety analysis routines.
1005 class ThreadSafetyAnalyzer {
1006 friend class BuildLockset;
1007 friend class threadSafety::BeforeSet;
1009 llvm::BumpPtrAllocator Bpa;
1010 threadSafety::til::MemRegionRef Arena;
1011 threadSafety::SExprBuilder SxBuilder;
1013 ThreadSafetyHandler &Handler;
1014 const FunctionDecl *CurrentFunction;
1015 LocalVariableMap LocalVarMap;
1016 // Maps constructed objects to `this` placeholder prior to initialization.
1017 llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1018 FactManager FactMan;
1019 std::vector<CFGBlockInfo> BlockInfo;
1021 BeforeSet *GlobalBeforeSet;
1023 public:
1024 ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1025 : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1027 bool inCurrentScope(const CapabilityExpr &CapE);
1029 void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1030 bool ReqAttr = false);
1031 void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1032 SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1034 template <typename AttrType>
1035 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1036 const NamedDecl *D, til::SExpr *Self = nullptr);
1038 template <class AttrType>
1039 void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1040 const NamedDecl *D,
1041 const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1042 Expr *BrE, bool Neg);
1044 const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1045 bool &Negate);
1047 void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1048 const CFGBlock* PredBlock,
1049 const CFGBlock *CurrBlock);
1051 bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1053 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1054 SourceLocation JoinLoc, LockErrorKind EntryLEK,
1055 LockErrorKind ExitLEK);
1057 void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1058 SourceLocation JoinLoc, LockErrorKind LEK) {
1059 intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1062 void runAnalysis(AnalysisDeclContext &AC);
1064 void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1065 const Expr *Exp, AccessKind AK, Expr *MutexExp,
1066 ProtectedOperationKind POK, til::LiteralPtr *Self,
1067 SourceLocation Loc);
1068 void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1069 Expr *MutexExp, til::LiteralPtr *Self,
1070 SourceLocation Loc);
1072 void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1073 ProtectedOperationKind POK);
1074 void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1075 ProtectedOperationKind POK);
1078 } // namespace
1080 /// Process acquired_before and acquired_after attributes on Vd.
1081 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1082 ThreadSafetyAnalyzer& Analyzer) {
1083 // Create a new entry for Vd.
1084 BeforeInfo *Info = nullptr;
1086 // Keep InfoPtr in its own scope in case BMap is modified later and the
1087 // reference becomes invalid.
1088 std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1089 if (!InfoPtr)
1090 InfoPtr.reset(new BeforeInfo());
1091 Info = InfoPtr.get();
1094 for (const auto *At : Vd->attrs()) {
1095 switch (At->getKind()) {
1096 case attr::AcquiredBefore: {
1097 const auto *A = cast<AcquiredBeforeAttr>(At);
1099 // Read exprs from the attribute, and add them to BeforeVect.
1100 for (const auto *Arg : A->args()) {
1101 CapabilityExpr Cp =
1102 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1103 if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1104 Info->Vect.push_back(Cpvd);
1105 const auto It = BMap.find(Cpvd);
1106 if (It == BMap.end())
1107 insertAttrExprs(Cpvd, Analyzer);
1110 break;
1112 case attr::AcquiredAfter: {
1113 const auto *A = cast<AcquiredAfterAttr>(At);
1115 // Read exprs from the attribute, and add them to BeforeVect.
1116 for (const auto *Arg : A->args()) {
1117 CapabilityExpr Cp =
1118 Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1119 if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1120 // Get entry for mutex listed in attribute
1121 BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1122 ArgInfo->Vect.push_back(Vd);
1125 break;
1127 default:
1128 break;
1132 return Info;
1135 BeforeSet::BeforeInfo *
1136 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1137 ThreadSafetyAnalyzer &Analyzer) {
1138 auto It = BMap.find(Vd);
1139 BeforeInfo *Info = nullptr;
1140 if (It == BMap.end())
1141 Info = insertAttrExprs(Vd, Analyzer);
1142 else
1143 Info = It->second.get();
1144 assert(Info && "BMap contained nullptr?");
1145 return Info;
1148 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1149 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1150 const FactSet& FSet,
1151 ThreadSafetyAnalyzer& Analyzer,
1152 SourceLocation Loc, StringRef CapKind) {
1153 SmallVector<BeforeInfo*, 8> InfoVect;
1155 // Do a depth-first traversal of Vd.
1156 // Return true if there are cycles.
1157 std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1158 if (!Vd)
1159 return false;
1161 BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1163 if (Info->Visited == 1)
1164 return true;
1166 if (Info->Visited == 2)
1167 return false;
1169 if (Info->Vect.empty())
1170 return false;
1172 InfoVect.push_back(Info);
1173 Info->Visited = 1;
1174 for (const auto *Vdb : Info->Vect) {
1175 // Exclude mutexes in our immediate before set.
1176 if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1177 StringRef L1 = StartVd->getName();
1178 StringRef L2 = Vdb->getName();
1179 Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1181 // Transitively search other before sets, and warn on cycles.
1182 if (traverse(Vdb)) {
1183 if (CycMap.try_emplace(Vd, true).second) {
1184 StringRef L1 = Vd->getName();
1185 Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1189 Info->Visited = 2;
1190 return false;
1193 traverse(StartVd);
1195 for (auto *Info : InfoVect)
1196 Info->Visited = 0;
1199 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1200 static const ValueDecl *getValueDecl(const Expr *Exp) {
1201 if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1202 return getValueDecl(CE->getSubExpr());
1204 if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1205 return DR->getDecl();
1207 if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1208 return ME->getMemberDecl();
1210 return nullptr;
1213 namespace {
1215 template <typename Ty>
1216 class has_arg_iterator_range {
1217 using yes = char[1];
1218 using no = char[2];
1220 template <typename Inner>
1221 static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1223 template <typename>
1224 static no& test(...);
1226 public:
1227 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1230 } // namespace
1232 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1233 const threadSafety::til::SExpr *SExp = CapE.sexpr();
1234 assert(SExp && "Null expressions should be ignored");
1236 if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1237 const ValueDecl *VD = LP->clangDecl();
1238 // Variables defined in a function are always inaccessible.
1239 if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1240 return false;
1241 // For now we consider static class members to be inaccessible.
1242 if (isa<CXXRecordDecl>(VD->getDeclContext()))
1243 return false;
1244 // Global variables are always in scope.
1245 return true;
1248 // Members are in scope from methods of the same class.
1249 if (const auto *P = dyn_cast<til::Project>(SExp)) {
1250 if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction))
1251 return false;
1252 const ValueDecl *VD = P->clangDecl();
1253 return VD->getDeclContext() == CurrentFunction->getDeclContext();
1256 return false;
1259 /// Add a new lock to the lockset, warning if the lock is already there.
1260 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1261 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1262 std::unique_ptr<FactEntry> Entry,
1263 bool ReqAttr) {
1264 if (Entry->shouldIgnore())
1265 return;
1267 if (!ReqAttr && !Entry->negative()) {
1268 // look for the negative capability, and remove it from the fact set.
1269 CapabilityExpr NegC = !*Entry;
1270 const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1271 if (Nen) {
1272 FSet.removeLock(FactMan, NegC);
1274 else {
1275 if (inCurrentScope(*Entry) && !Entry->asserted())
1276 Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1277 NegC.toString(), Entry->loc());
1281 // Check before/after constraints
1282 if (Handler.issueBetaWarnings() &&
1283 !Entry->asserted() && !Entry->declared()) {
1284 GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1285 Entry->loc(), Entry->getKind());
1288 // FIXME: Don't always warn when we have support for reentrant locks.
1289 if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1290 if (!Entry->asserted())
1291 Cp->handleLock(FSet, FactMan, *Entry, Handler);
1292 } else {
1293 FSet.addLock(FactMan, std::move(Entry));
1297 /// Remove a lock from the lockset, warning if the lock is not there.
1298 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1299 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1300 SourceLocation UnlockLoc,
1301 bool FullyRemove, LockKind ReceivedKind) {
1302 if (Cp.shouldIgnore())
1303 return;
1305 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1306 if (!LDat) {
1307 SourceLocation PrevLoc;
1308 if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1309 PrevLoc = Neg->loc();
1310 Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1311 PrevLoc);
1312 return;
1315 // Generic lock removal doesn't care about lock kind mismatches, but
1316 // otherwise diagnose when the lock kinds are mismatched.
1317 if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1318 Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1319 ReceivedKind, LDat->loc(), UnlockLoc);
1322 LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1325 /// Extract the list of mutexIDs from the attribute on an expression,
1326 /// and push them onto Mtxs, discarding any duplicates.
1327 template <typename AttrType>
1328 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1329 const Expr *Exp, const NamedDecl *D,
1330 til::SExpr *Self) {
1331 if (Attr->args_size() == 0) {
1332 // The mutex held is the "this" object.
1333 CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1334 if (Cp.isInvalid()) {
1335 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1336 return;
1338 //else
1339 if (!Cp.shouldIgnore())
1340 Mtxs.push_back_nodup(Cp);
1341 return;
1344 for (const auto *Arg : Attr->args()) {
1345 CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1346 if (Cp.isInvalid()) {
1347 warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1348 continue;
1350 //else
1351 if (!Cp.shouldIgnore())
1352 Mtxs.push_back_nodup(Cp);
1356 /// Extract the list of mutexIDs from a trylock attribute. If the
1357 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1358 /// any duplicates.
1359 template <class AttrType>
1360 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1361 const Expr *Exp, const NamedDecl *D,
1362 const CFGBlock *PredBlock,
1363 const CFGBlock *CurrBlock,
1364 Expr *BrE, bool Neg) {
1365 // Find out which branch has the lock
1366 bool branch = false;
1367 if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1368 branch = BLE->getValue();
1369 else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1370 branch = ILE->getValue().getBoolValue();
1372 int branchnum = branch ? 0 : 1;
1373 if (Neg)
1374 branchnum = !branchnum;
1376 // If we've taken the trylock branch, then add the lock
1377 int i = 0;
1378 for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1379 SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1380 if (*SI == CurrBlock && i == branchnum)
1381 getMutexIDs(Mtxs, Attr, Exp, D);
1385 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1386 if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1387 TCond = false;
1388 return true;
1389 } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1390 TCond = BLE->getValue();
1391 return true;
1392 } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1393 TCond = ILE->getValue().getBoolValue();
1394 return true;
1395 } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1396 return getStaticBooleanValue(CE->getSubExpr(), TCond);
1397 return false;
1400 // If Cond can be traced back to a function call, return the call expression.
1401 // The negate variable should be called with false, and will be set to true
1402 // if the function call is negated, e.g. if (!mu.tryLock(...))
1403 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1404 LocalVarContext C,
1405 bool &Negate) {
1406 if (!Cond)
1407 return nullptr;
1409 if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1410 if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1411 return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1412 return CallExp;
1414 else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1415 return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1416 else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1417 return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1418 else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1419 return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1420 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1421 const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1422 return getTrylockCallExpr(E, C, Negate);
1424 else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1425 if (UOP->getOpcode() == UO_LNot) {
1426 Negate = !Negate;
1427 return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1429 return nullptr;
1431 else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1432 if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1433 if (BOP->getOpcode() == BO_NE)
1434 Negate = !Negate;
1436 bool TCond = false;
1437 if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1438 if (!TCond) Negate = !Negate;
1439 return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1441 TCond = false;
1442 if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1443 if (!TCond) Negate = !Negate;
1444 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1446 return nullptr;
1448 if (BOP->getOpcode() == BO_LAnd) {
1449 // LHS must have been evaluated in a different block.
1450 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1452 if (BOP->getOpcode() == BO_LOr)
1453 return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1454 return nullptr;
1455 } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1456 bool TCond, FCond;
1457 if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1458 getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1459 if (TCond && !FCond)
1460 return getTrylockCallExpr(COP->getCond(), C, Negate);
1461 if (!TCond && FCond) {
1462 Negate = !Negate;
1463 return getTrylockCallExpr(COP->getCond(), C, Negate);
1467 return nullptr;
1470 /// Find the lockset that holds on the edge between PredBlock
1471 /// and CurrBlock. The edge set is the exit set of PredBlock (passed
1472 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1473 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1474 const FactSet &ExitSet,
1475 const CFGBlock *PredBlock,
1476 const CFGBlock *CurrBlock) {
1477 Result = ExitSet;
1479 const Stmt *Cond = PredBlock->getTerminatorCondition();
1480 // We don't acquire try-locks on ?: branches, only when its result is used.
1481 if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1482 return;
1484 bool Negate = false;
1485 const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1486 const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1488 const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1489 if (!Exp)
1490 return;
1492 auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1493 if(!FunDecl || !FunDecl->hasAttrs())
1494 return;
1496 CapExprSet ExclusiveLocksToAdd;
1497 CapExprSet SharedLocksToAdd;
1499 // If the condition is a call to a Trylock function, then grab the attributes
1500 for (const auto *Attr : FunDecl->attrs()) {
1501 switch (Attr->getKind()) {
1502 case attr::TryAcquireCapability: {
1503 auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1504 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1505 Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1506 Negate);
1507 break;
1509 case attr::ExclusiveTrylockFunction: {
1510 const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1511 getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1512 A->getSuccessValue(), Negate);
1513 break;
1515 case attr::SharedTrylockFunction: {
1516 const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1517 getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1518 A->getSuccessValue(), Negate);
1519 break;
1521 default:
1522 break;
1526 // Add and remove locks.
1527 SourceLocation Loc = Exp->getExprLoc();
1528 for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1529 addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1530 LK_Exclusive, Loc));
1531 for (const auto &SharedLockToAdd : SharedLocksToAdd)
1532 addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1533 LK_Shared, Loc));
1536 namespace {
1538 /// We use this class to visit different types of expressions in
1539 /// CFGBlocks, and build up the lockset.
1540 /// An expression may cause us to add or remove locks from the lockset, or else
1541 /// output error messages related to missing locks.
1542 /// FIXME: In future, we may be able to not inherit from a visitor.
1543 class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1544 friend class ThreadSafetyAnalyzer;
1546 ThreadSafetyAnalyzer *Analyzer;
1547 FactSet FSet;
1548 // The fact set for the function on exit.
1549 const FactSet &FunctionExitFSet;
1550 LocalVariableMap::Context LVarCtx;
1551 unsigned CtxIndex;
1553 // helper functions
1555 void checkAccess(const Expr *Exp, AccessKind AK,
1556 ProtectedOperationKind POK = POK_VarAccess) {
1557 Analyzer->checkAccess(FSet, Exp, AK, POK);
1559 void checkPtAccess(const Expr *Exp, AccessKind AK,
1560 ProtectedOperationKind POK = POK_VarAccess) {
1561 Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1564 void handleCall(const Expr *Exp, const NamedDecl *D,
1565 til::LiteralPtr *Self = nullptr,
1566 SourceLocation Loc = SourceLocation());
1567 void examineArguments(const FunctionDecl *FD,
1568 CallExpr::const_arg_iterator ArgBegin,
1569 CallExpr::const_arg_iterator ArgEnd,
1570 bool SkipFirstParam = false);
1572 public:
1573 BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1574 const FactSet &FunctionExitFSet)
1575 : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1576 FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1577 CtxIndex(Info.EntryIndex) {}
1579 void VisitUnaryOperator(const UnaryOperator *UO);
1580 void VisitBinaryOperator(const BinaryOperator *BO);
1581 void VisitCastExpr(const CastExpr *CE);
1582 void VisitCallExpr(const CallExpr *Exp);
1583 void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1584 void VisitDeclStmt(const DeclStmt *S);
1585 void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1586 void VisitReturnStmt(const ReturnStmt *S);
1589 } // namespace
1591 /// Warn if the LSet does not contain a lock sufficient to protect access
1592 /// of at least the passed in AccessKind.
1593 void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1594 const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1595 Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self,
1596 SourceLocation Loc) {
1597 LockKind LK = getLockKindFromAccessKind(AK);
1598 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1599 if (Cp.isInvalid()) {
1600 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1601 return;
1602 } else if (Cp.shouldIgnore()) {
1603 return;
1606 if (Cp.negative()) {
1607 // Negative capabilities act like locks excluded
1608 const FactEntry *LDat = FSet.findLock(FactMan, !Cp);
1609 if (LDat) {
1610 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1611 (!Cp).toString(), Loc);
1612 return;
1615 // If this does not refer to a negative capability in the same class,
1616 // then stop here.
1617 if (!inCurrentScope(Cp))
1618 return;
1620 // Otherwise the negative requirement must be propagated to the caller.
1621 LDat = FSet.findLock(FactMan, Cp);
1622 if (!LDat) {
1623 Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1625 return;
1628 const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp);
1629 bool NoError = true;
1630 if (!LDat) {
1631 // No exact match found. Look for a partial match.
1632 LDat = FSet.findPartialMatch(FactMan, Cp);
1633 if (LDat) {
1634 // Warn that there's no precise match.
1635 std::string PartMatchStr = LDat->toString();
1636 StringRef PartMatchName(PartMatchStr);
1637 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc,
1638 &PartMatchName);
1639 } else {
1640 // Warn that there's no match at all.
1641 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1643 NoError = false;
1645 // Make sure the mutex we found is the right kind.
1646 if (NoError && LDat && !LDat->isAtLeast(LK)) {
1647 Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1651 /// Warn if the LSet contains the given lock.
1652 void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1653 const NamedDecl *D, const Expr *Exp,
1654 Expr *MutexExp,
1655 til::LiteralPtr *Self,
1656 SourceLocation Loc) {
1657 CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1658 if (Cp.isInvalid()) {
1659 warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1660 return;
1661 } else if (Cp.shouldIgnore()) {
1662 return;
1665 const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1666 if (LDat) {
1667 Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1668 Cp.toString(), Loc);
1672 /// Checks guarded_by and pt_guarded_by attributes.
1673 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1674 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1675 /// Similarly, we check if the access is to an expression that dereferences
1676 /// a pointer marked with pt_guarded_by.
1677 void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1678 AccessKind AK,
1679 ProtectedOperationKind POK) {
1680 Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1682 SourceLocation Loc = Exp->getExprLoc();
1684 // Local variables of reference type cannot be re-assigned;
1685 // map them to their initializer.
1686 while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1687 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1688 if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1689 if (const auto *E = VD->getInit()) {
1690 // Guard against self-initialization. e.g., int &i = i;
1691 if (E == Exp)
1692 break;
1693 Exp = E;
1694 continue;
1697 break;
1700 if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1701 // For dereferences
1702 if (UO->getOpcode() == UO_Deref)
1703 checkPtAccess(FSet, UO->getSubExpr(), AK, POK);
1704 return;
1707 if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1708 switch (BO->getOpcode()) {
1709 case BO_PtrMemD: // .*
1710 return checkAccess(FSet, BO->getLHS(), AK, POK);
1711 case BO_PtrMemI: // ->*
1712 return checkPtAccess(FSet, BO->getLHS(), AK, POK);
1713 default:
1714 return;
1718 if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1719 checkPtAccess(FSet, AE->getLHS(), AK, POK);
1720 return;
1723 if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1724 if (ME->isArrow())
1725 checkPtAccess(FSet, ME->getBase(), AK, POK);
1726 else
1727 checkAccess(FSet, ME->getBase(), AK, POK);
1730 const ValueDecl *D = getValueDecl(Exp);
1731 if (!D || !D->hasAttrs())
1732 return;
1734 if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1735 Handler.handleNoMutexHeld(D, POK, AK, Loc);
1738 for (const auto *I : D->specific_attrs<GuardedByAttr>())
1739 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1742 /// Checks pt_guarded_by and pt_guarded_var attributes.
1743 /// POK is the same operationKind that was passed to checkAccess.
1744 void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1745 AccessKind AK,
1746 ProtectedOperationKind POK) {
1747 while (true) {
1748 if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1749 Exp = PE->getSubExpr();
1750 continue;
1752 if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1753 if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1754 // If it's an actual array, and not a pointer, then it's elements
1755 // are protected by GUARDED_BY, not PT_GUARDED_BY;
1756 checkAccess(FSet, CE->getSubExpr(), AK, POK);
1757 return;
1759 Exp = CE->getSubExpr();
1760 continue;
1762 break;
1765 // Pass by reference warnings are under a different flag.
1766 ProtectedOperationKind PtPOK = POK_VarDereference;
1767 if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1768 if (POK == POK_ReturnByRef)
1769 PtPOK = POK_PtReturnByRef;
1771 const ValueDecl *D = getValueDecl(Exp);
1772 if (!D || !D->hasAttrs())
1773 return;
1775 if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1776 Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1778 for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1779 warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr,
1780 Exp->getExprLoc());
1783 /// Process a function call, method call, constructor call,
1784 /// or destructor call. This involves looking at the attributes on the
1785 /// corresponding function/method/constructor/destructor, issuing warnings,
1786 /// and updating the locksets accordingly.
1788 /// FIXME: For classes annotated with one of the guarded annotations, we need
1789 /// to treat const method calls as reads and non-const method calls as writes,
1790 /// and check that the appropriate locks are held. Non-const method calls with
1791 /// the same signature as const method calls can be also treated as reads.
1793 /// \param Exp The call expression.
1794 /// \param D The callee declaration.
1795 /// \param Self If \p Exp = nullptr, the implicit this argument or the argument
1796 /// of an implicitly called cleanup function.
1797 /// \param Loc If \p Exp = nullptr, the location.
1798 void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1799 til::LiteralPtr *Self, SourceLocation Loc) {
1800 CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1801 CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1802 CapExprSet ScopedReqsAndExcludes;
1804 // Figure out if we're constructing an object of scoped lockable class
1805 CapabilityExpr Scp;
1806 if (Exp) {
1807 assert(!Self);
1808 const auto *TagT = Exp->getType()->getAs<TagType>();
1809 if (TagT && Exp->isPRValue()) {
1810 std::pair<til::LiteralPtr *, StringRef> Placeholder =
1811 Analyzer->SxBuilder.createThisPlaceholder(Exp);
1812 [[maybe_unused]] auto inserted =
1813 Analyzer->ConstructedObjects.insert({Exp, Placeholder.first});
1814 assert(inserted.second && "Are we visiting the same expression again?");
1815 if (isa<CXXConstructExpr>(Exp))
1816 Self = Placeholder.first;
1817 if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1818 Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1821 assert(Loc.isInvalid());
1822 Loc = Exp->getExprLoc();
1825 for(const Attr *At : D->attrs()) {
1826 switch (At->getKind()) {
1827 // When we encounter a lock function, we need to add the lock to our
1828 // lockset.
1829 case attr::AcquireCapability: {
1830 const auto *A = cast<AcquireCapabilityAttr>(At);
1831 Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1832 : ExclusiveLocksToAdd,
1833 A, Exp, D, Self);
1834 break;
1837 // An assert will add a lock to the lockset, but will not generate
1838 // a warning if it is already there, and will not generate a warning
1839 // if it is not removed.
1840 case attr::AssertExclusiveLock: {
1841 const auto *A = cast<AssertExclusiveLockAttr>(At);
1843 CapExprSet AssertLocks;
1844 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1845 for (const auto &AssertLock : AssertLocks)
1846 Analyzer->addLock(
1847 FSet, std::make_unique<LockableFactEntry>(
1848 AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1849 break;
1851 case attr::AssertSharedLock: {
1852 const auto *A = cast<AssertSharedLockAttr>(At);
1854 CapExprSet AssertLocks;
1855 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1856 for (const auto &AssertLock : AssertLocks)
1857 Analyzer->addLock(
1858 FSet, std::make_unique<LockableFactEntry>(
1859 AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1860 break;
1863 case attr::AssertCapability: {
1864 const auto *A = cast<AssertCapabilityAttr>(At);
1865 CapExprSet AssertLocks;
1866 Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1867 for (const auto &AssertLock : AssertLocks)
1868 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1869 AssertLock,
1870 A->isShared() ? LK_Shared : LK_Exclusive,
1871 Loc, FactEntry::Asserted));
1872 break;
1875 // When we encounter an unlock function, we need to remove unlocked
1876 // mutexes from the lockset, and flag a warning if they are not there.
1877 case attr::ReleaseCapability: {
1878 const auto *A = cast<ReleaseCapabilityAttr>(At);
1879 if (A->isGeneric())
1880 Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1881 else if (A->isShared())
1882 Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1883 else
1884 Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1885 break;
1888 case attr::RequiresCapability: {
1889 const auto *A = cast<RequiresCapabilityAttr>(At);
1890 for (auto *Arg : A->args()) {
1891 Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1892 A->isShared() ? AK_Read : AK_Written,
1893 Arg, POK_FunctionCall, Self, Loc);
1894 // use for adopting a lock
1895 if (!Scp.shouldIgnore())
1896 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1898 break;
1901 case attr::LocksExcluded: {
1902 const auto *A = cast<LocksExcludedAttr>(At);
1903 for (auto *Arg : A->args()) {
1904 Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1905 // use for deferring a lock
1906 if (!Scp.shouldIgnore())
1907 Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1909 break;
1912 // Ignore attributes unrelated to thread-safety
1913 default:
1914 break;
1918 // Remove locks first to allow lock upgrading/downgrading.
1919 // FIXME -- should only fully remove if the attribute refers to 'this'.
1920 bool Dtor = isa<CXXDestructorDecl>(D);
1921 for (const auto &M : ExclusiveLocksToRemove)
1922 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1923 for (const auto &M : SharedLocksToRemove)
1924 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1925 for (const auto &M : GenericLocksToRemove)
1926 Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1928 // Add locks.
1929 FactEntry::SourceKind Source =
1930 !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1931 for (const auto &M : ExclusiveLocksToAdd)
1932 Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1933 Loc, Source));
1934 for (const auto &M : SharedLocksToAdd)
1935 Analyzer->addLock(
1936 FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1938 if (!Scp.shouldIgnore()) {
1939 // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1940 auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1941 for (const auto &M : ExclusiveLocksToAdd)
1942 ScopedEntry->addLock(M);
1943 for (const auto &M : SharedLocksToAdd)
1944 ScopedEntry->addLock(M);
1945 for (const auto &M : ScopedReqsAndExcludes)
1946 ScopedEntry->addLock(M);
1947 for (const auto &M : ExclusiveLocksToRemove)
1948 ScopedEntry->addExclusiveUnlock(M);
1949 for (const auto &M : SharedLocksToRemove)
1950 ScopedEntry->addSharedUnlock(M);
1951 Analyzer->addLock(FSet, std::move(ScopedEntry));
1955 /// For unary operations which read and write a variable, we need to
1956 /// check whether we hold any required mutexes. Reads are checked in
1957 /// VisitCastExpr.
1958 void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1959 switch (UO->getOpcode()) {
1960 case UO_PostDec:
1961 case UO_PostInc:
1962 case UO_PreDec:
1963 case UO_PreInc:
1964 checkAccess(UO->getSubExpr(), AK_Written);
1965 break;
1966 default:
1967 break;
1971 /// For binary operations which assign to a variable (writes), we need to check
1972 /// whether we hold any required mutexes.
1973 /// FIXME: Deal with non-primitive types.
1974 void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1975 if (!BO->isAssignmentOp())
1976 return;
1978 // adjust the context
1979 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1981 checkAccess(BO->getLHS(), AK_Written);
1984 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1985 /// need to ensure we hold any required mutexes.
1986 /// FIXME: Deal with non-primitive types.
1987 void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1988 if (CE->getCastKind() != CK_LValueToRValue)
1989 return;
1990 checkAccess(CE->getSubExpr(), AK_Read);
1993 void BuildLockset::examineArguments(const FunctionDecl *FD,
1994 CallExpr::const_arg_iterator ArgBegin,
1995 CallExpr::const_arg_iterator ArgEnd,
1996 bool SkipFirstParam) {
1997 // Currently we can't do anything if we don't know the function declaration.
1998 if (!FD)
1999 return;
2001 // NO_THREAD_SAFETY_ANALYSIS does double duty here. Normally it
2002 // only turns off checking within the body of a function, but we also
2003 // use it to turn off checking in arguments to the function. This
2004 // could result in some false negatives, but the alternative is to
2005 // create yet another attribute.
2006 if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2007 return;
2009 const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2010 auto Param = Params.begin();
2011 if (SkipFirstParam)
2012 ++Param;
2014 // There can be default arguments, so we stop when one iterator is at end().
2015 for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2016 ++Param, ++Arg) {
2017 QualType Qt = (*Param)->getType();
2018 if (Qt->isReferenceType())
2019 checkAccess(*Arg, AK_Read, POK_PassByRef);
2023 void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2024 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2025 const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2026 // ME can be null when calling a method pointer
2027 const CXXMethodDecl *MD = CE->getMethodDecl();
2029 if (ME && MD) {
2030 if (ME->isArrow()) {
2031 // Should perhaps be AK_Written if !MD->isConst().
2032 checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2033 } else {
2034 // Should perhaps be AK_Written if !MD->isConst().
2035 checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2039 examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2040 } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2041 OverloadedOperatorKind OEop = OE->getOperator();
2042 switch (OEop) {
2043 case OO_Equal:
2044 case OO_PlusEqual:
2045 case OO_MinusEqual:
2046 case OO_StarEqual:
2047 case OO_SlashEqual:
2048 case OO_PercentEqual:
2049 case OO_CaretEqual:
2050 case OO_AmpEqual:
2051 case OO_PipeEqual:
2052 case OO_LessLessEqual:
2053 case OO_GreaterGreaterEqual:
2054 checkAccess(OE->getArg(1), AK_Read);
2055 [[fallthrough]];
2056 case OO_PlusPlus:
2057 case OO_MinusMinus:
2058 checkAccess(OE->getArg(0), AK_Written);
2059 break;
2060 case OO_Star:
2061 case OO_ArrowStar:
2062 case OO_Arrow:
2063 case OO_Subscript:
2064 if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2065 // Grrr. operator* can be multiplication...
2066 checkPtAccess(OE->getArg(0), AK_Read);
2068 [[fallthrough]];
2069 default: {
2070 // TODO: get rid of this, and rely on pass-by-ref instead.
2071 const Expr *Obj = OE->getArg(0);
2072 checkAccess(Obj, AK_Read);
2073 // Check the remaining arguments. For method operators, the first
2074 // argument is the implicit self argument, and doesn't appear in the
2075 // FunctionDecl, but for non-methods it does.
2076 const FunctionDecl *FD = OE->getDirectCallee();
2077 examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2078 /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2079 break;
2082 } else {
2083 examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2086 auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2087 if(!D || !D->hasAttrs())
2088 return;
2089 handleCall(Exp, D);
2092 void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2093 const CXXConstructorDecl *D = Exp->getConstructor();
2094 if (D && D->isCopyConstructor()) {
2095 const Expr* Source = Exp->getArg(0);
2096 checkAccess(Source, AK_Read);
2097 } else {
2098 examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2100 if (D && D->hasAttrs())
2101 handleCall(Exp, D);
2104 static const Expr *UnpackConstruction(const Expr *E) {
2105 if (auto *CE = dyn_cast<CastExpr>(E))
2106 if (CE->getCastKind() == CK_NoOp)
2107 E = CE->getSubExpr()->IgnoreParens();
2108 if (auto *CE = dyn_cast<CastExpr>(E))
2109 if (CE->getCastKind() == CK_ConstructorConversion ||
2110 CE->getCastKind() == CK_UserDefinedConversion)
2111 E = CE->getSubExpr();
2112 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2113 E = BTE->getSubExpr();
2114 return E;
2117 void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2118 // adjust the context
2119 LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2121 for (auto *D : S->getDeclGroup()) {
2122 if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2123 const Expr *E = VD->getInit();
2124 if (!E)
2125 continue;
2126 E = E->IgnoreParens();
2128 // handle constructors that involve temporaries
2129 if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2130 E = EWC->getSubExpr()->IgnoreParens();
2131 E = UnpackConstruction(E);
2133 if (auto Object = Analyzer->ConstructedObjects.find(E);
2134 Object != Analyzer->ConstructedObjects.end()) {
2135 Object->second->setClangDecl(VD);
2136 Analyzer->ConstructedObjects.erase(Object);
2142 void BuildLockset::VisitMaterializeTemporaryExpr(
2143 const MaterializeTemporaryExpr *Exp) {
2144 if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2145 if (auto Object = Analyzer->ConstructedObjects.find(
2146 UnpackConstruction(Exp->getSubExpr()));
2147 Object != Analyzer->ConstructedObjects.end()) {
2148 Object->second->setClangDecl(ExtD);
2149 Analyzer->ConstructedObjects.erase(Object);
2154 void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2155 if (Analyzer->CurrentFunction == nullptr)
2156 return;
2157 const Expr *RetVal = S->getRetValue();
2158 if (!RetVal)
2159 return;
2161 // If returning by reference, check that the function requires the appropriate
2162 // capabilities.
2163 const QualType ReturnType =
2164 Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2165 if (ReturnType->isLValueReferenceType()) {
2166 Analyzer->checkAccess(
2167 FunctionExitFSet, RetVal,
2168 ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written,
2169 POK_ReturnByRef);
2173 /// Given two facts merging on a join point, possibly warn and decide whether to
2174 /// keep or replace.
2176 /// \param CanModify Whether we can replace \p A by \p B.
2177 /// \return false if we should keep \p A, true if we should take \p B.
2178 bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2179 bool CanModify) {
2180 if (A.kind() != B.kind()) {
2181 // For managed capabilities, the destructor should unlock in the right mode
2182 // anyway. For asserted capabilities no unlocking is needed.
2183 if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2184 // The shared capability subsumes the exclusive capability, if possible.
2185 bool ShouldTakeB = B.kind() == LK_Shared;
2186 if (CanModify || !ShouldTakeB)
2187 return ShouldTakeB;
2189 Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2190 A.loc());
2191 // Take the exclusive capability to reduce further warnings.
2192 return CanModify && B.kind() == LK_Exclusive;
2193 } else {
2194 // The non-asserted capability is the one we want to track.
2195 return CanModify && A.asserted() && !B.asserted();
2199 /// Compute the intersection of two locksets and issue warnings for any
2200 /// locks in the symmetric difference.
2202 /// This function is used at a merge point in the CFG when comparing the lockset
2203 /// of each branch being merged. For example, given the following sequence:
2204 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2205 /// are the same. In the event of a difference, we use the intersection of these
2206 /// two locksets at the start of D.
2208 /// \param EntrySet A lockset for entry into a (possibly new) block.
2209 /// \param ExitSet The lockset on exiting a preceding block.
2210 /// \param JoinLoc The location of the join point for error reporting
2211 /// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2212 /// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2213 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2214 const FactSet &ExitSet,
2215 SourceLocation JoinLoc,
2216 LockErrorKind EntryLEK,
2217 LockErrorKind ExitLEK) {
2218 FactSet EntrySetOrig = EntrySet;
2220 // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2221 for (const auto &Fact : ExitSet) {
2222 const FactEntry &ExitFact = FactMan[Fact];
2224 FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2225 if (EntryIt != EntrySet.end()) {
2226 if (join(FactMan[*EntryIt], ExitFact,
2227 EntryLEK != LEK_LockedSomeLoopIterations))
2228 *EntryIt = Fact;
2229 } else if (!ExitFact.managed() || EntryLEK == LEK_LockedAtEndOfFunction) {
2230 ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2231 EntryLEK, Handler);
2235 // Find locks in EntrySet that are not in ExitSet, and remove them.
2236 for (const auto &Fact : EntrySetOrig) {
2237 const FactEntry *EntryFact = &FactMan[Fact];
2238 const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2240 if (!ExitFact) {
2241 if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations ||
2242 ExitLEK == LEK_NotLockedAtEndOfFunction)
2243 EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2244 ExitLEK, Handler);
2245 if (ExitLEK == LEK_LockedSomePredecessors)
2246 EntrySet.removeLock(FactMan, *EntryFact);
2251 // Return true if block B never continues to its successors.
2252 static bool neverReturns(const CFGBlock *B) {
2253 if (B->hasNoReturnElement())
2254 return true;
2255 if (B->empty())
2256 return false;
2258 CFGElement Last = B->back();
2259 if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2260 if (isa<CXXThrowExpr>(S->getStmt()))
2261 return true;
2263 return false;
2266 /// Check a function's CFG for thread-safety violations.
2268 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2269 /// at the end of each block, and issue warnings for thread safety violations.
2270 /// Each block in the CFG is traversed exactly once.
2271 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2272 // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2273 // For now, we just use the walker to set things up.
2274 threadSafety::CFGWalker walker;
2275 if (!walker.init(AC))
2276 return;
2278 // AC.dumpCFG(true);
2279 // threadSafety::printSCFG(walker);
2281 CFG *CFGraph = walker.getGraph();
2282 const NamedDecl *D = walker.getDecl();
2283 CurrentFunction = dyn_cast<FunctionDecl>(D);
2285 if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2286 return;
2288 // FIXME: Do something a bit more intelligent inside constructor and
2289 // destructor code. Constructors and destructors must assume unique access
2290 // to 'this', so checks on member variable access is disabled, but we should
2291 // still enable checks on other objects.
2292 if (isa<CXXConstructorDecl>(D))
2293 return; // Don't check inside constructors.
2294 if (isa<CXXDestructorDecl>(D))
2295 return; // Don't check inside destructors.
2297 Handler.enterFunction(CurrentFunction);
2299 BlockInfo.resize(CFGraph->getNumBlockIDs(),
2300 CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2302 // We need to explore the CFG via a "topological" ordering.
2303 // That way, we will be guaranteed to have information about required
2304 // predecessor locksets when exploring a new block.
2305 const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2306 PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2308 CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2309 CFGBlockInfo &Final = BlockInfo[CFGraph->getExit().getBlockID()];
2311 // Mark entry block as reachable
2312 Initial.Reachable = true;
2314 // Compute SSA names for local variables
2315 LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2317 // Fill in source locations for all CFGBlocks.
2318 findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2320 CapExprSet ExclusiveLocksAcquired;
2321 CapExprSet SharedLocksAcquired;
2322 CapExprSet LocksReleased;
2324 // Add locks from exclusive_locks_required and shared_locks_required
2325 // to initial lockset. Also turn off checking for lock and unlock functions.
2326 // FIXME: is there a more intelligent way to check lock/unlock functions?
2327 if (!SortedGraph->empty() && D->hasAttrs()) {
2328 assert(*SortedGraph->begin() == &CFGraph->getEntry());
2329 FactSet &InitialLockset = Initial.EntrySet;
2331 CapExprSet ExclusiveLocksToAdd;
2332 CapExprSet SharedLocksToAdd;
2334 SourceLocation Loc = D->getLocation();
2335 for (const auto *Attr : D->attrs()) {
2336 Loc = Attr->getLocation();
2337 if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2338 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2339 nullptr, D);
2340 } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2341 // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2342 // We must ignore such methods.
2343 if (A->args_size() == 0)
2344 return;
2345 getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2346 nullptr, D);
2347 getMutexIDs(LocksReleased, A, nullptr, D);
2348 } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2349 if (A->args_size() == 0)
2350 return;
2351 getMutexIDs(A->isShared() ? SharedLocksAcquired
2352 : ExclusiveLocksAcquired,
2353 A, nullptr, D);
2354 } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2355 // Don't try to check trylock functions for now.
2356 return;
2357 } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2358 // Don't try to check trylock functions for now.
2359 return;
2360 } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2361 // Don't try to check trylock functions for now.
2362 return;
2366 // FIXME -- Loc can be wrong here.
2367 for (const auto &Mu : ExclusiveLocksToAdd) {
2368 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2369 FactEntry::Declared);
2370 addLock(InitialLockset, std::move(Entry), true);
2372 for (const auto &Mu : SharedLocksToAdd) {
2373 auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2374 FactEntry::Declared);
2375 addLock(InitialLockset, std::move(Entry), true);
2379 // Compute the expected exit set.
2380 // By default, we expect all locks held on entry to be held on exit.
2381 FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2383 // Adjust the expected exit set by adding or removing locks, as declared
2384 // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then
2385 // issue the appropriate warning.
2386 // FIXME: the location here is not quite right.
2387 for (const auto &Lock : ExclusiveLocksAcquired)
2388 ExpectedFunctionExitSet.addLock(
2389 FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive,
2390 D->getLocation()));
2391 for (const auto &Lock : SharedLocksAcquired)
2392 ExpectedFunctionExitSet.addLock(
2393 FactMan,
2394 std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation()));
2395 for (const auto &Lock : LocksReleased)
2396 ExpectedFunctionExitSet.removeLock(FactMan, Lock);
2398 for (const auto *CurrBlock : *SortedGraph) {
2399 unsigned CurrBlockID = CurrBlock->getBlockID();
2400 CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2402 // Use the default initial lockset in case there are no predecessors.
2403 VisitedBlocks.insert(CurrBlock);
2405 // Iterate through the predecessor blocks and warn if the lockset for all
2406 // predecessors is not the same. We take the entry lockset of the current
2407 // block to be the intersection of all previous locksets.
2408 // FIXME: By keeping the intersection, we may output more errors in future
2409 // for a lock which is not in the intersection, but was in the union. We
2410 // may want to also keep the union in future. As an example, let's say
2411 // the intersection contains Mutex L, and the union contains L and M.
2412 // Later we unlock M. At this point, we would output an error because we
2413 // never locked M; although the real error is probably that we forgot to
2414 // lock M on all code paths. Conversely, let's say that later we lock M.
2415 // In this case, we should compare against the intersection instead of the
2416 // union because the real error is probably that we forgot to unlock M on
2417 // all code paths.
2418 bool LocksetInitialized = false;
2419 for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2420 PE = CurrBlock->pred_end(); PI != PE; ++PI) {
2421 // if *PI -> CurrBlock is a back edge
2422 if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2423 continue;
2425 unsigned PrevBlockID = (*PI)->getBlockID();
2426 CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2428 // Ignore edges from blocks that can't return.
2429 if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2430 continue;
2432 // Okay, we can reach this block from the entry.
2433 CurrBlockInfo->Reachable = true;
2435 FactSet PrevLockset;
2436 getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2438 if (!LocksetInitialized) {
2439 CurrBlockInfo->EntrySet = PrevLockset;
2440 LocksetInitialized = true;
2441 } else {
2442 // Surprisingly 'continue' doesn't always produce back edges, because
2443 // the CFG has empty "transition" blocks where they meet with the end
2444 // of the regular loop body. We still want to diagnose them as loop.
2445 intersectAndWarn(
2446 CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2447 isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2448 ? LEK_LockedSomeLoopIterations
2449 : LEK_LockedSomePredecessors);
2453 // Skip rest of block if it's not reachable.
2454 if (!CurrBlockInfo->Reachable)
2455 continue;
2457 BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2459 // Visit all the statements in the basic block.
2460 for (const auto &BI : *CurrBlock) {
2461 switch (BI.getKind()) {
2462 case CFGElement::Statement: {
2463 CFGStmt CS = BI.castAs<CFGStmt>();
2464 LocksetBuilder.Visit(CS.getStmt());
2465 break;
2467 // Ignore BaseDtor and MemberDtor for now.
2468 case CFGElement::AutomaticObjectDtor: {
2469 CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2470 const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2471 if (!DD->hasAttrs())
2472 break;
2474 LocksetBuilder.handleCall(nullptr, DD,
2475 SxBuilder.createVariable(AD.getVarDecl()),
2476 AD.getTriggerStmt()->getEndLoc());
2477 break;
2480 case CFGElement::CleanupFunction: {
2481 const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2482 LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(),
2483 SxBuilder.createVariable(CF.getVarDecl()),
2484 CF.getVarDecl()->getLocation());
2485 break;
2488 case CFGElement::TemporaryDtor: {
2489 auto TD = BI.castAs<CFGTemporaryDtor>();
2491 // Clean up constructed object even if there are no attributes to
2492 // keep the number of objects in limbo as small as possible.
2493 if (auto Object = ConstructedObjects.find(
2494 TD.getBindTemporaryExpr()->getSubExpr());
2495 Object != ConstructedObjects.end()) {
2496 const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2497 if (DD->hasAttrs())
2498 // TODO: the location here isn't quite correct.
2499 LocksetBuilder.handleCall(nullptr, DD, Object->second,
2500 TD.getBindTemporaryExpr()->getEndLoc());
2501 ConstructedObjects.erase(Object);
2503 break;
2505 default:
2506 break;
2509 CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2511 // For every back edge from CurrBlock (the end of the loop) to another block
2512 // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2513 // the one held at the beginning of FirstLoopBlock. We can look up the
2514 // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2515 for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2516 SE = CurrBlock->succ_end(); SI != SE; ++SI) {
2517 // if CurrBlock -> *SI is *not* a back edge
2518 if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2519 continue;
2521 CFGBlock *FirstLoopBlock = *SI;
2522 CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2523 CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2524 intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2525 LEK_LockedSomeLoopIterations);
2529 // Skip the final check if the exit block is unreachable.
2530 if (!Final.Reachable)
2531 return;
2533 // FIXME: Should we call this function for all blocks which exit the function?
2534 intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc,
2535 LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2537 Handler.leaveFunction(CurrentFunction);
2540 /// Check a function's CFG for thread-safety violations.
2542 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2543 /// at the end of each block, and issue warnings for thread safety violations.
2544 /// Each block in the CFG is traversed exactly once.
2545 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2546 ThreadSafetyHandler &Handler,
2547 BeforeSet **BSet) {
2548 if (!*BSet)
2549 *BSet = new BeforeSet;
2550 ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2551 Analyzer.runAnalysis(AC);
2554 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2556 /// Helper function that returns a LockKind required for the given level
2557 /// of access.
2558 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2559 switch (AK) {
2560 case AK_Read :
2561 return LK_Shared;
2562 case AK_Written :
2563 return LK_Exclusive;
2565 llvm_unreachable("Unknown AccessKind");