[ELF] Avoid make in elf::writeARMCmseImportLib
[llvm-project.git] / clang / lib / CodeGen / CGCall.h
blob92e0cc43919ca4cad10cc25269e0e671d66c9b27
1 //===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CGCALL_H
15 #define LLVM_CLANG_LIB_CODEGEN_CGCALL_H
17 #include "CGPointerAuthInfo.h"
18 #include "CGValue.h"
19 #include "EHScopeStack.h"
20 #include "clang/AST/ASTFwd.h"
21 #include "clang/AST/CanonicalType.h"
22 #include "clang/AST/GlobalDecl.h"
23 #include "clang/AST/Type.h"
24 #include "llvm/ADT/STLForwardCompat.h"
25 #include "llvm/IR/Value.h"
27 namespace llvm {
28 class Type;
29 class Value;
30 } // namespace llvm
32 namespace clang {
33 class Decl;
34 class FunctionDecl;
35 class TargetOptions;
36 class VarDecl;
38 namespace CodeGen {
40 /// Abstract information about a function or function prototype.
41 class CGCalleeInfo {
42 /// The function prototype of the callee.
43 const FunctionProtoType *CalleeProtoTy;
44 /// The function declaration of the callee.
45 GlobalDecl CalleeDecl;
47 public:
48 explicit CGCalleeInfo() : CalleeProtoTy(nullptr) {}
49 CGCalleeInfo(const FunctionProtoType *calleeProtoTy, GlobalDecl calleeDecl)
50 : CalleeProtoTy(calleeProtoTy), CalleeDecl(calleeDecl) {}
51 CGCalleeInfo(const FunctionProtoType *calleeProtoTy)
52 : CalleeProtoTy(calleeProtoTy) {}
53 CGCalleeInfo(GlobalDecl calleeDecl)
54 : CalleeProtoTy(nullptr), CalleeDecl(calleeDecl) {}
56 const FunctionProtoType *getCalleeFunctionProtoType() const {
57 return CalleeProtoTy;
59 const GlobalDecl getCalleeDecl() const { return CalleeDecl; }
62 /// All available information about a concrete callee.
63 class CGCallee {
64 enum class SpecialKind : uintptr_t {
65 Invalid,
66 Builtin,
67 PseudoDestructor,
68 Virtual,
70 Last = Virtual
73 struct OrdinaryInfoStorage {
74 CGCalleeInfo AbstractInfo;
75 CGPointerAuthInfo PointerAuthInfo;
77 struct BuiltinInfoStorage {
78 const FunctionDecl *Decl;
79 unsigned ID;
81 struct PseudoDestructorInfoStorage {
82 const CXXPseudoDestructorExpr *Expr;
84 struct VirtualInfoStorage {
85 const CallExpr *CE;
86 GlobalDecl MD;
87 Address Addr;
88 llvm::FunctionType *FTy;
91 SpecialKind KindOrFunctionPointer;
92 union {
93 OrdinaryInfoStorage OrdinaryInfo;
94 BuiltinInfoStorage BuiltinInfo;
95 PseudoDestructorInfoStorage PseudoDestructorInfo;
96 VirtualInfoStorage VirtualInfo;
99 explicit CGCallee(SpecialKind kind) : KindOrFunctionPointer(kind) {}
101 CGCallee(const FunctionDecl *builtinDecl, unsigned builtinID)
102 : KindOrFunctionPointer(SpecialKind::Builtin) {
103 BuiltinInfo.Decl = builtinDecl;
104 BuiltinInfo.ID = builtinID;
107 public:
108 CGCallee() : KindOrFunctionPointer(SpecialKind::Invalid) {}
110 /// Construct a callee. Call this constructor directly when this
111 /// isn't a direct call.
112 CGCallee(const CGCalleeInfo &abstractInfo, llvm::Value *functionPtr,
113 /* FIXME: make parameter pointerAuthInfo mandatory */
114 const CGPointerAuthInfo &pointerAuthInfo = CGPointerAuthInfo())
115 : KindOrFunctionPointer(
116 SpecialKind(reinterpret_cast<uintptr_t>(functionPtr))) {
117 OrdinaryInfo.AbstractInfo = abstractInfo;
118 OrdinaryInfo.PointerAuthInfo = pointerAuthInfo;
119 assert(functionPtr && "configuring callee without function pointer");
120 assert(functionPtr->getType()->isPointerTy());
123 static CGCallee forBuiltin(unsigned builtinID,
124 const FunctionDecl *builtinDecl) {
125 CGCallee result(SpecialKind::Builtin);
126 result.BuiltinInfo.Decl = builtinDecl;
127 result.BuiltinInfo.ID = builtinID;
128 return result;
131 static CGCallee forPseudoDestructor(const CXXPseudoDestructorExpr *E) {
132 CGCallee result(SpecialKind::PseudoDestructor);
133 result.PseudoDestructorInfo.Expr = E;
134 return result;
137 static CGCallee forDirect(llvm::Constant *functionPtr,
138 const CGCalleeInfo &abstractInfo = CGCalleeInfo()) {
139 return CGCallee(abstractInfo, functionPtr);
142 static CGCallee forDirect(llvm::FunctionCallee functionPtr,
143 const CGCalleeInfo &abstractInfo = CGCalleeInfo()) {
144 return CGCallee(abstractInfo, functionPtr.getCallee());
147 static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr,
148 llvm::FunctionType *FTy) {
149 CGCallee result(SpecialKind::Virtual);
150 result.VirtualInfo.CE = CE;
151 result.VirtualInfo.MD = MD;
152 result.VirtualInfo.Addr = Addr;
153 result.VirtualInfo.FTy = FTy;
154 return result;
157 bool isBuiltin() const {
158 return KindOrFunctionPointer == SpecialKind::Builtin;
160 const FunctionDecl *getBuiltinDecl() const {
161 assert(isBuiltin());
162 return BuiltinInfo.Decl;
164 unsigned getBuiltinID() const {
165 assert(isBuiltin());
166 return BuiltinInfo.ID;
169 bool isPseudoDestructor() const {
170 return KindOrFunctionPointer == SpecialKind::PseudoDestructor;
172 const CXXPseudoDestructorExpr *getPseudoDestructorExpr() const {
173 assert(isPseudoDestructor());
174 return PseudoDestructorInfo.Expr;
177 bool isOrdinary() const {
178 return uintptr_t(KindOrFunctionPointer) > uintptr_t(SpecialKind::Last);
180 CGCalleeInfo getAbstractInfo() const {
181 if (isVirtual())
182 return VirtualInfo.MD;
183 assert(isOrdinary());
184 return OrdinaryInfo.AbstractInfo;
186 const CGPointerAuthInfo &getPointerAuthInfo() const {
187 assert(isOrdinary());
188 return OrdinaryInfo.PointerAuthInfo;
190 llvm::Value *getFunctionPointer() const {
191 assert(isOrdinary());
192 return reinterpret_cast<llvm::Value *>(uintptr_t(KindOrFunctionPointer));
194 void setFunctionPointer(llvm::Value *functionPtr) {
195 assert(isOrdinary());
196 KindOrFunctionPointer =
197 SpecialKind(reinterpret_cast<uintptr_t>(functionPtr));
199 void setPointerAuthInfo(CGPointerAuthInfo PointerAuth) {
200 assert(isOrdinary());
201 OrdinaryInfo.PointerAuthInfo = PointerAuth;
204 bool isVirtual() const {
205 return KindOrFunctionPointer == SpecialKind::Virtual;
207 const CallExpr *getVirtualCallExpr() const {
208 assert(isVirtual());
209 return VirtualInfo.CE;
211 GlobalDecl getVirtualMethodDecl() const {
212 assert(isVirtual());
213 return VirtualInfo.MD;
215 Address getThisAddress() const {
216 assert(isVirtual());
217 return VirtualInfo.Addr;
219 llvm::FunctionType *getVirtualFunctionType() const {
220 assert(isVirtual());
221 return VirtualInfo.FTy;
224 /// If this is a delayed callee computation of some sort, prepare
225 /// a concrete callee.
226 CGCallee prepareConcreteCallee(CodeGenFunction &CGF) const;
229 struct CallArg {
230 private:
231 union {
232 RValue RV;
233 LValue LV; /// The argument is semantically a load from this l-value.
235 bool HasLV;
237 /// A data-flow flag to make sure getRValue and/or copyInto are not
238 /// called twice for duplicated IR emission.
239 mutable bool IsUsed;
241 public:
242 QualType Ty;
243 CallArg(RValue rv, QualType ty)
244 : RV(rv), HasLV(false), IsUsed(false), Ty(ty) {}
245 CallArg(LValue lv, QualType ty)
246 : LV(lv), HasLV(true), IsUsed(false), Ty(ty) {}
247 bool hasLValue() const { return HasLV; }
248 QualType getType() const { return Ty; }
250 /// \returns an independent RValue. If the CallArg contains an LValue,
251 /// a temporary copy is returned.
252 RValue getRValue(CodeGenFunction &CGF) const;
254 LValue getKnownLValue() const {
255 assert(HasLV && !IsUsed);
256 return LV;
258 RValue getKnownRValue() const {
259 assert(!HasLV && !IsUsed);
260 return RV;
262 void setRValue(RValue _RV) {
263 assert(!HasLV);
264 RV = _RV;
267 bool isAggregate() const { return HasLV || RV.isAggregate(); }
269 void copyInto(CodeGenFunction &CGF, Address A) const;
272 /// CallArgList - Type for representing both the value and type of
273 /// arguments in a call.
274 class CallArgList : public SmallVector<CallArg, 8> {
275 public:
276 CallArgList() = default;
278 struct Writeback {
279 /// The original argument. Note that the argument l-value
280 /// is potentially null.
281 LValue Source;
283 /// The temporary alloca.
284 Address Temporary;
286 /// A value to "use" after the writeback, or null.
287 llvm::Value *ToUse;
289 /// An Expression (optional) that performs the writeback with any required
290 /// casting.
291 const Expr *WritebackExpr;
293 // Size for optional lifetime end on the temporary.
294 llvm::Value *LifetimeSz;
297 struct CallArgCleanup {
298 EHScopeStack::stable_iterator Cleanup;
300 /// The "is active" insertion point. This instruction is temporary and
301 /// will be removed after insertion.
302 llvm::Instruction *IsActiveIP;
305 void add(RValue rvalue, QualType type) { push_back(CallArg(rvalue, type)); }
307 void addUncopiedAggregate(LValue LV, QualType type) {
308 push_back(CallArg(LV, type));
311 /// Add all the arguments from another CallArgList to this one. After doing
312 /// this, the old CallArgList retains its list of arguments, but must not
313 /// be used to emit a call.
314 void addFrom(const CallArgList &other) {
315 insert(end(), other.begin(), other.end());
316 Writebacks.insert(Writebacks.end(), other.Writebacks.begin(),
317 other.Writebacks.end());
318 CleanupsToDeactivate.insert(CleanupsToDeactivate.end(),
319 other.CleanupsToDeactivate.begin(),
320 other.CleanupsToDeactivate.end());
321 assert(!(StackBase && other.StackBase) && "can't merge stackbases");
322 if (!StackBase)
323 StackBase = other.StackBase;
326 void addWriteback(LValue srcLV, Address temporary, llvm::Value *toUse,
327 const Expr *writebackExpr = nullptr,
328 llvm::Value *lifetimeSz = nullptr) {
329 Writeback writeback = {srcLV, temporary, toUse, writebackExpr, lifetimeSz};
330 Writebacks.push_back(writeback);
333 bool hasWritebacks() const { return !Writebacks.empty(); }
335 typedef llvm::iterator_range<SmallVectorImpl<Writeback>::const_iterator>
336 writeback_const_range;
338 writeback_const_range writebacks() const {
339 return writeback_const_range(Writebacks.begin(), Writebacks.end());
342 void addArgCleanupDeactivation(EHScopeStack::stable_iterator Cleanup,
343 llvm::Instruction *IsActiveIP) {
344 CallArgCleanup ArgCleanup;
345 ArgCleanup.Cleanup = Cleanup;
346 ArgCleanup.IsActiveIP = IsActiveIP;
347 CleanupsToDeactivate.push_back(ArgCleanup);
350 ArrayRef<CallArgCleanup> getCleanupsToDeactivate() const {
351 return CleanupsToDeactivate;
354 void allocateArgumentMemory(CodeGenFunction &CGF);
355 llvm::Instruction *getStackBase() const { return StackBase; }
356 void freeArgumentMemory(CodeGenFunction &CGF) const;
358 /// Returns if we're using an inalloca struct to pass arguments in
359 /// memory.
360 bool isUsingInAlloca() const { return StackBase; }
362 // Support reversing writebacks for MSVC ABI.
363 void reverseWritebacks() {
364 std::reverse(Writebacks.begin(), Writebacks.end());
367 private:
368 SmallVector<Writeback, 1> Writebacks;
370 /// Deactivate these cleanups immediately before making the call. This
371 /// is used to cleanup objects that are owned by the callee once the call
372 /// occurs.
373 SmallVector<CallArgCleanup, 1> CleanupsToDeactivate;
375 /// The stacksave call. It dominates all of the argument evaluation.
376 llvm::CallInst *StackBase = nullptr;
379 /// FunctionArgList - Type for representing both the decl and type
380 /// of parameters to a function. The decl must be either a
381 /// ParmVarDecl or ImplicitParamDecl.
382 class FunctionArgList : public SmallVector<const VarDecl *, 16> {};
384 /// ReturnValueSlot - Contains the address where the return value of a
385 /// function can be stored, and whether the address is volatile or not.
386 class ReturnValueSlot {
387 Address Addr = Address::invalid();
389 // Return value slot flags
390 LLVM_PREFERRED_TYPE(bool)
391 unsigned IsVolatile : 1;
392 LLVM_PREFERRED_TYPE(bool)
393 unsigned IsUnused : 1;
394 LLVM_PREFERRED_TYPE(bool)
395 unsigned IsExternallyDestructed : 1;
397 public:
398 ReturnValueSlot()
399 : IsVolatile(false), IsUnused(false), IsExternallyDestructed(false) {}
400 ReturnValueSlot(Address Addr, bool IsVolatile, bool IsUnused = false,
401 bool IsExternallyDestructed = false)
402 : Addr(Addr), IsVolatile(IsVolatile), IsUnused(IsUnused),
403 IsExternallyDestructed(IsExternallyDestructed) {}
405 bool isNull() const { return !Addr.isValid(); }
406 bool isVolatile() const { return IsVolatile; }
407 Address getValue() const { return Addr; }
408 bool isUnused() const { return IsUnused; }
409 bool isExternallyDestructed() const { return IsExternallyDestructed; }
410 Address getAddress() const { return Addr; }
413 /// Adds attributes to \p F according to our \p CodeGenOpts and \p LangOpts, as
414 /// though we had emitted it ourselves. We remove any attributes on F that
415 /// conflict with the attributes we add here.
417 /// This is useful for adding attrs to bitcode modules that you want to link
418 /// with but don't control, such as CUDA's libdevice. When linking with such
419 /// a bitcode library, you might want to set e.g. its functions'
420 /// "unsafe-fp-math" attribute to match the attr of the functions you're
421 /// codegen'ing. Otherwise, LLVM will interpret the bitcode module's lack of
422 /// unsafe-fp-math attrs as tantamount to unsafe-fp-math=false, and then LLVM
423 /// will propagate unsafe-fp-math=false up to every transitive caller of a
424 /// function in the bitcode library!
426 /// With the exception of fast-math attrs, this will only make the attributes
427 /// on the function more conservative. But it's unsafe to call this on a
428 /// function which relies on particular fast-math attributes for correctness.
429 /// It's up to you to ensure that this is safe.
430 void mergeDefaultFunctionDefinitionAttributes(llvm::Function &F,
431 const CodeGenOptions &CodeGenOpts,
432 const LangOptions &LangOpts,
433 const TargetOptions &TargetOpts,
434 bool WillInternalize);
436 enum class FnInfoOpts {
437 None = 0,
438 IsInstanceMethod = 1 << 0,
439 IsChainCall = 1 << 1,
440 IsDelegateCall = 1 << 2,
443 inline FnInfoOpts operator|(FnInfoOpts A, FnInfoOpts B) {
444 return static_cast<FnInfoOpts>(llvm::to_underlying(A) |
445 llvm::to_underlying(B));
448 inline FnInfoOpts operator&(FnInfoOpts A, FnInfoOpts B) {
449 return static_cast<FnInfoOpts>(llvm::to_underlying(A) &
450 llvm::to_underlying(B));
453 inline FnInfoOpts &operator|=(FnInfoOpts &A, FnInfoOpts B) {
454 A = A | B;
455 return A;
458 inline FnInfoOpts &operator&=(FnInfoOpts &A, FnInfoOpts B) {
459 A = A & B;
460 return A;
463 } // end namespace CodeGen
464 } // end namespace clang
466 #endif