[ELF] Reorder SectionBase/InputSectionBase members
[llvm-project.git] / clang / lib / CodeGen / CodeGenModule.cpp
blobb854eeb62a80ce84d0d21c6df49f3eb83a979cb2
1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This coordinates the per-module state used while generating code.
11 //===----------------------------------------------------------------------===//
13 #include "CodeGenModule.h"
14 #include "ABIInfo.h"
15 #include "CGBlocks.h"
16 #include "CGCUDARuntime.h"
17 #include "CGCXXABI.h"
18 #include "CGCall.h"
19 #include "CGDebugInfo.h"
20 #include "CGHLSLRuntime.h"
21 #include "CGObjCRuntime.h"
22 #include "CGOpenCLRuntime.h"
23 #include "CGOpenMPRuntime.h"
24 #include "CGOpenMPRuntimeGPU.h"
25 #include "CodeGenFunction.h"
26 #include "CodeGenPGO.h"
27 #include "ConstantEmitter.h"
28 #include "CoverageMappingGen.h"
29 #include "TargetInfo.h"
30 #include "clang/AST/ASTContext.h"
31 #include "clang/AST/ASTLambda.h"
32 #include "clang/AST/CharUnits.h"
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclCXX.h"
35 #include "clang/AST/DeclObjC.h"
36 #include "clang/AST/DeclTemplate.h"
37 #include "clang/AST/Mangle.h"
38 #include "clang/AST/RecursiveASTVisitor.h"
39 #include "clang/AST/StmtVisitor.h"
40 #include "clang/Basic/Builtins.h"
41 #include "clang/Basic/CodeGenOptions.h"
42 #include "clang/Basic/Diagnostic.h"
43 #include "clang/Basic/Module.h"
44 #include "clang/Basic/SourceManager.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "clang/Basic/Version.h"
47 #include "clang/CodeGen/BackendUtil.h"
48 #include "clang/CodeGen/ConstantInitBuilder.h"
49 #include "clang/Frontend/FrontendDiagnostic.h"
50 #include "llvm/ADT/STLExtras.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/ADT/StringSwitch.h"
53 #include "llvm/Analysis/TargetLibraryInfo.h"
54 #include "llvm/BinaryFormat/ELF.h"
55 #include "llvm/IR/AttributeMask.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/ProfileSummary.h"
62 #include "llvm/ProfileData/InstrProfReader.h"
63 #include "llvm/ProfileData/SampleProf.h"
64 #include "llvm/Support/CRC.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/ConvertUTF.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/TimeProfiler.h"
70 #include "llvm/Support/xxhash.h"
71 #include "llvm/TargetParser/RISCVISAInfo.h"
72 #include "llvm/TargetParser/Triple.h"
73 #include "llvm/TargetParser/X86TargetParser.h"
74 #include "llvm/Transforms/Utils/BuildLibCalls.h"
75 #include <optional>
77 using namespace clang;
78 using namespace CodeGen;
80 static llvm::cl::opt<bool> LimitedCoverage(
81 "limited-coverage-experimental", llvm::cl::Hidden,
82 llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
84 static const char AnnotationSection[] = "llvm.metadata";
86 static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
87 switch (CGM.getContext().getCXXABIKind()) {
88 case TargetCXXABI::AppleARM64:
89 case TargetCXXABI::Fuchsia:
90 case TargetCXXABI::GenericAArch64:
91 case TargetCXXABI::GenericARM:
92 case TargetCXXABI::iOS:
93 case TargetCXXABI::WatchOS:
94 case TargetCXXABI::GenericMIPS:
95 case TargetCXXABI::GenericItanium:
96 case TargetCXXABI::WebAssembly:
97 case TargetCXXABI::XL:
98 return CreateItaniumCXXABI(CGM);
99 case TargetCXXABI::Microsoft:
100 return CreateMicrosoftCXXABI(CGM);
103 llvm_unreachable("invalid C++ ABI kind");
106 static std::unique_ptr<TargetCodeGenInfo>
107 createTargetCodeGenInfo(CodeGenModule &CGM) {
108 const TargetInfo &Target = CGM.getTarget();
109 const llvm::Triple &Triple = Target.getTriple();
110 const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
112 switch (Triple.getArch()) {
113 default:
114 return createDefaultTargetCodeGenInfo(CGM);
116 case llvm::Triple::m68k:
117 return createM68kTargetCodeGenInfo(CGM);
118 case llvm::Triple::mips:
119 case llvm::Triple::mipsel:
120 if (Triple.getOS() == llvm::Triple::NaCl)
121 return createPNaClTargetCodeGenInfo(CGM);
122 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
124 case llvm::Triple::mips64:
125 case llvm::Triple::mips64el:
126 return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
128 case llvm::Triple::avr: {
129 // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
130 // on avrtiny. For passing return value, R18~R25 are used on avr, and
131 // R22~R25 are used on avrtiny.
132 unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
133 unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
134 return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
137 case llvm::Triple::aarch64:
138 case llvm::Triple::aarch64_32:
139 case llvm::Triple::aarch64_be: {
140 AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
141 if (Target.getABI() == "darwinpcs")
142 Kind = AArch64ABIKind::DarwinPCS;
143 else if (Triple.isOSWindows())
144 return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
145 else if (Target.getABI() == "aapcs-soft")
146 Kind = AArch64ABIKind::AAPCSSoft;
147 else if (Target.getABI() == "pauthtest")
148 Kind = AArch64ABIKind::PAuthTest;
150 return createAArch64TargetCodeGenInfo(CGM, Kind);
153 case llvm::Triple::wasm32:
154 case llvm::Triple::wasm64: {
155 WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
156 if (Target.getABI() == "experimental-mv")
157 Kind = WebAssemblyABIKind::ExperimentalMV;
158 return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
161 case llvm::Triple::arm:
162 case llvm::Triple::armeb:
163 case llvm::Triple::thumb:
164 case llvm::Triple::thumbeb: {
165 if (Triple.getOS() == llvm::Triple::Win32)
166 return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
168 ARMABIKind Kind = ARMABIKind::AAPCS;
169 StringRef ABIStr = Target.getABI();
170 if (ABIStr == "apcs-gnu")
171 Kind = ARMABIKind::APCS;
172 else if (ABIStr == "aapcs16")
173 Kind = ARMABIKind::AAPCS16_VFP;
174 else if (CodeGenOpts.FloatABI == "hard" ||
175 (CodeGenOpts.FloatABI != "soft" && Triple.isHardFloatABI()))
176 Kind = ARMABIKind::AAPCS_VFP;
178 return createARMTargetCodeGenInfo(CGM, Kind);
181 case llvm::Triple::ppc: {
182 if (Triple.isOSAIX())
183 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
185 bool IsSoftFloat =
186 CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
189 case llvm::Triple::ppcle: {
190 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191 return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
193 case llvm::Triple::ppc64:
194 if (Triple.isOSAIX())
195 return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
197 if (Triple.isOSBinFormatELF()) {
198 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199 if (Target.getABI() == "elfv2")
200 Kind = PPC64_SVR4_ABIKind::ELFv2;
201 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
203 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
205 return createPPC64TargetCodeGenInfo(CGM);
206 case llvm::Triple::ppc64le: {
207 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208 PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209 if (Target.getABI() == "elfv1")
210 Kind = PPC64_SVR4_ABIKind::ELFv1;
211 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
213 return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
216 case llvm::Triple::nvptx:
217 case llvm::Triple::nvptx64:
218 return createNVPTXTargetCodeGenInfo(CGM);
220 case llvm::Triple::msp430:
221 return createMSP430TargetCodeGenInfo(CGM);
223 case llvm::Triple::riscv32:
224 case llvm::Triple::riscv64: {
225 StringRef ABIStr = Target.getABI();
226 unsigned XLen = Target.getPointerWidth(LangAS::Default);
227 unsigned ABIFLen = 0;
228 if (ABIStr.ends_with("f"))
229 ABIFLen = 32;
230 else if (ABIStr.ends_with("d"))
231 ABIFLen = 64;
232 bool EABI = ABIStr.ends_with("e");
233 return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
236 case llvm::Triple::systemz: {
237 bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238 bool HasVector = !SoftFloat && Target.getABI() == "vector";
239 return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
242 case llvm::Triple::tce:
243 case llvm::Triple::tcele:
244 return createTCETargetCodeGenInfo(CGM);
246 case llvm::Triple::x86: {
247 bool IsDarwinVectorABI = Triple.isOSDarwin();
248 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
250 if (Triple.getOS() == llvm::Triple::Win32) {
251 return createWinX86_32TargetCodeGenInfo(
252 CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253 CodeGenOpts.NumRegisterParameters);
255 return createX86_32TargetCodeGenInfo(
256 CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257 CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
260 case llvm::Triple::x86_64: {
261 StringRef ABI = Target.getABI();
262 X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263 : ABI == "avx" ? X86AVXABILevel::AVX
264 : X86AVXABILevel::None);
266 switch (Triple.getOS()) {
267 case llvm::Triple::Win32:
268 return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269 default:
270 return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
273 case llvm::Triple::hexagon:
274 return createHexagonTargetCodeGenInfo(CGM);
275 case llvm::Triple::lanai:
276 return createLanaiTargetCodeGenInfo(CGM);
277 case llvm::Triple::r600:
278 return createAMDGPUTargetCodeGenInfo(CGM);
279 case llvm::Triple::amdgcn:
280 return createAMDGPUTargetCodeGenInfo(CGM);
281 case llvm::Triple::sparc:
282 return createSparcV8TargetCodeGenInfo(CGM);
283 case llvm::Triple::sparcv9:
284 return createSparcV9TargetCodeGenInfo(CGM);
285 case llvm::Triple::xcore:
286 return createXCoreTargetCodeGenInfo(CGM);
287 case llvm::Triple::arc:
288 return createARCTargetCodeGenInfo(CGM);
289 case llvm::Triple::spir:
290 case llvm::Triple::spir64:
291 return createCommonSPIRTargetCodeGenInfo(CGM);
292 case llvm::Triple::spirv32:
293 case llvm::Triple::spirv64:
294 case llvm::Triple::spirv:
295 return createSPIRVTargetCodeGenInfo(CGM);
296 case llvm::Triple::dxil:
297 return createDirectXTargetCodeGenInfo(CGM);
298 case llvm::Triple::ve:
299 return createVETargetCodeGenInfo(CGM);
300 case llvm::Triple::csky: {
301 bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
302 bool hasFP64 =
303 Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
304 return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
305 : hasFP64 ? 64
306 : 32);
308 case llvm::Triple::bpfeb:
309 case llvm::Triple::bpfel:
310 return createBPFTargetCodeGenInfo(CGM);
311 case llvm::Triple::loongarch32:
312 case llvm::Triple::loongarch64: {
313 StringRef ABIStr = Target.getABI();
314 unsigned ABIFRLen = 0;
315 if (ABIStr.ends_with("f"))
316 ABIFRLen = 32;
317 else if (ABIStr.ends_with("d"))
318 ABIFRLen = 64;
319 return createLoongArchTargetCodeGenInfo(
320 CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
325 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
326 if (!TheTargetCodeGenInfo)
327 TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
328 return *TheTargetCodeGenInfo;
331 CodeGenModule::CodeGenModule(ASTContext &C,
332 IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
333 const HeaderSearchOptions &HSO,
334 const PreprocessorOptions &PPO,
335 const CodeGenOptions &CGO, llvm::Module &M,
336 DiagnosticsEngine &diags,
337 CoverageSourceInfo *CoverageInfo)
338 : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
339 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
340 Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
341 VMContext(M.getContext()), VTables(*this), StackHandler(diags),
342 SanitizerMD(new SanitizerMetadata(*this)) {
344 // Initialize the type cache.
345 Types.reset(new CodeGenTypes(*this));
346 llvm::LLVMContext &LLVMContext = M.getContext();
347 VoidTy = llvm::Type::getVoidTy(LLVMContext);
348 Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
349 Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
350 Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
351 Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
352 HalfTy = llvm::Type::getHalfTy(LLVMContext);
353 BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
354 FloatTy = llvm::Type::getFloatTy(LLVMContext);
355 DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
356 PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
357 PointerAlignInBytes =
358 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
359 .getQuantity();
360 SizeSizeInBytes =
361 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
362 IntAlignInBytes =
363 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
364 CharTy =
365 llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
366 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
367 IntPtrTy = llvm::IntegerType::get(LLVMContext,
368 C.getTargetInfo().getMaxPointerWidth());
369 Int8PtrTy = llvm::PointerType::get(LLVMContext,
370 C.getTargetAddressSpace(LangAS::Default));
371 const llvm::DataLayout &DL = M.getDataLayout();
372 AllocaInt8PtrTy =
373 llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
374 GlobalsInt8PtrTy =
375 llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
376 ConstGlobalsPtrTy = llvm::PointerType::get(
377 LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
378 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
380 // Build C++20 Module initializers.
381 // TODO: Add Microsoft here once we know the mangling required for the
382 // initializers.
383 CXX20ModuleInits =
384 LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
385 ItaniumMangleContext::MK_Itanium;
387 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
389 if (LangOpts.ObjC)
390 createObjCRuntime();
391 if (LangOpts.OpenCL)
392 createOpenCLRuntime();
393 if (LangOpts.OpenMP)
394 createOpenMPRuntime();
395 if (LangOpts.CUDA)
396 createCUDARuntime();
397 if (LangOpts.HLSL)
398 createHLSLRuntime();
400 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
401 if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
402 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
403 TBAA.reset(new CodeGenTBAA(Context, getTypes(), TheModule, CodeGenOpts,
404 getLangOpts()));
406 // If debug info or coverage generation is enabled, create the CGDebugInfo
407 // object.
408 if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
409 CodeGenOpts.CoverageNotesFile.size() ||
410 CodeGenOpts.CoverageDataFile.size())
411 DebugInfo.reset(new CGDebugInfo(*this));
413 Block.GlobalUniqueCount = 0;
415 if (C.getLangOpts().ObjC)
416 ObjCData.reset(new ObjCEntrypoints());
418 if (CodeGenOpts.hasProfileClangUse()) {
419 auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
420 CodeGenOpts.ProfileInstrumentUsePath, *FS,
421 CodeGenOpts.ProfileRemappingFile);
422 // We're checking for profile read errors in CompilerInvocation, so if
423 // there was an error it should've already been caught. If it hasn't been
424 // somehow, trip an assertion.
425 assert(ReaderOrErr);
426 PGOReader = std::move(ReaderOrErr.get());
429 // If coverage mapping generation is enabled, create the
430 // CoverageMappingModuleGen object.
431 if (CodeGenOpts.CoverageMapping)
432 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
434 // Generate the module name hash here if needed.
435 if (CodeGenOpts.UniqueInternalLinkageNames &&
436 !getModule().getSourceFileName().empty()) {
437 std::string Path = getModule().getSourceFileName();
438 // Check if a path substitution is needed from the MacroPrefixMap.
439 for (const auto &Entry : LangOpts.MacroPrefixMap)
440 if (Path.rfind(Entry.first, 0) != std::string::npos) {
441 Path = Entry.second + Path.substr(Entry.first.size());
442 break;
444 ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
447 // Record mregparm value now so it is visible through all of codegen.
448 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
449 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
450 CodeGenOpts.NumRegisterParameters);
453 CodeGenModule::~CodeGenModule() {}
455 void CodeGenModule::createObjCRuntime() {
456 // This is just isGNUFamily(), but we want to force implementors of
457 // new ABIs to decide how best to do this.
458 switch (LangOpts.ObjCRuntime.getKind()) {
459 case ObjCRuntime::GNUstep:
460 case ObjCRuntime::GCC:
461 case ObjCRuntime::ObjFW:
462 ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
463 return;
465 case ObjCRuntime::FragileMacOSX:
466 case ObjCRuntime::MacOSX:
467 case ObjCRuntime::iOS:
468 case ObjCRuntime::WatchOS:
469 ObjCRuntime.reset(CreateMacObjCRuntime(*this));
470 return;
472 llvm_unreachable("bad runtime kind");
475 void CodeGenModule::createOpenCLRuntime() {
476 OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
479 void CodeGenModule::createOpenMPRuntime() {
480 // Select a specialized code generation class based on the target, if any.
481 // If it does not exist use the default implementation.
482 switch (getTriple().getArch()) {
483 case llvm::Triple::nvptx:
484 case llvm::Triple::nvptx64:
485 case llvm::Triple::amdgcn:
486 assert(getLangOpts().OpenMPIsTargetDevice &&
487 "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
488 OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
489 break;
490 default:
491 if (LangOpts.OpenMPSimd)
492 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
493 else
494 OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
495 break;
499 void CodeGenModule::createCUDARuntime() {
500 CUDARuntime.reset(CreateNVCUDARuntime(*this));
503 void CodeGenModule::createHLSLRuntime() {
504 HLSLRuntime.reset(new CGHLSLRuntime(*this));
507 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
508 Replacements[Name] = C;
511 void CodeGenModule::applyReplacements() {
512 for (auto &I : Replacements) {
513 StringRef MangledName = I.first;
514 llvm::Constant *Replacement = I.second;
515 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
516 if (!Entry)
517 continue;
518 auto *OldF = cast<llvm::Function>(Entry);
519 auto *NewF = dyn_cast<llvm::Function>(Replacement);
520 if (!NewF) {
521 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
522 NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
523 } else {
524 auto *CE = cast<llvm::ConstantExpr>(Replacement);
525 assert(CE->getOpcode() == llvm::Instruction::BitCast ||
526 CE->getOpcode() == llvm::Instruction::GetElementPtr);
527 NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
531 // Replace old with new, but keep the old order.
532 OldF->replaceAllUsesWith(Replacement);
533 if (NewF) {
534 NewF->removeFromParent();
535 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
536 NewF);
538 OldF->eraseFromParent();
542 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
543 GlobalValReplacements.push_back(std::make_pair(GV, C));
546 void CodeGenModule::applyGlobalValReplacements() {
547 for (auto &I : GlobalValReplacements) {
548 llvm::GlobalValue *GV = I.first;
549 llvm::Constant *C = I.second;
551 GV->replaceAllUsesWith(C);
552 GV->eraseFromParent();
556 // This is only used in aliases that we created and we know they have a
557 // linear structure.
558 static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
559 const llvm::Constant *C;
560 if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
561 C = GA->getAliasee();
562 else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
563 C = GI->getResolver();
564 else
565 return GV;
567 const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
568 if (!AliaseeGV)
569 return nullptr;
571 const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
572 if (FinalGV == GV)
573 return nullptr;
575 return FinalGV;
578 static bool checkAliasedGlobal(
579 const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
580 bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
581 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
582 SourceRange AliasRange) {
583 GV = getAliasedGlobal(Alias);
584 if (!GV) {
585 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
586 return false;
589 if (GV->hasCommonLinkage()) {
590 const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
591 if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
592 Diags.Report(Location, diag::err_alias_to_common);
593 return false;
597 if (GV->isDeclaration()) {
598 Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
599 Diags.Report(Location, diag::note_alias_requires_mangled_name)
600 << IsIFunc << IsIFunc;
601 // Provide a note if the given function is not found and exists as a
602 // mangled name.
603 for (const auto &[Decl, Name] : MangledDeclNames) {
604 if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
605 if (ND->getName() == GV->getName()) {
606 Diags.Report(Location, diag::note_alias_mangled_name_alternative)
607 << Name
608 << FixItHint::CreateReplacement(
609 AliasRange,
610 (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
611 .str());
615 return false;
618 if (IsIFunc) {
619 // Check resolver function type.
620 const auto *F = dyn_cast<llvm::Function>(GV);
621 if (!F) {
622 Diags.Report(Location, diag::err_alias_to_undefined)
623 << IsIFunc << IsIFunc;
624 return false;
627 llvm::FunctionType *FTy = F->getFunctionType();
628 if (!FTy->getReturnType()->isPointerTy()) {
629 Diags.Report(Location, diag::err_ifunc_resolver_return);
630 return false;
634 return true;
637 // Emit a warning if toc-data attribute is requested for global variables that
638 // have aliases and remove the toc-data attribute.
639 static void checkAliasForTocData(llvm::GlobalVariable *GVar,
640 const CodeGenOptions &CodeGenOpts,
641 DiagnosticsEngine &Diags,
642 SourceLocation Location) {
643 if (GVar->hasAttribute("toc-data")) {
644 auto GVId = GVar->getName();
645 // Is this a global variable specified by the user as local?
646 if ((llvm::binary_search(CodeGenOpts.TocDataVarsUserSpecified, GVId))) {
647 Diags.Report(Location, diag::warn_toc_unsupported_type)
648 << GVId << "the variable has an alias";
650 llvm::AttributeSet CurrAttributes = GVar->getAttributes();
651 llvm::AttributeSet NewAttributes =
652 CurrAttributes.removeAttribute(GVar->getContext(), "toc-data");
653 GVar->setAttributes(NewAttributes);
657 void CodeGenModule::checkAliases() {
658 // Check if the constructed aliases are well formed. It is really unfortunate
659 // that we have to do this in CodeGen, but we only construct mangled names
660 // and aliases during codegen.
661 bool Error = false;
662 DiagnosticsEngine &Diags = getDiags();
663 for (const GlobalDecl &GD : Aliases) {
664 const auto *D = cast<ValueDecl>(GD.getDecl());
665 SourceLocation Location;
666 SourceRange Range;
667 bool IsIFunc = D->hasAttr<IFuncAttr>();
668 if (const Attr *A = D->getDefiningAttr()) {
669 Location = A->getLocation();
670 Range = A->getRange();
671 } else
672 llvm_unreachable("Not an alias or ifunc?");
674 StringRef MangledName = getMangledName(GD);
675 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
676 const llvm::GlobalValue *GV = nullptr;
677 if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
678 MangledDeclNames, Range)) {
679 Error = true;
680 continue;
683 if (getContext().getTargetInfo().getTriple().isOSAIX())
684 if (const llvm::GlobalVariable *GVar =
685 dyn_cast<const llvm::GlobalVariable>(GV))
686 checkAliasForTocData(const_cast<llvm::GlobalVariable *>(GVar),
687 getCodeGenOpts(), Diags, Location);
689 llvm::Constant *Aliasee =
690 IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
691 : cast<llvm::GlobalAlias>(Alias)->getAliasee();
693 llvm::GlobalValue *AliaseeGV;
694 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
695 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
696 else
697 AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
699 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
700 StringRef AliasSection = SA->getName();
701 if (AliasSection != AliaseeGV->getSection())
702 Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
703 << AliasSection << IsIFunc << IsIFunc;
706 // We have to handle alias to weak aliases in here. LLVM itself disallows
707 // this since the object semantics would not match the IL one. For
708 // compatibility with gcc we implement it by just pointing the alias
709 // to its aliasee's aliasee. We also warn, since the user is probably
710 // expecting the link to be weak.
711 if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
712 if (GA->isInterposable()) {
713 Diags.Report(Location, diag::warn_alias_to_weak_alias)
714 << GV->getName() << GA->getName() << IsIFunc;
715 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
716 GA->getAliasee(), Alias->getType());
718 if (IsIFunc)
719 cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
720 else
721 cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
724 // ifunc resolvers are usually implemented to run before sanitizer
725 // initialization. Disable instrumentation to prevent the ordering issue.
726 if (IsIFunc)
727 cast<llvm::Function>(Aliasee)->addFnAttr(
728 llvm::Attribute::DisableSanitizerInstrumentation);
730 if (!Error)
731 return;
733 for (const GlobalDecl &GD : Aliases) {
734 StringRef MangledName = getMangledName(GD);
735 llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
736 Alias->replaceAllUsesWith(llvm::PoisonValue::get(Alias->getType()));
737 Alias->eraseFromParent();
741 void CodeGenModule::clear() {
742 DeferredDeclsToEmit.clear();
743 EmittedDeferredDecls.clear();
744 DeferredAnnotations.clear();
745 if (OpenMPRuntime)
746 OpenMPRuntime->clear();
749 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
750 StringRef MainFile) {
751 if (!hasDiagnostics())
752 return;
753 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
754 if (MainFile.empty())
755 MainFile = "<stdin>";
756 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
757 } else {
758 if (Mismatched > 0)
759 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
761 if (Missing > 0)
762 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
766 static std::optional<llvm::GlobalValue::VisibilityTypes>
767 getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) {
768 // Map to LLVM visibility.
769 switch (K) {
770 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep:
771 return std::nullopt;
772 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default:
773 return llvm::GlobalValue::DefaultVisibility;
774 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden:
775 return llvm::GlobalValue::HiddenVisibility;
776 case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected:
777 return llvm::GlobalValue::ProtectedVisibility;
779 llvm_unreachable("unknown option value!");
782 static void
783 setLLVMVisibility(llvm::GlobalValue &GV,
784 std::optional<llvm::GlobalValue::VisibilityTypes> V) {
785 if (!V)
786 return;
788 // Reset DSO locality before setting the visibility. This removes
789 // any effects that visibility options and annotations may have
790 // had on the DSO locality. Setting the visibility will implicitly set
791 // appropriate globals to DSO Local; however, this will be pessimistic
792 // w.r.t. to the normal compiler IRGen.
793 GV.setDSOLocal(false);
794 GV.setVisibility(*V);
797 static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
798 llvm::Module &M) {
799 if (!LO.VisibilityFromDLLStorageClass)
800 return;
802 std::optional<llvm::GlobalValue::VisibilityTypes> DLLExportVisibility =
803 getLLVMVisibility(LO.getDLLExportVisibility());
805 std::optional<llvm::GlobalValue::VisibilityTypes>
806 NoDLLStorageClassVisibility =
807 getLLVMVisibility(LO.getNoDLLStorageClassVisibility());
809 std::optional<llvm::GlobalValue::VisibilityTypes>
810 ExternDeclDLLImportVisibility =
811 getLLVMVisibility(LO.getExternDeclDLLImportVisibility());
813 std::optional<llvm::GlobalValue::VisibilityTypes>
814 ExternDeclNoDLLStorageClassVisibility =
815 getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility());
817 for (llvm::GlobalValue &GV : M.global_values()) {
818 if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
819 continue;
821 if (GV.isDeclarationForLinker())
822 setLLVMVisibility(GV, GV.getDLLStorageClass() ==
823 llvm::GlobalValue::DLLImportStorageClass
824 ? ExternDeclDLLImportVisibility
825 : ExternDeclNoDLLStorageClassVisibility);
826 else
827 setLLVMVisibility(GV, GV.getDLLStorageClass() ==
828 llvm::GlobalValue::DLLExportStorageClass
829 ? DLLExportVisibility
830 : NoDLLStorageClassVisibility);
832 GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
836 static bool isStackProtectorOn(const LangOptions &LangOpts,
837 const llvm::Triple &Triple,
838 clang::LangOptions::StackProtectorMode Mode) {
839 if (Triple.isAMDGPU() || Triple.isNVPTX())
840 return false;
841 return LangOpts.getStackProtector() == Mode;
844 void CodeGenModule::Release() {
845 Module *Primary = getContext().getCurrentNamedModule();
846 if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
847 EmitModuleInitializers(Primary);
848 EmitDeferred();
849 DeferredDecls.insert(EmittedDeferredDecls.begin(),
850 EmittedDeferredDecls.end());
851 EmittedDeferredDecls.clear();
852 EmitVTablesOpportunistically();
853 applyGlobalValReplacements();
854 applyReplacements();
855 emitMultiVersionFunctions();
857 if (Context.getLangOpts().IncrementalExtensions &&
858 GlobalTopLevelStmtBlockInFlight.first) {
859 const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
860 GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
861 GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
864 // Module implementations are initialized the same way as a regular TU that
865 // imports one or more modules.
866 if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
867 EmitCXXModuleInitFunc(Primary);
868 else
869 EmitCXXGlobalInitFunc();
870 EmitCXXGlobalCleanUpFunc();
871 registerGlobalDtorsWithAtExit();
872 EmitCXXThreadLocalInitFunc();
873 if (ObjCRuntime)
874 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
875 AddGlobalCtor(ObjCInitFunction);
876 if (Context.getLangOpts().CUDA && CUDARuntime) {
877 if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
878 AddGlobalCtor(CudaCtorFunction);
880 if (OpenMPRuntime) {
881 OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
882 OpenMPRuntime->clear();
884 if (PGOReader) {
885 getModule().setProfileSummary(
886 PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
887 llvm::ProfileSummary::PSK_Instr);
888 if (PGOStats.hasDiagnostics())
889 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
891 llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
892 return L.LexOrder < R.LexOrder;
894 EmitCtorList(GlobalCtors, "llvm.global_ctors");
895 EmitCtorList(GlobalDtors, "llvm.global_dtors");
896 EmitGlobalAnnotations();
897 EmitStaticExternCAliases();
898 checkAliases();
899 EmitDeferredUnusedCoverageMappings();
900 CodeGenPGO(*this).setValueProfilingFlag(getModule());
901 CodeGenPGO(*this).setProfileVersion(getModule());
902 if (CoverageMapping)
903 CoverageMapping->emit();
904 if (CodeGenOpts.SanitizeCfiCrossDso) {
905 CodeGenFunction(*this).EmitCfiCheckFail();
906 CodeGenFunction(*this).EmitCfiCheckStub();
908 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
909 finalizeKCFITypes();
910 emitAtAvailableLinkGuard();
911 if (Context.getTargetInfo().getTriple().isWasm())
912 EmitMainVoidAlias();
914 if (getTriple().isAMDGPU() ||
915 (getTriple().isSPIRV() && getTriple().getVendor() == llvm::Triple::AMD)) {
916 // Emit amdhsa_code_object_version module flag, which is code object version
917 // times 100.
918 if (getTarget().getTargetOpts().CodeObjectVersion !=
919 llvm::CodeObjectVersionKind::COV_None) {
920 getModule().addModuleFlag(llvm::Module::Error,
921 "amdhsa_code_object_version",
922 getTarget().getTargetOpts().CodeObjectVersion);
925 // Currently, "-mprintf-kind" option is only supported for HIP
926 if (LangOpts.HIP) {
927 auto *MDStr = llvm::MDString::get(
928 getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
929 TargetOptions::AMDGPUPrintfKind::Hostcall)
930 ? "hostcall"
931 : "buffered");
932 getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
933 MDStr);
937 // Emit a global array containing all external kernels or device variables
938 // used by host functions and mark it as used for CUDA/HIP. This is necessary
939 // to get kernels or device variables in archives linked in even if these
940 // kernels or device variables are only used in host functions.
941 if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
942 SmallVector<llvm::Constant *, 8> UsedArray;
943 for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
944 GlobalDecl GD;
945 if (auto *FD = dyn_cast<FunctionDecl>(D))
946 GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
947 else
948 GD = GlobalDecl(D);
949 UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
950 GetAddrOfGlobal(GD), Int8PtrTy));
953 llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
955 auto *GV = new llvm::GlobalVariable(
956 getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
957 llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
958 addCompilerUsedGlobal(GV);
960 if (LangOpts.HIP && !getLangOpts().OffloadingNewDriver) {
961 // Emit a unique ID so that host and device binaries from the same
962 // compilation unit can be associated.
963 auto *GV = new llvm::GlobalVariable(
964 getModule(), Int8Ty, false, llvm::GlobalValue::ExternalLinkage,
965 llvm::Constant::getNullValue(Int8Ty),
966 "__hip_cuid_" + getContext().getCUIDHash());
967 addCompilerUsedGlobal(GV);
969 emitLLVMUsed();
970 if (SanStats)
971 SanStats->finish();
973 if (CodeGenOpts.Autolink &&
974 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
975 EmitModuleLinkOptions();
978 // On ELF we pass the dependent library specifiers directly to the linker
979 // without manipulating them. This is in contrast to other platforms where
980 // they are mapped to a specific linker option by the compiler. This
981 // difference is a result of the greater variety of ELF linkers and the fact
982 // that ELF linkers tend to handle libraries in a more complicated fashion
983 // than on other platforms. This forces us to defer handling the dependent
984 // libs to the linker.
986 // CUDA/HIP device and host libraries are different. Currently there is no
987 // way to differentiate dependent libraries for host or device. Existing
988 // usage of #pragma comment(lib, *) is intended for host libraries on
989 // Windows. Therefore emit llvm.dependent-libraries only for host.
990 if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
991 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
992 for (auto *MD : ELFDependentLibraries)
993 NMD->addOperand(MD);
996 if (CodeGenOpts.DwarfVersion) {
997 getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
998 CodeGenOpts.DwarfVersion);
1001 if (CodeGenOpts.Dwarf64)
1002 getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
1004 if (Context.getLangOpts().SemanticInterposition)
1005 // Require various optimization to respect semantic interposition.
1006 getModule().setSemanticInterposition(true);
1008 if (CodeGenOpts.EmitCodeView) {
1009 // Indicate that we want CodeView in the metadata.
1010 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
1012 if (CodeGenOpts.CodeViewGHash) {
1013 getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
1015 if (CodeGenOpts.ControlFlowGuard) {
1016 // Function ID tables and checks for Control Flow Guard (cfguard=2).
1017 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
1018 } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
1019 // Function ID tables for Control Flow Guard (cfguard=1).
1020 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
1022 if (CodeGenOpts.EHContGuard) {
1023 // Function ID tables for EH Continuation Guard.
1024 getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
1026 if (Context.getLangOpts().Kernel) {
1027 // Note if we are compiling with /kernel.
1028 getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
1030 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
1031 // We don't support LTO with 2 with different StrictVTablePointers
1032 // FIXME: we could support it by stripping all the information introduced
1033 // by StrictVTablePointers.
1035 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
1037 llvm::Metadata *Ops[2] = {
1038 llvm::MDString::get(VMContext, "StrictVTablePointers"),
1039 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1040 llvm::Type::getInt32Ty(VMContext), 1))};
1042 getModule().addModuleFlag(llvm::Module::Require,
1043 "StrictVTablePointersRequirement",
1044 llvm::MDNode::get(VMContext, Ops));
1046 if (getModuleDebugInfo())
1047 // We support a single version in the linked module. The LLVM
1048 // parser will drop debug info with a different version number
1049 // (and warn about it, too).
1050 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
1051 llvm::DEBUG_METADATA_VERSION);
1053 // We need to record the widths of enums and wchar_t, so that we can generate
1054 // the correct build attributes in the ARM backend. wchar_size is also used by
1055 // TargetLibraryInfo.
1056 uint64_t WCharWidth =
1057 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
1058 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
1060 if (getTriple().isOSzOS()) {
1061 getModule().addModuleFlag(llvm::Module::Warning,
1062 "zos_product_major_version",
1063 uint32_t(CLANG_VERSION_MAJOR));
1064 getModule().addModuleFlag(llvm::Module::Warning,
1065 "zos_product_minor_version",
1066 uint32_t(CLANG_VERSION_MINOR));
1067 getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
1068 uint32_t(CLANG_VERSION_PATCHLEVEL));
1069 std::string ProductId = getClangVendor() + "clang";
1070 getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1071 llvm::MDString::get(VMContext, ProductId));
1073 // Record the language because we need it for the PPA2.
1074 StringRef lang_str = languageToString(
1075 LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1076 getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1077 llvm::MDString::get(VMContext, lang_str));
1079 time_t TT = PreprocessorOpts.SourceDateEpoch
1080 ? *PreprocessorOpts.SourceDateEpoch
1081 : std::time(nullptr);
1082 getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1083 static_cast<uint64_t>(TT));
1085 // Multiple modes will be supported here.
1086 getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1087 llvm::MDString::get(VMContext, "ascii"));
1090 llvm::Triple T = Context.getTargetInfo().getTriple();
1091 if (T.isARM() || T.isThumb()) {
1092 // The minimum width of an enum in bytes
1093 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1094 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1097 if (T.isRISCV()) {
1098 StringRef ABIStr = Target.getABI();
1099 llvm::LLVMContext &Ctx = TheModule.getContext();
1100 getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1101 llvm::MDString::get(Ctx, ABIStr));
1103 // Add the canonical ISA string as metadata so the backend can set the ELF
1104 // attributes correctly. We use AppendUnique so LTO will keep all of the
1105 // unique ISA strings that were linked together.
1106 const std::vector<std::string> &Features =
1107 getTarget().getTargetOpts().Features;
1108 auto ParseResult =
1109 llvm::RISCVISAInfo::parseFeatures(T.isRISCV64() ? 64 : 32, Features);
1110 if (!errorToBool(ParseResult.takeError()))
1111 getModule().addModuleFlag(
1112 llvm::Module::AppendUnique, "riscv-isa",
1113 llvm::MDNode::get(
1114 Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString())));
1117 if (CodeGenOpts.SanitizeCfiCrossDso) {
1118 // Indicate that we want cross-DSO control flow integrity checks.
1119 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1122 if (CodeGenOpts.WholeProgramVTables) {
1123 // Indicate whether VFE was enabled for this module, so that the
1124 // vcall_visibility metadata added under whole program vtables is handled
1125 // appropriately in the optimizer.
1126 getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1127 CodeGenOpts.VirtualFunctionElimination);
1130 if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1131 getModule().addModuleFlag(llvm::Module::Override,
1132 "CFI Canonical Jump Tables",
1133 CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1136 if (CodeGenOpts.SanitizeCfiICallNormalizeIntegers) {
1137 getModule().addModuleFlag(llvm::Module::Override, "cfi-normalize-integers",
1141 if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1142 getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1143 // KCFI assumes patchable-function-prefix is the same for all indirectly
1144 // called functions. Store the expected offset for code generation.
1145 if (CodeGenOpts.PatchableFunctionEntryOffset)
1146 getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1147 CodeGenOpts.PatchableFunctionEntryOffset);
1150 if (CodeGenOpts.CFProtectionReturn &&
1151 Target.checkCFProtectionReturnSupported(getDiags())) {
1152 // Indicate that we want to instrument return control flow protection.
1153 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1157 if (CodeGenOpts.CFProtectionBranch &&
1158 Target.checkCFProtectionBranchSupported(getDiags())) {
1159 // Indicate that we want to instrument branch control flow protection.
1160 getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1163 auto Scheme = CodeGenOpts.getCFBranchLabelScheme();
1164 if (Target.checkCFBranchLabelSchemeSupported(Scheme, getDiags())) {
1165 if (Scheme == CFBranchLabelSchemeKind::Default)
1166 Scheme = Target.getDefaultCFBranchLabelScheme();
1167 getModule().addModuleFlag(
1168 llvm::Module::Error, "cf-branch-label-scheme",
1169 llvm::MDString::get(getLLVMContext(),
1170 getCFBranchLabelSchemeFlagVal(Scheme)));
1174 if (CodeGenOpts.FunctionReturnThunks)
1175 getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1177 if (CodeGenOpts.IndirectBranchCSPrefix)
1178 getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1180 // Add module metadata for return address signing (ignoring
1181 // non-leaf/all) and stack tagging. These are actually turned on by function
1182 // attributes, but we use module metadata to emit build attributes. This is
1183 // needed for LTO, where the function attributes are inside bitcode
1184 // serialised into a global variable by the time build attributes are
1185 // emitted, so we can't access them. LTO objects could be compiled with
1186 // different flags therefore module flags are set to "Min" behavior to achieve
1187 // the same end result of the normal build where e.g BTI is off if any object
1188 // doesn't support it.
1189 if (Context.getTargetInfo().hasFeature("ptrauth") &&
1190 LangOpts.getSignReturnAddressScope() !=
1191 LangOptions::SignReturnAddressScopeKind::None)
1192 getModule().addModuleFlag(llvm::Module::Override,
1193 "sign-return-address-buildattr", 1);
1194 if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1195 getModule().addModuleFlag(llvm::Module::Override,
1196 "tag-stack-memory-buildattr", 1);
1198 if (T.isARM() || T.isThumb() || T.isAArch64()) {
1199 if (LangOpts.BranchTargetEnforcement)
1200 getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1202 if (LangOpts.BranchProtectionPAuthLR)
1203 getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1205 if (LangOpts.GuardedControlStack)
1206 getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1207 if (LangOpts.hasSignReturnAddress())
1208 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1209 if (LangOpts.isSignReturnAddressScopeAll())
1210 getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1212 if (!LangOpts.isSignReturnAddressWithAKey())
1213 getModule().addModuleFlag(llvm::Module::Min,
1214 "sign-return-address-with-bkey", 1);
1216 if (LangOpts.PointerAuthELFGOT)
1217 getModule().addModuleFlag(llvm::Module::Min, "ptrauth-elf-got", 1);
1219 if (getTriple().isOSLinux()) {
1220 assert(getTriple().isOSBinFormatELF());
1221 using namespace llvm::ELF;
1222 uint64_t PAuthABIVersion =
1223 (LangOpts.PointerAuthIntrinsics
1224 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INTRINSICS) |
1225 (LangOpts.PointerAuthCalls
1226 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_CALLS) |
1227 (LangOpts.PointerAuthReturns
1228 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_RETURNS) |
1229 (LangOpts.PointerAuthAuthTraps
1230 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_AUTHTRAPS) |
1231 (LangOpts.PointerAuthVTPtrAddressDiscrimination
1232 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRADDRDISCR) |
1233 (LangOpts.PointerAuthVTPtrTypeDiscrimination
1234 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_VPTRTYPEDISCR) |
1235 (LangOpts.PointerAuthInitFini
1236 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINI) |
1237 (LangOpts.PointerAuthInitFiniAddressDiscrimination
1238 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_INITFINIADDRDISC) |
1239 (LangOpts.PointerAuthELFGOT
1240 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOT) |
1241 (LangOpts.PointerAuthIndirectGotos
1242 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_GOTOS) |
1243 (LangOpts.PointerAuthTypeInfoVTPtrDiscrimination
1244 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_TYPEINFOVPTRDISCR) |
1245 (LangOpts.PointerAuthFunctionTypeDiscrimination
1246 << AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR);
1247 static_assert(AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_FPTRTYPEDISCR ==
1248 AARCH64_PAUTH_PLATFORM_LLVM_LINUX_VERSION_LAST,
1249 "Update when new enum items are defined");
1250 if (PAuthABIVersion != 0) {
1251 getModule().addModuleFlag(llvm::Module::Error,
1252 "aarch64-elf-pauthabi-platform",
1253 AARCH64_PAUTH_PLATFORM_LLVM_LINUX);
1254 getModule().addModuleFlag(llvm::Module::Error,
1255 "aarch64-elf-pauthabi-version",
1256 PAuthABIVersion);
1261 if (CodeGenOpts.StackClashProtector)
1262 getModule().addModuleFlag(
1263 llvm::Module::Override, "probe-stack",
1264 llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1266 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1267 getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1268 CodeGenOpts.StackProbeSize);
1270 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1271 llvm::LLVMContext &Ctx = TheModule.getContext();
1272 getModule().addModuleFlag(
1273 llvm::Module::Error, "MemProfProfileFilename",
1274 llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1277 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1278 // Indicate whether __nvvm_reflect should be configured to flush denormal
1279 // floating point values to 0. (This corresponds to its "__CUDA_FTZ"
1280 // property.)
1281 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1282 CodeGenOpts.FP32DenormalMode.Output !=
1283 llvm::DenormalMode::IEEE);
1286 if (LangOpts.EHAsynch)
1287 getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1289 // Indicate whether this Module was compiled with -fopenmp
1290 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1291 getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1292 if (getLangOpts().OpenMPIsTargetDevice)
1293 getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1294 LangOpts.OpenMP);
1296 // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1297 if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1298 EmitOpenCLMetadata();
1299 // Emit SPIR version.
1300 if (getTriple().isSPIR()) {
1301 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1302 // opencl.spir.version named metadata.
1303 // C++ for OpenCL has a distinct mapping for version compatibility with
1304 // OpenCL.
1305 auto Version = LangOpts.getOpenCLCompatibleVersion();
1306 llvm::Metadata *SPIRVerElts[] = {
1307 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1308 Int32Ty, Version / 100)),
1309 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1310 Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1311 llvm::NamedMDNode *SPIRVerMD =
1312 TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1313 llvm::LLVMContext &Ctx = TheModule.getContext();
1314 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1318 // HLSL related end of code gen work items.
1319 if (LangOpts.HLSL)
1320 getHLSLRuntime().finishCodeGen();
1322 if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1323 assert(PLevel < 3 && "Invalid PIC Level");
1324 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1325 if (Context.getLangOpts().PIE)
1326 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1329 if (getCodeGenOpts().CodeModel.size() > 0) {
1330 unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1331 .Case("tiny", llvm::CodeModel::Tiny)
1332 .Case("small", llvm::CodeModel::Small)
1333 .Case("kernel", llvm::CodeModel::Kernel)
1334 .Case("medium", llvm::CodeModel::Medium)
1335 .Case("large", llvm::CodeModel::Large)
1336 .Default(~0u);
1337 if (CM != ~0u) {
1338 llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1339 getModule().setCodeModel(codeModel);
1341 if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1342 Context.getTargetInfo().getTriple().getArch() ==
1343 llvm::Triple::x86_64) {
1344 getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1349 if (CodeGenOpts.NoPLT)
1350 getModule().setRtLibUseGOT();
1351 if (getTriple().isOSBinFormatELF() &&
1352 CodeGenOpts.DirectAccessExternalData !=
1353 getModule().getDirectAccessExternalData()) {
1354 getModule().setDirectAccessExternalData(
1355 CodeGenOpts.DirectAccessExternalData);
1357 if (CodeGenOpts.UnwindTables)
1358 getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1360 switch (CodeGenOpts.getFramePointer()) {
1361 case CodeGenOptions::FramePointerKind::None:
1362 // 0 ("none") is the default.
1363 break;
1364 case CodeGenOptions::FramePointerKind::Reserved:
1365 getModule().setFramePointer(llvm::FramePointerKind::Reserved);
1366 break;
1367 case CodeGenOptions::FramePointerKind::NonLeaf:
1368 getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1369 break;
1370 case CodeGenOptions::FramePointerKind::All:
1371 getModule().setFramePointer(llvm::FramePointerKind::All);
1372 break;
1375 SimplifyPersonality();
1377 if (getCodeGenOpts().EmitDeclMetadata)
1378 EmitDeclMetadata();
1380 if (getCodeGenOpts().CoverageNotesFile.size() ||
1381 getCodeGenOpts().CoverageDataFile.size())
1382 EmitCoverageFile();
1384 if (CGDebugInfo *DI = getModuleDebugInfo())
1385 DI->finalize();
1387 if (getCodeGenOpts().EmitVersionIdentMetadata)
1388 EmitVersionIdentMetadata();
1390 if (!getCodeGenOpts().RecordCommandLine.empty())
1391 EmitCommandLineMetadata();
1393 if (!getCodeGenOpts().StackProtectorGuard.empty())
1394 getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1395 if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1396 getModule().setStackProtectorGuardReg(
1397 getCodeGenOpts().StackProtectorGuardReg);
1398 if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1399 getModule().setStackProtectorGuardSymbol(
1400 getCodeGenOpts().StackProtectorGuardSymbol);
1401 if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1402 getModule().setStackProtectorGuardOffset(
1403 getCodeGenOpts().StackProtectorGuardOffset);
1404 if (getCodeGenOpts().StackAlignment)
1405 getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1406 if (getCodeGenOpts().SkipRaxSetup)
1407 getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1408 if (getLangOpts().RegCall4)
1409 getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1411 if (getContext().getTargetInfo().getMaxTLSAlign())
1412 getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1413 getContext().getTargetInfo().getMaxTLSAlign());
1415 getTargetCodeGenInfo().emitTargetGlobals(*this);
1417 getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1419 EmitBackendOptionsMetadata(getCodeGenOpts());
1421 // If there is device offloading code embed it in the host now.
1422 EmbedObject(&getModule(), CodeGenOpts, getDiags());
1424 // Set visibility from DLL storage class
1425 // We do this at the end of LLVM IR generation; after any operation
1426 // that might affect the DLL storage class or the visibility, and
1427 // before anything that might act on these.
1428 setVisibilityFromDLLStorageClass(LangOpts, getModule());
1430 // Check the tail call symbols are truly undefined.
1431 if (getTriple().isPPC() && !MustTailCallUndefinedGlobals.empty()) {
1432 for (auto &I : MustTailCallUndefinedGlobals) {
1433 if (!I.first->isDefined())
1434 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1435 else {
1436 StringRef MangledName = getMangledName(GlobalDecl(I.first));
1437 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1438 if (!Entry || Entry->isWeakForLinker() ||
1439 Entry->isDeclarationForLinker())
1440 getDiags().Report(I.second, diag::err_ppc_impossible_musttail) << 2;
1446 void CodeGenModule::EmitOpenCLMetadata() {
1447 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1448 // opencl.ocl.version named metadata node.
1449 // C++ for OpenCL has a distinct mapping for versions compatible with OpenCL.
1450 auto CLVersion = LangOpts.getOpenCLCompatibleVersion();
1452 auto EmitVersion = [this](StringRef MDName, int Version) {
1453 llvm::Metadata *OCLVerElts[] = {
1454 llvm::ConstantAsMetadata::get(
1455 llvm::ConstantInt::get(Int32Ty, Version / 100)),
1456 llvm::ConstantAsMetadata::get(
1457 llvm::ConstantInt::get(Int32Ty, (Version % 100) / 10))};
1458 llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata(MDName);
1459 llvm::LLVMContext &Ctx = TheModule.getContext();
1460 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1463 EmitVersion("opencl.ocl.version", CLVersion);
1464 if (LangOpts.OpenCLCPlusPlus) {
1465 // In addition to the OpenCL compatible version, emit the C++ version.
1466 EmitVersion("opencl.cxx.version", LangOpts.OpenCLCPlusPlusVersion);
1470 void CodeGenModule::EmitBackendOptionsMetadata(
1471 const CodeGenOptions &CodeGenOpts) {
1472 if (getTriple().isRISCV()) {
1473 getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1474 CodeGenOpts.SmallDataLimit);
1478 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1479 // Make sure that this type is translated.
1480 getTypes().UpdateCompletedType(TD);
1483 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1484 // Make sure that this type is translated.
1485 getTypes().RefreshTypeCacheForClass(RD);
1488 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1489 if (!TBAA)
1490 return nullptr;
1491 return TBAA->getTypeInfo(QTy);
1494 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1495 if (!TBAA)
1496 return TBAAAccessInfo();
1497 if (getLangOpts().CUDAIsDevice) {
1498 // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1499 // access info.
1500 if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1501 if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1502 nullptr)
1503 return TBAAAccessInfo();
1504 } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1505 if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1506 nullptr)
1507 return TBAAAccessInfo();
1510 return TBAA->getAccessInfo(AccessType);
1513 TBAAAccessInfo
1514 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1515 if (!TBAA)
1516 return TBAAAccessInfo();
1517 return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1520 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1521 if (!TBAA)
1522 return nullptr;
1523 return TBAA->getTBAAStructInfo(QTy);
1526 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1527 if (!TBAA)
1528 return nullptr;
1529 return TBAA->getBaseTypeInfo(QTy);
1532 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1533 if (!TBAA)
1534 return nullptr;
1535 return TBAA->getAccessTagInfo(Info);
1538 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1539 TBAAAccessInfo TargetInfo) {
1540 if (!TBAA)
1541 return TBAAAccessInfo();
1542 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1545 TBAAAccessInfo
1546 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1547 TBAAAccessInfo InfoB) {
1548 if (!TBAA)
1549 return TBAAAccessInfo();
1550 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1553 TBAAAccessInfo
1554 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1555 TBAAAccessInfo SrcInfo) {
1556 if (!TBAA)
1557 return TBAAAccessInfo();
1558 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1561 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1562 TBAAAccessInfo TBAAInfo) {
1563 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1564 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1567 void CodeGenModule::DecorateInstructionWithInvariantGroup(
1568 llvm::Instruction *I, const CXXRecordDecl *RD) {
1569 I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1570 llvm::MDNode::get(getLLVMContext(), {}));
1573 void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1574 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1575 getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1578 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1579 /// specified stmt yet.
1580 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1581 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1582 "cannot compile this %0 yet");
1583 std::string Msg = Type;
1584 getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1585 << Msg << S->getSourceRange();
1588 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1589 /// specified decl yet.
1590 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1591 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1592 "cannot compile this %0 yet");
1593 std::string Msg = Type;
1594 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1597 void CodeGenModule::runWithSufficientStackSpace(SourceLocation Loc,
1598 llvm::function_ref<void()> Fn) {
1599 StackHandler.runWithSufficientStackSpace(Loc, Fn);
1602 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1603 return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1606 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1607 const NamedDecl *D) const {
1608 // Internal definitions always have default visibility.
1609 if (GV->hasLocalLinkage()) {
1610 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1611 return;
1613 if (!D)
1614 return;
1616 // Set visibility for definitions, and for declarations if requested globally
1617 // or set explicitly.
1618 LinkageInfo LV = D->getLinkageAndVisibility();
1620 // OpenMP declare target variables must be visible to the host so they can
1621 // be registered. We require protected visibility unless the variable has
1622 // the DT_nohost modifier and does not need to be registered.
1623 if (Context.getLangOpts().OpenMP &&
1624 Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1625 D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1626 D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1627 OMPDeclareTargetDeclAttr::DT_NoHost &&
1628 LV.getVisibility() == HiddenVisibility) {
1629 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1630 return;
1633 if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1634 // Reject incompatible dlllstorage and visibility annotations.
1635 if (!LV.isVisibilityExplicit())
1636 return;
1637 if (GV->hasDLLExportStorageClass()) {
1638 if (LV.getVisibility() == HiddenVisibility)
1639 getDiags().Report(D->getLocation(),
1640 diag::err_hidden_visibility_dllexport);
1641 } else if (LV.getVisibility() != DefaultVisibility) {
1642 getDiags().Report(D->getLocation(),
1643 diag::err_non_default_visibility_dllimport);
1645 return;
1648 if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1649 !GV->isDeclarationForLinker())
1650 GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1653 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1654 llvm::GlobalValue *GV) {
1655 if (GV->hasLocalLinkage())
1656 return true;
1658 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1659 return true;
1661 // DLLImport explicitly marks the GV as external.
1662 if (GV->hasDLLImportStorageClass())
1663 return false;
1665 const llvm::Triple &TT = CGM.getTriple();
1666 const auto &CGOpts = CGM.getCodeGenOpts();
1667 if (TT.isWindowsGNUEnvironment()) {
1668 // In MinGW, variables without DLLImport can still be automatically
1669 // imported from a DLL by the linker; don't mark variables that
1670 // potentially could come from another DLL as DSO local.
1672 // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1673 // (and this actually happens in the public interface of libstdc++), so
1674 // such variables can't be marked as DSO local. (Native TLS variables
1675 // can't be dllimported at all, though.)
1676 if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1677 (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1678 CGOpts.AutoImport)
1679 return false;
1682 // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1683 // remain unresolved in the link, they can be resolved to zero, which is
1684 // outside the current DSO.
1685 if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1686 return false;
1688 // Every other GV is local on COFF.
1689 // Make an exception for windows OS in the triple: Some firmware builds use
1690 // *-win32-macho triples. This (accidentally?) produced windows relocations
1691 // without GOT tables in older clang versions; Keep this behaviour.
1692 // FIXME: even thread local variables?
1693 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1694 return true;
1696 // Only handle COFF and ELF for now.
1697 if (!TT.isOSBinFormatELF())
1698 return false;
1700 // If this is not an executable, don't assume anything is local.
1701 llvm::Reloc::Model RM = CGOpts.RelocationModel;
1702 const auto &LOpts = CGM.getLangOpts();
1703 if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1704 // On ELF, if -fno-semantic-interposition is specified and the target
1705 // supports local aliases, there will be neither CC1
1706 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1707 // dso_local on the function if using a local alias is preferable (can avoid
1708 // PLT indirection).
1709 if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1710 return false;
1711 return !(CGM.getLangOpts().SemanticInterposition ||
1712 CGM.getLangOpts().HalfNoSemanticInterposition);
1715 // A definition cannot be preempted from an executable.
1716 if (!GV->isDeclarationForLinker())
1717 return true;
1719 // Most PIC code sequences that assume that a symbol is local cannot produce a
1720 // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1721 // depended, it seems worth it to handle it here.
1722 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1723 return false;
1725 // PowerPC64 prefers TOC indirection to avoid copy relocations.
1726 if (TT.isPPC64())
1727 return false;
1729 if (CGOpts.DirectAccessExternalData) {
1730 // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1731 // for non-thread-local variables. If the symbol is not defined in the
1732 // executable, a copy relocation will be needed at link time. dso_local is
1733 // excluded for thread-local variables because they generally don't support
1734 // copy relocations.
1735 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1736 if (!Var->isThreadLocal())
1737 return true;
1739 // -fno-pic sets dso_local on a function declaration to allow direct
1740 // accesses when taking its address (similar to a data symbol). If the
1741 // function is not defined in the executable, a canonical PLT entry will be
1742 // needed at link time. -fno-direct-access-external-data can avoid the
1743 // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1744 // it could just cause trouble without providing perceptible benefits.
1745 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1746 return true;
1749 // If we can use copy relocations we can assume it is local.
1751 // Otherwise don't assume it is local.
1752 return false;
1755 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1756 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1759 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1760 GlobalDecl GD) const {
1761 const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1762 // C++ destructors have a few C++ ABI specific special cases.
1763 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1764 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1765 return;
1767 setDLLImportDLLExport(GV, D);
1770 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1771 const NamedDecl *D) const {
1772 if (D && D->isExternallyVisible()) {
1773 if (D->hasAttr<DLLImportAttr>())
1774 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1775 else if ((D->hasAttr<DLLExportAttr>() ||
1776 shouldMapVisibilityToDLLExport(D)) &&
1777 !GV->isDeclarationForLinker())
1778 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1782 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1783 GlobalDecl GD) const {
1784 setDLLImportDLLExport(GV, GD);
1785 setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1788 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1789 const NamedDecl *D) const {
1790 setDLLImportDLLExport(GV, D);
1791 setGVPropertiesAux(GV, D);
1794 void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1795 const NamedDecl *D) const {
1796 setGlobalVisibility(GV, D);
1797 setDSOLocal(GV);
1798 GV->setPartition(CodeGenOpts.SymbolPartition);
1801 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1802 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1803 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1804 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1805 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1806 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1809 llvm::GlobalVariable::ThreadLocalMode
1810 CodeGenModule::GetDefaultLLVMTLSModel() const {
1811 switch (CodeGenOpts.getDefaultTLSModel()) {
1812 case CodeGenOptions::GeneralDynamicTLSModel:
1813 return llvm::GlobalVariable::GeneralDynamicTLSModel;
1814 case CodeGenOptions::LocalDynamicTLSModel:
1815 return llvm::GlobalVariable::LocalDynamicTLSModel;
1816 case CodeGenOptions::InitialExecTLSModel:
1817 return llvm::GlobalVariable::InitialExecTLSModel;
1818 case CodeGenOptions::LocalExecTLSModel:
1819 return llvm::GlobalVariable::LocalExecTLSModel;
1821 llvm_unreachable("Invalid TLS model!");
1824 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1825 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1827 llvm::GlobalValue::ThreadLocalMode TLM;
1828 TLM = GetDefaultLLVMTLSModel();
1830 // Override the TLS model if it is explicitly specified.
1831 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1832 TLM = GetLLVMTLSModel(Attr->getModel());
1835 GV->setThreadLocalMode(TLM);
1838 static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1839 StringRef Name) {
1840 const TargetInfo &Target = CGM.getTarget();
1841 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1844 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1845 const CPUSpecificAttr *Attr,
1846 unsigned CPUIndex,
1847 raw_ostream &Out) {
1848 // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1849 // supported.
1850 if (Attr)
1851 Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1852 else if (CGM.getTarget().supportsIFunc())
1853 Out << ".resolver";
1856 // Returns true if GD is a function decl with internal linkage and
1857 // needs a unique suffix after the mangled name.
1858 static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1859 CodeGenModule &CGM) {
1860 const Decl *D = GD.getDecl();
1861 return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1862 (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1865 static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1866 const NamedDecl *ND,
1867 bool OmitMultiVersionMangling = false) {
1868 SmallString<256> Buffer;
1869 llvm::raw_svector_ostream Out(Buffer);
1870 MangleContext &MC = CGM.getCXXABI().getMangleContext();
1871 if (!CGM.getModuleNameHash().empty())
1872 MC.needsUniqueInternalLinkageNames();
1873 bool ShouldMangle = MC.shouldMangleDeclName(ND);
1874 if (ShouldMangle)
1875 MC.mangleName(GD.getWithDecl(ND), Out);
1876 else {
1877 IdentifierInfo *II = ND->getIdentifier();
1878 assert(II && "Attempt to mangle unnamed decl.");
1879 const auto *FD = dyn_cast<FunctionDecl>(ND);
1881 if (FD &&
1882 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1883 if (CGM.getLangOpts().RegCall4)
1884 Out << "__regcall4__" << II->getName();
1885 else
1886 Out << "__regcall3__" << II->getName();
1887 } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1888 GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1889 Out << "__device_stub__" << II->getName();
1890 } else {
1891 Out << II->getName();
1895 // Check if the module name hash should be appended for internal linkage
1896 // symbols. This should come before multi-version target suffixes are
1897 // appended. This is to keep the name and module hash suffix of the
1898 // internal linkage function together. The unique suffix should only be
1899 // added when name mangling is done to make sure that the final name can
1900 // be properly demangled. For example, for C functions without prototypes,
1901 // name mangling is not done and the unique suffix should not be appeneded
1902 // then.
1903 if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1904 assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1905 "Hash computed when not explicitly requested");
1906 Out << CGM.getModuleNameHash();
1909 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1910 if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1911 switch (FD->getMultiVersionKind()) {
1912 case MultiVersionKind::CPUDispatch:
1913 case MultiVersionKind::CPUSpecific:
1914 AppendCPUSpecificCPUDispatchMangling(CGM,
1915 FD->getAttr<CPUSpecificAttr>(),
1916 GD.getMultiVersionIndex(), Out);
1917 break;
1918 case MultiVersionKind::Target: {
1919 auto *Attr = FD->getAttr<TargetAttr>();
1920 assert(Attr && "Expected TargetAttr to be present "
1921 "for attribute mangling");
1922 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1923 Info.appendAttributeMangling(Attr, Out);
1924 break;
1926 case MultiVersionKind::TargetVersion: {
1927 auto *Attr = FD->getAttr<TargetVersionAttr>();
1928 assert(Attr && "Expected TargetVersionAttr to be present "
1929 "for attribute mangling");
1930 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1931 Info.appendAttributeMangling(Attr, Out);
1932 break;
1934 case MultiVersionKind::TargetClones: {
1935 auto *Attr = FD->getAttr<TargetClonesAttr>();
1936 assert(Attr && "Expected TargetClonesAttr to be present "
1937 "for attribute mangling");
1938 unsigned Index = GD.getMultiVersionIndex();
1939 const ABIInfo &Info = CGM.getTargetCodeGenInfo().getABIInfo();
1940 Info.appendAttributeMangling(Attr, Index, Out);
1941 break;
1943 case MultiVersionKind::None:
1944 llvm_unreachable("None multiversion type isn't valid here");
1948 // Make unique name for device side static file-scope variable for HIP.
1949 if (CGM.getContext().shouldExternalize(ND) &&
1950 CGM.getLangOpts().GPURelocatableDeviceCode &&
1951 CGM.getLangOpts().CUDAIsDevice)
1952 CGM.printPostfixForExternalizedDecl(Out, ND);
1954 return std::string(Out.str());
1957 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1958 const FunctionDecl *FD,
1959 StringRef &CurName) {
1960 if (!FD->isMultiVersion())
1961 return;
1963 // Get the name of what this would be without the 'target' attribute. This
1964 // allows us to lookup the version that was emitted when this wasn't a
1965 // multiversion function.
1966 std::string NonTargetName =
1967 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1968 GlobalDecl OtherGD;
1969 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1970 assert(OtherGD.getCanonicalDecl()
1971 .getDecl()
1972 ->getAsFunction()
1973 ->isMultiVersion() &&
1974 "Other GD should now be a multiversioned function");
1975 // OtherFD is the version of this function that was mangled BEFORE
1976 // becoming a MultiVersion function. It potentially needs to be updated.
1977 const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1978 .getDecl()
1979 ->getAsFunction()
1980 ->getMostRecentDecl();
1981 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1982 // This is so that if the initial version was already the 'default'
1983 // version, we don't try to update it.
1984 if (OtherName != NonTargetName) {
1985 // Remove instead of erase, since others may have stored the StringRef
1986 // to this.
1987 const auto ExistingRecord = Manglings.find(NonTargetName);
1988 if (ExistingRecord != std::end(Manglings))
1989 Manglings.remove(&(*ExistingRecord));
1990 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1991 StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1992 Result.first->first();
1993 // If this is the current decl is being created, make sure we update the name.
1994 if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1995 CurName = OtherNameRef;
1996 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1997 Entry->setName(OtherName);
2002 StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
2003 GlobalDecl CanonicalGD = GD.getCanonicalDecl();
2005 // Some ABIs don't have constructor variants. Make sure that base and
2006 // complete constructors get mangled the same.
2007 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
2008 if (!getTarget().getCXXABI().hasConstructorVariants()) {
2009 CXXCtorType OrigCtorType = GD.getCtorType();
2010 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
2011 if (OrigCtorType == Ctor_Base)
2012 CanonicalGD = GlobalDecl(CD, Ctor_Complete);
2016 // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
2017 // static device variable depends on whether the variable is referenced by
2018 // a host or device host function. Therefore the mangled name cannot be
2019 // cached.
2020 if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
2021 auto FoundName = MangledDeclNames.find(CanonicalGD);
2022 if (FoundName != MangledDeclNames.end())
2023 return FoundName->second;
2026 // Keep the first result in the case of a mangling collision.
2027 const auto *ND = cast<NamedDecl>(GD.getDecl());
2028 std::string MangledName = getMangledNameImpl(*this, GD, ND);
2030 // Ensure either we have different ABIs between host and device compilations,
2031 // says host compilation following MSVC ABI but device compilation follows
2032 // Itanium C++ ABI or, if they follow the same ABI, kernel names after
2033 // mangling should be the same after name stubbing. The later checking is
2034 // very important as the device kernel name being mangled in host-compilation
2035 // is used to resolve the device binaries to be executed. Inconsistent naming
2036 // result in undefined behavior. Even though we cannot check that naming
2037 // directly between host- and device-compilations, the host- and
2038 // device-mangling in host compilation could help catching certain ones.
2039 assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
2040 getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
2041 (getContext().getAuxTargetInfo() &&
2042 (getContext().getAuxTargetInfo()->getCXXABI() !=
2043 getContext().getTargetInfo().getCXXABI())) ||
2044 getCUDARuntime().getDeviceSideName(ND) ==
2045 getMangledNameImpl(
2046 *this,
2047 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
2048 ND));
2050 auto Result = Manglings.insert(std::make_pair(MangledName, GD));
2051 return MangledDeclNames[CanonicalGD] = Result.first->first();
2054 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
2055 const BlockDecl *BD) {
2056 MangleContext &MangleCtx = getCXXABI().getMangleContext();
2057 const Decl *D = GD.getDecl();
2059 SmallString<256> Buffer;
2060 llvm::raw_svector_ostream Out(Buffer);
2061 if (!D)
2062 MangleCtx.mangleGlobalBlock(BD,
2063 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
2064 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
2065 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
2066 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
2067 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
2068 else
2069 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
2071 auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
2072 return Result.first->first();
2075 const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
2076 auto it = MangledDeclNames.begin();
2077 while (it != MangledDeclNames.end()) {
2078 if (it->second == Name)
2079 return it->first;
2080 it++;
2082 return GlobalDecl();
2085 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
2086 return getModule().getNamedValue(Name);
2089 /// AddGlobalCtor - Add a function to the list that will be called before
2090 /// main() runs.
2091 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
2092 unsigned LexOrder,
2093 llvm::Constant *AssociatedData) {
2094 // FIXME: Type coercion of void()* types.
2095 GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
2098 /// AddGlobalDtor - Add a function to the list that will be called
2099 /// when the module is unloaded.
2100 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2101 bool IsDtorAttrFunc) {
2102 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2103 (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2104 DtorsUsingAtExit[Priority].push_back(Dtor);
2105 return;
2108 // FIXME: Type coercion of void()* types.
2109 GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2112 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2113 if (Fns.empty()) return;
2115 const PointerAuthSchema &InitFiniAuthSchema =
2116 getCodeGenOpts().PointerAuth.InitFiniPointers;
2118 // Ctor function type is ptr.
2119 llvm::PointerType *PtrTy = llvm::PointerType::get(
2120 getLLVMContext(), TheModule.getDataLayout().getProgramAddressSpace());
2122 // Get the type of a ctor entry, { i32, ptr, ptr }.
2123 llvm::StructType *CtorStructTy = llvm::StructType::get(Int32Ty, PtrTy, PtrTy);
2125 // Construct the constructor and destructor arrays.
2126 ConstantInitBuilder Builder(*this);
2127 auto Ctors = Builder.beginArray(CtorStructTy);
2128 for (const auto &I : Fns) {
2129 auto Ctor = Ctors.beginStruct(CtorStructTy);
2130 Ctor.addInt(Int32Ty, I.Priority);
2131 if (InitFiniAuthSchema) {
2132 llvm::Constant *StorageAddress =
2133 (InitFiniAuthSchema.isAddressDiscriminated()
2134 ? llvm::ConstantExpr::getIntToPtr(
2135 llvm::ConstantInt::get(
2136 IntPtrTy,
2137 llvm::ConstantPtrAuth::AddrDiscriminator_CtorsDtors),
2138 PtrTy)
2139 : nullptr);
2140 llvm::Constant *SignedCtorPtr = getConstantSignedPointer(
2141 I.Initializer, InitFiniAuthSchema.getKey(), StorageAddress,
2142 llvm::ConstantInt::get(
2143 SizeTy, InitFiniAuthSchema.getConstantDiscrimination()));
2144 Ctor.add(SignedCtorPtr);
2145 } else {
2146 Ctor.add(I.Initializer);
2148 if (I.AssociatedData)
2149 Ctor.add(I.AssociatedData);
2150 else
2151 Ctor.addNullPointer(PtrTy);
2152 Ctor.finishAndAddTo(Ctors);
2155 auto List = Ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2156 /*constant*/ false,
2157 llvm::GlobalValue::AppendingLinkage);
2159 // The LTO linker doesn't seem to like it when we set an alignment
2160 // on appending variables. Take it off as a workaround.
2161 List->setAlignment(std::nullopt);
2163 Fns.clear();
2166 llvm::GlobalValue::LinkageTypes
2167 CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2168 const auto *D = cast<FunctionDecl>(GD.getDecl());
2170 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2172 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2173 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2175 return getLLVMLinkageForDeclarator(D, Linkage);
2178 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2179 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2180 if (!MDS) return nullptr;
2182 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2185 llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2186 if (auto *FnType = T->getAs<FunctionProtoType>())
2187 T = getContext().getFunctionType(
2188 FnType->getReturnType(), FnType->getParamTypes(),
2189 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2191 std::string OutName;
2192 llvm::raw_string_ostream Out(OutName);
2193 getCXXABI().getMangleContext().mangleCanonicalTypeName(
2194 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2196 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2197 Out << ".normalized";
2199 return llvm::ConstantInt::get(Int32Ty,
2200 static_cast<uint32_t>(llvm::xxHash64(OutName)));
2203 void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2204 const CGFunctionInfo &Info,
2205 llvm::Function *F, bool IsThunk) {
2206 unsigned CallingConv;
2207 llvm::AttributeList PAL;
2208 ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2209 /*AttrOnCallSite=*/false, IsThunk);
2210 if (CallingConv == llvm::CallingConv::X86_VectorCall &&
2211 getTarget().getTriple().isWindowsArm64EC()) {
2212 SourceLocation Loc;
2213 if (const Decl *D = GD.getDecl())
2214 Loc = D->getLocation();
2216 Error(Loc, "__vectorcall calling convention is not currently supported");
2218 F->setAttributes(PAL);
2219 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2222 static void removeImageAccessQualifier(std::string& TyName) {
2223 std::string ReadOnlyQual("__read_only");
2224 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2225 if (ReadOnlyPos != std::string::npos)
2226 // "+ 1" for the space after access qualifier.
2227 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2228 else {
2229 std::string WriteOnlyQual("__write_only");
2230 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2231 if (WriteOnlyPos != std::string::npos)
2232 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2233 else {
2234 std::string ReadWriteQual("__read_write");
2235 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2236 if (ReadWritePos != std::string::npos)
2237 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2242 // Returns the address space id that should be produced to the
2243 // kernel_arg_addr_space metadata. This is always fixed to the ids
2244 // as specified in the SPIR 2.0 specification in order to differentiate
2245 // for example in clGetKernelArgInfo() implementation between the address
2246 // spaces with targets without unique mapping to the OpenCL address spaces
2247 // (basically all single AS CPUs).
2248 static unsigned ArgInfoAddressSpace(LangAS AS) {
2249 switch (AS) {
2250 case LangAS::opencl_global:
2251 return 1;
2252 case LangAS::opencl_constant:
2253 return 2;
2254 case LangAS::opencl_local:
2255 return 3;
2256 case LangAS::opencl_generic:
2257 return 4; // Not in SPIR 2.0 specs.
2258 case LangAS::opencl_global_device:
2259 return 5;
2260 case LangAS::opencl_global_host:
2261 return 6;
2262 default:
2263 return 0; // Assume private.
2267 void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2268 const FunctionDecl *FD,
2269 CodeGenFunction *CGF) {
2270 assert(((FD && CGF) || (!FD && !CGF)) &&
2271 "Incorrect use - FD and CGF should either be both null or not!");
2272 // Create MDNodes that represent the kernel arg metadata.
2273 // Each MDNode is a list in the form of "key", N number of values which is
2274 // the same number of values as their are kernel arguments.
2276 const PrintingPolicy &Policy = Context.getPrintingPolicy();
2278 // MDNode for the kernel argument address space qualifiers.
2279 SmallVector<llvm::Metadata *, 8> addressQuals;
2281 // MDNode for the kernel argument access qualifiers (images only).
2282 SmallVector<llvm::Metadata *, 8> accessQuals;
2284 // MDNode for the kernel argument type names.
2285 SmallVector<llvm::Metadata *, 8> argTypeNames;
2287 // MDNode for the kernel argument base type names.
2288 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2290 // MDNode for the kernel argument type qualifiers.
2291 SmallVector<llvm::Metadata *, 8> argTypeQuals;
2293 // MDNode for the kernel argument names.
2294 SmallVector<llvm::Metadata *, 8> argNames;
2296 if (FD && CGF)
2297 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2298 const ParmVarDecl *parm = FD->getParamDecl(i);
2299 // Get argument name.
2300 argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2302 if (!getLangOpts().OpenCL)
2303 continue;
2304 QualType ty = parm->getType();
2305 std::string typeQuals;
2307 // Get image and pipe access qualifier:
2308 if (ty->isImageType() || ty->isPipeType()) {
2309 const Decl *PDecl = parm;
2310 if (const auto *TD = ty->getAs<TypedefType>())
2311 PDecl = TD->getDecl();
2312 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2313 if (A && A->isWriteOnly())
2314 accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2315 else if (A && A->isReadWrite())
2316 accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2317 else
2318 accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2319 } else
2320 accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2322 auto getTypeSpelling = [&](QualType Ty) {
2323 auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2325 if (Ty.isCanonical()) {
2326 StringRef typeNameRef = typeName;
2327 // Turn "unsigned type" to "utype"
2328 if (typeNameRef.consume_front("unsigned "))
2329 return std::string("u") + typeNameRef.str();
2330 if (typeNameRef.consume_front("signed "))
2331 return typeNameRef.str();
2334 return typeName;
2337 if (ty->isPointerType()) {
2338 QualType pointeeTy = ty->getPointeeType();
2340 // Get address qualifier.
2341 addressQuals.push_back(
2342 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2343 ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2345 // Get argument type name.
2346 std::string typeName = getTypeSpelling(pointeeTy) + "*";
2347 std::string baseTypeName =
2348 getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2349 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2350 argBaseTypeNames.push_back(
2351 llvm::MDString::get(VMContext, baseTypeName));
2353 // Get argument type qualifiers:
2354 if (ty.isRestrictQualified())
2355 typeQuals = "restrict";
2356 if (pointeeTy.isConstQualified() ||
2357 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2358 typeQuals += typeQuals.empty() ? "const" : " const";
2359 if (pointeeTy.isVolatileQualified())
2360 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2361 } else {
2362 uint32_t AddrSpc = 0;
2363 bool isPipe = ty->isPipeType();
2364 if (ty->isImageType() || isPipe)
2365 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2367 addressQuals.push_back(
2368 llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2370 // Get argument type name.
2371 ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2372 std::string typeName = getTypeSpelling(ty);
2373 std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2375 // Remove access qualifiers on images
2376 // (as they are inseparable from type in clang implementation,
2377 // but OpenCL spec provides a special query to get access qualifier
2378 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2379 if (ty->isImageType()) {
2380 removeImageAccessQualifier(typeName);
2381 removeImageAccessQualifier(baseTypeName);
2384 argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2385 argBaseTypeNames.push_back(
2386 llvm::MDString::get(VMContext, baseTypeName));
2388 if (isPipe)
2389 typeQuals = "pipe";
2391 argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2394 if (getLangOpts().OpenCL) {
2395 Fn->setMetadata("kernel_arg_addr_space",
2396 llvm::MDNode::get(VMContext, addressQuals));
2397 Fn->setMetadata("kernel_arg_access_qual",
2398 llvm::MDNode::get(VMContext, accessQuals));
2399 Fn->setMetadata("kernel_arg_type",
2400 llvm::MDNode::get(VMContext, argTypeNames));
2401 Fn->setMetadata("kernel_arg_base_type",
2402 llvm::MDNode::get(VMContext, argBaseTypeNames));
2403 Fn->setMetadata("kernel_arg_type_qual",
2404 llvm::MDNode::get(VMContext, argTypeQuals));
2406 if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2407 getCodeGenOpts().HIPSaveKernelArgName)
2408 Fn->setMetadata("kernel_arg_name",
2409 llvm::MDNode::get(VMContext, argNames));
2412 /// Determines whether the language options require us to model
2413 /// unwind exceptions. We treat -fexceptions as mandating this
2414 /// except under the fragile ObjC ABI with only ObjC exceptions
2415 /// enabled. This means, for example, that C with -fexceptions
2416 /// enables this.
2417 static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2418 // If exceptions are completely disabled, obviously this is false.
2419 if (!LangOpts.Exceptions) return false;
2421 // If C++ exceptions are enabled, this is true.
2422 if (LangOpts.CXXExceptions) return true;
2424 // If ObjC exceptions are enabled, this depends on the ABI.
2425 if (LangOpts.ObjCExceptions) {
2426 return LangOpts.ObjCRuntime.hasUnwindExceptions();
2429 return true;
2432 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2433 const CXXMethodDecl *MD) {
2434 // Check that the type metadata can ever actually be used by a call.
2435 if (!CGM.getCodeGenOpts().LTOUnit ||
2436 !CGM.HasHiddenLTOVisibility(MD->getParent()))
2437 return false;
2439 // Only functions whose address can be taken with a member function pointer
2440 // need this sort of type metadata.
2441 return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2442 !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2445 SmallVector<const CXXRecordDecl *, 0>
2446 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2447 llvm::SetVector<const CXXRecordDecl *> MostBases;
2449 std::function<void (const CXXRecordDecl *)> CollectMostBases;
2450 CollectMostBases = [&](const CXXRecordDecl *RD) {
2451 if (RD->getNumBases() == 0)
2452 MostBases.insert(RD);
2453 for (const CXXBaseSpecifier &B : RD->bases())
2454 CollectMostBases(B.getType()->getAsCXXRecordDecl());
2456 CollectMostBases(RD);
2457 return MostBases.takeVector();
2460 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2461 llvm::Function *F) {
2462 llvm::AttrBuilder B(F->getContext());
2464 if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2465 B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2467 if (CodeGenOpts.StackClashProtector)
2468 B.addAttribute("probe-stack", "inline-asm");
2470 if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2471 B.addAttribute("stack-probe-size",
2472 std::to_string(CodeGenOpts.StackProbeSize));
2474 if (!hasUnwindExceptions(LangOpts))
2475 B.addAttribute(llvm::Attribute::NoUnwind);
2477 if (D && D->hasAttr<NoStackProtectorAttr>())
2478 ; // Do nothing.
2479 else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2480 isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2481 B.addAttribute(llvm::Attribute::StackProtectStrong);
2482 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2483 B.addAttribute(llvm::Attribute::StackProtect);
2484 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2485 B.addAttribute(llvm::Attribute::StackProtectStrong);
2486 else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2487 B.addAttribute(llvm::Attribute::StackProtectReq);
2489 if (!D) {
2490 // Non-entry HLSL functions must always be inlined.
2491 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline))
2492 B.addAttribute(llvm::Attribute::AlwaysInline);
2493 // If we don't have a declaration to control inlining, the function isn't
2494 // explicitly marked as alwaysinline for semantic reasons, and inlining is
2495 // disabled, mark the function as noinline.
2496 else if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2497 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2498 B.addAttribute(llvm::Attribute::NoInline);
2500 F->addFnAttrs(B);
2501 return;
2504 // Handle SME attributes that apply to function definitions,
2505 // rather than to function prototypes.
2506 if (D->hasAttr<ArmLocallyStreamingAttr>())
2507 B.addAttribute("aarch64_pstate_sm_body");
2509 if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2510 if (Attr->isNewZA())
2511 B.addAttribute("aarch64_new_za");
2512 if (Attr->isNewZT0())
2513 B.addAttribute("aarch64_new_zt0");
2516 // Track whether we need to add the optnone LLVM attribute,
2517 // starting with the default for this optimization level.
2518 bool ShouldAddOptNone =
2519 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2520 // We can't add optnone in the following cases, it won't pass the verifier.
2521 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2522 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2524 // Non-entry HLSL functions must always be inlined.
2525 if (getLangOpts().HLSL && !F->hasFnAttribute(llvm::Attribute::NoInline) &&
2526 !D->hasAttr<NoInlineAttr>()) {
2527 B.addAttribute(llvm::Attribute::AlwaysInline);
2528 } else if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2529 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2530 // Add optnone, but do so only if the function isn't always_inline.
2531 B.addAttribute(llvm::Attribute::OptimizeNone);
2533 // OptimizeNone implies noinline; we should not be inlining such functions.
2534 B.addAttribute(llvm::Attribute::NoInline);
2536 // We still need to handle naked functions even though optnone subsumes
2537 // much of their semantics.
2538 if (D->hasAttr<NakedAttr>())
2539 B.addAttribute(llvm::Attribute::Naked);
2541 // OptimizeNone wins over OptimizeForSize and MinSize.
2542 F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2543 F->removeFnAttr(llvm::Attribute::MinSize);
2544 } else if (D->hasAttr<NakedAttr>()) {
2545 // Naked implies noinline: we should not be inlining such functions.
2546 B.addAttribute(llvm::Attribute::Naked);
2547 B.addAttribute(llvm::Attribute::NoInline);
2548 } else if (D->hasAttr<NoDuplicateAttr>()) {
2549 B.addAttribute(llvm::Attribute::NoDuplicate);
2550 } else if (D->hasAttr<NoInlineAttr>() &&
2551 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2552 // Add noinline if the function isn't always_inline.
2553 B.addAttribute(llvm::Attribute::NoInline);
2554 } else if (D->hasAttr<AlwaysInlineAttr>() &&
2555 !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2556 // (noinline wins over always_inline, and we can't specify both in IR)
2557 B.addAttribute(llvm::Attribute::AlwaysInline);
2558 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2559 // If we're not inlining, then force everything that isn't always_inline to
2560 // carry an explicit noinline attribute.
2561 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2562 B.addAttribute(llvm::Attribute::NoInline);
2563 } else {
2564 // Otherwise, propagate the inline hint attribute and potentially use its
2565 // absence to mark things as noinline.
2566 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2567 // Search function and template pattern redeclarations for inline.
2568 auto CheckForInline = [](const FunctionDecl *FD) {
2569 auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2570 return Redecl->isInlineSpecified();
2572 if (any_of(FD->redecls(), CheckRedeclForInline))
2573 return true;
2574 const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2575 if (!Pattern)
2576 return false;
2577 return any_of(Pattern->redecls(), CheckRedeclForInline);
2579 if (CheckForInline(FD)) {
2580 B.addAttribute(llvm::Attribute::InlineHint);
2581 } else if (CodeGenOpts.getInlining() ==
2582 CodeGenOptions::OnlyHintInlining &&
2583 !FD->isInlined() &&
2584 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2585 B.addAttribute(llvm::Attribute::NoInline);
2590 // Add other optimization related attributes if we are optimizing this
2591 // function.
2592 if (!D->hasAttr<OptimizeNoneAttr>()) {
2593 if (D->hasAttr<ColdAttr>()) {
2594 if (!ShouldAddOptNone)
2595 B.addAttribute(llvm::Attribute::OptimizeForSize);
2596 B.addAttribute(llvm::Attribute::Cold);
2598 if (D->hasAttr<HotAttr>())
2599 B.addAttribute(llvm::Attribute::Hot);
2600 if (D->hasAttr<MinSizeAttr>())
2601 B.addAttribute(llvm::Attribute::MinSize);
2604 F->addFnAttrs(B);
2606 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2607 if (alignment)
2608 F->setAlignment(llvm::Align(alignment));
2610 if (!D->hasAttr<AlignedAttr>())
2611 if (LangOpts.FunctionAlignment)
2612 F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2614 // Some C++ ABIs require 2-byte alignment for member functions, in order to
2615 // reserve a bit for differentiating between virtual and non-virtual member
2616 // functions. If the current target's C++ ABI requires this and this is a
2617 // member function, set its alignment accordingly.
2618 if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2619 if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2620 F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2623 // In the cross-dso CFI mode with canonical jump tables, we want !type
2624 // attributes on definitions only.
2625 if (CodeGenOpts.SanitizeCfiCrossDso &&
2626 CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2627 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2628 // Skip available_externally functions. They won't be codegen'ed in the
2629 // current module anyway.
2630 if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2631 CreateFunctionTypeMetadataForIcall(FD, F);
2635 // Emit type metadata on member functions for member function pointer checks.
2636 // These are only ever necessary on definitions; we're guaranteed that the
2637 // definition will be present in the LTO unit as a result of LTO visibility.
2638 auto *MD = dyn_cast<CXXMethodDecl>(D);
2639 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2640 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2641 llvm::Metadata *Id =
2642 CreateMetadataIdentifierForType(Context.getMemberPointerType(
2643 MD->getType(), Context.getRecordType(Base).getTypePtr()));
2644 F->addTypeMetadata(0, Id);
2649 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2650 const Decl *D = GD.getDecl();
2651 if (isa_and_nonnull<NamedDecl>(D))
2652 setGVProperties(GV, GD);
2653 else
2654 GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2656 if (D && D->hasAttr<UsedAttr>())
2657 addUsedOrCompilerUsedGlobal(GV);
2659 if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2660 VD &&
2661 ((CodeGenOpts.KeepPersistentStorageVariables &&
2662 (VD->getStorageDuration() == SD_Static ||
2663 VD->getStorageDuration() == SD_Thread)) ||
2664 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2665 VD->getType().isConstQualified())))
2666 addUsedOrCompilerUsedGlobal(GV);
2669 bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2670 llvm::AttrBuilder &Attrs,
2671 bool SetTargetFeatures) {
2672 // Add target-cpu and target-features attributes to functions. If
2673 // we have a decl for the function and it has a target attribute then
2674 // parse that and add it to the feature set.
2675 StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2676 StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2677 std::vector<std::string> Features;
2678 const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2679 FD = FD ? FD->getMostRecentDecl() : FD;
2680 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2681 const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2682 assert((!TD || !TV) && "both target_version and target specified");
2683 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2684 const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2685 bool AddedAttr = false;
2686 if (TD || TV || SD || TC) {
2687 llvm::StringMap<bool> FeatureMap;
2688 getContext().getFunctionFeatureMap(FeatureMap, GD);
2690 // Produce the canonical string for this set of features.
2691 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2692 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2694 // Now add the target-cpu and target-features to the function.
2695 // While we populated the feature map above, we still need to
2696 // get and parse the target attribute so we can get the cpu for
2697 // the function.
2698 if (TD) {
2699 ParsedTargetAttr ParsedAttr =
2700 Target.parseTargetAttr(TD->getFeaturesStr());
2701 if (!ParsedAttr.CPU.empty() &&
2702 getTarget().isValidCPUName(ParsedAttr.CPU)) {
2703 TargetCPU = ParsedAttr.CPU;
2704 TuneCPU = ""; // Clear the tune CPU.
2706 if (!ParsedAttr.Tune.empty() &&
2707 getTarget().isValidCPUName(ParsedAttr.Tune))
2708 TuneCPU = ParsedAttr.Tune;
2711 if (SD) {
2712 // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2713 // favor this processor.
2714 TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2716 } else {
2717 // Otherwise just add the existing target cpu and target features to the
2718 // function.
2719 Features = getTarget().getTargetOpts().Features;
2722 if (!TargetCPU.empty()) {
2723 Attrs.addAttribute("target-cpu", TargetCPU);
2724 AddedAttr = true;
2726 if (!TuneCPU.empty()) {
2727 Attrs.addAttribute("tune-cpu", TuneCPU);
2728 AddedAttr = true;
2730 if (!Features.empty() && SetTargetFeatures) {
2731 llvm::erase_if(Features, [&](const std::string& F) {
2732 return getTarget().isReadOnlyFeature(F.substr(1));
2734 llvm::sort(Features);
2735 Attrs.addAttribute("target-features", llvm::join(Features, ","));
2736 AddedAttr = true;
2739 return AddedAttr;
2742 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2743 llvm::GlobalObject *GO) {
2744 const Decl *D = GD.getDecl();
2745 SetCommonAttributes(GD, GO);
2747 if (D) {
2748 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2749 if (D->hasAttr<RetainAttr>())
2750 addUsedGlobal(GV);
2751 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2752 GV->addAttribute("bss-section", SA->getName());
2753 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2754 GV->addAttribute("data-section", SA->getName());
2755 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2756 GV->addAttribute("rodata-section", SA->getName());
2757 if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2758 GV->addAttribute("relro-section", SA->getName());
2761 if (auto *F = dyn_cast<llvm::Function>(GO)) {
2762 if (D->hasAttr<RetainAttr>())
2763 addUsedGlobal(F);
2764 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2765 if (!D->getAttr<SectionAttr>())
2766 F->setSection(SA->getName());
2768 llvm::AttrBuilder Attrs(F->getContext());
2769 if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2770 // We know that GetCPUAndFeaturesAttributes will always have the
2771 // newest set, since it has the newest possible FunctionDecl, so the
2772 // new ones should replace the old.
2773 llvm::AttributeMask RemoveAttrs;
2774 RemoveAttrs.addAttribute("target-cpu");
2775 RemoveAttrs.addAttribute("target-features");
2776 RemoveAttrs.addAttribute("tune-cpu");
2777 F->removeFnAttrs(RemoveAttrs);
2778 F->addFnAttrs(Attrs);
2782 if (const auto *CSA = D->getAttr<CodeSegAttr>())
2783 GO->setSection(CSA->getName());
2784 else if (const auto *SA = D->getAttr<SectionAttr>())
2785 GO->setSection(SA->getName());
2788 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2791 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2792 llvm::Function *F,
2793 const CGFunctionInfo &FI) {
2794 const Decl *D = GD.getDecl();
2795 SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2796 SetLLVMFunctionAttributesForDefinition(D, F);
2798 F->setLinkage(llvm::Function::InternalLinkage);
2800 setNonAliasAttributes(GD, F);
2803 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2804 // Set linkage and visibility in case we never see a definition.
2805 LinkageInfo LV = ND->getLinkageAndVisibility();
2806 // Don't set internal linkage on declarations.
2807 // "extern_weak" is overloaded in LLVM; we probably should have
2808 // separate linkage types for this.
2809 if (isExternallyVisible(LV.getLinkage()) &&
2810 (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2811 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2814 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2815 llvm::Function *F) {
2816 // Only if we are checking indirect calls.
2817 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2818 return;
2820 // Non-static class methods are handled via vtable or member function pointer
2821 // checks elsewhere.
2822 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2823 return;
2825 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2826 F->addTypeMetadata(0, MD);
2827 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2829 // Emit a hash-based bit set entry for cross-DSO calls.
2830 if (CodeGenOpts.SanitizeCfiCrossDso)
2831 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2832 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2835 void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2836 llvm::LLVMContext &Ctx = F->getContext();
2837 llvm::MDBuilder MDB(Ctx);
2838 F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2839 llvm::MDNode::get(
2840 Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2843 static bool allowKCFIIdentifier(StringRef Name) {
2844 // KCFI type identifier constants are only necessary for external assembly
2845 // functions, which means it's safe to skip unusual names. Subset of
2846 // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2847 return llvm::all_of(Name, [](const char &C) {
2848 return llvm::isAlnum(C) || C == '_' || C == '.';
2852 void CodeGenModule::finalizeKCFITypes() {
2853 llvm::Module &M = getModule();
2854 for (auto &F : M.functions()) {
2855 // Remove KCFI type metadata from non-address-taken local functions.
2856 bool AddressTaken = F.hasAddressTaken();
2857 if (!AddressTaken && F.hasLocalLinkage())
2858 F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2860 // Generate a constant with the expected KCFI type identifier for all
2861 // address-taken function declarations to support annotating indirectly
2862 // called assembly functions.
2863 if (!AddressTaken || !F.isDeclaration())
2864 continue;
2866 const llvm::ConstantInt *Type;
2867 if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2868 Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2869 else
2870 continue;
2872 StringRef Name = F.getName();
2873 if (!allowKCFIIdentifier(Name))
2874 continue;
2876 std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2877 Name + ", " + Twine(Type->getZExtValue()) + "\n")
2878 .str();
2879 M.appendModuleInlineAsm(Asm);
2883 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2884 bool IsIncompleteFunction,
2885 bool IsThunk) {
2887 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2888 // If this is an intrinsic function, set the function's attributes
2889 // to the intrinsic's attributes.
2890 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2891 return;
2894 const auto *FD = cast<FunctionDecl>(GD.getDecl());
2896 if (!IsIncompleteFunction)
2897 SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2898 IsThunk);
2900 // Add the Returned attribute for "this", except for iOS 5 and earlier
2901 // where substantial code, including the libstdc++ dylib, was compiled with
2902 // GCC and does not actually return "this".
2903 if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2904 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2905 assert(!F->arg_empty() &&
2906 F->arg_begin()->getType()
2907 ->canLosslesslyBitCastTo(F->getReturnType()) &&
2908 "unexpected this return");
2909 F->addParamAttr(0, llvm::Attribute::Returned);
2912 // Only a few attributes are set on declarations; these may later be
2913 // overridden by a definition.
2915 setLinkageForGV(F, FD);
2916 setGVProperties(F, FD);
2918 // Setup target-specific attributes.
2919 if (!IsIncompleteFunction && F->isDeclaration())
2920 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2922 if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2923 F->setSection(CSA->getName());
2924 else if (const auto *SA = FD->getAttr<SectionAttr>())
2925 F->setSection(SA->getName());
2927 if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2928 if (EA->isError())
2929 F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2930 else if (EA->isWarning())
2931 F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2934 // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2935 if (FD->isInlineBuiltinDeclaration()) {
2936 const FunctionDecl *FDBody;
2937 bool HasBody = FD->hasBody(FDBody);
2938 (void)HasBody;
2939 assert(HasBody && "Inline builtin declarations should always have an "
2940 "available body!");
2941 if (shouldEmitFunction(FDBody))
2942 F->addFnAttr(llvm::Attribute::NoBuiltin);
2945 if (FD->isReplaceableGlobalAllocationFunction()) {
2946 // A replaceable global allocation function does not act like a builtin by
2947 // default, only if it is invoked by a new-expression or delete-expression.
2948 F->addFnAttr(llvm::Attribute::NoBuiltin);
2951 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2952 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2953 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2954 if (MD->isVirtual())
2955 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2957 // Don't emit entries for function declarations in the cross-DSO mode. This
2958 // is handled with better precision by the receiving DSO. But if jump tables
2959 // are non-canonical then we need type metadata in order to produce the local
2960 // jump table.
2961 if (!CodeGenOpts.SanitizeCfiCrossDso ||
2962 !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2963 CreateFunctionTypeMetadataForIcall(FD, F);
2965 if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2966 setKCFIType(FD, F);
2968 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2969 getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2971 if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2972 F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2974 if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2975 // Annotate the callback behavior as metadata:
2976 // - The callback callee (as argument number).
2977 // - The callback payloads (as argument numbers).
2978 llvm::LLVMContext &Ctx = F->getContext();
2979 llvm::MDBuilder MDB(Ctx);
2981 // The payload indices are all but the first one in the encoding. The first
2982 // identifies the callback callee.
2983 int CalleeIdx = *CB->encoding_begin();
2984 ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2985 F->addMetadata(llvm::LLVMContext::MD_callback,
2986 *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2987 CalleeIdx, PayloadIndices,
2988 /* VarArgsArePassed */ false)}));
2992 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2993 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2994 "Only globals with definition can force usage.");
2995 LLVMUsed.emplace_back(GV);
2998 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2999 assert(!GV->isDeclaration() &&
3000 "Only globals with definition can force usage.");
3001 LLVMCompilerUsed.emplace_back(GV);
3004 void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
3005 assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
3006 "Only globals with definition can force usage.");
3007 if (getTriple().isOSBinFormatELF())
3008 LLVMCompilerUsed.emplace_back(GV);
3009 else
3010 LLVMUsed.emplace_back(GV);
3013 static void emitUsed(CodeGenModule &CGM, StringRef Name,
3014 std::vector<llvm::WeakTrackingVH> &List) {
3015 // Don't create llvm.used if there is no need.
3016 if (List.empty())
3017 return;
3019 // Convert List to what ConstantArray needs.
3020 SmallVector<llvm::Constant*, 8> UsedArray;
3021 UsedArray.resize(List.size());
3022 for (unsigned i = 0, e = List.size(); i != e; ++i) {
3023 UsedArray[i] =
3024 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
3025 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
3028 if (UsedArray.empty())
3029 return;
3030 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
3032 auto *GV = new llvm::GlobalVariable(
3033 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
3034 llvm::ConstantArray::get(ATy, UsedArray), Name);
3036 GV->setSection("llvm.metadata");
3039 void CodeGenModule::emitLLVMUsed() {
3040 emitUsed(*this, "llvm.used", LLVMUsed);
3041 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
3044 void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
3045 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
3046 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3049 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
3050 llvm::SmallString<32> Opt;
3051 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
3052 if (Opt.empty())
3053 return;
3054 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3055 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
3058 void CodeGenModule::AddDependentLib(StringRef Lib) {
3059 auto &C = getLLVMContext();
3060 if (getTarget().getTriple().isOSBinFormatELF()) {
3061 ELFDependentLibraries.push_back(
3062 llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
3063 return;
3066 llvm::SmallString<24> Opt;
3067 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
3068 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
3069 LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
3072 /// Add link options implied by the given module, including modules
3073 /// it depends on, using a postorder walk.
3074 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
3075 SmallVectorImpl<llvm::MDNode *> &Metadata,
3076 llvm::SmallPtrSet<Module *, 16> &Visited) {
3077 // Import this module's parent.
3078 if (Mod->Parent && Visited.insert(Mod->Parent).second) {
3079 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
3082 // Import this module's dependencies.
3083 for (Module *Import : llvm::reverse(Mod->Imports)) {
3084 if (Visited.insert(Import).second)
3085 addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
3088 // Add linker options to link against the libraries/frameworks
3089 // described by this module.
3090 llvm::LLVMContext &Context = CGM.getLLVMContext();
3091 bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
3093 // For modules that use export_as for linking, use that module
3094 // name instead.
3095 if (Mod->UseExportAsModuleLinkName)
3096 return;
3098 for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
3099 // Link against a framework. Frameworks are currently Darwin only, so we
3100 // don't to ask TargetCodeGenInfo for the spelling of the linker option.
3101 if (LL.IsFramework) {
3102 llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
3103 llvm::MDString::get(Context, LL.Library)};
3105 Metadata.push_back(llvm::MDNode::get(Context, Args));
3106 continue;
3109 // Link against a library.
3110 if (IsELF) {
3111 llvm::Metadata *Args[2] = {
3112 llvm::MDString::get(Context, "lib"),
3113 llvm::MDString::get(Context, LL.Library),
3115 Metadata.push_back(llvm::MDNode::get(Context, Args));
3116 } else {
3117 llvm::SmallString<24> Opt;
3118 CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
3119 auto *OptString = llvm::MDString::get(Context, Opt);
3120 Metadata.push_back(llvm::MDNode::get(Context, OptString));
3125 void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
3126 assert(Primary->isNamedModuleUnit() &&
3127 "We should only emit module initializers for named modules.");
3129 // Emit the initializers in the order that sub-modules appear in the
3130 // source, first Global Module Fragments, if present.
3131 if (auto GMF = Primary->getGlobalModuleFragment()) {
3132 for (Decl *D : getContext().getModuleInitializers(GMF)) {
3133 if (isa<ImportDecl>(D))
3134 continue;
3135 assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3136 EmitTopLevelDecl(D);
3139 // Second any associated with the module, itself.
3140 for (Decl *D : getContext().getModuleInitializers(Primary)) {
3141 // Skip import decls, the inits for those are called explicitly.
3142 if (isa<ImportDecl>(D))
3143 continue;
3144 EmitTopLevelDecl(D);
3146 // Third any associated with the Privat eMOdule Fragment, if present.
3147 if (auto PMF = Primary->getPrivateModuleFragment()) {
3148 for (Decl *D : getContext().getModuleInitializers(PMF)) {
3149 // Skip import decls, the inits for those are called explicitly.
3150 if (isa<ImportDecl>(D))
3151 continue;
3152 assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3153 EmitTopLevelDecl(D);
3158 void CodeGenModule::EmitModuleLinkOptions() {
3159 // Collect the set of all of the modules we want to visit to emit link
3160 // options, which is essentially the imported modules and all of their
3161 // non-explicit child modules.
3162 llvm::SetVector<clang::Module *> LinkModules;
3163 llvm::SmallPtrSet<clang::Module *, 16> Visited;
3164 SmallVector<clang::Module *, 16> Stack;
3166 // Seed the stack with imported modules.
3167 for (Module *M : ImportedModules) {
3168 // Do not add any link flags when an implementation TU of a module imports
3169 // a header of that same module.
3170 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3171 !getLangOpts().isCompilingModule())
3172 continue;
3173 if (Visited.insert(M).second)
3174 Stack.push_back(M);
3177 // Find all of the modules to import, making a little effort to prune
3178 // non-leaf modules.
3179 while (!Stack.empty()) {
3180 clang::Module *Mod = Stack.pop_back_val();
3182 bool AnyChildren = false;
3184 // Visit the submodules of this module.
3185 for (const auto &SM : Mod->submodules()) {
3186 // Skip explicit children; they need to be explicitly imported to be
3187 // linked against.
3188 if (SM->IsExplicit)
3189 continue;
3191 if (Visited.insert(SM).second) {
3192 Stack.push_back(SM);
3193 AnyChildren = true;
3197 // We didn't find any children, so add this module to the list of
3198 // modules to link against.
3199 if (!AnyChildren) {
3200 LinkModules.insert(Mod);
3204 // Add link options for all of the imported modules in reverse topological
3205 // order. We don't do anything to try to order import link flags with respect
3206 // to linker options inserted by things like #pragma comment().
3207 SmallVector<llvm::MDNode *, 16> MetadataArgs;
3208 Visited.clear();
3209 for (Module *M : LinkModules)
3210 if (Visited.insert(M).second)
3211 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3212 std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3213 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3215 // Add the linker options metadata flag.
3216 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3217 for (auto *MD : LinkerOptionsMetadata)
3218 NMD->addOperand(MD);
3221 void CodeGenModule::EmitDeferred() {
3222 // Emit deferred declare target declarations.
3223 if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3224 getOpenMPRuntime().emitDeferredTargetDecls();
3226 // Emit code for any potentially referenced deferred decls. Since a
3227 // previously unused static decl may become used during the generation of code
3228 // for a static function, iterate until no changes are made.
3230 if (!DeferredVTables.empty()) {
3231 EmitDeferredVTables();
3233 // Emitting a vtable doesn't directly cause more vtables to
3234 // become deferred, although it can cause functions to be
3235 // emitted that then need those vtables.
3236 assert(DeferredVTables.empty());
3239 // Emit CUDA/HIP static device variables referenced by host code only.
3240 // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3241 // needed for further handling.
3242 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3243 llvm::append_range(DeferredDeclsToEmit,
3244 getContext().CUDADeviceVarODRUsedByHost);
3246 // Stop if we're out of both deferred vtables and deferred declarations.
3247 if (DeferredDeclsToEmit.empty())
3248 return;
3250 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3251 // work, it will not interfere with this.
3252 std::vector<GlobalDecl> CurDeclsToEmit;
3253 CurDeclsToEmit.swap(DeferredDeclsToEmit);
3255 for (GlobalDecl &D : CurDeclsToEmit) {
3256 // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3257 // to get GlobalValue with exactly the type we need, not something that
3258 // might had been created for another decl with the same mangled name but
3259 // different type.
3260 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3261 GetAddrOfGlobal(D, ForDefinition));
3263 // In case of different address spaces, we may still get a cast, even with
3264 // IsForDefinition equal to true. Query mangled names table to get
3265 // GlobalValue.
3266 if (!GV)
3267 GV = GetGlobalValue(getMangledName(D));
3269 // Make sure GetGlobalValue returned non-null.
3270 assert(GV);
3272 // Check to see if we've already emitted this. This is necessary
3273 // for a couple of reasons: first, decls can end up in the
3274 // deferred-decls queue multiple times, and second, decls can end
3275 // up with definitions in unusual ways (e.g. by an extern inline
3276 // function acquiring a strong function redefinition). Just
3277 // ignore these cases.
3278 if (!GV->isDeclaration())
3279 continue;
3281 // If this is OpenMP, check if it is legal to emit this global normally.
3282 if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3283 continue;
3285 // Otherwise, emit the definition and move on to the next one.
3286 EmitGlobalDefinition(D, GV);
3288 // If we found out that we need to emit more decls, do that recursively.
3289 // This has the advantage that the decls are emitted in a DFS and related
3290 // ones are close together, which is convenient for testing.
3291 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3292 EmitDeferred();
3293 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3298 void CodeGenModule::EmitVTablesOpportunistically() {
3299 // Try to emit external vtables as available_externally if they have emitted
3300 // all inlined virtual functions. It runs after EmitDeferred() and therefore
3301 // is not allowed to create new references to things that need to be emitted
3302 // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3304 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3305 && "Only emit opportunistic vtables with optimizations");
3307 for (const CXXRecordDecl *RD : OpportunisticVTables) {
3308 assert(getVTables().isVTableExternal(RD) &&
3309 "This queue should only contain external vtables");
3310 if (getCXXABI().canSpeculativelyEmitVTable(RD))
3311 VTables.GenerateClassData(RD);
3313 OpportunisticVTables.clear();
3316 void CodeGenModule::EmitGlobalAnnotations() {
3317 for (const auto& [MangledName, VD] : DeferredAnnotations) {
3318 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3319 if (GV)
3320 AddGlobalAnnotations(VD, GV);
3322 DeferredAnnotations.clear();
3324 if (Annotations.empty())
3325 return;
3327 // Create a new global variable for the ConstantStruct in the Module.
3328 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3329 Annotations[0]->getType(), Annotations.size()), Annotations);
3330 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3331 llvm::GlobalValue::AppendingLinkage,
3332 Array, "llvm.global.annotations");
3333 gv->setSection(AnnotationSection);
3336 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3337 llvm::Constant *&AStr = AnnotationStrings[Str];
3338 if (AStr)
3339 return AStr;
3341 // Not found yet, create a new global.
3342 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3343 auto *gv = new llvm::GlobalVariable(
3344 getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3345 ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3346 ConstGlobalsPtrTy->getAddressSpace());
3347 gv->setSection(AnnotationSection);
3348 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3349 AStr = gv;
3350 return gv;
3353 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3354 SourceManager &SM = getContext().getSourceManager();
3355 PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3356 if (PLoc.isValid())
3357 return EmitAnnotationString(PLoc.getFilename());
3358 return EmitAnnotationString(SM.getBufferName(Loc));
3361 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3362 SourceManager &SM = getContext().getSourceManager();
3363 PresumedLoc PLoc = SM.getPresumedLoc(L);
3364 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3365 SM.getExpansionLineNumber(L);
3366 return llvm::ConstantInt::get(Int32Ty, LineNo);
3369 llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3370 ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3371 if (Exprs.empty())
3372 return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3374 llvm::FoldingSetNodeID ID;
3375 for (Expr *E : Exprs) {
3376 ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3378 llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3379 if (Lookup)
3380 return Lookup;
3382 llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3383 LLVMArgs.reserve(Exprs.size());
3384 ConstantEmitter ConstEmiter(*this);
3385 llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3386 const auto *CE = cast<clang::ConstantExpr>(E);
3387 return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3388 CE->getType());
3390 auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3391 auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3392 llvm::GlobalValue::PrivateLinkage, Struct,
3393 ".args");
3394 GV->setSection(AnnotationSection);
3395 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3397 Lookup = GV;
3398 return GV;
3401 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3402 const AnnotateAttr *AA,
3403 SourceLocation L) {
3404 // Get the globals for file name, annotation, and the line number.
3405 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3406 *UnitGV = EmitAnnotationUnit(L),
3407 *LineNoCst = EmitAnnotationLineNo(L),
3408 *Args = EmitAnnotationArgs(AA);
3410 llvm::Constant *GVInGlobalsAS = GV;
3411 if (GV->getAddressSpace() !=
3412 getDataLayout().getDefaultGlobalsAddressSpace()) {
3413 GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3415 llvm::PointerType::get(
3416 GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3419 // Create the ConstantStruct for the global annotation.
3420 llvm::Constant *Fields[] = {
3421 GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3423 return llvm::ConstantStruct::getAnon(Fields);
3426 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3427 llvm::GlobalValue *GV) {
3428 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3429 // Get the struct elements for these annotations.
3430 for (const auto *I : D->specific_attrs<AnnotateAttr>())
3431 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3434 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3435 SourceLocation Loc) const {
3436 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3437 // NoSanitize by function name.
3438 if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3439 return true;
3440 // NoSanitize by location. Check "mainfile" prefix.
3441 auto &SM = Context.getSourceManager();
3442 FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3443 if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3444 return true;
3446 // Check "src" prefix.
3447 if (Loc.isValid())
3448 return NoSanitizeL.containsLocation(Kind, Loc);
3449 // If location is unknown, this may be a compiler-generated function. Assume
3450 // it's located in the main file.
3451 return NoSanitizeL.containsFile(Kind, MainFile.getName());
3454 bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3455 llvm::GlobalVariable *GV,
3456 SourceLocation Loc, QualType Ty,
3457 StringRef Category) const {
3458 const auto &NoSanitizeL = getContext().getNoSanitizeList();
3459 if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3460 return true;
3461 auto &SM = Context.getSourceManager();
3462 if (NoSanitizeL.containsMainFile(
3463 Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3464 Category))
3465 return true;
3466 if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3467 return true;
3469 // Check global type.
3470 if (!Ty.isNull()) {
3471 // Drill down the array types: if global variable of a fixed type is
3472 // not sanitized, we also don't instrument arrays of them.
3473 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3474 Ty = AT->getElementType();
3475 Ty = Ty.getCanonicalType().getUnqualifiedType();
3476 // Only record types (classes, structs etc.) are ignored.
3477 if (Ty->isRecordType()) {
3478 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3479 if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3480 return true;
3483 return false;
3486 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3487 StringRef Category) const {
3488 const auto &XRayFilter = getContext().getXRayFilter();
3489 using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3490 auto Attr = ImbueAttr::NONE;
3491 if (Loc.isValid())
3492 Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3493 if (Attr == ImbueAttr::NONE)
3494 Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3495 switch (Attr) {
3496 case ImbueAttr::NONE:
3497 return false;
3498 case ImbueAttr::ALWAYS:
3499 Fn->addFnAttr("function-instrument", "xray-always");
3500 break;
3501 case ImbueAttr::ALWAYS_ARG1:
3502 Fn->addFnAttr("function-instrument", "xray-always");
3503 Fn->addFnAttr("xray-log-args", "1");
3504 break;
3505 case ImbueAttr::NEVER:
3506 Fn->addFnAttr("function-instrument", "xray-never");
3507 break;
3509 return true;
3512 ProfileList::ExclusionType
3513 CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3514 SourceLocation Loc) const {
3515 const auto &ProfileList = getContext().getProfileList();
3516 // If the profile list is empty, then instrument everything.
3517 if (ProfileList.isEmpty())
3518 return ProfileList::Allow;
3519 CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3520 // First, check the function name.
3521 if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3522 return *V;
3523 // Next, check the source location.
3524 if (Loc.isValid())
3525 if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3526 return *V;
3527 // If location is unknown, this may be a compiler-generated function. Assume
3528 // it's located in the main file.
3529 auto &SM = Context.getSourceManager();
3530 if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3531 if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3532 return *V;
3533 return ProfileList.getDefault(Kind);
3536 ProfileList::ExclusionType
3537 CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3538 SourceLocation Loc) const {
3539 auto V = isFunctionBlockedByProfileList(Fn, Loc);
3540 if (V != ProfileList::Allow)
3541 return V;
3543 auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3544 if (NumGroups > 1) {
3545 auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3546 if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3547 return ProfileList::Skip;
3549 return ProfileList::Allow;
3552 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3553 // Never defer when EmitAllDecls is specified.
3554 if (LangOpts.EmitAllDecls)
3555 return true;
3557 const auto *VD = dyn_cast<VarDecl>(Global);
3558 if (VD &&
3559 ((CodeGenOpts.KeepPersistentStorageVariables &&
3560 (VD->getStorageDuration() == SD_Static ||
3561 VD->getStorageDuration() == SD_Thread)) ||
3562 (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3563 VD->getType().isConstQualified())))
3564 return true;
3566 return getContext().DeclMustBeEmitted(Global);
3569 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3570 // In OpenMP 5.0 variables and function may be marked as
3571 // device_type(host/nohost) and we should not emit them eagerly unless we sure
3572 // that they must be emitted on the host/device. To be sure we need to have
3573 // seen a declare target with an explicit mentioning of the function, we know
3574 // we have if the level of the declare target attribute is -1. Note that we
3575 // check somewhere else if we should emit this at all.
3576 if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3577 std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3578 OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3579 if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3580 return false;
3583 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3584 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3585 // Implicit template instantiations may change linkage if they are later
3586 // explicitly instantiated, so they should not be emitted eagerly.
3587 return false;
3588 // Defer until all versions have been semantically checked.
3589 if (FD->hasAttr<TargetVersionAttr>() && !FD->isMultiVersion())
3590 return false;
3592 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3593 if (Context.getInlineVariableDefinitionKind(VD) ==
3594 ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3595 // A definition of an inline constexpr static data member may change
3596 // linkage later if it's redeclared outside the class.
3597 return false;
3598 if (CXX20ModuleInits && VD->getOwningModule() &&
3599 !VD->getOwningModule()->isModuleMapModule()) {
3600 // For CXX20, module-owned initializers need to be deferred, since it is
3601 // not known at this point if they will be run for the current module or
3602 // as part of the initializer for an imported one.
3603 return false;
3606 // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3607 // codegen for global variables, because they may be marked as threadprivate.
3608 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3609 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3610 !Global->getType().isConstantStorage(getContext(), false, false) &&
3611 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3612 return false;
3614 return true;
3617 ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3618 StringRef Name = getMangledName(GD);
3620 // The UUID descriptor should be pointer aligned.
3621 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3623 // Look for an existing global.
3624 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3625 return ConstantAddress(GV, GV->getValueType(), Alignment);
3627 ConstantEmitter Emitter(*this);
3628 llvm::Constant *Init;
3630 APValue &V = GD->getAsAPValue();
3631 if (!V.isAbsent()) {
3632 // If possible, emit the APValue version of the initializer. In particular,
3633 // this gets the type of the constant right.
3634 Init = Emitter.emitForInitializer(
3635 GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3636 } else {
3637 // As a fallback, directly construct the constant.
3638 // FIXME: This may get padding wrong under esoteric struct layout rules.
3639 // MSVC appears to create a complete type 'struct __s_GUID' that it
3640 // presumably uses to represent these constants.
3641 MSGuidDecl::Parts Parts = GD->getParts();
3642 llvm::Constant *Fields[4] = {
3643 llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3644 llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3645 llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3646 llvm::ConstantDataArray::getRaw(
3647 StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3648 Int8Ty)};
3649 Init = llvm::ConstantStruct::getAnon(Fields);
3652 auto *GV = new llvm::GlobalVariable(
3653 getModule(), Init->getType(),
3654 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3655 if (supportsCOMDAT())
3656 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3657 setDSOLocal(GV);
3659 if (!V.isAbsent()) {
3660 Emitter.finalize(GV);
3661 return ConstantAddress(GV, GV->getValueType(), Alignment);
3664 llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3665 return ConstantAddress(GV, Ty, Alignment);
3668 ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3669 const UnnamedGlobalConstantDecl *GCD) {
3670 CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3672 llvm::GlobalVariable **Entry = nullptr;
3673 Entry = &UnnamedGlobalConstantDeclMap[GCD];
3674 if (*Entry)
3675 return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3677 ConstantEmitter Emitter(*this);
3678 llvm::Constant *Init;
3680 const APValue &V = GCD->getValue();
3682 assert(!V.isAbsent());
3683 Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3684 GCD->getType());
3686 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3687 /*isConstant=*/true,
3688 llvm::GlobalValue::PrivateLinkage, Init,
3689 ".constant");
3690 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3691 GV->setAlignment(Alignment.getAsAlign());
3693 Emitter.finalize(GV);
3695 *Entry = GV;
3696 return ConstantAddress(GV, GV->getValueType(), Alignment);
3699 ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3700 const TemplateParamObjectDecl *TPO) {
3701 StringRef Name = getMangledName(TPO);
3702 CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3704 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3705 return ConstantAddress(GV, GV->getValueType(), Alignment);
3707 ConstantEmitter Emitter(*this);
3708 llvm::Constant *Init = Emitter.emitForInitializer(
3709 TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3711 if (!Init) {
3712 ErrorUnsupported(TPO, "template parameter object");
3713 return ConstantAddress::invalid();
3716 llvm::GlobalValue::LinkageTypes Linkage =
3717 isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3718 ? llvm::GlobalValue::LinkOnceODRLinkage
3719 : llvm::GlobalValue::InternalLinkage;
3720 auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3721 /*isConstant=*/true, Linkage, Init, Name);
3722 setGVProperties(GV, TPO);
3723 if (supportsCOMDAT())
3724 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3725 Emitter.finalize(GV);
3727 return ConstantAddress(GV, GV->getValueType(), Alignment);
3730 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3731 const AliasAttr *AA = VD->getAttr<AliasAttr>();
3732 assert(AA && "No alias?");
3734 CharUnits Alignment = getContext().getDeclAlign(VD);
3735 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3737 // See if there is already something with the target's name in the module.
3738 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3739 if (Entry)
3740 return ConstantAddress(Entry, DeclTy, Alignment);
3742 llvm::Constant *Aliasee;
3743 if (isa<llvm::FunctionType>(DeclTy))
3744 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3745 GlobalDecl(cast<FunctionDecl>(VD)),
3746 /*ForVTable=*/false);
3747 else
3748 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3749 nullptr);
3751 auto *F = cast<llvm::GlobalValue>(Aliasee);
3752 F->setLinkage(llvm::Function::ExternalWeakLinkage);
3753 WeakRefReferences.insert(F);
3755 return ConstantAddress(Aliasee, DeclTy, Alignment);
3758 template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3759 if (!D)
3760 return false;
3761 if (auto *A = D->getAttr<AttrT>())
3762 return A->isImplicit();
3763 return D->isImplicit();
3766 bool CodeGenModule::shouldEmitCUDAGlobalVar(const VarDecl *Global) const {
3767 assert(LangOpts.CUDA && "Should not be called by non-CUDA languages");
3768 // We need to emit host-side 'shadows' for all global
3769 // device-side variables because the CUDA runtime needs their
3770 // size and host-side address in order to provide access to
3771 // their device-side incarnations.
3772 return !LangOpts.CUDAIsDevice || Global->hasAttr<CUDADeviceAttr>() ||
3773 Global->hasAttr<CUDAConstantAttr>() ||
3774 Global->hasAttr<CUDASharedAttr>() ||
3775 Global->getType()->isCUDADeviceBuiltinSurfaceType() ||
3776 Global->getType()->isCUDADeviceBuiltinTextureType();
3779 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3780 const auto *Global = cast<ValueDecl>(GD.getDecl());
3782 // Weak references don't produce any output by themselves.
3783 if (Global->hasAttr<WeakRefAttr>())
3784 return;
3786 // If this is an alias definition (which otherwise looks like a declaration)
3787 // emit it now.
3788 if (Global->hasAttr<AliasAttr>())
3789 return EmitAliasDefinition(GD);
3791 // IFunc like an alias whose value is resolved at runtime by calling resolver.
3792 if (Global->hasAttr<IFuncAttr>())
3793 return emitIFuncDefinition(GD);
3795 // If this is a cpu_dispatch multiversion function, emit the resolver.
3796 if (Global->hasAttr<CPUDispatchAttr>())
3797 return emitCPUDispatchDefinition(GD);
3799 // If this is CUDA, be selective about which declarations we emit.
3800 // Non-constexpr non-lambda implicit host device functions are not emitted
3801 // unless they are used on device side.
3802 if (LangOpts.CUDA) {
3803 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3804 "Expected Variable or Function");
3805 if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3806 if (!shouldEmitCUDAGlobalVar(VD))
3807 return;
3808 } else if (LangOpts.CUDAIsDevice) {
3809 const auto *FD = dyn_cast<FunctionDecl>(Global);
3810 if ((!Global->hasAttr<CUDADeviceAttr>() ||
3811 (LangOpts.OffloadImplicitHostDeviceTemplates &&
3812 hasImplicitAttr<CUDAHostAttr>(FD) &&
3813 hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3814 !isLambdaCallOperator(FD) &&
3815 !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3816 !Global->hasAttr<CUDAGlobalAttr>() &&
3817 !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3818 !Global->hasAttr<CUDAHostAttr>()))
3819 return;
3820 // Device-only functions are the only things we skip.
3821 } else if (!Global->hasAttr<CUDAHostAttr>() &&
3822 Global->hasAttr<CUDADeviceAttr>())
3823 return;
3826 if (LangOpts.OpenMP) {
3827 // If this is OpenMP, check if it is legal to emit this global normally.
3828 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3829 return;
3830 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3831 if (MustBeEmitted(Global))
3832 EmitOMPDeclareReduction(DRD);
3833 return;
3835 if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3836 if (MustBeEmitted(Global))
3837 EmitOMPDeclareMapper(DMD);
3838 return;
3842 // Ignore declarations, they will be emitted on their first use.
3843 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3844 // Update deferred annotations with the latest declaration if the function
3845 // function was already used or defined.
3846 if (FD->hasAttr<AnnotateAttr>()) {
3847 StringRef MangledName = getMangledName(GD);
3848 if (GetGlobalValue(MangledName))
3849 DeferredAnnotations[MangledName] = FD;
3852 // Forward declarations are emitted lazily on first use.
3853 if (!FD->doesThisDeclarationHaveABody()) {
3854 if (!FD->doesDeclarationForceExternallyVisibleDefinition() &&
3855 (!FD->isMultiVersion() || !getTarget().getTriple().isAArch64()))
3856 return;
3858 StringRef MangledName = getMangledName(GD);
3860 // Compute the function info and LLVM type.
3861 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3862 llvm::Type *Ty = getTypes().GetFunctionType(FI);
3864 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3865 /*DontDefer=*/false);
3866 return;
3868 } else {
3869 const auto *VD = cast<VarDecl>(Global);
3870 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3871 if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3872 !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3873 if (LangOpts.OpenMP) {
3874 // Emit declaration of the must-be-emitted declare target variable.
3875 if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3876 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3878 // If this variable has external storage and doesn't require special
3879 // link handling we defer to its canonical definition.
3880 if (VD->hasExternalStorage() &&
3881 Res != OMPDeclareTargetDeclAttr::MT_Link)
3882 return;
3884 bool UnifiedMemoryEnabled =
3885 getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3886 if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3887 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3888 !UnifiedMemoryEnabled) {
3889 (void)GetAddrOfGlobalVar(VD);
3890 } else {
3891 assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3892 ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3893 *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3894 UnifiedMemoryEnabled)) &&
3895 "Link clause or to clause with unified memory expected.");
3896 (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3899 return;
3902 // If this declaration may have caused an inline variable definition to
3903 // change linkage, make sure that it's emitted.
3904 if (Context.getInlineVariableDefinitionKind(VD) ==
3905 ASTContext::InlineVariableDefinitionKind::Strong)
3906 GetAddrOfGlobalVar(VD);
3907 return;
3911 // Defer code generation to first use when possible, e.g. if this is an inline
3912 // function. If the global must always be emitted, do it eagerly if possible
3913 // to benefit from cache locality.
3914 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3915 // Emit the definition if it can't be deferred.
3916 EmitGlobalDefinition(GD);
3917 addEmittedDeferredDecl(GD);
3918 return;
3921 // If we're deferring emission of a C++ variable with an
3922 // initializer, remember the order in which it appeared in the file.
3923 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3924 cast<VarDecl>(Global)->hasInit()) {
3925 DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3926 CXXGlobalInits.push_back(nullptr);
3929 StringRef MangledName = getMangledName(GD);
3930 if (GetGlobalValue(MangledName) != nullptr) {
3931 // The value has already been used and should therefore be emitted.
3932 addDeferredDeclToEmit(GD);
3933 } else if (MustBeEmitted(Global)) {
3934 // The value must be emitted, but cannot be emitted eagerly.
3935 assert(!MayBeEmittedEagerly(Global));
3936 addDeferredDeclToEmit(GD);
3937 } else {
3938 // Otherwise, remember that we saw a deferred decl with this name. The
3939 // first use of the mangled name will cause it to move into
3940 // DeferredDeclsToEmit.
3941 DeferredDecls[MangledName] = GD;
3945 // Check if T is a class type with a destructor that's not dllimport.
3946 static bool HasNonDllImportDtor(QualType T) {
3947 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3948 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3949 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3950 return true;
3952 return false;
3955 namespace {
3956 struct FunctionIsDirectlyRecursive
3957 : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3958 const StringRef Name;
3959 const Builtin::Context &BI;
3960 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3961 : Name(N), BI(C) {}
3963 bool VisitCallExpr(const CallExpr *E) {
3964 const FunctionDecl *FD = E->getDirectCallee();
3965 if (!FD)
3966 return false;
3967 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3968 if (Attr && Name == Attr->getLabel())
3969 return true;
3970 unsigned BuiltinID = FD->getBuiltinID();
3971 if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3972 return false;
3973 StringRef BuiltinName = BI.getName(BuiltinID);
3974 if (BuiltinName.starts_with("__builtin_") &&
3975 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3976 return true;
3978 return false;
3981 bool VisitStmt(const Stmt *S) {
3982 for (const Stmt *Child : S->children())
3983 if (Child && this->Visit(Child))
3984 return true;
3985 return false;
3989 // Make sure we're not referencing non-imported vars or functions.
3990 struct DLLImportFunctionVisitor
3991 : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3992 bool SafeToInline = true;
3994 bool shouldVisitImplicitCode() const { return true; }
3996 bool VisitVarDecl(VarDecl *VD) {
3997 if (VD->getTLSKind()) {
3998 // A thread-local variable cannot be imported.
3999 SafeToInline = false;
4000 return SafeToInline;
4003 // A variable definition might imply a destructor call.
4004 if (VD->isThisDeclarationADefinition())
4005 SafeToInline = !HasNonDllImportDtor(VD->getType());
4007 return SafeToInline;
4010 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
4011 if (const auto *D = E->getTemporary()->getDestructor())
4012 SafeToInline = D->hasAttr<DLLImportAttr>();
4013 return SafeToInline;
4016 bool VisitDeclRefExpr(DeclRefExpr *E) {
4017 ValueDecl *VD = E->getDecl();
4018 if (isa<FunctionDecl>(VD))
4019 SafeToInline = VD->hasAttr<DLLImportAttr>();
4020 else if (VarDecl *V = dyn_cast<VarDecl>(VD))
4021 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
4022 return SafeToInline;
4025 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
4026 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
4027 return SafeToInline;
4030 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4031 CXXMethodDecl *M = E->getMethodDecl();
4032 if (!M) {
4033 // Call through a pointer to member function. This is safe to inline.
4034 SafeToInline = true;
4035 } else {
4036 SafeToInline = M->hasAttr<DLLImportAttr>();
4038 return SafeToInline;
4041 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
4042 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
4043 return SafeToInline;
4046 bool VisitCXXNewExpr(CXXNewExpr *E) {
4047 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
4048 return SafeToInline;
4053 // isTriviallyRecursive - Check if this function calls another
4054 // decl that, because of the asm attribute or the other decl being a builtin,
4055 // ends up pointing to itself.
4056 bool
4057 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
4058 StringRef Name;
4059 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
4060 // asm labels are a special kind of mangling we have to support.
4061 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
4062 if (!Attr)
4063 return false;
4064 Name = Attr->getLabel();
4065 } else {
4066 Name = FD->getName();
4069 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
4070 const Stmt *Body = FD->getBody();
4071 return Body ? Walker.Visit(Body) : false;
4074 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
4075 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
4076 return true;
4078 const auto *F = cast<FunctionDecl>(GD.getDecl());
4079 // Inline builtins declaration must be emitted. They often are fortified
4080 // functions.
4081 if (F->isInlineBuiltinDeclaration())
4082 return true;
4084 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
4085 return false;
4087 // We don't import function bodies from other named module units since that
4088 // behavior may break ABI compatibility of the current unit.
4089 if (const Module *M = F->getOwningModule();
4090 M && M->getTopLevelModule()->isNamedModule() &&
4091 getContext().getCurrentNamedModule() != M->getTopLevelModule()) {
4092 // There are practices to mark template member function as always-inline
4093 // and mark the template as extern explicit instantiation but not give
4094 // the definition for member function. So we have to emit the function
4095 // from explicitly instantiation with always-inline.
4097 // See https://github.com/llvm/llvm-project/issues/86893 for details.
4099 // TODO: Maybe it is better to give it a warning if we call a non-inline
4100 // function from other module units which is marked as always-inline.
4101 if (!F->isTemplateInstantiation() || !F->hasAttr<AlwaysInlineAttr>()) {
4102 return false;
4106 if (F->hasAttr<NoInlineAttr>())
4107 return false;
4109 if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
4110 // Check whether it would be safe to inline this dllimport function.
4111 DLLImportFunctionVisitor Visitor;
4112 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
4113 if (!Visitor.SafeToInline)
4114 return false;
4116 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
4117 // Implicit destructor invocations aren't captured in the AST, so the
4118 // check above can't see them. Check for them manually here.
4119 for (const Decl *Member : Dtor->getParent()->decls())
4120 if (isa<FieldDecl>(Member))
4121 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
4122 return false;
4123 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
4124 if (HasNonDllImportDtor(B.getType()))
4125 return false;
4129 // PR9614. Avoid cases where the source code is lying to us. An available
4130 // externally function should have an equivalent function somewhere else,
4131 // but a function that calls itself through asm label/`__builtin_` trickery is
4132 // clearly not equivalent to the real implementation.
4133 // This happens in glibc's btowc and in some configure checks.
4134 return !isTriviallyRecursive(F);
4137 bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
4138 return CodeGenOpts.OptimizationLevel > 0;
4141 void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
4142 llvm::GlobalValue *GV) {
4143 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4145 if (FD->isCPUSpecificMultiVersion()) {
4146 auto *Spec = FD->getAttr<CPUSpecificAttr>();
4147 for (unsigned I = 0; I < Spec->cpus_size(); ++I)
4148 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4149 } else if (auto *TC = FD->getAttr<TargetClonesAttr>()) {
4150 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I)
4151 // AArch64 favors the default target version over the clone if any.
4152 if ((!TC->isDefaultVersion(I) || !getTarget().getTriple().isAArch64()) &&
4153 TC->isFirstOfVersion(I))
4154 EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4155 // Ensure that the resolver function is also emitted.
4156 GetOrCreateMultiVersionResolver(GD);
4157 } else
4158 EmitGlobalFunctionDefinition(GD, GV);
4160 // Defer the resolver emission until we can reason whether the TU
4161 // contains a default target version implementation.
4162 if (FD->isTargetVersionMultiVersion())
4163 AddDeferredMultiVersionResolverToEmit(GD);
4166 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4167 const auto *D = cast<ValueDecl>(GD.getDecl());
4169 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4170 Context.getSourceManager(),
4171 "Generating code for declaration");
4173 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4174 // At -O0, don't generate IR for functions with available_externally
4175 // linkage.
4176 if (!shouldEmitFunction(GD))
4177 return;
4179 llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4180 std::string Name;
4181 llvm::raw_string_ostream OS(Name);
4182 FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4183 /*Qualified=*/true);
4184 return Name;
4187 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4188 // Make sure to emit the definition(s) before we emit the thunks.
4189 // This is necessary for the generation of certain thunks.
4190 if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4191 ABI->emitCXXStructor(GD);
4192 else if (FD->isMultiVersion())
4193 EmitMultiVersionFunctionDefinition(GD, GV);
4194 else
4195 EmitGlobalFunctionDefinition(GD, GV);
4197 if (Method->isVirtual())
4198 getVTables().EmitThunks(GD);
4200 return;
4203 if (FD->isMultiVersion())
4204 return EmitMultiVersionFunctionDefinition(GD, GV);
4205 return EmitGlobalFunctionDefinition(GD, GV);
4208 if (const auto *VD = dyn_cast<VarDecl>(D))
4209 return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4211 llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4214 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4215 llvm::Function *NewFn);
4217 static unsigned
4218 TargetMVPriority(const TargetInfo &TI,
4219 const CodeGenFunction::MultiVersionResolverOption &RO) {
4220 unsigned Priority = 0;
4221 unsigned NumFeatures = 0;
4222 for (StringRef Feat : RO.Conditions.Features) {
4223 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4224 NumFeatures++;
4227 if (!RO.Conditions.Architecture.empty())
4228 Priority = std::max(
4229 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4231 Priority += TI.multiVersionFeatureCost() * NumFeatures;
4233 return Priority;
4236 // Multiversion functions should be at most 'WeakODRLinkage' so that a different
4237 // TU can forward declare the function without causing problems. Particularly
4238 // in the cases of CPUDispatch, this causes issues. This also makes sure we
4239 // work with internal linkage functions, so that the same function name can be
4240 // used with internal linkage in multiple TUs.
4241 static llvm::GlobalValue::LinkageTypes
4242 getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) {
4243 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4244 if (FD->getFormalLinkage() == Linkage::Internal)
4245 return llvm::GlobalValue::InternalLinkage;
4246 return llvm::GlobalValue::WeakODRLinkage;
4249 void CodeGenModule::emitMultiVersionFunctions() {
4250 std::vector<GlobalDecl> MVFuncsToEmit;
4251 MultiVersionFuncs.swap(MVFuncsToEmit);
4252 for (GlobalDecl GD : MVFuncsToEmit) {
4253 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4254 assert(FD && "Expected a FunctionDecl");
4256 auto createFunction = [&](const FunctionDecl *Decl, unsigned MVIdx = 0) {
4257 GlobalDecl CurGD{Decl->isDefined() ? Decl->getDefinition() : Decl, MVIdx};
4258 StringRef MangledName = getMangledName(CurGD);
4259 llvm::Constant *Func = GetGlobalValue(MangledName);
4260 if (!Func) {
4261 if (Decl->isDefined()) {
4262 EmitGlobalFunctionDefinition(CurGD, nullptr);
4263 Func = GetGlobalValue(MangledName);
4264 } else {
4265 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD);
4266 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4267 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4268 /*DontDefer=*/false, ForDefinition);
4270 assert(Func && "This should have just been created");
4272 return cast<llvm::Function>(Func);
4275 // For AArch64, a resolver is only emitted if a function marked with
4276 // target_version("default")) or target_clones() is present and defined
4277 // in this TU. For other architectures it is always emitted.
4278 bool ShouldEmitResolver = !getTarget().getTriple().isAArch64();
4279 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4281 getContext().forEachMultiversionedFunctionVersion(
4282 FD, [&](const FunctionDecl *CurFD) {
4283 llvm::SmallVector<StringRef, 8> Feats;
4284 bool IsDefined = CurFD->doesThisDeclarationHaveABody();
4286 if (const auto *TA = CurFD->getAttr<TargetAttr>()) {
4287 TA->getAddedFeatures(Feats);
4288 llvm::Function *Func = createFunction(CurFD);
4289 Options.emplace_back(Func, TA->getArchitecture(), Feats);
4290 } else if (const auto *TVA = CurFD->getAttr<TargetVersionAttr>()) {
4291 if (TVA->isDefaultVersion() && IsDefined)
4292 ShouldEmitResolver = true;
4293 llvm::Function *Func = createFunction(CurFD);
4294 if (getTarget().getTriple().isRISCV()) {
4295 Feats.push_back(TVA->getName());
4296 } else {
4297 assert(getTarget().getTriple().isAArch64());
4298 TVA->getFeatures(Feats);
4300 Options.emplace_back(Func, /*Architecture*/ "", Feats);
4301 } else if (const auto *TC = CurFD->getAttr<TargetClonesAttr>()) {
4302 if (IsDefined)
4303 ShouldEmitResolver = true;
4304 for (unsigned I = 0; I < TC->featuresStrs_size(); ++I) {
4305 if (!TC->isFirstOfVersion(I))
4306 continue;
4308 llvm::Function *Func = createFunction(CurFD, I);
4309 StringRef Architecture;
4310 Feats.clear();
4311 if (getTarget().getTriple().isAArch64())
4312 TC->getFeatures(Feats, I);
4313 else if (getTarget().getTriple().isRISCV()) {
4314 StringRef Version = TC->getFeatureStr(I);
4315 Feats.push_back(Version);
4316 } else {
4317 StringRef Version = TC->getFeatureStr(I);
4318 if (Version.starts_with("arch="))
4319 Architecture = Version.drop_front(sizeof("arch=") - 1);
4320 else if (Version != "default")
4321 Feats.push_back(Version);
4323 Options.emplace_back(Func, Architecture, Feats);
4325 } else
4326 llvm_unreachable("unexpected MultiVersionKind");
4329 if (!ShouldEmitResolver)
4330 continue;
4332 llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4333 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4334 ResolverConstant = IFunc->getResolver();
4335 if (FD->isTargetClonesMultiVersion() &&
4336 !getTarget().getTriple().isAArch64()) {
4337 std::string MangledName = getMangledNameImpl(
4338 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4339 if (!GetGlobalValue(MangledName + ".ifunc")) {
4340 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4341 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4342 // In prior versions of Clang, the mangling for ifuncs incorrectly
4343 // included an .ifunc suffix. This alias is generated for backward
4344 // compatibility. It is deprecated, and may be removed in the future.
4345 auto *Alias = llvm::GlobalAlias::create(
4346 DeclTy, 0, getMultiversionLinkage(*this, GD),
4347 MangledName + ".ifunc", IFunc, &getModule());
4348 SetCommonAttributes(FD, Alias);
4352 llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4354 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4356 if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4357 ResolverFunc->setComdat(
4358 getModule().getOrInsertComdat(ResolverFunc->getName()));
4360 const TargetInfo &TI = getTarget();
4361 llvm::stable_sort(
4362 Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4363 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4364 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4366 CodeGenFunction CGF(*this);
4367 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4370 // Ensure that any additions to the deferred decls list caused by emitting a
4371 // variant are emitted. This can happen when the variant itself is inline and
4372 // calls a function without linkage.
4373 if (!MVFuncsToEmit.empty())
4374 EmitDeferred();
4376 // Ensure that any additions to the multiversion funcs list from either the
4377 // deferred decls or the multiversion functions themselves are emitted.
4378 if (!MultiVersionFuncs.empty())
4379 emitMultiVersionFunctions();
4382 static void replaceDeclarationWith(llvm::GlobalValue *Old,
4383 llvm::Constant *New) {
4384 assert(cast<llvm::Function>(Old)->isDeclaration() && "Not a declaration");
4385 New->takeName(Old);
4386 Old->replaceAllUsesWith(New);
4387 Old->eraseFromParent();
4390 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4391 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4392 assert(FD && "Not a FunctionDecl?");
4393 assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4394 const auto *DD = FD->getAttr<CPUDispatchAttr>();
4395 assert(DD && "Not a cpu_dispatch Function?");
4397 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4398 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4400 StringRef ResolverName = getMangledName(GD);
4401 UpdateMultiVersionNames(GD, FD, ResolverName);
4403 llvm::Type *ResolverType;
4404 GlobalDecl ResolverGD;
4405 if (getTarget().supportsIFunc()) {
4406 ResolverType = llvm::FunctionType::get(
4407 llvm::PointerType::get(DeclTy,
4408 getTypes().getTargetAddressSpace(FD->getType())),
4409 false);
4411 else {
4412 ResolverType = DeclTy;
4413 ResolverGD = GD;
4416 auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4417 ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4418 ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4419 if (supportsCOMDAT())
4420 ResolverFunc->setComdat(
4421 getModule().getOrInsertComdat(ResolverFunc->getName()));
4423 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4424 const TargetInfo &Target = getTarget();
4425 unsigned Index = 0;
4426 for (const IdentifierInfo *II : DD->cpus()) {
4427 // Get the name of the target function so we can look it up/create it.
4428 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4429 getCPUSpecificMangling(*this, II->getName());
4431 llvm::Constant *Func = GetGlobalValue(MangledName);
4433 if (!Func) {
4434 GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4435 if (ExistingDecl.getDecl() &&
4436 ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4437 EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4438 Func = GetGlobalValue(MangledName);
4439 } else {
4440 if (!ExistingDecl.getDecl())
4441 ExistingDecl = GD.getWithMultiVersionIndex(Index);
4443 Func = GetOrCreateLLVMFunction(
4444 MangledName, DeclTy, ExistingDecl,
4445 /*ForVTable=*/false, /*DontDefer=*/true,
4446 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4450 llvm::SmallVector<StringRef, 32> Features;
4451 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4452 llvm::transform(Features, Features.begin(),
4453 [](StringRef Str) { return Str.substr(1); });
4454 llvm::erase_if(Features, [&Target](StringRef Feat) {
4455 return !Target.validateCpuSupports(Feat);
4457 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4458 ++Index;
4461 llvm::stable_sort(
4462 Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4463 const CodeGenFunction::MultiVersionResolverOption &RHS) {
4464 return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4465 llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4468 // If the list contains multiple 'default' versions, such as when it contains
4469 // 'pentium' and 'generic', don't emit the call to the generic one (since we
4470 // always run on at least a 'pentium'). We do this by deleting the 'least
4471 // advanced' (read, lowest mangling letter).
4472 while (Options.size() > 1 &&
4473 llvm::all_of(llvm::X86::getCpuSupportsMask(
4474 (Options.end() - 2)->Conditions.Features),
4475 [](auto X) { return X == 0; })) {
4476 StringRef LHSName = (Options.end() - 2)->Function->getName();
4477 StringRef RHSName = (Options.end() - 1)->Function->getName();
4478 if (LHSName.compare(RHSName) < 0)
4479 Options.erase(Options.end() - 2);
4480 else
4481 Options.erase(Options.end() - 1);
4484 CodeGenFunction CGF(*this);
4485 CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4487 if (getTarget().supportsIFunc()) {
4488 llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4489 auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4490 unsigned AS = IFunc->getType()->getPointerAddressSpace();
4492 // Fix up function declarations that were created for cpu_specific before
4493 // cpu_dispatch was known
4494 if (!isa<llvm::GlobalIFunc>(IFunc)) {
4495 auto *GI = llvm::GlobalIFunc::create(DeclTy, AS, Linkage, "",
4496 ResolverFunc, &getModule());
4497 replaceDeclarationWith(IFunc, GI);
4498 IFunc = GI;
4501 std::string AliasName = getMangledNameImpl(
4502 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4503 llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4504 if (!AliasFunc) {
4505 auto *GA = llvm::GlobalAlias::create(DeclTy, AS, Linkage, AliasName,
4506 IFunc, &getModule());
4507 SetCommonAttributes(GD, GA);
4512 /// Adds a declaration to the list of multi version functions if not present.
4513 void CodeGenModule::AddDeferredMultiVersionResolverToEmit(GlobalDecl GD) {
4514 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4515 assert(FD && "Not a FunctionDecl?");
4517 if (FD->isTargetVersionMultiVersion() || FD->isTargetClonesMultiVersion()) {
4518 std::string MangledName =
4519 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4520 if (!DeferredResolversToEmit.insert(MangledName).second)
4521 return;
4523 MultiVersionFuncs.push_back(GD);
4526 /// If a dispatcher for the specified mangled name is not in the module, create
4527 /// and return it. The dispatcher is either an llvm Function with the specified
4528 /// type, or a global ifunc.
4529 llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4530 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4531 assert(FD && "Not a FunctionDecl?");
4533 std::string MangledName =
4534 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4536 // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4537 // a separate resolver).
4538 std::string ResolverName = MangledName;
4539 if (getTarget().supportsIFunc()) {
4540 switch (FD->getMultiVersionKind()) {
4541 case MultiVersionKind::None:
4542 llvm_unreachable("unexpected MultiVersionKind::None for resolver");
4543 case MultiVersionKind::Target:
4544 case MultiVersionKind::CPUSpecific:
4545 case MultiVersionKind::CPUDispatch:
4546 ResolverName += ".ifunc";
4547 break;
4548 case MultiVersionKind::TargetClones:
4549 case MultiVersionKind::TargetVersion:
4550 break;
4552 } else if (FD->isTargetMultiVersion()) {
4553 ResolverName += ".resolver";
4556 // If the resolver has already been created, just return it. This lookup may
4557 // yield a function declaration instead of a resolver on AArch64. That is
4558 // because we didn't know whether a resolver will be generated when we first
4559 // encountered a use of the symbol named after this resolver. Therefore,
4560 // targets which support ifuncs should not return here unless we actually
4561 // found an ifunc.
4562 llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName);
4563 if (ResolverGV &&
4564 (isa<llvm::GlobalIFunc>(ResolverGV) || !getTarget().supportsIFunc()))
4565 return ResolverGV;
4567 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4568 llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4570 // The resolver needs to be created. For target and target_clones, defer
4571 // creation until the end of the TU.
4572 if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4573 AddDeferredMultiVersionResolverToEmit(GD);
4575 // For cpu_specific, don't create an ifunc yet because we don't know if the
4576 // cpu_dispatch will be emitted in this translation unit.
4577 if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4578 unsigned AS = getTypes().getTargetAddressSpace(FD->getType());
4579 llvm::Type *ResolverType =
4580 llvm::FunctionType::get(llvm::PointerType::get(DeclTy, AS), false);
4581 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4582 MangledName + ".resolver", ResolverType, GlobalDecl{},
4583 /*ForVTable=*/false);
4584 llvm::GlobalIFunc *GIF =
4585 llvm::GlobalIFunc::create(DeclTy, AS, getMultiversionLinkage(*this, GD),
4586 "", Resolver, &getModule());
4587 GIF->setName(ResolverName);
4588 SetCommonAttributes(FD, GIF);
4589 if (ResolverGV)
4590 replaceDeclarationWith(ResolverGV, GIF);
4591 return GIF;
4594 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4595 ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4596 assert(isa<llvm::GlobalValue>(Resolver) &&
4597 "Resolver should be created for the first time");
4598 SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4599 if (ResolverGV)
4600 replaceDeclarationWith(ResolverGV, Resolver);
4601 return Resolver;
4604 bool CodeGenModule::shouldDropDLLAttribute(const Decl *D,
4605 const llvm::GlobalValue *GV) const {
4606 auto SC = GV->getDLLStorageClass();
4607 if (SC == llvm::GlobalValue::DefaultStorageClass)
4608 return false;
4609 const Decl *MRD = D->getMostRecentDecl();
4610 return (((SC == llvm::GlobalValue::DLLImportStorageClass &&
4611 !MRD->hasAttr<DLLImportAttr>()) ||
4612 (SC == llvm::GlobalValue::DLLExportStorageClass &&
4613 !MRD->hasAttr<DLLExportAttr>())) &&
4614 !shouldMapVisibilityToDLLExport(cast<NamedDecl>(MRD)));
4617 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4618 /// module, create and return an llvm Function with the specified type. If there
4619 /// is something in the module with the specified name, return it potentially
4620 /// bitcasted to the right type.
4622 /// If D is non-null, it specifies a decl that correspond to this. This is used
4623 /// to set the attributes on the function when it is first created.
4624 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4625 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4626 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4627 ForDefinition_t IsForDefinition) {
4628 const Decl *D = GD.getDecl();
4630 std::string NameWithoutMultiVersionMangling;
4631 // Any attempts to use a MultiVersion function should result in retrieving
4632 // the iFunc instead. Name Mangling will handle the rest of the changes.
4633 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4634 // For the device mark the function as one that should be emitted.
4635 if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4636 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4637 !DontDefer && !IsForDefinition) {
4638 if (const FunctionDecl *FDDef = FD->getDefinition()) {
4639 GlobalDecl GDDef;
4640 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4641 GDDef = GlobalDecl(CD, GD.getCtorType());
4642 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4643 GDDef = GlobalDecl(DD, GD.getDtorType());
4644 else
4645 GDDef = GlobalDecl(FDDef);
4646 EmitGlobal(GDDef);
4650 if (FD->isMultiVersion()) {
4651 UpdateMultiVersionNames(GD, FD, MangledName);
4652 if (!IsForDefinition) {
4653 // On AArch64 we do not immediatelly emit an ifunc resolver when a
4654 // function is used. Instead we defer the emission until we see a
4655 // default definition. In the meantime we just reference the symbol
4656 // without FMV mangling (it may or may not be replaced later).
4657 if (getTarget().getTriple().isAArch64()) {
4658 AddDeferredMultiVersionResolverToEmit(GD);
4659 NameWithoutMultiVersionMangling = getMangledNameImpl(
4660 *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4661 } else
4662 return GetOrCreateMultiVersionResolver(GD);
4667 if (!NameWithoutMultiVersionMangling.empty())
4668 MangledName = NameWithoutMultiVersionMangling;
4670 // Lookup the entry, lazily creating it if necessary.
4671 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4672 if (Entry) {
4673 if (WeakRefReferences.erase(Entry)) {
4674 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4675 if (FD && !FD->hasAttr<WeakAttr>())
4676 Entry->setLinkage(llvm::Function::ExternalLinkage);
4679 // Handle dropped DLL attributes.
4680 if (D && shouldDropDLLAttribute(D, Entry)) {
4681 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4682 setDSOLocal(Entry);
4685 // If there are two attempts to define the same mangled name, issue an
4686 // error.
4687 if (IsForDefinition && !Entry->isDeclaration()) {
4688 GlobalDecl OtherGD;
4689 // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4690 // to make sure that we issue an error only once.
4691 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4692 (GD.getCanonicalDecl().getDecl() !=
4693 OtherGD.getCanonicalDecl().getDecl()) &&
4694 DiagnosedConflictingDefinitions.insert(GD).second) {
4695 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4696 << MangledName;
4697 getDiags().Report(OtherGD.getDecl()->getLocation(),
4698 diag::note_previous_definition);
4702 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4703 (Entry->getValueType() == Ty)) {
4704 return Entry;
4707 // Make sure the result is of the correct type.
4708 // (If function is requested for a definition, we always need to create a new
4709 // function, not just return a bitcast.)
4710 if (!IsForDefinition)
4711 return Entry;
4714 // This function doesn't have a complete type (for example, the return
4715 // type is an incomplete struct). Use a fake type instead, and make
4716 // sure not to try to set attributes.
4717 bool IsIncompleteFunction = false;
4719 llvm::FunctionType *FTy;
4720 if (isa<llvm::FunctionType>(Ty)) {
4721 FTy = cast<llvm::FunctionType>(Ty);
4722 } else {
4723 FTy = llvm::FunctionType::get(VoidTy, false);
4724 IsIncompleteFunction = true;
4727 llvm::Function *F =
4728 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4729 Entry ? StringRef() : MangledName, &getModule());
4731 // Store the declaration associated with this function so it is potentially
4732 // updated by further declarations or definitions and emitted at the end.
4733 if (D && D->hasAttr<AnnotateAttr>())
4734 DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4736 // If we already created a function with the same mangled name (but different
4737 // type) before, take its name and add it to the list of functions to be
4738 // replaced with F at the end of CodeGen.
4740 // This happens if there is a prototype for a function (e.g. "int f()") and
4741 // then a definition of a different type (e.g. "int f(int x)").
4742 if (Entry) {
4743 F->takeName(Entry);
4745 // This might be an implementation of a function without a prototype, in
4746 // which case, try to do special replacement of calls which match the new
4747 // prototype. The really key thing here is that we also potentially drop
4748 // arguments from the call site so as to make a direct call, which makes the
4749 // inliner happier and suppresses a number of optimizer warnings (!) about
4750 // dropping arguments.
4751 if (!Entry->use_empty()) {
4752 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4753 Entry->removeDeadConstantUsers();
4756 addGlobalValReplacement(Entry, F);
4759 assert(F->getName() == MangledName && "name was uniqued!");
4760 if (D)
4761 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4762 if (ExtraAttrs.hasFnAttrs()) {
4763 llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4764 F->addFnAttrs(B);
4767 if (!DontDefer) {
4768 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4769 // each other bottoming out with the base dtor. Therefore we emit non-base
4770 // dtors on usage, even if there is no dtor definition in the TU.
4771 if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4772 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4773 GD.getDtorType()))
4774 addDeferredDeclToEmit(GD);
4776 // This is the first use or definition of a mangled name. If there is a
4777 // deferred decl with this name, remember that we need to emit it at the end
4778 // of the file.
4779 auto DDI = DeferredDecls.find(MangledName);
4780 if (DDI != DeferredDecls.end()) {
4781 // Move the potentially referenced deferred decl to the
4782 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4783 // don't need it anymore).
4784 addDeferredDeclToEmit(DDI->second);
4785 DeferredDecls.erase(DDI);
4787 // Otherwise, there are cases we have to worry about where we're
4788 // using a declaration for which we must emit a definition but where
4789 // we might not find a top-level definition:
4790 // - member functions defined inline in their classes
4791 // - friend functions defined inline in some class
4792 // - special member functions with implicit definitions
4793 // If we ever change our AST traversal to walk into class methods,
4794 // this will be unnecessary.
4796 // We also don't emit a definition for a function if it's going to be an
4797 // entry in a vtable, unless it's already marked as used.
4798 } else if (getLangOpts().CPlusPlus && D) {
4799 // Look for a declaration that's lexically in a record.
4800 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4801 FD = FD->getPreviousDecl()) {
4802 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4803 if (FD->doesThisDeclarationHaveABody()) {
4804 addDeferredDeclToEmit(GD.getWithDecl(FD));
4805 break;
4812 // Make sure the result is of the requested type.
4813 if (!IsIncompleteFunction) {
4814 assert(F->getFunctionType() == Ty);
4815 return F;
4818 return F;
4821 /// GetAddrOfFunction - Return the address of the given function. If Ty is
4822 /// non-null, then this function will use the specified type if it has to
4823 /// create it (this occurs when we see a definition of the function).
4824 llvm::Constant *
4825 CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4826 bool DontDefer,
4827 ForDefinition_t IsForDefinition) {
4828 // If there was no specific requested type, just convert it now.
4829 if (!Ty) {
4830 const auto *FD = cast<FunctionDecl>(GD.getDecl());
4831 Ty = getTypes().ConvertType(FD->getType());
4834 // Devirtualized destructor calls may come through here instead of via
4835 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4836 // of the complete destructor when necessary.
4837 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4838 if (getTarget().getCXXABI().isMicrosoft() &&
4839 GD.getDtorType() == Dtor_Complete &&
4840 DD->getParent()->getNumVBases() == 0)
4841 GD = GlobalDecl(DD, Dtor_Base);
4844 StringRef MangledName = getMangledName(GD);
4845 auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4846 /*IsThunk=*/false, llvm::AttributeList(),
4847 IsForDefinition);
4848 // Returns kernel handle for HIP kernel stub function.
4849 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4850 cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4851 auto *Handle = getCUDARuntime().getKernelHandle(
4852 cast<llvm::Function>(F->stripPointerCasts()), GD);
4853 if (IsForDefinition)
4854 return F;
4855 return Handle;
4857 return F;
4860 llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4861 llvm::GlobalValue *F =
4862 cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4864 return llvm::NoCFIValue::get(F);
4867 static const FunctionDecl *
4868 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4869 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4870 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4872 IdentifierInfo &CII = C.Idents.get(Name);
4873 for (const auto *Result : DC->lookup(&CII))
4874 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4875 return FD;
4877 if (!C.getLangOpts().CPlusPlus)
4878 return nullptr;
4880 // Demangle the premangled name from getTerminateFn()
4881 IdentifierInfo &CXXII =
4882 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4883 ? C.Idents.get("terminate")
4884 : C.Idents.get(Name);
4886 for (const auto &N : {"__cxxabiv1", "std"}) {
4887 IdentifierInfo &NS = C.Idents.get(N);
4888 for (const auto *Result : DC->lookup(&NS)) {
4889 const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4890 if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4891 for (const auto *Result : LSD->lookup(&NS))
4892 if ((ND = dyn_cast<NamespaceDecl>(Result)))
4893 break;
4895 if (ND)
4896 for (const auto *Result : ND->lookup(&CXXII))
4897 if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4898 return FD;
4902 return nullptr;
4905 static void setWindowsItaniumDLLImport(CodeGenModule &CGM, bool Local,
4906 llvm::Function *F, StringRef Name) {
4907 // In Windows Itanium environments, try to mark runtime functions
4908 // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4909 // will link their standard library statically or dynamically. Marking
4910 // functions imported when they are not imported can cause linker errors
4911 // and warnings.
4912 if (!Local && CGM.getTriple().isWindowsItaniumEnvironment() &&
4913 !CGM.getCodeGenOpts().LTOVisibilityPublicStd) {
4914 const FunctionDecl *FD = GetRuntimeFunctionDecl(CGM.getContext(), Name);
4915 if (!FD || FD->hasAttr<DLLImportAttr>()) {
4916 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4917 F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4922 llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(
4923 QualType ReturnTy, ArrayRef<QualType> ArgTys, StringRef Name,
4924 llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) {
4925 if (AssumeConvergent) {
4926 ExtraAttrs =
4927 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4930 QualType FTy = Context.getFunctionType(ReturnTy, ArgTys,
4931 FunctionProtoType::ExtProtoInfo());
4932 const CGFunctionInfo &Info = getTypes().arrangeFreeFunctionType(
4933 Context.getCanonicalType(FTy).castAs<FunctionProtoType>());
4934 auto *ConvTy = getTypes().GetFunctionType(Info);
4935 llvm::Constant *C = GetOrCreateLLVMFunction(
4936 Name, ConvTy, GlobalDecl(), /*ForVTable=*/false,
4937 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs);
4939 if (auto *F = dyn_cast<llvm::Function>(C)) {
4940 if (F->empty()) {
4941 SetLLVMFunctionAttributes(GlobalDecl(), Info, F, /*IsThunk*/ false);
4942 // FIXME: Set calling-conv properly in ExtProtoInfo
4943 F->setCallingConv(getRuntimeCC());
4944 setWindowsItaniumDLLImport(*this, Local, F, Name);
4945 setDSOLocal(F);
4948 return {ConvTy, C};
4951 /// CreateRuntimeFunction - Create a new runtime function with the specified
4952 /// type and name.
4953 llvm::FunctionCallee
4954 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4955 llvm::AttributeList ExtraAttrs, bool Local,
4956 bool AssumeConvergent) {
4957 if (AssumeConvergent) {
4958 ExtraAttrs =
4959 ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4962 llvm::Constant *C =
4963 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4964 /*DontDefer=*/false, /*IsThunk=*/false,
4965 ExtraAttrs);
4967 if (auto *F = dyn_cast<llvm::Function>(C)) {
4968 if (F->empty()) {
4969 F->setCallingConv(getRuntimeCC());
4970 setWindowsItaniumDLLImport(*this, Local, F, Name);
4971 setDSOLocal(F);
4972 // FIXME: We should use CodeGenModule::SetLLVMFunctionAttributes() instead
4973 // of trying to approximate the attributes using the LLVM function
4974 // signature. The other overload of CreateRuntimeFunction does this; it
4975 // should be used for new code.
4976 markRegisterParameterAttributes(F);
4980 return {FTy, C};
4983 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4984 /// create and return an llvm GlobalVariable with the specified type and address
4985 /// space. If there is something in the module with the specified name, return
4986 /// it potentially bitcasted to the right type.
4988 /// If D is non-null, it specifies a decl that correspond to this. This is used
4989 /// to set the attributes on the global when it is first created.
4991 /// If IsForDefinition is true, it is guaranteed that an actual global with
4992 /// type Ty will be returned, not conversion of a variable with the same
4993 /// mangled name but some other type.
4994 llvm::Constant *
4995 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4996 LangAS AddrSpace, const VarDecl *D,
4997 ForDefinition_t IsForDefinition) {
4998 // Lookup the entry, lazily creating it if necessary.
4999 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5000 unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
5001 if (Entry) {
5002 if (WeakRefReferences.erase(Entry)) {
5003 if (D && !D->hasAttr<WeakAttr>())
5004 Entry->setLinkage(llvm::Function::ExternalLinkage);
5007 // Handle dropped DLL attributes.
5008 if (D && shouldDropDLLAttribute(D, Entry))
5009 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
5011 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
5012 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
5014 if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
5015 return Entry;
5017 // If there are two attempts to define the same mangled name, issue an
5018 // error.
5019 if (IsForDefinition && !Entry->isDeclaration()) {
5020 GlobalDecl OtherGD;
5021 const VarDecl *OtherD;
5023 // Check that D is not yet in DiagnosedConflictingDefinitions is required
5024 // to make sure that we issue an error only once.
5025 if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
5026 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
5027 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
5028 OtherD->hasInit() &&
5029 DiagnosedConflictingDefinitions.insert(D).second) {
5030 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
5031 << MangledName;
5032 getDiags().Report(OtherGD.getDecl()->getLocation(),
5033 diag::note_previous_definition);
5037 // Make sure the result is of the correct type.
5038 if (Entry->getType()->getAddressSpace() != TargetAS)
5039 return llvm::ConstantExpr::getAddrSpaceCast(
5040 Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
5042 // (If global is requested for a definition, we always need to create a new
5043 // global, not just return a bitcast.)
5044 if (!IsForDefinition)
5045 return Entry;
5048 auto DAddrSpace = GetGlobalVarAddressSpace(D);
5050 auto *GV = new llvm::GlobalVariable(
5051 getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
5052 MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
5053 getContext().getTargetAddressSpace(DAddrSpace));
5055 // If we already created a global with the same mangled name (but different
5056 // type) before, take its name and remove it from its parent.
5057 if (Entry) {
5058 GV->takeName(Entry);
5060 if (!Entry->use_empty()) {
5061 Entry->replaceAllUsesWith(GV);
5064 Entry->eraseFromParent();
5067 // This is the first use or definition of a mangled name. If there is a
5068 // deferred decl with this name, remember that we need to emit it at the end
5069 // of the file.
5070 auto DDI = DeferredDecls.find(MangledName);
5071 if (DDI != DeferredDecls.end()) {
5072 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
5073 // list, and remove it from DeferredDecls (since we don't need it anymore).
5074 addDeferredDeclToEmit(DDI->second);
5075 DeferredDecls.erase(DDI);
5078 // Handle things which are present even on external declarations.
5079 if (D) {
5080 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
5081 getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
5083 // FIXME: This code is overly simple and should be merged with other global
5084 // handling.
5085 GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
5087 GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
5089 setLinkageForGV(GV, D);
5091 if (D->getTLSKind()) {
5092 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5093 CXXThreadLocals.push_back(D);
5094 setTLSMode(GV, *D);
5097 setGVProperties(GV, D);
5099 // If required by the ABI, treat declarations of static data members with
5100 // inline initializers as definitions.
5101 if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
5102 EmitGlobalVarDefinition(D);
5105 // Emit section information for extern variables.
5106 if (D->hasExternalStorage()) {
5107 if (const SectionAttr *SA = D->getAttr<SectionAttr>())
5108 GV->setSection(SA->getName());
5111 // Handle XCore specific ABI requirements.
5112 if (getTriple().getArch() == llvm::Triple::xcore &&
5113 D->getLanguageLinkage() == CLanguageLinkage &&
5114 D->getType().isConstant(Context) &&
5115 isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
5116 GV->setSection(".cp.rodata");
5118 // Handle code model attribute
5119 if (const auto *CMA = D->getAttr<CodeModelAttr>())
5120 GV->setCodeModel(CMA->getModel());
5122 // Check if we a have a const declaration with an initializer, we may be
5123 // able to emit it as available_externally to expose it's value to the
5124 // optimizer.
5125 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
5126 D->getType().isConstQualified() && !GV->hasInitializer() &&
5127 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
5128 const auto *Record =
5129 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
5130 bool HasMutableFields = Record && Record->hasMutableFields();
5131 if (!HasMutableFields) {
5132 const VarDecl *InitDecl;
5133 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5134 if (InitExpr) {
5135 ConstantEmitter emitter(*this);
5136 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
5137 if (Init) {
5138 auto *InitType = Init->getType();
5139 if (GV->getValueType() != InitType) {
5140 // The type of the initializer does not match the definition.
5141 // This happens when an initializer has a different type from
5142 // the type of the global (because of padding at the end of a
5143 // structure for instance).
5144 GV->setName(StringRef());
5145 // Make a new global with the correct type, this is now guaranteed
5146 // to work.
5147 auto *NewGV = cast<llvm::GlobalVariable>(
5148 GetAddrOfGlobalVar(D, InitType, IsForDefinition)
5149 ->stripPointerCasts());
5151 // Erase the old global, since it is no longer used.
5152 GV->eraseFromParent();
5153 GV = NewGV;
5154 } else {
5155 GV->setInitializer(Init);
5156 GV->setConstant(true);
5157 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
5159 emitter.finalize(GV);
5166 if (D &&
5167 D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
5168 getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
5169 // External HIP managed variables needed to be recorded for transformation
5170 // in both device and host compilations.
5171 if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
5172 D->hasExternalStorage())
5173 getCUDARuntime().handleVarRegistration(D, *GV);
5176 if (D)
5177 SanitizerMD->reportGlobal(GV, *D);
5179 LangAS ExpectedAS =
5180 D ? D->getType().getAddressSpace()
5181 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
5182 assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
5183 if (DAddrSpace != ExpectedAS) {
5184 return getTargetCodeGenInfo().performAddrSpaceCast(
5185 *this, GV, DAddrSpace, ExpectedAS,
5186 llvm::PointerType::get(getLLVMContext(), TargetAS));
5189 return GV;
5192 llvm::Constant *
5193 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
5194 const Decl *D = GD.getDecl();
5196 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
5197 return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
5198 /*DontDefer=*/false, IsForDefinition);
5200 if (isa<CXXMethodDecl>(D)) {
5201 auto FInfo =
5202 &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
5203 auto Ty = getTypes().GetFunctionType(*FInfo);
5204 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5205 IsForDefinition);
5208 if (isa<FunctionDecl>(D)) {
5209 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5210 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5211 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
5212 IsForDefinition);
5215 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
5218 llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
5219 StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
5220 llvm::Align Alignment) {
5221 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
5222 llvm::GlobalVariable *OldGV = nullptr;
5224 if (GV) {
5225 // Check if the variable has the right type.
5226 if (GV->getValueType() == Ty)
5227 return GV;
5229 // Because C++ name mangling, the only way we can end up with an already
5230 // existing global with the same name is if it has been declared extern "C".
5231 assert(GV->isDeclaration() && "Declaration has wrong type!");
5232 OldGV = GV;
5235 // Create a new variable.
5236 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
5237 Linkage, nullptr, Name);
5239 if (OldGV) {
5240 // Replace occurrences of the old variable if needed.
5241 GV->takeName(OldGV);
5243 if (!OldGV->use_empty()) {
5244 OldGV->replaceAllUsesWith(GV);
5247 OldGV->eraseFromParent();
5250 if (supportsCOMDAT() && GV->isWeakForLinker() &&
5251 !GV->hasAvailableExternallyLinkage())
5252 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5254 GV->setAlignment(Alignment);
5256 return GV;
5259 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5260 /// given global variable. If Ty is non-null and if the global doesn't exist,
5261 /// then it will be created with the specified type instead of whatever the
5262 /// normal requested type would be. If IsForDefinition is true, it is guaranteed
5263 /// that an actual global with type Ty will be returned, not conversion of a
5264 /// variable with the same mangled name but some other type.
5265 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5266 llvm::Type *Ty,
5267 ForDefinition_t IsForDefinition) {
5268 assert(D->hasGlobalStorage() && "Not a global variable");
5269 QualType ASTTy = D->getType();
5270 if (!Ty)
5271 Ty = getTypes().ConvertTypeForMem(ASTTy);
5273 StringRef MangledName = getMangledName(D);
5274 return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5275 IsForDefinition);
5278 /// CreateRuntimeVariable - Create a new runtime global variable with the
5279 /// specified type and name.
5280 llvm::Constant *
5281 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5282 StringRef Name) {
5283 LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5284 : LangAS::Default;
5285 auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5286 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5287 return Ret;
5290 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5291 assert(!D->getInit() && "Cannot emit definite definitions here!");
5293 StringRef MangledName = getMangledName(D);
5294 llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5296 // We already have a definition, not declaration, with the same mangled name.
5297 // Emitting of declaration is not required (and actually overwrites emitted
5298 // definition).
5299 if (GV && !GV->isDeclaration())
5300 return;
5302 // If we have not seen a reference to this variable yet, place it into the
5303 // deferred declarations table to be emitted if needed later.
5304 if (!MustBeEmitted(D) && !GV) {
5305 DeferredDecls[MangledName] = D;
5306 return;
5309 // The tentative definition is the only definition.
5310 EmitGlobalVarDefinition(D);
5313 void CodeGenModule::EmitExternalDeclaration(const DeclaratorDecl *D) {
5314 if (auto const *V = dyn_cast<const VarDecl>(D))
5315 EmitExternalVarDeclaration(V);
5316 if (auto const *FD = dyn_cast<const FunctionDecl>(D))
5317 EmitExternalFunctionDeclaration(FD);
5320 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5321 return Context.toCharUnitsFromBits(
5322 getDataLayout().getTypeStoreSizeInBits(Ty));
5325 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5326 if (LangOpts.OpenCL) {
5327 LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5328 assert(AS == LangAS::opencl_global ||
5329 AS == LangAS::opencl_global_device ||
5330 AS == LangAS::opencl_global_host ||
5331 AS == LangAS::opencl_constant ||
5332 AS == LangAS::opencl_local ||
5333 AS >= LangAS::FirstTargetAddressSpace);
5334 return AS;
5337 if (LangOpts.SYCLIsDevice &&
5338 (!D || D->getType().getAddressSpace() == LangAS::Default))
5339 return LangAS::sycl_global;
5341 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5342 if (D) {
5343 if (D->hasAttr<CUDAConstantAttr>())
5344 return LangAS::cuda_constant;
5345 if (D->hasAttr<CUDASharedAttr>())
5346 return LangAS::cuda_shared;
5347 if (D->hasAttr<CUDADeviceAttr>())
5348 return LangAS::cuda_device;
5349 if (D->getType().isConstQualified())
5350 return LangAS::cuda_constant;
5352 return LangAS::cuda_device;
5355 if (LangOpts.OpenMP) {
5356 LangAS AS;
5357 if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5358 return AS;
5360 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5363 LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5364 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5365 if (LangOpts.OpenCL)
5366 return LangAS::opencl_constant;
5367 if (LangOpts.SYCLIsDevice)
5368 return LangAS::sycl_global;
5369 if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5370 // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5371 // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5372 // with OpVariable instructions with Generic storage class which is not
5373 // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5374 // UniformConstant storage class is not viable as pointers to it may not be
5375 // casted to Generic pointers which are used to model HIP's "flat" pointers.
5376 return LangAS::cuda_device;
5377 if (auto AS = getTarget().getConstantAddressSpace())
5378 return *AS;
5379 return LangAS::Default;
5382 // In address space agnostic languages, string literals are in default address
5383 // space in AST. However, certain targets (e.g. amdgcn) request them to be
5384 // emitted in constant address space in LLVM IR. To be consistent with other
5385 // parts of AST, string literal global variables in constant address space
5386 // need to be casted to default address space before being put into address
5387 // map and referenced by other part of CodeGen.
5388 // In OpenCL, string literals are in constant address space in AST, therefore
5389 // they should not be casted to default address space.
5390 static llvm::Constant *
5391 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5392 llvm::GlobalVariable *GV) {
5393 llvm::Constant *Cast = GV;
5394 if (!CGM.getLangOpts().OpenCL) {
5395 auto AS = CGM.GetGlobalConstantAddressSpace();
5396 if (AS != LangAS::Default)
5397 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5398 CGM, GV, AS, LangAS::Default,
5399 llvm::PointerType::get(
5400 CGM.getLLVMContext(),
5401 CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5403 return Cast;
5406 template<typename SomeDecl>
5407 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5408 llvm::GlobalValue *GV) {
5409 if (!getLangOpts().CPlusPlus)
5410 return;
5412 // Must have 'used' attribute, or else inline assembly can't rely on
5413 // the name existing.
5414 if (!D->template hasAttr<UsedAttr>())
5415 return;
5417 // Must have internal linkage and an ordinary name.
5418 if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5419 return;
5421 // Must be in an extern "C" context. Entities declared directly within
5422 // a record are not extern "C" even if the record is in such a context.
5423 const SomeDecl *First = D->getFirstDecl();
5424 if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5425 return;
5427 // OK, this is an internal linkage entity inside an extern "C" linkage
5428 // specification. Make a note of that so we can give it the "expected"
5429 // mangled name if nothing else is using that name.
5430 std::pair<StaticExternCMap::iterator, bool> R =
5431 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5433 // If we have multiple internal linkage entities with the same name
5434 // in extern "C" regions, none of them gets that name.
5435 if (!R.second)
5436 R.first->second = nullptr;
5439 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5440 if (!CGM.supportsCOMDAT())
5441 return false;
5443 if (D.hasAttr<SelectAnyAttr>())
5444 return true;
5446 GVALinkage Linkage;
5447 if (auto *VD = dyn_cast<VarDecl>(&D))
5448 Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5449 else
5450 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5452 switch (Linkage) {
5453 case GVA_Internal:
5454 case GVA_AvailableExternally:
5455 case GVA_StrongExternal:
5456 return false;
5457 case GVA_DiscardableODR:
5458 case GVA_StrongODR:
5459 return true;
5461 llvm_unreachable("No such linkage");
5464 bool CodeGenModule::supportsCOMDAT() const {
5465 return getTriple().supportsCOMDAT();
5468 void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5469 llvm::GlobalObject &GO) {
5470 if (!shouldBeInCOMDAT(*this, D))
5471 return;
5472 GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5475 const ABIInfo &CodeGenModule::getABIInfo() {
5476 return getTargetCodeGenInfo().getABIInfo();
5479 /// Pass IsTentative as true if you want to create a tentative definition.
5480 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5481 bool IsTentative) {
5482 // OpenCL global variables of sampler type are translated to function calls,
5483 // therefore no need to be translated.
5484 QualType ASTTy = D->getType();
5485 if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5486 return;
5488 // If this is OpenMP device, check if it is legal to emit this global
5489 // normally.
5490 if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5491 OpenMPRuntime->emitTargetGlobalVariable(D))
5492 return;
5494 llvm::TrackingVH<llvm::Constant> Init;
5495 bool NeedsGlobalCtor = false;
5496 // Whether the definition of the variable is available externally.
5497 // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5498 // since this is the job for its original source.
5499 bool IsDefinitionAvailableExternally =
5500 getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5501 bool NeedsGlobalDtor =
5502 !IsDefinitionAvailableExternally &&
5503 D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5505 // It is helpless to emit the definition for an available_externally variable
5506 // which can't be marked as const.
5507 // We don't need to check if it needs global ctor or dtor. See the above
5508 // comment for ideas.
5509 if (IsDefinitionAvailableExternally &&
5510 (!D->hasConstantInitialization() ||
5511 // TODO: Update this when we have interface to check constexpr
5512 // destructor.
5513 D->needsDestruction(getContext()) ||
5514 !D->getType().isConstantStorage(getContext(), true, true)))
5515 return;
5517 const VarDecl *InitDecl;
5518 const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5520 std::optional<ConstantEmitter> emitter;
5522 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5523 // as part of their declaration." Sema has already checked for
5524 // error cases, so we just need to set Init to UndefValue.
5525 bool IsCUDASharedVar =
5526 getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5527 // Shadows of initialized device-side global variables are also left
5528 // undefined.
5529 // Managed Variables should be initialized on both host side and device side.
5530 bool IsCUDAShadowVar =
5531 !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5532 (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5533 D->hasAttr<CUDASharedAttr>());
5534 bool IsCUDADeviceShadowVar =
5535 getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5536 (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5537 D->getType()->isCUDADeviceBuiltinTextureType());
5538 if (getLangOpts().CUDA &&
5539 (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5540 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5541 else if (D->hasAttr<LoaderUninitializedAttr>())
5542 Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5543 else if (!InitExpr) {
5544 // This is a tentative definition; tentative definitions are
5545 // implicitly initialized with { 0 }.
5547 // Note that tentative definitions are only emitted at the end of
5548 // a translation unit, so they should never have incomplete
5549 // type. In addition, EmitTentativeDefinition makes sure that we
5550 // never attempt to emit a tentative definition if a real one
5551 // exists. A use may still exists, however, so we still may need
5552 // to do a RAUW.
5553 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5554 Init = EmitNullConstant(D->getType());
5555 } else {
5556 initializedGlobalDecl = GlobalDecl(D);
5557 emitter.emplace(*this);
5558 llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5559 if (!Initializer) {
5560 QualType T = InitExpr->getType();
5561 if (D->getType()->isReferenceType())
5562 T = D->getType();
5564 if (getLangOpts().CPlusPlus) {
5565 Init = EmitNullConstant(T);
5566 if (!IsDefinitionAvailableExternally)
5567 NeedsGlobalCtor = true;
5568 if (InitDecl->hasFlexibleArrayInit(getContext())) {
5569 ErrorUnsupported(D, "flexible array initializer");
5570 // We cannot create ctor for flexible array initializer
5571 NeedsGlobalCtor = false;
5573 } else {
5574 ErrorUnsupported(D, "static initializer");
5575 Init = llvm::PoisonValue::get(getTypes().ConvertType(T));
5577 } else {
5578 Init = Initializer;
5579 // We don't need an initializer, so remove the entry for the delayed
5580 // initializer position (just in case this entry was delayed) if we
5581 // also don't need to register a destructor.
5582 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5583 DelayedCXXInitPosition.erase(D);
5585 #ifndef NDEBUG
5586 CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5587 InitDecl->getFlexibleArrayInitChars(getContext());
5588 CharUnits CstSize = CharUnits::fromQuantity(
5589 getDataLayout().getTypeAllocSize(Init->getType()));
5590 assert(VarSize == CstSize && "Emitted constant has unexpected size");
5591 #endif
5595 llvm::Type* InitType = Init->getType();
5596 llvm::Constant *Entry =
5597 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5599 // Strip off pointer casts if we got them.
5600 Entry = Entry->stripPointerCasts();
5602 // Entry is now either a Function or GlobalVariable.
5603 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5605 // We have a definition after a declaration with the wrong type.
5606 // We must make a new GlobalVariable* and update everything that used OldGV
5607 // (a declaration or tentative definition) with the new GlobalVariable*
5608 // (which will be a definition).
5610 // This happens if there is a prototype for a global (e.g.
5611 // "extern int x[];") and then a definition of a different type (e.g.
5612 // "int x[10];"). This also happens when an initializer has a different type
5613 // from the type of the global (this happens with unions).
5614 if (!GV || GV->getValueType() != InitType ||
5615 GV->getType()->getAddressSpace() !=
5616 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5618 // Move the old entry aside so that we'll create a new one.
5619 Entry->setName(StringRef());
5621 // Make a new global with the correct type, this is now guaranteed to work.
5622 GV = cast<llvm::GlobalVariable>(
5623 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5624 ->stripPointerCasts());
5626 // Replace all uses of the old global with the new global
5627 llvm::Constant *NewPtrForOldDecl =
5628 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5629 Entry->getType());
5630 Entry->replaceAllUsesWith(NewPtrForOldDecl);
5632 // Erase the old global, since it is no longer used.
5633 cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5636 MaybeHandleStaticInExternC(D, GV);
5638 if (D->hasAttr<AnnotateAttr>())
5639 AddGlobalAnnotations(D, GV);
5641 // Set the llvm linkage type as appropriate.
5642 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5644 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5645 // the device. [...]"
5646 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5647 // __device__, declares a variable that: [...]
5648 // Is accessible from all the threads within the grid and from the host
5649 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5650 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5651 if (LangOpts.CUDA) {
5652 if (LangOpts.CUDAIsDevice) {
5653 if (Linkage != llvm::GlobalValue::InternalLinkage &&
5654 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5655 D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5656 D->getType()->isCUDADeviceBuiltinTextureType()))
5657 GV->setExternallyInitialized(true);
5658 } else {
5659 getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5661 getCUDARuntime().handleVarRegistration(D, *GV);
5664 if (LangOpts.HLSL)
5665 getHLSLRuntime().handleGlobalVarDefinition(D, GV);
5667 GV->setInitializer(Init);
5668 if (emitter)
5669 emitter->finalize(GV);
5671 // If it is safe to mark the global 'constant', do so now.
5672 GV->setConstant((D->hasAttr<CUDAConstantAttr>() && LangOpts.CUDAIsDevice) ||
5673 (!NeedsGlobalCtor && !NeedsGlobalDtor &&
5674 D->getType().isConstantStorage(getContext(), true, true)));
5676 // If it is in a read-only section, mark it 'constant'.
5677 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5678 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5679 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5680 GV->setConstant(true);
5683 CharUnits AlignVal = getContext().getDeclAlign(D);
5684 // Check for alignment specifed in an 'omp allocate' directive.
5685 if (std::optional<CharUnits> AlignValFromAllocate =
5686 getOMPAllocateAlignment(D))
5687 AlignVal = *AlignValFromAllocate;
5688 GV->setAlignment(AlignVal.getAsAlign());
5690 // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5691 // function is only defined alongside the variable, not also alongside
5692 // callers. Normally, all accesses to a thread_local go through the
5693 // thread-wrapper in order to ensure initialization has occurred, underlying
5694 // variable will never be used other than the thread-wrapper, so it can be
5695 // converted to internal linkage.
5697 // However, if the variable has the 'constinit' attribute, it _can_ be
5698 // referenced directly, without calling the thread-wrapper, so the linkage
5699 // must not be changed.
5701 // Additionally, if the variable isn't plain external linkage, e.g. if it's
5702 // weak or linkonce, the de-duplication semantics are important to preserve,
5703 // so we don't change the linkage.
5704 if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5705 Linkage == llvm::GlobalValue::ExternalLinkage &&
5706 Context.getTargetInfo().getTriple().isOSDarwin() &&
5707 !D->hasAttr<ConstInitAttr>())
5708 Linkage = llvm::GlobalValue::InternalLinkage;
5710 GV->setLinkage(Linkage);
5711 if (D->hasAttr<DLLImportAttr>())
5712 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5713 else if (D->hasAttr<DLLExportAttr>())
5714 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5715 else
5716 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5718 if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5719 // common vars aren't constant even if declared const.
5720 GV->setConstant(false);
5721 // Tentative definition of global variables may be initialized with
5722 // non-zero null pointers. In this case they should have weak linkage
5723 // since common linkage must have zero initializer and must not have
5724 // explicit section therefore cannot have non-zero initial value.
5725 if (!GV->getInitializer()->isNullValue())
5726 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5729 setNonAliasAttributes(D, GV);
5731 if (D->getTLSKind() && !GV->isThreadLocal()) {
5732 if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5733 CXXThreadLocals.push_back(D);
5734 setTLSMode(GV, *D);
5737 maybeSetTrivialComdat(*D, *GV);
5739 // Emit the initializer function if necessary.
5740 if (NeedsGlobalCtor || NeedsGlobalDtor)
5741 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5743 SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5745 // Emit global variable debug information.
5746 if (CGDebugInfo *DI = getModuleDebugInfo())
5747 if (getCodeGenOpts().hasReducedDebugInfo())
5748 DI->EmitGlobalVariable(GV, D);
5751 void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5752 if (CGDebugInfo *DI = getModuleDebugInfo())
5753 if (getCodeGenOpts().hasReducedDebugInfo()) {
5754 QualType ASTTy = D->getType();
5755 llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5756 llvm::Constant *GV =
5757 GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5758 DI->EmitExternalVariable(
5759 cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5763 void CodeGenModule::EmitExternalFunctionDeclaration(const FunctionDecl *FD) {
5764 if (CGDebugInfo *DI = getModuleDebugInfo())
5765 if (getCodeGenOpts().hasReducedDebugInfo()) {
5766 auto *Ty = getTypes().ConvertType(FD->getType());
5767 StringRef MangledName = getMangledName(FD);
5768 auto *Fn = cast<llvm::Function>(
5769 GetOrCreateLLVMFunction(MangledName, Ty, FD, /* ForVTable */ false));
5770 if (!Fn->getSubprogram())
5771 DI->EmitFunctionDecl(FD, FD->getLocation(), FD->getType(), Fn);
5775 static bool isVarDeclStrongDefinition(const ASTContext &Context,
5776 CodeGenModule &CGM, const VarDecl *D,
5777 bool NoCommon) {
5778 // Don't give variables common linkage if -fno-common was specified unless it
5779 // was overridden by a NoCommon attribute.
5780 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5781 return true;
5783 // C11 6.9.2/2:
5784 // A declaration of an identifier for an object that has file scope without
5785 // an initializer, and without a storage-class specifier or with the
5786 // storage-class specifier static, constitutes a tentative definition.
5787 if (D->getInit() || D->hasExternalStorage())
5788 return true;
5790 // A variable cannot be both common and exist in a section.
5791 if (D->hasAttr<SectionAttr>())
5792 return true;
5794 // A variable cannot be both common and exist in a section.
5795 // We don't try to determine which is the right section in the front-end.
5796 // If no specialized section name is applicable, it will resort to default.
5797 if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5798 D->hasAttr<PragmaClangDataSectionAttr>() ||
5799 D->hasAttr<PragmaClangRelroSectionAttr>() ||
5800 D->hasAttr<PragmaClangRodataSectionAttr>())
5801 return true;
5803 // Thread local vars aren't considered common linkage.
5804 if (D->getTLSKind())
5805 return true;
5807 // Tentative definitions marked with WeakImportAttr are true definitions.
5808 if (D->hasAttr<WeakImportAttr>())
5809 return true;
5811 // A variable cannot be both common and exist in a comdat.
5812 if (shouldBeInCOMDAT(CGM, *D))
5813 return true;
5815 // Declarations with a required alignment do not have common linkage in MSVC
5816 // mode.
5817 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5818 if (D->hasAttr<AlignedAttr>())
5819 return true;
5820 QualType VarType = D->getType();
5821 if (Context.isAlignmentRequired(VarType))
5822 return true;
5824 if (const auto *RT = VarType->getAs<RecordType>()) {
5825 const RecordDecl *RD = RT->getDecl();
5826 for (const FieldDecl *FD : RD->fields()) {
5827 if (FD->isBitField())
5828 continue;
5829 if (FD->hasAttr<AlignedAttr>())
5830 return true;
5831 if (Context.isAlignmentRequired(FD->getType()))
5832 return true;
5837 // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5838 // common symbols, so symbols with greater alignment requirements cannot be
5839 // common.
5840 // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5841 // alignments for common symbols via the aligncomm directive, so this
5842 // restriction only applies to MSVC environments.
5843 if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5844 Context.getTypeAlignIfKnown(D->getType()) >
5845 Context.toBits(CharUnits::fromQuantity(32)))
5846 return true;
5848 return false;
5851 llvm::GlobalValue::LinkageTypes
5852 CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5853 GVALinkage Linkage) {
5854 if (Linkage == GVA_Internal)
5855 return llvm::Function::InternalLinkage;
5857 if (D->hasAttr<WeakAttr>())
5858 return llvm::GlobalVariable::WeakAnyLinkage;
5860 if (const auto *FD = D->getAsFunction())
5861 if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5862 return llvm::GlobalVariable::LinkOnceAnyLinkage;
5864 // We are guaranteed to have a strong definition somewhere else,
5865 // so we can use available_externally linkage.
5866 if (Linkage == GVA_AvailableExternally)
5867 return llvm::GlobalValue::AvailableExternallyLinkage;
5869 // Note that Apple's kernel linker doesn't support symbol
5870 // coalescing, so we need to avoid linkonce and weak linkages there.
5871 // Normally, this means we just map to internal, but for explicit
5872 // instantiations we'll map to external.
5874 // In C++, the compiler has to emit a definition in every translation unit
5875 // that references the function. We should use linkonce_odr because
5876 // a) if all references in this translation unit are optimized away, we
5877 // don't need to codegen it. b) if the function persists, it needs to be
5878 // merged with other definitions. c) C++ has the ODR, so we know the
5879 // definition is dependable.
5880 if (Linkage == GVA_DiscardableODR)
5881 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5882 : llvm::Function::InternalLinkage;
5884 // An explicit instantiation of a template has weak linkage, since
5885 // explicit instantiations can occur in multiple translation units
5886 // and must all be equivalent. However, we are not allowed to
5887 // throw away these explicit instantiations.
5889 // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5890 // so say that CUDA templates are either external (for kernels) or internal.
5891 // This lets llvm perform aggressive inter-procedural optimizations. For
5892 // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5893 // therefore we need to follow the normal linkage paradigm.
5894 if (Linkage == GVA_StrongODR) {
5895 if (getLangOpts().AppleKext)
5896 return llvm::Function::ExternalLinkage;
5897 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5898 !getLangOpts().GPURelocatableDeviceCode)
5899 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5900 : llvm::Function::InternalLinkage;
5901 return llvm::Function::WeakODRLinkage;
5904 // C++ doesn't have tentative definitions and thus cannot have common
5905 // linkage.
5906 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5907 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5908 CodeGenOpts.NoCommon))
5909 return llvm::GlobalVariable::CommonLinkage;
5911 // selectany symbols are externally visible, so use weak instead of
5912 // linkonce. MSVC optimizes away references to const selectany globals, so
5913 // all definitions should be the same and ODR linkage should be used.
5914 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5915 if (D->hasAttr<SelectAnyAttr>())
5916 return llvm::GlobalVariable::WeakODRLinkage;
5918 // Otherwise, we have strong external linkage.
5919 assert(Linkage == GVA_StrongExternal);
5920 return llvm::GlobalVariable::ExternalLinkage;
5923 llvm::GlobalValue::LinkageTypes
5924 CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5925 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5926 return getLLVMLinkageForDeclarator(VD, Linkage);
5929 /// Replace the uses of a function that was declared with a non-proto type.
5930 /// We want to silently drop extra arguments from call sites
5931 static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5932 llvm::Function *newFn) {
5933 // Fast path.
5934 if (old->use_empty())
5935 return;
5937 llvm::Type *newRetTy = newFn->getReturnType();
5938 SmallVector<llvm::Value *, 4> newArgs;
5940 SmallVector<llvm::CallBase *> callSitesToBeRemovedFromParent;
5942 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5943 ui != ue; ui++) {
5944 llvm::User *user = ui->getUser();
5946 // Recognize and replace uses of bitcasts. Most calls to
5947 // unprototyped functions will use bitcasts.
5948 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5949 if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5950 replaceUsesOfNonProtoConstant(bitcast, newFn);
5951 continue;
5954 // Recognize calls to the function.
5955 llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5956 if (!callSite)
5957 continue;
5958 if (!callSite->isCallee(&*ui))
5959 continue;
5961 // If the return types don't match exactly, then we can't
5962 // transform this call unless it's dead.
5963 if (callSite->getType() != newRetTy && !callSite->use_empty())
5964 continue;
5966 // Get the call site's attribute list.
5967 SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5968 llvm::AttributeList oldAttrs = callSite->getAttributes();
5970 // If the function was passed too few arguments, don't transform.
5971 unsigned newNumArgs = newFn->arg_size();
5972 if (callSite->arg_size() < newNumArgs)
5973 continue;
5975 // If extra arguments were passed, we silently drop them.
5976 // If any of the types mismatch, we don't transform.
5977 unsigned argNo = 0;
5978 bool dontTransform = false;
5979 for (llvm::Argument &A : newFn->args()) {
5980 if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5981 dontTransform = true;
5982 break;
5985 // Add any parameter attributes.
5986 newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5987 argNo++;
5989 if (dontTransform)
5990 continue;
5992 // Okay, we can transform this. Create the new call instruction and copy
5993 // over the required information.
5994 newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5996 // Copy over any operand bundles.
5997 SmallVector<llvm::OperandBundleDef, 1> newBundles;
5998 callSite->getOperandBundlesAsDefs(newBundles);
6000 llvm::CallBase *newCall;
6001 if (isa<llvm::CallInst>(callSite)) {
6002 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "",
6003 callSite->getIterator());
6004 } else {
6005 auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
6006 newCall = llvm::InvokeInst::Create(
6007 newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(),
6008 newArgs, newBundles, "", callSite->getIterator());
6010 newArgs.clear(); // for the next iteration
6012 if (!newCall->getType()->isVoidTy())
6013 newCall->takeName(callSite);
6014 newCall->setAttributes(
6015 llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
6016 oldAttrs.getRetAttrs(), newArgAttrs));
6017 newCall->setCallingConv(callSite->getCallingConv());
6019 // Finally, remove the old call, replacing any uses with the new one.
6020 if (!callSite->use_empty())
6021 callSite->replaceAllUsesWith(newCall);
6023 // Copy debug location attached to CI.
6024 if (callSite->getDebugLoc())
6025 newCall->setDebugLoc(callSite->getDebugLoc());
6027 callSitesToBeRemovedFromParent.push_back(callSite);
6030 for (auto *callSite : callSitesToBeRemovedFromParent) {
6031 callSite->eraseFromParent();
6035 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
6036 /// implement a function with no prototype, e.g. "int foo() {}". If there are
6037 /// existing call uses of the old function in the module, this adjusts them to
6038 /// call the new function directly.
6040 /// This is not just a cleanup: the always_inline pass requires direct calls to
6041 /// functions to be able to inline them. If there is a bitcast in the way, it
6042 /// won't inline them. Instcombine normally deletes these calls, but it isn't
6043 /// run at -O0.
6044 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
6045 llvm::Function *NewFn) {
6046 // If we're redefining a global as a function, don't transform it.
6047 if (!isa<llvm::Function>(Old)) return;
6049 replaceUsesOfNonProtoConstant(Old, NewFn);
6052 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
6053 auto DK = VD->isThisDeclarationADefinition();
6054 if ((DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) ||
6055 (LangOpts.CUDA && !shouldEmitCUDAGlobalVar(VD)))
6056 return;
6058 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
6059 // If we have a definition, this might be a deferred decl. If the
6060 // instantiation is explicit, make sure we emit it at the end.
6061 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
6062 GetAddrOfGlobalVar(VD);
6064 EmitTopLevelDecl(VD);
6067 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
6068 llvm::GlobalValue *GV) {
6069 const auto *D = cast<FunctionDecl>(GD.getDecl());
6071 // Compute the function info and LLVM type.
6072 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
6073 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
6075 // Get or create the prototype for the function.
6076 if (!GV || (GV->getValueType() != Ty))
6077 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
6078 /*DontDefer=*/true,
6079 ForDefinition));
6081 // Already emitted.
6082 if (!GV->isDeclaration())
6083 return;
6085 // We need to set linkage and visibility on the function before
6086 // generating code for it because various parts of IR generation
6087 // want to propagate this information down (e.g. to local static
6088 // declarations).
6089 auto *Fn = cast<llvm::Function>(GV);
6090 setFunctionLinkage(GD, Fn);
6092 // FIXME: this is redundant with part of setFunctionDefinitionAttributes
6093 setGVProperties(Fn, GD);
6095 MaybeHandleStaticInExternC(D, Fn);
6097 maybeSetTrivialComdat(*D, *Fn);
6099 CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
6101 setNonAliasAttributes(GD, Fn);
6102 SetLLVMFunctionAttributesForDefinition(D, Fn);
6104 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
6105 AddGlobalCtor(Fn, CA->getPriority());
6106 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
6107 AddGlobalDtor(Fn, DA->getPriority(), true);
6108 if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
6109 getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
6112 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
6113 const auto *D = cast<ValueDecl>(GD.getDecl());
6114 const AliasAttr *AA = D->getAttr<AliasAttr>();
6115 assert(AA && "Not an alias?");
6117 StringRef MangledName = getMangledName(GD);
6119 if (AA->getAliasee() == MangledName) {
6120 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6121 return;
6124 // If there is a definition in the module, then it wins over the alias.
6125 // This is dubious, but allow it to be safe. Just ignore the alias.
6126 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6127 if (Entry && !Entry->isDeclaration())
6128 return;
6130 Aliases.push_back(GD);
6132 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6134 // Create a reference to the named value. This ensures that it is emitted
6135 // if a deferred decl.
6136 llvm::Constant *Aliasee;
6137 llvm::GlobalValue::LinkageTypes LT;
6138 if (isa<llvm::FunctionType>(DeclTy)) {
6139 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
6140 /*ForVTable=*/false);
6141 LT = getFunctionLinkage(GD);
6142 } else {
6143 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
6144 /*D=*/nullptr);
6145 if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
6146 LT = getLLVMLinkageVarDefinition(VD);
6147 else
6148 LT = getFunctionLinkage(GD);
6151 // Create the new alias itself, but don't set a name yet.
6152 unsigned AS = Aliasee->getType()->getPointerAddressSpace();
6153 auto *GA =
6154 llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
6156 if (Entry) {
6157 if (GA->getAliasee() == Entry) {
6158 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
6159 return;
6162 assert(Entry->isDeclaration());
6164 // If there is a declaration in the module, then we had an extern followed
6165 // by the alias, as in:
6166 // extern int test6();
6167 // ...
6168 // int test6() __attribute__((alias("test7")));
6170 // Remove it and replace uses of it with the alias.
6171 GA->takeName(Entry);
6173 Entry->replaceAllUsesWith(GA);
6174 Entry->eraseFromParent();
6175 } else {
6176 GA->setName(MangledName);
6179 // Set attributes which are particular to an alias; this is a
6180 // specialization of the attributes which may be set on a global
6181 // variable/function.
6182 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
6183 D->isWeakImported()) {
6184 GA->setLinkage(llvm::Function::WeakAnyLinkage);
6187 if (const auto *VD = dyn_cast<VarDecl>(D))
6188 if (VD->getTLSKind())
6189 setTLSMode(GA, *VD);
6191 SetCommonAttributes(GD, GA);
6193 // Emit global alias debug information.
6194 if (isa<VarDecl>(D))
6195 if (CGDebugInfo *DI = getModuleDebugInfo())
6196 DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
6199 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
6200 const auto *D = cast<ValueDecl>(GD.getDecl());
6201 const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
6202 assert(IFA && "Not an ifunc?");
6204 StringRef MangledName = getMangledName(GD);
6206 if (IFA->getResolver() == MangledName) {
6207 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6208 return;
6211 // Report an error if some definition overrides ifunc.
6212 llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
6213 if (Entry && !Entry->isDeclaration()) {
6214 GlobalDecl OtherGD;
6215 if (lookupRepresentativeDecl(MangledName, OtherGD) &&
6216 DiagnosedConflictingDefinitions.insert(GD).second) {
6217 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
6218 << MangledName;
6219 Diags.Report(OtherGD.getDecl()->getLocation(),
6220 diag::note_previous_definition);
6222 return;
6225 Aliases.push_back(GD);
6227 // The resolver might not be visited yet. Specify a dummy non-function type to
6228 // indicate IsIncompleteFunction. Either the type is ignored (if the resolver
6229 // was emitted) or the whole function will be replaced (if the resolver has
6230 // not been emitted).
6231 llvm::Constant *Resolver =
6232 GetOrCreateLLVMFunction(IFA->getResolver(), VoidTy, {},
6233 /*ForVTable=*/false);
6234 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
6235 unsigned AS = getTypes().getTargetAddressSpace(D->getType());
6236 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(
6237 DeclTy, AS, llvm::Function::ExternalLinkage, "", Resolver, &getModule());
6238 if (Entry) {
6239 if (GIF->getResolver() == Entry) {
6240 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
6241 return;
6243 assert(Entry->isDeclaration());
6245 // If there is a declaration in the module, then we had an extern followed
6246 // by the ifunc, as in:
6247 // extern int test();
6248 // ...
6249 // int test() __attribute__((ifunc("resolver")));
6251 // Remove it and replace uses of it with the ifunc.
6252 GIF->takeName(Entry);
6254 Entry->replaceAllUsesWith(GIF);
6255 Entry->eraseFromParent();
6256 } else
6257 GIF->setName(MangledName);
6258 SetCommonAttributes(GD, GIF);
6261 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
6262 ArrayRef<llvm::Type*> Tys) {
6263 return llvm::Intrinsic::getOrInsertDeclaration(&getModule(),
6264 (llvm::Intrinsic::ID)IID, Tys);
6267 static llvm::StringMapEntry<llvm::GlobalVariable *> &
6268 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
6269 const StringLiteral *Literal, bool TargetIsLSB,
6270 bool &IsUTF16, unsigned &StringLength) {
6271 StringRef String = Literal->getString();
6272 unsigned NumBytes = String.size();
6274 // Check for simple case.
6275 if (!Literal->containsNonAsciiOrNull()) {
6276 StringLength = NumBytes;
6277 return *Map.insert(std::make_pair(String, nullptr)).first;
6280 // Otherwise, convert the UTF8 literals into a string of shorts.
6281 IsUTF16 = true;
6283 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
6284 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
6285 llvm::UTF16 *ToPtr = &ToBuf[0];
6287 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6288 ToPtr + NumBytes, llvm::strictConversion);
6290 // ConvertUTF8toUTF16 returns the length in ToPtr.
6291 StringLength = ToPtr - &ToBuf[0];
6293 // Add an explicit null.
6294 *ToPtr = 0;
6295 return *Map.insert(std::make_pair(
6296 StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6297 (StringLength + 1) * 2),
6298 nullptr)).first;
6301 ConstantAddress
6302 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6303 unsigned StringLength = 0;
6304 bool isUTF16 = false;
6305 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6306 GetConstantCFStringEntry(CFConstantStringMap, Literal,
6307 getDataLayout().isLittleEndian(), isUTF16,
6308 StringLength);
6310 if (auto *C = Entry.second)
6311 return ConstantAddress(
6312 C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6314 const ASTContext &Context = getContext();
6315 const llvm::Triple &Triple = getTriple();
6317 const auto CFRuntime = getLangOpts().CFRuntime;
6318 const bool IsSwiftABI =
6319 static_cast<unsigned>(CFRuntime) >=
6320 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6321 const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6323 // If we don't already have it, get __CFConstantStringClassReference.
6324 if (!CFConstantStringClassRef) {
6325 const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6326 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6327 Ty = llvm::ArrayType::get(Ty, 0);
6329 switch (CFRuntime) {
6330 default: break;
6331 case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6332 case LangOptions::CoreFoundationABI::Swift5_0:
6333 CFConstantStringClassName =
6334 Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6335 : "$s10Foundation19_NSCFConstantStringCN";
6336 Ty = IntPtrTy;
6337 break;
6338 case LangOptions::CoreFoundationABI::Swift4_2:
6339 CFConstantStringClassName =
6340 Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6341 : "$S10Foundation19_NSCFConstantStringCN";
6342 Ty = IntPtrTy;
6343 break;
6344 case LangOptions::CoreFoundationABI::Swift4_1:
6345 CFConstantStringClassName =
6346 Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6347 : "__T010Foundation19_NSCFConstantStringCN";
6348 Ty = IntPtrTy;
6349 break;
6352 llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6354 if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6355 llvm::GlobalValue *GV = nullptr;
6357 if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6358 IdentifierInfo &II = Context.Idents.get(GV->getName());
6359 TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6360 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6362 const VarDecl *VD = nullptr;
6363 for (const auto *Result : DC->lookup(&II))
6364 if ((VD = dyn_cast<VarDecl>(Result)))
6365 break;
6367 if (Triple.isOSBinFormatELF()) {
6368 if (!VD)
6369 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6370 } else {
6371 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6372 if (!VD || !VD->hasAttr<DLLExportAttr>())
6373 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6374 else
6375 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6378 setDSOLocal(GV);
6382 // Decay array -> ptr
6383 CFConstantStringClassRef =
6384 IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : C;
6387 QualType CFTy = Context.getCFConstantStringType();
6389 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6391 ConstantInitBuilder Builder(*this);
6392 auto Fields = Builder.beginStruct(STy);
6394 // Class pointer.
6395 Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6397 // Flags.
6398 if (IsSwiftABI) {
6399 Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6400 Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6401 } else {
6402 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6405 // String pointer.
6406 llvm::Constant *C = nullptr;
6407 if (isUTF16) {
6408 auto Arr = llvm::ArrayRef(
6409 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6410 Entry.first().size() / 2);
6411 C = llvm::ConstantDataArray::get(VMContext, Arr);
6412 } else {
6413 C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6416 // Note: -fwritable-strings doesn't make the backing store strings of
6417 // CFStrings writable.
6418 auto *GV =
6419 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6420 llvm::GlobalValue::PrivateLinkage, C, ".str");
6421 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6422 // Don't enforce the target's minimum global alignment, since the only use
6423 // of the string is via this class initializer.
6424 CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6425 : Context.getTypeAlignInChars(Context.CharTy);
6426 GV->setAlignment(Align.getAsAlign());
6428 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6429 // Without it LLVM can merge the string with a non unnamed_addr one during
6430 // LTO. Doing that changes the section it ends in, which surprises ld64.
6431 if (Triple.isOSBinFormatMachO())
6432 GV->setSection(isUTF16 ? "__TEXT,__ustring"
6433 : "__TEXT,__cstring,cstring_literals");
6434 // Make sure the literal ends up in .rodata to allow for safe ICF and for
6435 // the static linker to adjust permissions to read-only later on.
6436 else if (Triple.isOSBinFormatELF())
6437 GV->setSection(".rodata");
6439 // String.
6440 Fields.add(GV);
6442 // String length.
6443 llvm::IntegerType *LengthTy =
6444 llvm::IntegerType::get(getModule().getContext(),
6445 Context.getTargetInfo().getLongWidth());
6446 if (IsSwiftABI) {
6447 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6448 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6449 LengthTy = Int32Ty;
6450 else
6451 LengthTy = IntPtrTy;
6453 Fields.addInt(LengthTy, StringLength);
6455 // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6456 // properly aligned on 32-bit platforms.
6457 CharUnits Alignment =
6458 IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6460 // The struct.
6461 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6462 /*isConstant=*/false,
6463 llvm::GlobalVariable::PrivateLinkage);
6464 GV->addAttribute("objc_arc_inert");
6465 switch (Triple.getObjectFormat()) {
6466 case llvm::Triple::UnknownObjectFormat:
6467 llvm_unreachable("unknown file format");
6468 case llvm::Triple::DXContainer:
6469 case llvm::Triple::GOFF:
6470 case llvm::Triple::SPIRV:
6471 case llvm::Triple::XCOFF:
6472 llvm_unreachable("unimplemented");
6473 case llvm::Triple::COFF:
6474 case llvm::Triple::ELF:
6475 case llvm::Triple::Wasm:
6476 GV->setSection("cfstring");
6477 break;
6478 case llvm::Triple::MachO:
6479 GV->setSection("__DATA,__cfstring");
6480 break;
6482 Entry.second = GV;
6484 return ConstantAddress(GV, GV->getValueType(), Alignment);
6487 bool CodeGenModule::getExpressionLocationsEnabled() const {
6488 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6491 QualType CodeGenModule::getObjCFastEnumerationStateType() {
6492 if (ObjCFastEnumerationStateType.isNull()) {
6493 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6494 D->startDefinition();
6496 QualType FieldTypes[] = {
6497 Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6498 Context.getPointerType(Context.UnsignedLongTy),
6499 Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6500 nullptr, ArraySizeModifier::Normal, 0)};
6502 for (size_t i = 0; i < 4; ++i) {
6503 FieldDecl *Field = FieldDecl::Create(Context,
6505 SourceLocation(),
6506 SourceLocation(), nullptr,
6507 FieldTypes[i], /*TInfo=*/nullptr,
6508 /*BitWidth=*/nullptr,
6509 /*Mutable=*/false,
6510 ICIS_NoInit);
6511 Field->setAccess(AS_public);
6512 D->addDecl(Field);
6515 D->completeDefinition();
6516 ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6519 return ObjCFastEnumerationStateType;
6522 llvm::Constant *
6523 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6524 assert(!E->getType()->isPointerType() && "Strings are always arrays");
6526 // Don't emit it as the address of the string, emit the string data itself
6527 // as an inline array.
6528 if (E->getCharByteWidth() == 1) {
6529 SmallString<64> Str(E->getString());
6531 // Resize the string to the right size, which is indicated by its type.
6532 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6533 assert(CAT && "String literal not of constant array type!");
6534 Str.resize(CAT->getZExtSize());
6535 return llvm::ConstantDataArray::getString(VMContext, Str, false);
6538 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6539 llvm::Type *ElemTy = AType->getElementType();
6540 unsigned NumElements = AType->getNumElements();
6542 // Wide strings have either 2-byte or 4-byte elements.
6543 if (ElemTy->getPrimitiveSizeInBits() == 16) {
6544 SmallVector<uint16_t, 32> Elements;
6545 Elements.reserve(NumElements);
6547 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6548 Elements.push_back(E->getCodeUnit(i));
6549 Elements.resize(NumElements);
6550 return llvm::ConstantDataArray::get(VMContext, Elements);
6553 assert(ElemTy->getPrimitiveSizeInBits() == 32);
6554 SmallVector<uint32_t, 32> Elements;
6555 Elements.reserve(NumElements);
6557 for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6558 Elements.push_back(E->getCodeUnit(i));
6559 Elements.resize(NumElements);
6560 return llvm::ConstantDataArray::get(VMContext, Elements);
6563 static llvm::GlobalVariable *
6564 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6565 CodeGenModule &CGM, StringRef GlobalName,
6566 CharUnits Alignment) {
6567 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6568 CGM.GetGlobalConstantAddressSpace());
6570 llvm::Module &M = CGM.getModule();
6571 // Create a global variable for this string
6572 auto *GV = new llvm::GlobalVariable(
6573 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6574 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6575 GV->setAlignment(Alignment.getAsAlign());
6576 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6577 if (GV->isWeakForLinker()) {
6578 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6579 GV->setComdat(M.getOrInsertComdat(GV->getName()));
6581 CGM.setDSOLocal(GV);
6583 return GV;
6586 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6587 /// constant array for the given string literal.
6588 ConstantAddress
6589 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6590 StringRef Name) {
6591 CharUnits Alignment =
6592 getContext().getAlignOfGlobalVarInChars(S->getType(), /*VD=*/nullptr);
6594 llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6595 llvm::GlobalVariable **Entry = nullptr;
6596 if (!LangOpts.WritableStrings) {
6597 Entry = &ConstantStringMap[C];
6598 if (auto GV = *Entry) {
6599 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6600 GV->setAlignment(Alignment.getAsAlign());
6601 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6602 GV->getValueType(), Alignment);
6606 SmallString<256> MangledNameBuffer;
6607 StringRef GlobalVariableName;
6608 llvm::GlobalValue::LinkageTypes LT;
6610 // Mangle the string literal if that's how the ABI merges duplicate strings.
6611 // Don't do it if they are writable, since we don't want writes in one TU to
6612 // affect strings in another.
6613 if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6614 !LangOpts.WritableStrings) {
6615 llvm::raw_svector_ostream Out(MangledNameBuffer);
6616 getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6617 LT = llvm::GlobalValue::LinkOnceODRLinkage;
6618 GlobalVariableName = MangledNameBuffer;
6619 } else {
6620 LT = llvm::GlobalValue::PrivateLinkage;
6621 GlobalVariableName = Name;
6624 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6626 CGDebugInfo *DI = getModuleDebugInfo();
6627 if (DI && getCodeGenOpts().hasReducedDebugInfo())
6628 DI->AddStringLiteralDebugInfo(GV, S);
6630 if (Entry)
6631 *Entry = GV;
6633 SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6635 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6636 GV->getValueType(), Alignment);
6639 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6640 /// array for the given ObjCEncodeExpr node.
6641 ConstantAddress
6642 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6643 std::string Str;
6644 getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6646 return GetAddrOfConstantCString(Str);
6649 /// GetAddrOfConstantCString - Returns a pointer to a character array containing
6650 /// the literal and a terminating '\0' character.
6651 /// The result has pointer to array type.
6652 ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6653 const std::string &Str, const char *GlobalName) {
6654 StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6655 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(
6656 getContext().CharTy, /*VD=*/nullptr);
6658 llvm::Constant *C =
6659 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6661 // Don't share any string literals if strings aren't constant.
6662 llvm::GlobalVariable **Entry = nullptr;
6663 if (!LangOpts.WritableStrings) {
6664 Entry = &ConstantStringMap[C];
6665 if (auto GV = *Entry) {
6666 if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6667 GV->setAlignment(Alignment.getAsAlign());
6668 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6669 GV->getValueType(), Alignment);
6673 // Get the default prefix if a name wasn't specified.
6674 if (!GlobalName)
6675 GlobalName = ".str";
6676 // Create a global variable for this.
6677 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6678 GlobalName, Alignment);
6679 if (Entry)
6680 *Entry = GV;
6682 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6683 GV->getValueType(), Alignment);
6686 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6687 const MaterializeTemporaryExpr *E, const Expr *Init) {
6688 assert((E->getStorageDuration() == SD_Static ||
6689 E->getStorageDuration() == SD_Thread) && "not a global temporary");
6690 const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6692 // If we're not materializing a subobject of the temporary, keep the
6693 // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6694 QualType MaterializedType = Init->getType();
6695 if (Init == E->getSubExpr())
6696 MaterializedType = E->getType();
6698 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6700 auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6701 if (!InsertResult.second) {
6702 // We've seen this before: either we already created it or we're in the
6703 // process of doing so.
6704 if (!InsertResult.first->second) {
6705 // We recursively re-entered this function, probably during emission of
6706 // the initializer. Create a placeholder. We'll clean this up in the
6707 // outer call, at the end of this function.
6708 llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6709 InsertResult.first->second = new llvm::GlobalVariable(
6710 getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6711 nullptr);
6713 return ConstantAddress(InsertResult.first->second,
6714 llvm::cast<llvm::GlobalVariable>(
6715 InsertResult.first->second->stripPointerCasts())
6716 ->getValueType(),
6717 Align);
6720 // FIXME: If an externally-visible declaration extends multiple temporaries,
6721 // we need to give each temporary the same name in every translation unit (and
6722 // we also need to make the temporaries externally-visible).
6723 SmallString<256> Name;
6724 llvm::raw_svector_ostream Out(Name);
6725 getCXXABI().getMangleContext().mangleReferenceTemporary(
6726 VD, E->getManglingNumber(), Out);
6728 APValue *Value = nullptr;
6729 if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6730 // If the initializer of the extending declaration is a constant
6731 // initializer, we should have a cached constant initializer for this
6732 // temporary. Note that this might have a different value from the value
6733 // computed by evaluating the initializer if the surrounding constant
6734 // expression modifies the temporary.
6735 Value = E->getOrCreateValue(false);
6738 // Try evaluating it now, it might have a constant initializer.
6739 Expr::EvalResult EvalResult;
6740 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6741 !EvalResult.hasSideEffects())
6742 Value = &EvalResult.Val;
6744 LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6746 std::optional<ConstantEmitter> emitter;
6747 llvm::Constant *InitialValue = nullptr;
6748 bool Constant = false;
6749 llvm::Type *Type;
6750 if (Value) {
6751 // The temporary has a constant initializer, use it.
6752 emitter.emplace(*this);
6753 InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6754 MaterializedType);
6755 Constant =
6756 MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6757 /*ExcludeDtor*/ false);
6758 Type = InitialValue->getType();
6759 } else {
6760 // No initializer, the initialization will be provided when we
6761 // initialize the declaration which performed lifetime extension.
6762 Type = getTypes().ConvertTypeForMem(MaterializedType);
6765 // Create a global variable for this lifetime-extended temporary.
6766 llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6767 if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6768 const VarDecl *InitVD;
6769 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6770 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6771 // Temporaries defined inside a class get linkonce_odr linkage because the
6772 // class can be defined in multiple translation units.
6773 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6774 } else {
6775 // There is no need for this temporary to have external linkage if the
6776 // VarDecl has external linkage.
6777 Linkage = llvm::GlobalVariable::InternalLinkage;
6780 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6781 auto *GV = new llvm::GlobalVariable(
6782 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6783 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6784 if (emitter) emitter->finalize(GV);
6785 // Don't assign dllimport or dllexport to local linkage globals.
6786 if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6787 setGVProperties(GV, VD);
6788 if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6789 // The reference temporary should never be dllexport.
6790 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6792 GV->setAlignment(Align.getAsAlign());
6793 if (supportsCOMDAT() && GV->isWeakForLinker())
6794 GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6795 if (VD->getTLSKind())
6796 setTLSMode(GV, *VD);
6797 llvm::Constant *CV = GV;
6798 if (AddrSpace != LangAS::Default)
6799 CV = getTargetCodeGenInfo().performAddrSpaceCast(
6800 *this, GV, AddrSpace, LangAS::Default,
6801 llvm::PointerType::get(
6802 getLLVMContext(),
6803 getContext().getTargetAddressSpace(LangAS::Default)));
6805 // Update the map with the new temporary. If we created a placeholder above,
6806 // replace it with the new global now.
6807 llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6808 if (Entry) {
6809 Entry->replaceAllUsesWith(CV);
6810 llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6812 Entry = CV;
6814 return ConstantAddress(CV, Type, Align);
6817 /// EmitObjCPropertyImplementations - Emit information for synthesized
6818 /// properties for an implementation.
6819 void CodeGenModule::EmitObjCPropertyImplementations(const
6820 ObjCImplementationDecl *D) {
6821 for (const auto *PID : D->property_impls()) {
6822 // Dynamic is just for type-checking.
6823 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6824 ObjCPropertyDecl *PD = PID->getPropertyDecl();
6826 // Determine which methods need to be implemented, some may have
6827 // been overridden. Note that ::isPropertyAccessor is not the method
6828 // we want, that just indicates if the decl came from a
6829 // property. What we want to know is if the method is defined in
6830 // this implementation.
6831 auto *Getter = PID->getGetterMethodDecl();
6832 if (!Getter || Getter->isSynthesizedAccessorStub())
6833 CodeGenFunction(*this).GenerateObjCGetter(
6834 const_cast<ObjCImplementationDecl *>(D), PID);
6835 auto *Setter = PID->getSetterMethodDecl();
6836 if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6837 CodeGenFunction(*this).GenerateObjCSetter(
6838 const_cast<ObjCImplementationDecl *>(D), PID);
6843 static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6844 const ObjCInterfaceDecl *iface = impl->getClassInterface();
6845 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6846 ivar; ivar = ivar->getNextIvar())
6847 if (ivar->getType().isDestructedType())
6848 return true;
6850 return false;
6853 static bool AllTrivialInitializers(CodeGenModule &CGM,
6854 ObjCImplementationDecl *D) {
6855 CodeGenFunction CGF(CGM);
6856 for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6857 E = D->init_end(); B != E; ++B) {
6858 CXXCtorInitializer *CtorInitExp = *B;
6859 Expr *Init = CtorInitExp->getInit();
6860 if (!CGF.isTrivialInitializer(Init))
6861 return false;
6863 return true;
6866 /// EmitObjCIvarInitializations - Emit information for ivar initialization
6867 /// for an implementation.
6868 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6869 // We might need a .cxx_destruct even if we don't have any ivar initializers.
6870 if (needsDestructMethod(D)) {
6871 const IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6872 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6873 ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6874 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6875 getContext().VoidTy, nullptr, D,
6876 /*isInstance=*/true, /*isVariadic=*/false,
6877 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6878 /*isImplicitlyDeclared=*/true,
6879 /*isDefined=*/false, ObjCImplementationControl::Required);
6880 D->addInstanceMethod(DTORMethod);
6881 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6882 D->setHasDestructors(true);
6885 // If the implementation doesn't have any ivar initializers, we don't need
6886 // a .cxx_construct.
6887 if (D->getNumIvarInitializers() == 0 ||
6888 AllTrivialInitializers(*this, D))
6889 return;
6891 const IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6892 Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6893 // The constructor returns 'self'.
6894 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6895 getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6896 getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6897 /*isVariadic=*/false,
6898 /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6899 /*isImplicitlyDeclared=*/true,
6900 /*isDefined=*/false, ObjCImplementationControl::Required);
6901 D->addInstanceMethod(CTORMethod);
6902 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6903 D->setHasNonZeroConstructors(true);
6906 // EmitLinkageSpec - Emit all declarations in a linkage spec.
6907 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6908 if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6909 LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6910 ErrorUnsupported(LSD, "linkage spec");
6911 return;
6914 EmitDeclContext(LSD);
6917 void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6918 // Device code should not be at top level.
6919 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6920 return;
6922 std::unique_ptr<CodeGenFunction> &CurCGF =
6923 GlobalTopLevelStmtBlockInFlight.first;
6925 // We emitted a top-level stmt but after it there is initialization.
6926 // Stop squashing the top-level stmts into a single function.
6927 if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6928 CurCGF->FinishFunction(D->getEndLoc());
6929 CurCGF = nullptr;
6932 if (!CurCGF) {
6933 // void __stmts__N(void)
6934 // FIXME: Ask the ABI name mangler to pick a name.
6935 std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6936 FunctionArgList Args;
6937 QualType RetTy = getContext().VoidTy;
6938 const CGFunctionInfo &FnInfo =
6939 getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6940 llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6941 llvm::Function *Fn = llvm::Function::Create(
6942 FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6944 CurCGF.reset(new CodeGenFunction(*this));
6945 GlobalTopLevelStmtBlockInFlight.second = D;
6946 CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6947 D->getBeginLoc(), D->getBeginLoc());
6948 CXXGlobalInits.push_back(Fn);
6951 CurCGF->EmitStmt(D->getStmt());
6954 void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6955 for (auto *I : DC->decls()) {
6956 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6957 // are themselves considered "top-level", so EmitTopLevelDecl on an
6958 // ObjCImplDecl does not recursively visit them. We need to do that in
6959 // case they're nested inside another construct (LinkageSpecDecl /
6960 // ExportDecl) that does stop them from being considered "top-level".
6961 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6962 for (auto *M : OID->methods())
6963 EmitTopLevelDecl(M);
6966 EmitTopLevelDecl(I);
6970 /// EmitTopLevelDecl - Emit code for a single top level declaration.
6971 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6972 // Ignore dependent declarations.
6973 if (D->isTemplated())
6974 return;
6976 // Consteval function shouldn't be emitted.
6977 if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6978 return;
6980 switch (D->getKind()) {
6981 case Decl::CXXConversion:
6982 case Decl::CXXMethod:
6983 case Decl::Function:
6984 EmitGlobal(cast<FunctionDecl>(D));
6985 // Always provide some coverage mapping
6986 // even for the functions that aren't emitted.
6987 AddDeferredUnusedCoverageMapping(D);
6988 break;
6990 case Decl::CXXDeductionGuide:
6991 // Function-like, but does not result in code emission.
6992 break;
6994 case Decl::Var:
6995 case Decl::Decomposition:
6996 case Decl::VarTemplateSpecialization:
6997 EmitGlobal(cast<VarDecl>(D));
6998 if (auto *DD = dyn_cast<DecompositionDecl>(D))
6999 for (auto *B : DD->bindings())
7000 if (auto *HD = B->getHoldingVar())
7001 EmitGlobal(HD);
7002 break;
7004 // Indirect fields from global anonymous structs and unions can be
7005 // ignored; only the actual variable requires IR gen support.
7006 case Decl::IndirectField:
7007 break;
7009 // C++ Decls
7010 case Decl::Namespace:
7011 EmitDeclContext(cast<NamespaceDecl>(D));
7012 break;
7013 case Decl::ClassTemplateSpecialization: {
7014 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
7015 if (CGDebugInfo *DI = getModuleDebugInfo())
7016 if (Spec->getSpecializationKind() ==
7017 TSK_ExplicitInstantiationDefinition &&
7018 Spec->hasDefinition())
7019 DI->completeTemplateDefinition(*Spec);
7020 } [[fallthrough]];
7021 case Decl::CXXRecord: {
7022 CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
7023 if (CGDebugInfo *DI = getModuleDebugInfo()) {
7024 if (CRD->hasDefinition())
7025 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7026 if (auto *ES = D->getASTContext().getExternalSource())
7027 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
7028 DI->completeUnusedClass(*CRD);
7030 // Emit any static data members, they may be definitions.
7031 for (auto *I : CRD->decls())
7032 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
7033 EmitTopLevelDecl(I);
7034 break;
7036 // No code generation needed.
7037 case Decl::UsingShadow:
7038 case Decl::ClassTemplate:
7039 case Decl::VarTemplate:
7040 case Decl::Concept:
7041 case Decl::VarTemplatePartialSpecialization:
7042 case Decl::FunctionTemplate:
7043 case Decl::TypeAliasTemplate:
7044 case Decl::Block:
7045 case Decl::Empty:
7046 case Decl::Binding:
7047 break;
7048 case Decl::Using: // using X; [C++]
7049 if (CGDebugInfo *DI = getModuleDebugInfo())
7050 DI->EmitUsingDecl(cast<UsingDecl>(*D));
7051 break;
7052 case Decl::UsingEnum: // using enum X; [C++]
7053 if (CGDebugInfo *DI = getModuleDebugInfo())
7054 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
7055 break;
7056 case Decl::NamespaceAlias:
7057 if (CGDebugInfo *DI = getModuleDebugInfo())
7058 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
7059 break;
7060 case Decl::UsingDirective: // using namespace X; [C++]
7061 if (CGDebugInfo *DI = getModuleDebugInfo())
7062 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
7063 break;
7064 case Decl::CXXConstructor:
7065 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
7066 break;
7067 case Decl::CXXDestructor:
7068 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
7069 break;
7071 case Decl::StaticAssert:
7072 // Nothing to do.
7073 break;
7075 // Objective-C Decls
7077 // Forward declarations, no (immediate) code generation.
7078 case Decl::ObjCInterface:
7079 case Decl::ObjCCategory:
7080 break;
7082 case Decl::ObjCProtocol: {
7083 auto *Proto = cast<ObjCProtocolDecl>(D);
7084 if (Proto->isThisDeclarationADefinition())
7085 ObjCRuntime->GenerateProtocol(Proto);
7086 break;
7089 case Decl::ObjCCategoryImpl:
7090 // Categories have properties but don't support synthesize so we
7091 // can ignore them here.
7092 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
7093 break;
7095 case Decl::ObjCImplementation: {
7096 auto *OMD = cast<ObjCImplementationDecl>(D);
7097 EmitObjCPropertyImplementations(OMD);
7098 EmitObjCIvarInitializations(OMD);
7099 ObjCRuntime->GenerateClass(OMD);
7100 // Emit global variable debug information.
7101 if (CGDebugInfo *DI = getModuleDebugInfo())
7102 if (getCodeGenOpts().hasReducedDebugInfo())
7103 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
7104 OMD->getClassInterface()), OMD->getLocation());
7105 break;
7107 case Decl::ObjCMethod: {
7108 auto *OMD = cast<ObjCMethodDecl>(D);
7109 // If this is not a prototype, emit the body.
7110 if (OMD->getBody())
7111 CodeGenFunction(*this).GenerateObjCMethod(OMD);
7112 break;
7114 case Decl::ObjCCompatibleAlias:
7115 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
7116 break;
7118 case Decl::PragmaComment: {
7119 const auto *PCD = cast<PragmaCommentDecl>(D);
7120 switch (PCD->getCommentKind()) {
7121 case PCK_Unknown:
7122 llvm_unreachable("unexpected pragma comment kind");
7123 case PCK_Linker:
7124 AppendLinkerOptions(PCD->getArg());
7125 break;
7126 case PCK_Lib:
7127 AddDependentLib(PCD->getArg());
7128 break;
7129 case PCK_Compiler:
7130 case PCK_ExeStr:
7131 case PCK_User:
7132 break; // We ignore all of these.
7134 break;
7137 case Decl::PragmaDetectMismatch: {
7138 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
7139 AddDetectMismatch(PDMD->getName(), PDMD->getValue());
7140 break;
7143 case Decl::LinkageSpec:
7144 EmitLinkageSpec(cast<LinkageSpecDecl>(D));
7145 break;
7147 case Decl::FileScopeAsm: {
7148 // File-scope asm is ignored during device-side CUDA compilation.
7149 if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
7150 break;
7151 // File-scope asm is ignored during device-side OpenMP compilation.
7152 if (LangOpts.OpenMPIsTargetDevice)
7153 break;
7154 // File-scope asm is ignored during device-side SYCL compilation.
7155 if (LangOpts.SYCLIsDevice)
7156 break;
7157 auto *AD = cast<FileScopeAsmDecl>(D);
7158 getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
7159 break;
7162 case Decl::TopLevelStmt:
7163 EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
7164 break;
7166 case Decl::Import: {
7167 auto *Import = cast<ImportDecl>(D);
7169 // If we've already imported this module, we're done.
7170 if (!ImportedModules.insert(Import->getImportedModule()))
7171 break;
7173 // Emit debug information for direct imports.
7174 if (!Import->getImportedOwningModule()) {
7175 if (CGDebugInfo *DI = getModuleDebugInfo())
7176 DI->EmitImportDecl(*Import);
7179 // For C++ standard modules we are done - we will call the module
7180 // initializer for imported modules, and that will likewise call those for
7181 // any imports it has.
7182 if (CXX20ModuleInits && Import->getImportedModule() &&
7183 Import->getImportedModule()->isNamedModule())
7184 break;
7186 // For clang C++ module map modules the initializers for sub-modules are
7187 // emitted here.
7189 // Find all of the submodules and emit the module initializers.
7190 llvm::SmallPtrSet<clang::Module *, 16> Visited;
7191 SmallVector<clang::Module *, 16> Stack;
7192 Visited.insert(Import->getImportedModule());
7193 Stack.push_back(Import->getImportedModule());
7195 while (!Stack.empty()) {
7196 clang::Module *Mod = Stack.pop_back_val();
7197 if (!EmittedModuleInitializers.insert(Mod).second)
7198 continue;
7200 for (auto *D : Context.getModuleInitializers(Mod))
7201 EmitTopLevelDecl(D);
7203 // Visit the submodules of this module.
7204 for (auto *Submodule : Mod->submodules()) {
7205 // Skip explicit children; they need to be explicitly imported to emit
7206 // the initializers.
7207 if (Submodule->IsExplicit)
7208 continue;
7210 if (Visited.insert(Submodule).second)
7211 Stack.push_back(Submodule);
7214 break;
7217 case Decl::Export:
7218 EmitDeclContext(cast<ExportDecl>(D));
7219 break;
7221 case Decl::OMPThreadPrivate:
7222 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
7223 break;
7225 case Decl::OMPAllocate:
7226 EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
7227 break;
7229 case Decl::OMPDeclareReduction:
7230 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
7231 break;
7233 case Decl::OMPDeclareMapper:
7234 EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
7235 break;
7237 case Decl::OMPRequires:
7238 EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
7239 break;
7241 case Decl::Typedef:
7242 case Decl::TypeAlias: // using foo = bar; [C++11]
7243 if (CGDebugInfo *DI = getModuleDebugInfo())
7244 DI->EmitAndRetainType(
7245 getContext().getTypedefType(cast<TypedefNameDecl>(D)));
7246 break;
7248 case Decl::Record:
7249 if (CGDebugInfo *DI = getModuleDebugInfo())
7250 if (cast<RecordDecl>(D)->getDefinition())
7251 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
7252 break;
7254 case Decl::Enum:
7255 if (CGDebugInfo *DI = getModuleDebugInfo())
7256 if (cast<EnumDecl>(D)->getDefinition())
7257 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
7258 break;
7260 case Decl::HLSLBuffer:
7261 getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
7262 break;
7264 default:
7265 // Make sure we handled everything we should, every other kind is a
7266 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind
7267 // function. Need to recode Decl::Kind to do that easily.
7268 assert(isa<TypeDecl>(D) && "Unsupported decl kind");
7269 break;
7273 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
7274 // Do we need to generate coverage mapping?
7275 if (!CodeGenOpts.CoverageMapping)
7276 return;
7277 switch (D->getKind()) {
7278 case Decl::CXXConversion:
7279 case Decl::CXXMethod:
7280 case Decl::Function:
7281 case Decl::ObjCMethod:
7282 case Decl::CXXConstructor:
7283 case Decl::CXXDestructor: {
7284 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7285 break;
7286 SourceManager &SM = getContext().getSourceManager();
7287 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7288 break;
7289 if (!llvm::coverage::SystemHeadersCoverage &&
7290 SM.isInSystemHeader(D->getBeginLoc()))
7291 break;
7292 DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7293 break;
7295 default:
7296 break;
7300 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7301 // Do we need to generate coverage mapping?
7302 if (!CodeGenOpts.CoverageMapping)
7303 return;
7304 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7305 if (Fn->isTemplateInstantiation())
7306 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7308 DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7311 void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7312 // We call takeVector() here to avoid use-after-free.
7313 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7314 // we deserialize function bodies to emit coverage info for them, and that
7315 // deserializes more declarations. How should we handle that case?
7316 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7317 if (!Entry.second)
7318 continue;
7319 const Decl *D = Entry.first;
7320 switch (D->getKind()) {
7321 case Decl::CXXConversion:
7322 case Decl::CXXMethod:
7323 case Decl::Function:
7324 case Decl::ObjCMethod: {
7325 CodeGenPGO PGO(*this);
7326 GlobalDecl GD(cast<FunctionDecl>(D));
7327 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7328 getFunctionLinkage(GD));
7329 break;
7331 case Decl::CXXConstructor: {
7332 CodeGenPGO PGO(*this);
7333 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7334 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7335 getFunctionLinkage(GD));
7336 break;
7338 case Decl::CXXDestructor: {
7339 CodeGenPGO PGO(*this);
7340 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7341 PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7342 getFunctionLinkage(GD));
7343 break;
7345 default:
7346 break;
7351 void CodeGenModule::EmitMainVoidAlias() {
7352 // In order to transition away from "__original_main" gracefully, emit an
7353 // alias for "main" in the no-argument case so that libc can detect when
7354 // new-style no-argument main is in used.
7355 if (llvm::Function *F = getModule().getFunction("main")) {
7356 if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7357 F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7358 auto *GA = llvm::GlobalAlias::create("__main_void", F);
7359 GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7364 /// Turns the given pointer into a constant.
7365 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7366 const void *Ptr) {
7367 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7368 llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7369 return llvm::ConstantInt::get(i64, PtrInt);
7372 static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7373 llvm::NamedMDNode *&GlobalMetadata,
7374 GlobalDecl D,
7375 llvm::GlobalValue *Addr) {
7376 if (!GlobalMetadata)
7377 GlobalMetadata =
7378 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7380 // TODO: should we report variant information for ctors/dtors?
7381 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7382 llvm::ConstantAsMetadata::get(GetPointerConstant(
7383 CGM.getLLVMContext(), D.getDecl()))};
7384 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7387 bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7388 llvm::GlobalValue *CppFunc) {
7389 // Store the list of ifuncs we need to replace uses in.
7390 llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7391 // List of ConstantExprs that we should be able to delete when we're done
7392 // here.
7393 llvm::SmallVector<llvm::ConstantExpr *> CEs;
7395 // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7396 if (Elem == CppFunc)
7397 return false;
7399 // First make sure that all users of this are ifuncs (or ifuncs via a
7400 // bitcast), and collect the list of ifuncs and CEs so we can work on them
7401 // later.
7402 for (llvm::User *User : Elem->users()) {
7403 // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7404 // ifunc directly. In any other case, just give up, as we don't know what we
7405 // could break by changing those.
7406 if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7407 if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7408 return false;
7410 for (llvm::User *CEUser : ConstExpr->users()) {
7411 if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7412 IFuncs.push_back(IFunc);
7413 } else {
7414 return false;
7417 CEs.push_back(ConstExpr);
7418 } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7419 IFuncs.push_back(IFunc);
7420 } else {
7421 // This user is one we don't know how to handle, so fail redirection. This
7422 // will result in an ifunc retaining a resolver name that will ultimately
7423 // fail to be resolved to a defined function.
7424 return false;
7428 // Now we know this is a valid case where we can do this alias replacement, we
7429 // need to remove all of the references to Elem (and the bitcasts!) so we can
7430 // delete it.
7431 for (llvm::GlobalIFunc *IFunc : IFuncs)
7432 IFunc->setResolver(nullptr);
7433 for (llvm::ConstantExpr *ConstExpr : CEs)
7434 ConstExpr->destroyConstant();
7436 // We should now be out of uses for the 'old' version of this function, so we
7437 // can erase it as well.
7438 Elem->eraseFromParent();
7440 for (llvm::GlobalIFunc *IFunc : IFuncs) {
7441 // The type of the resolver is always just a function-type that returns the
7442 // type of the IFunc, so create that here. If the type of the actual
7443 // resolver doesn't match, it just gets bitcast to the right thing.
7444 auto *ResolverTy =
7445 llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7446 llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7447 CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7448 IFunc->setResolver(Resolver);
7450 return true;
7453 /// For each function which is declared within an extern "C" region and marked
7454 /// as 'used', but has internal linkage, create an alias from the unmangled
7455 /// name to the mangled name if possible. People expect to be able to refer
7456 /// to such functions with an unmangled name from inline assembly within the
7457 /// same translation unit.
7458 void CodeGenModule::EmitStaticExternCAliases() {
7459 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7460 return;
7461 for (auto &I : StaticExternCValues) {
7462 const IdentifierInfo *Name = I.first;
7463 llvm::GlobalValue *Val = I.second;
7465 // If Val is null, that implies there were multiple declarations that each
7466 // had a claim to the unmangled name. In this case, generation of the alias
7467 // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7468 if (!Val)
7469 break;
7471 llvm::GlobalValue *ExistingElem =
7472 getModule().getNamedValue(Name->getName());
7474 // If there is either not something already by this name, or we were able to
7475 // replace all uses from IFuncs, create the alias.
7476 if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7477 addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7481 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7482 GlobalDecl &Result) const {
7483 auto Res = Manglings.find(MangledName);
7484 if (Res == Manglings.end())
7485 return false;
7486 Result = Res->getValue();
7487 return true;
7490 /// Emits metadata nodes associating all the global values in the
7491 /// current module with the Decls they came from. This is useful for
7492 /// projects using IR gen as a subroutine.
7494 /// Since there's currently no way to associate an MDNode directly
7495 /// with an llvm::GlobalValue, we create a global named metadata
7496 /// with the name 'clang.global.decl.ptrs'.
7497 void CodeGenModule::EmitDeclMetadata() {
7498 llvm::NamedMDNode *GlobalMetadata = nullptr;
7500 for (auto &I : MangledDeclNames) {
7501 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7502 // Some mangled names don't necessarily have an associated GlobalValue
7503 // in this module, e.g. if we mangled it for DebugInfo.
7504 if (Addr)
7505 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7509 /// Emits metadata nodes for all the local variables in the current
7510 /// function.
7511 void CodeGenFunction::EmitDeclMetadata() {
7512 if (LocalDeclMap.empty()) return;
7514 llvm::LLVMContext &Context = getLLVMContext();
7516 // Find the unique metadata ID for this name.
7517 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7519 llvm::NamedMDNode *GlobalMetadata = nullptr;
7521 for (auto &I : LocalDeclMap) {
7522 const Decl *D = I.first;
7523 llvm::Value *Addr = I.second.emitRawPointer(*this);
7524 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7525 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7526 Alloca->setMetadata(
7527 DeclPtrKind, llvm::MDNode::get(
7528 Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7529 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7530 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7531 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7536 void CodeGenModule::EmitVersionIdentMetadata() {
7537 llvm::NamedMDNode *IdentMetadata =
7538 TheModule.getOrInsertNamedMetadata("llvm.ident");
7539 std::string Version = getClangFullVersion();
7540 llvm::LLVMContext &Ctx = TheModule.getContext();
7542 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7543 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7546 void CodeGenModule::EmitCommandLineMetadata() {
7547 llvm::NamedMDNode *CommandLineMetadata =
7548 TheModule.getOrInsertNamedMetadata("llvm.commandline");
7549 std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7550 llvm::LLVMContext &Ctx = TheModule.getContext();
7552 llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7553 CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7556 void CodeGenModule::EmitCoverageFile() {
7557 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7558 if (!CUNode)
7559 return;
7561 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7562 llvm::LLVMContext &Ctx = TheModule.getContext();
7563 auto *CoverageDataFile =
7564 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7565 auto *CoverageNotesFile =
7566 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7567 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7568 llvm::MDNode *CU = CUNode->getOperand(i);
7569 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7570 GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7574 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7575 bool ForEH) {
7576 // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7577 // FIXME: should we even be calling this method if RTTI is disabled
7578 // and it's not for EH?
7579 if (!shouldEmitRTTI(ForEH))
7580 return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7582 if (ForEH && Ty->isObjCObjectPointerType() &&
7583 LangOpts.ObjCRuntime.isGNUFamily())
7584 return ObjCRuntime->GetEHType(Ty);
7586 return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7589 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7590 // Do not emit threadprivates in simd-only mode.
7591 if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7592 return;
7593 for (auto RefExpr : D->varlist()) {
7594 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7595 bool PerformInit =
7596 VD->getAnyInitializer() &&
7597 !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7598 /*ForRef=*/false);
7600 Address Addr(GetAddrOfGlobalVar(VD),
7601 getTypes().ConvertTypeForMem(VD->getType()),
7602 getContext().getDeclAlign(VD));
7603 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7604 VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7605 CXXGlobalInits.push_back(InitFunction);
7609 llvm::Metadata *
7610 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7611 StringRef Suffix) {
7612 if (auto *FnType = T->getAs<FunctionProtoType>())
7613 T = getContext().getFunctionType(
7614 FnType->getReturnType(), FnType->getParamTypes(),
7615 FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7617 llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7618 if (InternalId)
7619 return InternalId;
7621 if (isExternallyVisible(T->getLinkage())) {
7622 std::string OutName;
7623 llvm::raw_string_ostream Out(OutName);
7624 getCXXABI().getMangleContext().mangleCanonicalTypeName(
7625 T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7627 if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7628 Out << ".normalized";
7630 Out << Suffix;
7632 InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7633 } else {
7634 InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7635 llvm::ArrayRef<llvm::Metadata *>());
7638 return InternalId;
7641 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7642 return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7645 llvm::Metadata *
7646 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7647 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7650 // Generalize pointer types to a void pointer with the qualifiers of the
7651 // originally pointed-to type, e.g. 'const char *' and 'char * const *'
7652 // generalize to 'const void *' while 'char *' and 'const char **' generalize to
7653 // 'void *'.
7654 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7655 if (!Ty->isPointerType())
7656 return Ty;
7658 return Ctx.getPointerType(
7659 QualType(Ctx.VoidTy).withCVRQualifiers(
7660 Ty->getPointeeType().getCVRQualifiers()));
7663 // Apply type generalization to a FunctionType's return and argument types
7664 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7665 if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7666 SmallVector<QualType, 8> GeneralizedParams;
7667 for (auto &Param : FnType->param_types())
7668 GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7670 return Ctx.getFunctionType(
7671 GeneralizeType(Ctx, FnType->getReturnType()),
7672 GeneralizedParams, FnType->getExtProtoInfo());
7675 if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7676 return Ctx.getFunctionNoProtoType(
7677 GeneralizeType(Ctx, FnType->getReturnType()));
7679 llvm_unreachable("Encountered unknown FunctionType");
7682 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7683 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7684 GeneralizedMetadataIdMap, ".generalized");
7687 /// Returns whether this module needs the "all-vtables" type identifier.
7688 bool CodeGenModule::NeedAllVtablesTypeId() const {
7689 // Returns true if at least one of vtable-based CFI checkers is enabled and
7690 // is not in the trapping mode.
7691 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7692 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7693 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7694 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7695 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7696 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7697 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7698 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7701 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7702 CharUnits Offset,
7703 const CXXRecordDecl *RD) {
7704 llvm::Metadata *MD =
7705 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7706 VTable->addTypeMetadata(Offset.getQuantity(), MD);
7708 if (CodeGenOpts.SanitizeCfiCrossDso)
7709 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7710 VTable->addTypeMetadata(Offset.getQuantity(),
7711 llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7713 if (NeedAllVtablesTypeId()) {
7714 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7715 VTable->addTypeMetadata(Offset.getQuantity(), MD);
7719 llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7720 if (!SanStats)
7721 SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7723 return *SanStats;
7726 llvm::Value *
7727 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7728 CodeGenFunction &CGF) {
7729 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7730 auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7731 auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7732 auto *Call = CGF.EmitRuntimeCall(
7733 CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7734 return Call;
7737 CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7738 QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7739 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7740 /* forPointeeType= */ true);
7743 CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7744 LValueBaseInfo *BaseInfo,
7745 TBAAAccessInfo *TBAAInfo,
7746 bool forPointeeType) {
7747 if (TBAAInfo)
7748 *TBAAInfo = getTBAAAccessInfo(T);
7750 // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7751 // that doesn't return the information we need to compute BaseInfo.
7753 // Honor alignment typedef attributes even on incomplete types.
7754 // We also honor them straight for C++ class types, even as pointees;
7755 // there's an expressivity gap here.
7756 if (auto TT = T->getAs<TypedefType>()) {
7757 if (auto Align = TT->getDecl()->getMaxAlignment()) {
7758 if (BaseInfo)
7759 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7760 return getContext().toCharUnitsFromBits(Align);
7764 bool AlignForArray = T->isArrayType();
7766 // Analyze the base element type, so we don't get confused by incomplete
7767 // array types.
7768 T = getContext().getBaseElementType(T);
7770 if (T->isIncompleteType()) {
7771 // We could try to replicate the logic from
7772 // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7773 // type is incomplete, so it's impossible to test. We could try to reuse
7774 // getTypeAlignIfKnown, but that doesn't return the information we need
7775 // to set BaseInfo. So just ignore the possibility that the alignment is
7776 // greater than one.
7777 if (BaseInfo)
7778 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7779 return CharUnits::One();
7782 if (BaseInfo)
7783 *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7785 CharUnits Alignment;
7786 const CXXRecordDecl *RD;
7787 if (T.getQualifiers().hasUnaligned()) {
7788 Alignment = CharUnits::One();
7789 } else if (forPointeeType && !AlignForArray &&
7790 (RD = T->getAsCXXRecordDecl())) {
7791 // For C++ class pointees, we don't know whether we're pointing at a
7792 // base or a complete object, so we generally need to use the
7793 // non-virtual alignment.
7794 Alignment = getClassPointerAlignment(RD);
7795 } else {
7796 Alignment = getContext().getTypeAlignInChars(T);
7799 // Cap to the global maximum type alignment unless the alignment
7800 // was somehow explicit on the type.
7801 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7802 if (Alignment.getQuantity() > MaxAlign &&
7803 !getContext().isAlignmentRequired(T))
7804 Alignment = CharUnits::fromQuantity(MaxAlign);
7806 return Alignment;
7809 bool CodeGenModule::stopAutoInit() {
7810 unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7811 if (StopAfter) {
7812 // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7813 // used
7814 if (NumAutoVarInit >= StopAfter) {
7815 return true;
7817 if (!NumAutoVarInit) {
7818 unsigned DiagID = getDiags().getCustomDiagID(
7819 DiagnosticsEngine::Warning,
7820 "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7821 "number of times ftrivial-auto-var-init=%1 gets applied.");
7822 getDiags().Report(DiagID)
7823 << StopAfter
7824 << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7825 LangOptions::TrivialAutoVarInitKind::Zero
7826 ? "zero"
7827 : "pattern");
7829 ++NumAutoVarInit;
7831 return false;
7834 void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7835 const Decl *D) const {
7836 // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7837 // postfix beginning with '.' since the symbol name can be demangled.
7838 if (LangOpts.HIP)
7839 OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7840 else
7841 OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7843 // If the CUID is not specified we try to generate a unique postfix.
7844 if (getLangOpts().CUID.empty()) {
7845 SourceManager &SM = getContext().getSourceManager();
7846 PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7847 assert(PLoc.isValid() && "Source location is expected to be valid.");
7849 // Get the hash of the user defined macros.
7850 llvm::MD5 Hash;
7851 llvm::MD5::MD5Result Result;
7852 for (const auto &Arg : PreprocessorOpts.Macros)
7853 Hash.update(Arg.first);
7854 Hash.final(Result);
7856 // Get the UniqueID for the file containing the decl.
7857 llvm::sys::fs::UniqueID ID;
7858 if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7859 PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7860 assert(PLoc.isValid() && "Source location is expected to be valid.");
7861 if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7862 SM.getDiagnostics().Report(diag::err_cannot_open_file)
7863 << PLoc.getFilename() << EC.message();
7865 OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7866 << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7867 } else {
7868 OS << getContext().getCUIDHash();
7872 void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7873 assert(DeferredDeclsToEmit.empty() &&
7874 "Should have emitted all decls deferred to emit.");
7875 assert(NewBuilder->DeferredDecls.empty() &&
7876 "Newly created module should not have deferred decls");
7877 NewBuilder->DeferredDecls = std::move(DeferredDecls);
7878 assert(EmittedDeferredDecls.empty() &&
7879 "Still have (unmerged) EmittedDeferredDecls deferred decls");
7881 assert(NewBuilder->DeferredVTables.empty() &&
7882 "Newly created module should not have deferred vtables");
7883 NewBuilder->DeferredVTables = std::move(DeferredVTables);
7885 assert(NewBuilder->MangledDeclNames.empty() &&
7886 "Newly created module should not have mangled decl names");
7887 assert(NewBuilder->Manglings.empty() &&
7888 "Newly created module should not have manglings");
7889 NewBuilder->Manglings = std::move(Manglings);
7891 NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7893 NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);