1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements semantic analysis for CUDA constructs.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaCUDA.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/Basic/Cuda.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/Sema.h"
23 #include "clang/Sema/Template.h"
24 #include "llvm/ADT/STLForwardCompat.h"
25 #include "llvm/ADT/SmallVector.h"
27 using namespace clang
;
29 SemaCUDA::SemaCUDA(Sema
&S
) : SemaBase(S
) {}
31 template <typename AttrT
> static bool hasExplicitAttr(const VarDecl
*D
) {
34 if (auto *A
= D
->getAttr
<AttrT
>())
35 return !A
->isImplicit();
39 void SemaCUDA::PushForceHostDevice() {
40 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
41 ForceHostDeviceDepth
++;
44 bool SemaCUDA::PopForceHostDevice() {
45 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
46 if (ForceHostDeviceDepth
== 0)
48 ForceHostDeviceDepth
--;
52 ExprResult
SemaCUDA::ActOnExecConfigExpr(Scope
*S
, SourceLocation LLLLoc
,
53 MultiExprArg ExecConfig
,
54 SourceLocation GGGLoc
) {
55 FunctionDecl
*ConfigDecl
= getASTContext().getcudaConfigureCallDecl();
57 return ExprError(Diag(LLLLoc
, diag::err_undeclared_var_use
)
58 << getConfigureFuncName());
59 QualType ConfigQTy
= ConfigDecl
->getType();
61 DeclRefExpr
*ConfigDR
= new (getASTContext()) DeclRefExpr(
62 getASTContext(), ConfigDecl
, false, ConfigQTy
, VK_LValue
, LLLLoc
);
63 SemaRef
.MarkFunctionReferenced(LLLLoc
, ConfigDecl
);
65 return SemaRef
.BuildCallExpr(S
, ConfigDR
, LLLLoc
, ExecConfig
, GGGLoc
, nullptr,
66 /*IsExecConfig=*/true);
69 CUDAFunctionTarget
SemaCUDA::IdentifyTarget(const ParsedAttributesView
&Attrs
) {
70 bool HasHostAttr
= false;
71 bool HasDeviceAttr
= false;
72 bool HasGlobalAttr
= false;
73 bool HasInvalidTargetAttr
= false;
74 for (const ParsedAttr
&AL
: Attrs
) {
75 switch (AL
.getKind()) {
76 case ParsedAttr::AT_CUDAGlobal
:
79 case ParsedAttr::AT_CUDAHost
:
82 case ParsedAttr::AT_CUDADevice
:
85 case ParsedAttr::AT_CUDAInvalidTarget
:
86 HasInvalidTargetAttr
= true;
93 if (HasInvalidTargetAttr
)
94 return CUDAFunctionTarget::InvalidTarget
;
97 return CUDAFunctionTarget::Global
;
99 if (HasHostAttr
&& HasDeviceAttr
)
100 return CUDAFunctionTarget::HostDevice
;
103 return CUDAFunctionTarget::Device
;
105 return CUDAFunctionTarget::Host
;
108 template <typename A
>
109 static bool hasAttr(const Decl
*D
, bool IgnoreImplicitAttr
) {
110 return D
->hasAttrs() && llvm::any_of(D
->getAttrs(), [&](Attr
*Attribute
) {
111 return isa
<A
>(Attribute
) &&
112 !(IgnoreImplicitAttr
&& Attribute
->isImplicit());
116 SemaCUDA::CUDATargetContextRAII::CUDATargetContextRAII(
117 SemaCUDA
&S_
, SemaCUDA::CUDATargetContextKind K
, Decl
*D
)
119 SavedCtx
= S
.CurCUDATargetCtx
;
120 assert(K
== SemaCUDA::CTCK_InitGlobalVar
);
121 auto *VD
= dyn_cast_or_null
<VarDecl
>(D
);
122 if (VD
&& VD
->hasGlobalStorage() && !VD
->isStaticLocal()) {
123 auto Target
= CUDAFunctionTarget::Host
;
124 if ((hasAttr
<CUDADeviceAttr
>(VD
, /*IgnoreImplicit=*/true) &&
125 !hasAttr
<CUDAHostAttr
>(VD
, /*IgnoreImplicit=*/true)) ||
126 hasAttr
<CUDASharedAttr
>(VD
, /*IgnoreImplicit=*/true) ||
127 hasAttr
<CUDAConstantAttr
>(VD
, /*IgnoreImplicit=*/true))
128 Target
= CUDAFunctionTarget::Device
;
129 S
.CurCUDATargetCtx
= {Target
, K
, VD
};
133 /// IdentifyTarget - Determine the CUDA compilation target for this function
134 CUDAFunctionTarget
SemaCUDA::IdentifyTarget(const FunctionDecl
*D
,
135 bool IgnoreImplicitHDAttr
) {
136 // Code that lives outside a function gets the target from CurCUDATargetCtx.
138 return CurCUDATargetCtx
.Target
;
140 if (D
->hasAttr
<CUDAInvalidTargetAttr
>())
141 return CUDAFunctionTarget::InvalidTarget
;
143 if (D
->hasAttr
<CUDAGlobalAttr
>())
144 return CUDAFunctionTarget::Global
;
146 if (hasAttr
<CUDADeviceAttr
>(D
, IgnoreImplicitHDAttr
)) {
147 if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
))
148 return CUDAFunctionTarget::HostDevice
;
149 return CUDAFunctionTarget::Device
;
150 } else if (hasAttr
<CUDAHostAttr
>(D
, IgnoreImplicitHDAttr
)) {
151 return CUDAFunctionTarget::Host
;
152 } else if ((D
->isImplicit() || !D
->isUserProvided()) &&
153 !IgnoreImplicitHDAttr
) {
154 // Some implicit declarations (like intrinsic functions) are not marked.
155 // Set the most lenient target on them for maximal flexibility.
156 return CUDAFunctionTarget::HostDevice
;
159 return CUDAFunctionTarget::Host
;
162 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
163 SemaCUDA::CUDAVariableTarget
SemaCUDA::IdentifyTarget(const VarDecl
*Var
) {
164 if (Var
->hasAttr
<HIPManagedAttr
>())
166 // Only constexpr and const variabless with implicit constant attribute
167 // are emitted on both sides. Such variables are promoted to device side
168 // only if they have static constant intializers on device side.
169 if ((Var
->isConstexpr() || Var
->getType().isConstQualified()) &&
170 Var
->hasAttr
<CUDAConstantAttr
>() &&
171 !hasExplicitAttr
<CUDAConstantAttr
>(Var
))
173 if (Var
->hasAttr
<CUDADeviceAttr
>() || Var
->hasAttr
<CUDAConstantAttr
>() ||
174 Var
->hasAttr
<CUDASharedAttr
>() ||
175 Var
->getType()->isCUDADeviceBuiltinSurfaceType() ||
176 Var
->getType()->isCUDADeviceBuiltinTextureType())
178 // Function-scope static variable without explicit device or constant
179 // attribute are emitted
180 // - on both sides in host device functions
181 // - on device side in device or global functions
182 if (auto *FD
= dyn_cast
<FunctionDecl
>(Var
->getDeclContext())) {
183 switch (IdentifyTarget(FD
)) {
184 case CUDAFunctionTarget::HostDevice
:
186 case CUDAFunctionTarget::Device
:
187 case CUDAFunctionTarget::Global
:
196 // * CUDA Call preference table
200 // Ph - preference in host mode
201 // Pd - preference in device mode
202 // H - handled in (x)
203 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
205 // | F | T | Ph | Pd | H |
206 // |----+----+-----+-----+-----+
207 // | d | d | N | N | (c) |
208 // | d | g | -- | -- | (a) |
209 // | d | h | -- | -- | (e) |
210 // | d | hd | HD | HD | (b) |
211 // | g | d | N | N | (c) |
212 // | g | g | -- | -- | (a) |
213 // | g | h | -- | -- | (e) |
214 // | g | hd | HD | HD | (b) |
215 // | h | d | -- | -- | (e) |
216 // | h | g | N | N | (c) |
217 // | h | h | N | N | (c) |
218 // | h | hd | HD | HD | (b) |
219 // | hd | d | WS | SS | (d) |
220 // | hd | g | SS | -- |(d/a)|
221 // | hd | h | SS | WS | (d) |
222 // | hd | hd | HD | HD | (b) |
224 SemaCUDA::CUDAFunctionPreference
225 SemaCUDA::IdentifyPreference(const FunctionDecl
*Caller
,
226 const FunctionDecl
*Callee
) {
227 assert(Callee
&& "Callee must be valid.");
229 // Treat ctor/dtor as host device function in device var initializer to allow
230 // trivial ctor/dtor without device attr to be used. Non-trivial ctor/dtor
231 // will be diagnosed by checkAllowedInitializer.
232 if (Caller
== nullptr && CurCUDATargetCtx
.Kind
== CTCK_InitGlobalVar
&&
233 CurCUDATargetCtx
.Target
== CUDAFunctionTarget::Device
&&
234 (isa
<CXXConstructorDecl
>(Callee
) || isa
<CXXDestructorDecl
>(Callee
)))
235 return CFP_HostDevice
;
237 CUDAFunctionTarget CallerTarget
= IdentifyTarget(Caller
);
238 CUDAFunctionTarget CalleeTarget
= IdentifyTarget(Callee
);
240 // If one of the targets is invalid, the check always fails, no matter what
241 // the other target is.
242 if (CallerTarget
== CUDAFunctionTarget::InvalidTarget
||
243 CalleeTarget
== CUDAFunctionTarget::InvalidTarget
)
246 // (a) Can't call global from some contexts until we support CUDA's
247 // dynamic parallelism.
248 if (CalleeTarget
== CUDAFunctionTarget::Global
&&
249 (CallerTarget
== CUDAFunctionTarget::Global
||
250 CallerTarget
== CUDAFunctionTarget::Device
))
253 // (b) Calling HostDevice is OK for everyone.
254 if (CalleeTarget
== CUDAFunctionTarget::HostDevice
)
255 return CFP_HostDevice
;
257 // (c) Best case scenarios
258 if (CalleeTarget
== CallerTarget
||
259 (CallerTarget
== CUDAFunctionTarget::Host
&&
260 CalleeTarget
== CUDAFunctionTarget::Global
) ||
261 (CallerTarget
== CUDAFunctionTarget::Global
&&
262 CalleeTarget
== CUDAFunctionTarget::Device
))
265 // HipStdPar mode is special, in that assessing whether a device side call to
266 // a host target is deferred to a subsequent pass, and cannot unambiguously be
267 // adjudicated in the AST, hence we optimistically allow them to pass here.
268 if (getLangOpts().HIPStdPar
&&
269 (CallerTarget
== CUDAFunctionTarget::Global
||
270 CallerTarget
== CUDAFunctionTarget::Device
||
271 CallerTarget
== CUDAFunctionTarget::HostDevice
) &&
272 CalleeTarget
== CUDAFunctionTarget::Host
)
273 return CFP_HostDevice
;
275 // (d) HostDevice behavior depends on compilation mode.
276 if (CallerTarget
== CUDAFunctionTarget::HostDevice
) {
277 // It's OK to call a compilation-mode matching function from an HD one.
278 if ((getLangOpts().CUDAIsDevice
&&
279 CalleeTarget
== CUDAFunctionTarget::Device
) ||
280 (!getLangOpts().CUDAIsDevice
&&
281 (CalleeTarget
== CUDAFunctionTarget::Host
||
282 CalleeTarget
== CUDAFunctionTarget::Global
)))
285 // Calls from HD to non-mode-matching functions (i.e., to host functions
286 // when compiling in device mode or to device functions when compiling in
287 // host mode) are allowed at the sema level, but eventually rejected if
288 // they're ever codegened. TODO: Reject said calls earlier.
289 return CFP_WrongSide
;
292 // (e) Calling across device/host boundary is not something you should do.
293 if ((CallerTarget
== CUDAFunctionTarget::Host
&&
294 CalleeTarget
== CUDAFunctionTarget::Device
) ||
295 (CallerTarget
== CUDAFunctionTarget::Device
&&
296 CalleeTarget
== CUDAFunctionTarget::Host
) ||
297 (CallerTarget
== CUDAFunctionTarget::Global
&&
298 CalleeTarget
== CUDAFunctionTarget::Host
))
301 llvm_unreachable("All cases should've been handled by now.");
304 template <typename AttrT
> static bool hasImplicitAttr(const FunctionDecl
*D
) {
307 if (auto *A
= D
->getAttr
<AttrT
>())
308 return A
->isImplicit();
309 return D
->isImplicit();
312 bool SemaCUDA::isImplicitHostDeviceFunction(const FunctionDecl
*D
) {
313 bool IsImplicitDevAttr
= hasImplicitAttr
<CUDADeviceAttr
>(D
);
314 bool IsImplicitHostAttr
= hasImplicitAttr
<CUDAHostAttr
>(D
);
315 return IsImplicitDevAttr
&& IsImplicitHostAttr
;
318 void SemaCUDA::EraseUnwantedMatches(
319 const FunctionDecl
*Caller
,
320 SmallVectorImpl
<std::pair
<DeclAccessPair
, FunctionDecl
*>> &Matches
) {
321 if (Matches
.size() <= 1)
324 using Pair
= std::pair
<DeclAccessPair
, FunctionDecl
*>;
326 // Gets the CUDA function preference for a call from Caller to Match.
327 auto GetCFP
= [&](const Pair
&Match
) {
328 return IdentifyPreference(Caller
, Match
.second
);
331 // Find the best call preference among the functions in Matches.
332 CUDAFunctionPreference BestCFP
= GetCFP(*std::max_element(
333 Matches
.begin(), Matches
.end(),
334 [&](const Pair
&M1
, const Pair
&M2
) { return GetCFP(M1
) < GetCFP(M2
); }));
336 // Erase all functions with lower priority.
337 llvm::erase_if(Matches
,
338 [&](const Pair
&Match
) { return GetCFP(Match
) < BestCFP
; });
341 /// When an implicitly-declared special member has to invoke more than one
342 /// base/field special member, conflicts may occur in the targets of these
343 /// members. For example, if one base's member __host__ and another's is
344 /// __device__, it's a conflict.
345 /// This function figures out if the given targets \param Target1 and
346 /// \param Target2 conflict, and if they do not it fills in
347 /// \param ResolvedTarget with a target that resolves for both calls.
348 /// \return true if there's a conflict, false otherwise.
350 resolveCalleeCUDATargetConflict(CUDAFunctionTarget Target1
,
351 CUDAFunctionTarget Target2
,
352 CUDAFunctionTarget
*ResolvedTarget
) {
353 // Only free functions and static member functions may be global.
354 assert(Target1
!= CUDAFunctionTarget::Global
);
355 assert(Target2
!= CUDAFunctionTarget::Global
);
357 if (Target1
== CUDAFunctionTarget::HostDevice
) {
358 *ResolvedTarget
= Target2
;
359 } else if (Target2
== CUDAFunctionTarget::HostDevice
) {
360 *ResolvedTarget
= Target1
;
361 } else if (Target1
!= Target2
) {
364 *ResolvedTarget
= Target1
;
370 bool SemaCUDA::inferTargetForImplicitSpecialMember(CXXRecordDecl
*ClassDecl
,
371 CXXSpecialMemberKind CSM
,
372 CXXMethodDecl
*MemberDecl
,
375 // If the defaulted special member is defined lexically outside of its
376 // owning class, or the special member already has explicit device or host
377 // attributes, do not infer.
378 bool InClass
= MemberDecl
->getLexicalParent() == MemberDecl
->getParent();
379 bool HasH
= MemberDecl
->hasAttr
<CUDAHostAttr
>();
380 bool HasD
= MemberDecl
->hasAttr
<CUDADeviceAttr
>();
381 bool HasExplicitAttr
=
382 (HasD
&& !MemberDecl
->getAttr
<CUDADeviceAttr
>()->isImplicit()) ||
383 (HasH
&& !MemberDecl
->getAttr
<CUDAHostAttr
>()->isImplicit());
384 if (!InClass
|| HasExplicitAttr
)
387 std::optional
<CUDAFunctionTarget
> InferredTarget
;
389 // We're going to invoke special member lookup; mark that these special
390 // members are called from this one, and not from its caller.
391 Sema::ContextRAII
MethodContext(SemaRef
, MemberDecl
);
393 // Look for special members in base classes that should be invoked from here.
394 // Infer the target of this member base on the ones it should call.
395 // Skip direct and indirect virtual bases for abstract classes.
396 llvm::SmallVector
<const CXXBaseSpecifier
*, 16> Bases
;
397 for (const auto &B
: ClassDecl
->bases()) {
398 if (!B
.isVirtual()) {
403 if (!ClassDecl
->isAbstract()) {
404 llvm::append_range(Bases
, llvm::make_pointer_range(ClassDecl
->vbases()));
407 for (const auto *B
: Bases
) {
408 const RecordType
*BaseType
= B
->getType()->getAs
<RecordType
>();
413 CXXRecordDecl
*BaseClassDecl
= cast
<CXXRecordDecl
>(BaseType
->getDecl());
414 Sema::SpecialMemberOverloadResult SMOR
=
415 SemaRef
.LookupSpecialMember(BaseClassDecl
, CSM
,
416 /* ConstArg */ ConstRHS
,
417 /* VolatileArg */ false,
418 /* RValueThis */ false,
419 /* ConstThis */ false,
420 /* VolatileThis */ false);
422 if (!SMOR
.getMethod())
425 CUDAFunctionTarget BaseMethodTarget
= IdentifyTarget(SMOR
.getMethod());
426 if (!InferredTarget
) {
427 InferredTarget
= BaseMethodTarget
;
429 bool ResolutionError
= resolveCalleeCUDATargetConflict(
430 *InferredTarget
, BaseMethodTarget
, &*InferredTarget
);
431 if (ResolutionError
) {
433 Diag(ClassDecl
->getLocation(),
434 diag::note_implicit_member_target_infer_collision
)
435 << (unsigned)CSM
<< llvm::to_underlying(*InferredTarget
)
436 << llvm::to_underlying(BaseMethodTarget
);
439 CUDAInvalidTargetAttr::CreateImplicit(getASTContext()));
445 // Same as for bases, but now for special members of fields.
446 for (const auto *F
: ClassDecl
->fields()) {
447 if (F
->isInvalidDecl()) {
451 const RecordType
*FieldType
=
452 getASTContext().getBaseElementType(F
->getType())->getAs
<RecordType
>();
457 CXXRecordDecl
*FieldRecDecl
= cast
<CXXRecordDecl
>(FieldType
->getDecl());
458 Sema::SpecialMemberOverloadResult SMOR
=
459 SemaRef
.LookupSpecialMember(FieldRecDecl
, CSM
,
460 /* ConstArg */ ConstRHS
&& !F
->isMutable(),
461 /* VolatileArg */ false,
462 /* RValueThis */ false,
463 /* ConstThis */ false,
464 /* VolatileThis */ false);
466 if (!SMOR
.getMethod())
469 CUDAFunctionTarget FieldMethodTarget
= IdentifyTarget(SMOR
.getMethod());
470 if (!InferredTarget
) {
471 InferredTarget
= FieldMethodTarget
;
473 bool ResolutionError
= resolveCalleeCUDATargetConflict(
474 *InferredTarget
, FieldMethodTarget
, &*InferredTarget
);
475 if (ResolutionError
) {
477 Diag(ClassDecl
->getLocation(),
478 diag::note_implicit_member_target_infer_collision
)
479 << (unsigned)CSM
<< llvm::to_underlying(*InferredTarget
)
480 << llvm::to_underlying(FieldMethodTarget
);
483 CUDAInvalidTargetAttr::CreateImplicit(getASTContext()));
490 // If no target was inferred, mark this member as __host__ __device__;
491 // it's the least restrictive option that can be invoked from any target.
492 bool NeedsH
= true, NeedsD
= true;
493 if (InferredTarget
) {
494 if (*InferredTarget
== CUDAFunctionTarget::Device
)
496 else if (*InferredTarget
== CUDAFunctionTarget::Host
)
500 // We either setting attributes first time, or the inferred ones must match
501 // previously set ones.
503 MemberDecl
->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
505 MemberDecl
->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
510 bool SemaCUDA::isEmptyConstructor(SourceLocation Loc
, CXXConstructorDecl
*CD
) {
511 if (!CD
->isDefined() && CD
->isTemplateInstantiation())
512 SemaRef
.InstantiateFunctionDefinition(Loc
, CD
->getFirstDecl());
514 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
515 // empty at a point in the translation unit, if it is either a
516 // trivial constructor
520 // ... or it satisfies all of the following conditions:
521 // The constructor function has been defined.
522 // The constructor function has no parameters,
523 // and the function body is an empty compound statement.
524 if (!(CD
->hasTrivialBody() && CD
->getNumParams() == 0))
527 // Its class has no virtual functions and no virtual base classes.
528 if (CD
->getParent()->isDynamicClass())
531 // Union ctor does not call ctors of its data members.
532 if (CD
->getParent()->isUnion())
535 // The only form of initializer allowed is an empty constructor.
536 // This will recursively check all base classes and member initializers
537 if (!llvm::all_of(CD
->inits(), [&](const CXXCtorInitializer
*CI
) {
538 if (const CXXConstructExpr
*CE
=
539 dyn_cast
<CXXConstructExpr
>(CI
->getInit()))
540 return isEmptyConstructor(Loc
, CE
->getConstructor());
548 bool SemaCUDA::isEmptyDestructor(SourceLocation Loc
, CXXDestructorDecl
*DD
) {
549 // No destructor -> no problem.
553 if (!DD
->isDefined() && DD
->isTemplateInstantiation())
554 SemaRef
.InstantiateFunctionDefinition(Loc
, DD
->getFirstDecl());
556 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
557 // empty at a point in the translation unit, if it is either a
558 // trivial constructor
562 // ... or it satisfies all of the following conditions:
563 // The destructor function has been defined.
564 // and the function body is an empty compound statement.
565 if (!DD
->hasTrivialBody())
568 const CXXRecordDecl
*ClassDecl
= DD
->getParent();
570 // Its class has no virtual functions and no virtual base classes.
571 if (ClassDecl
->isDynamicClass())
574 // Union does not have base class and union dtor does not call dtors of its
576 if (DD
->getParent()->isUnion())
579 // Only empty destructors are allowed. This will recursively check
580 // destructors for all base classes...
581 if (!llvm::all_of(ClassDecl
->bases(), [&](const CXXBaseSpecifier
&BS
) {
582 if (CXXRecordDecl
*RD
= BS
.getType()->getAsCXXRecordDecl())
583 return isEmptyDestructor(Loc
, RD
->getDestructor());
588 // ... and member fields.
589 if (!llvm::all_of(ClassDecl
->fields(), [&](const FieldDecl
*Field
) {
590 if (CXXRecordDecl
*RD
= Field
->getType()
591 ->getBaseElementTypeUnsafe()
592 ->getAsCXXRecordDecl())
593 return isEmptyDestructor(Loc
, RD
->getDestructor());
602 enum CUDAInitializerCheckKind
{
603 CICK_DeviceOrConstant
, // Check initializer for device/constant variable
604 CICK_Shared
, // Check initializer for shared variable
607 bool IsDependentVar(VarDecl
*VD
) {
608 if (VD
->getType()->isDependentType())
610 if (const auto *Init
= VD
->getInit())
611 return Init
->isValueDependent();
615 // Check whether a variable has an allowed initializer for a CUDA device side
616 // variable with global storage. \p VD may be a host variable to be checked for
617 // potential promotion to device side variable.
619 // CUDA/HIP allows only empty constructors as initializers for global
620 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
621 // __shared__ variables whether they are local or not (they all are implicitly
622 // static in CUDA). One exception is that CUDA allows constant initializers
623 // for __constant__ and __device__ variables.
624 bool HasAllowedCUDADeviceStaticInitializer(SemaCUDA
&S
, VarDecl
*VD
,
625 CUDAInitializerCheckKind CheckKind
) {
626 assert(!VD
->isInvalidDecl() && VD
->hasGlobalStorage());
627 assert(!IsDependentVar(VD
) && "do not check dependent var");
628 const Expr
*Init
= VD
->getInit();
629 auto IsEmptyInit
= [&](const Expr
*Init
) {
632 if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
633 return S
.isEmptyConstructor(VD
->getLocation(), CE
->getConstructor());
637 auto IsConstantInit
= [&](const Expr
*Init
) {
639 ASTContext::CUDAConstantEvalContextRAII
EvalCtx(S
.getASTContext(),
640 /*NoWronSidedVars=*/true);
641 return Init
->isConstantInitializer(S
.getASTContext(),
642 VD
->getType()->isReferenceType());
644 auto HasEmptyDtor
= [&](VarDecl
*VD
) {
645 if (const auto *RD
= VD
->getType()->getAsCXXRecordDecl())
646 return S
.isEmptyDestructor(VD
->getLocation(), RD
->getDestructor());
649 if (CheckKind
== CICK_Shared
)
650 return IsEmptyInit(Init
) && HasEmptyDtor(VD
);
651 return S
.getLangOpts().GPUAllowDeviceInit
||
652 ((IsEmptyInit(Init
) || IsConstantInit(Init
)) && HasEmptyDtor(VD
));
656 void SemaCUDA::checkAllowedInitializer(VarDecl
*VD
) {
657 // Return early if VD is inside a non-instantiated template function since
658 // the implicit constructor is not defined yet.
659 if (const FunctionDecl
*FD
=
660 dyn_cast_or_null
<FunctionDecl
>(VD
->getDeclContext());
661 FD
&& FD
->isDependentContext())
664 // Do not check dependent variables since the ctor/dtor/initializer are not
665 // determined. Do it after instantiation.
666 if (VD
->isInvalidDecl() || !VD
->hasInit() || !VD
->hasGlobalStorage() ||
669 const Expr
*Init
= VD
->getInit();
670 bool IsSharedVar
= VD
->hasAttr
<CUDASharedAttr
>();
671 bool IsDeviceOrConstantVar
=
673 (VD
->hasAttr
<CUDADeviceAttr
>() || VD
->hasAttr
<CUDAConstantAttr
>());
674 if (IsDeviceOrConstantVar
|| IsSharedVar
) {
675 if (HasAllowedCUDADeviceStaticInitializer(
676 *this, VD
, IsSharedVar
? CICK_Shared
: CICK_DeviceOrConstant
))
678 Diag(VD
->getLocation(),
679 IsSharedVar
? diag::err_shared_var_init
: diag::err_dynamic_var_init
)
680 << Init
->getSourceRange();
681 VD
->setInvalidDecl();
683 // This is a host-side global variable. Check that the initializer is
684 // callable from the host side.
685 const FunctionDecl
*InitFn
= nullptr;
686 if (const CXXConstructExpr
*CE
= dyn_cast
<CXXConstructExpr
>(Init
)) {
687 InitFn
= CE
->getConstructor();
688 } else if (const CallExpr
*CE
= dyn_cast
<CallExpr
>(Init
)) {
689 InitFn
= CE
->getDirectCallee();
692 CUDAFunctionTarget InitFnTarget
= IdentifyTarget(InitFn
);
693 if (InitFnTarget
!= CUDAFunctionTarget::Host
&&
694 InitFnTarget
!= CUDAFunctionTarget::HostDevice
) {
695 Diag(VD
->getLocation(), diag::err_ref_bad_target_global_initializer
)
696 << llvm::to_underlying(InitFnTarget
) << InitFn
;
697 Diag(InitFn
->getLocation(), diag::note_previous_decl
) << InitFn
;
698 VD
->setInvalidDecl();
704 void SemaCUDA::RecordImplicitHostDeviceFuncUsedByDevice(
705 const FunctionDecl
*Callee
) {
706 FunctionDecl
*Caller
= SemaRef
.getCurFunctionDecl(/*AllowLambda=*/true);
710 if (!isImplicitHostDeviceFunction(Callee
))
713 CUDAFunctionTarget CallerTarget
= IdentifyTarget(Caller
);
715 // Record whether an implicit host device function is used on device side.
716 if (CallerTarget
!= CUDAFunctionTarget::Device
&&
717 CallerTarget
!= CUDAFunctionTarget::Global
&&
718 (CallerTarget
!= CUDAFunctionTarget::HostDevice
||
719 (isImplicitHostDeviceFunction(Caller
) &&
720 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice
.count(Caller
))))
723 getASTContext().CUDAImplicitHostDeviceFunUsedByDevice
.insert(Callee
);
726 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
727 // treated as implicitly __host__ __device__, unless:
728 // * it is a variadic function (device-side variadic functions are not
730 // * a __device__ function with this signature was already declared, in which
731 // case in which case we output an error, unless the __device__ decl is in a
732 // system header, in which case we leave the constexpr function unattributed.
734 // In addition, all function decls are treated as __host__ __device__ when
735 // ForceHostDeviceDepth > 0 (corresponding to code within a
736 // #pragma clang force_cuda_host_device_begin/end
738 void SemaCUDA::maybeAddHostDeviceAttrs(FunctionDecl
*NewD
,
739 const LookupResult
&Previous
) {
740 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
742 if (ForceHostDeviceDepth
> 0) {
743 if (!NewD
->hasAttr
<CUDAHostAttr
>())
744 NewD
->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
745 if (!NewD
->hasAttr
<CUDADeviceAttr
>())
746 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
750 // If a template function has no host/device/global attributes,
751 // make it implicitly host device function.
752 if (getLangOpts().OffloadImplicitHostDeviceTemplates
&&
753 !NewD
->hasAttr
<CUDAHostAttr
>() && !NewD
->hasAttr
<CUDADeviceAttr
>() &&
754 !NewD
->hasAttr
<CUDAGlobalAttr
>() &&
755 (NewD
->getDescribedFunctionTemplate() ||
756 NewD
->isFunctionTemplateSpecialization())) {
757 NewD
->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
758 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
762 if (!getLangOpts().CUDAHostDeviceConstexpr
|| !NewD
->isConstexpr() ||
763 NewD
->isVariadic() || NewD
->hasAttr
<CUDAHostAttr
>() ||
764 NewD
->hasAttr
<CUDADeviceAttr
>() || NewD
->hasAttr
<CUDAGlobalAttr
>())
767 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
769 auto IsMatchingDeviceFn
= [&](NamedDecl
*D
) {
770 if (UsingShadowDecl
*Using
= dyn_cast
<UsingShadowDecl
>(D
))
771 D
= Using
->getTargetDecl();
772 FunctionDecl
*OldD
= D
->getAsFunction();
773 return OldD
&& OldD
->hasAttr
<CUDADeviceAttr
>() &&
774 !OldD
->hasAttr
<CUDAHostAttr
>() &&
775 !SemaRef
.IsOverload(NewD
, OldD
,
776 /* UseMemberUsingDeclRules = */ false,
777 /* ConsiderCudaAttrs = */ false);
779 auto It
= llvm::find_if(Previous
, IsMatchingDeviceFn
);
780 if (It
!= Previous
.end()) {
781 // We found a __device__ function with the same name and signature as NewD
782 // (ignoring CUDA attrs). This is an error unless that function is defined
783 // in a system header, in which case we simply return without making NewD
785 NamedDecl
*Match
= *It
;
786 if (!SemaRef
.getSourceManager().isInSystemHeader(Match
->getLocation())) {
787 Diag(NewD
->getLocation(),
788 diag::err_cuda_unattributed_constexpr_cannot_overload_device
)
790 Diag(Match
->getLocation(),
791 diag::note_cuda_conflicting_device_function_declared_here
);
796 NewD
->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
797 NewD
->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
800 // TODO: `__constant__` memory may be a limited resource for certain targets.
801 // A safeguard may be needed at the end of compilation pipeline if
802 // `__constant__` memory usage goes beyond limit.
803 void SemaCUDA::MaybeAddConstantAttr(VarDecl
*VD
) {
804 // Do not promote dependent variables since the cotr/dtor/initializer are
805 // not determined. Do it after instantiation.
806 if (getLangOpts().CUDAIsDevice
&& !VD
->hasAttr
<CUDAConstantAttr
>() &&
807 !VD
->hasAttr
<CUDASharedAttr
>() &&
808 (VD
->isFileVarDecl() || VD
->isStaticDataMember()) &&
809 !IsDependentVar(VD
) &&
810 ((VD
->isConstexpr() || VD
->getType().isConstQualified()) &&
811 HasAllowedCUDADeviceStaticInitializer(*this, VD
,
812 CICK_DeviceOrConstant
))) {
813 VD
->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
817 SemaBase::SemaDiagnosticBuilder
SemaCUDA::DiagIfDeviceCode(SourceLocation Loc
,
819 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
820 FunctionDecl
*CurFunContext
=
821 SemaRef
.getCurFunctionDecl(/*AllowLambda=*/true);
822 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
824 return SemaDiagnosticBuilder::K_Nop
;
825 switch (CurrentTarget()) {
826 case CUDAFunctionTarget::Global
:
827 case CUDAFunctionTarget::Device
:
828 return SemaDiagnosticBuilder::K_Immediate
;
829 case CUDAFunctionTarget::HostDevice
:
830 // An HD function counts as host code if we're compiling for host, and
831 // device code if we're compiling for device. Defer any errors in device
832 // mode until the function is known-emitted.
833 if (!getLangOpts().CUDAIsDevice
)
834 return SemaDiagnosticBuilder::K_Nop
;
835 if (SemaRef
.IsLastErrorImmediate
&&
836 getDiagnostics().getDiagnosticIDs()->isBuiltinNote(DiagID
))
837 return SemaDiagnosticBuilder::K_Immediate
;
838 return (SemaRef
.getEmissionStatus(CurFunContext
) ==
839 Sema::FunctionEmissionStatus::Emitted
)
840 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
841 : SemaDiagnosticBuilder::K_Deferred
;
843 return SemaDiagnosticBuilder::K_Nop
;
846 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, SemaRef
);
849 Sema::SemaDiagnosticBuilder
SemaCUDA::DiagIfHostCode(SourceLocation Loc
,
851 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
852 FunctionDecl
*CurFunContext
=
853 SemaRef
.getCurFunctionDecl(/*AllowLambda=*/true);
854 SemaDiagnosticBuilder::Kind DiagKind
= [&] {
856 return SemaDiagnosticBuilder::K_Nop
;
857 switch (CurrentTarget()) {
858 case CUDAFunctionTarget::Host
:
859 return SemaDiagnosticBuilder::K_Immediate
;
860 case CUDAFunctionTarget::HostDevice
:
861 // An HD function counts as host code if we're compiling for host, and
862 // device code if we're compiling for device. Defer any errors in device
863 // mode until the function is known-emitted.
864 if (getLangOpts().CUDAIsDevice
)
865 return SemaDiagnosticBuilder::K_Nop
;
866 if (SemaRef
.IsLastErrorImmediate
&&
867 getDiagnostics().getDiagnosticIDs()->isBuiltinNote(DiagID
))
868 return SemaDiagnosticBuilder::K_Immediate
;
869 return (SemaRef
.getEmissionStatus(CurFunContext
) ==
870 Sema::FunctionEmissionStatus::Emitted
)
871 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
872 : SemaDiagnosticBuilder::K_Deferred
;
874 return SemaDiagnosticBuilder::K_Nop
;
877 return SemaDiagnosticBuilder(DiagKind
, Loc
, DiagID
, CurFunContext
, SemaRef
);
880 bool SemaCUDA::CheckCall(SourceLocation Loc
, FunctionDecl
*Callee
) {
881 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
882 assert(Callee
&& "Callee may not be null.");
884 const auto &ExprEvalCtx
= SemaRef
.currentEvaluationContext();
885 if (ExprEvalCtx
.isUnevaluated() || ExprEvalCtx
.isConstantEvaluated())
888 // FIXME: Is bailing out early correct here? Should we instead assume that
889 // the caller is a global initializer?
890 FunctionDecl
*Caller
= SemaRef
.getCurFunctionDecl(/*AllowLambda=*/true);
894 // If the caller is known-emitted, mark the callee as known-emitted.
895 // Otherwise, mark the call in our call graph so we can traverse it later.
896 bool CallerKnownEmitted
= SemaRef
.getEmissionStatus(Caller
) ==
897 Sema::FunctionEmissionStatus::Emitted
;
898 SemaDiagnosticBuilder::Kind DiagKind
= [this, Caller
, Callee
,
899 CallerKnownEmitted
] {
900 switch (IdentifyPreference(Caller
, Callee
)) {
903 assert(Caller
&& "Never/wrongSide calls require a non-null caller");
904 // If we know the caller will be emitted, we know this wrong-side call
905 // will be emitted, so it's an immediate error. Otherwise, defer the
906 // error until we know the caller is emitted.
907 return CallerKnownEmitted
908 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
909 : SemaDiagnosticBuilder::K_Deferred
;
911 return SemaDiagnosticBuilder::K_Nop
;
915 if (DiagKind
== SemaDiagnosticBuilder::K_Nop
) {
916 // For -fgpu-rdc, keep track of external kernels used by host functions.
917 if (getLangOpts().CUDAIsDevice
&& getLangOpts().GPURelocatableDeviceCode
&&
918 Callee
->hasAttr
<CUDAGlobalAttr
>() && !Callee
->isDefined() &&
919 (!Caller
|| (!Caller
->getDescribedFunctionTemplate() &&
920 getASTContext().GetGVALinkageForFunction(Caller
) ==
921 GVA_StrongExternal
)))
922 getASTContext().CUDAExternalDeviceDeclODRUsedByHost
.insert(Callee
);
926 // Avoid emitting this error twice for the same location. Using a hashtable
927 // like this is unfortunate, but because we must continue parsing as normal
928 // after encountering a deferred error, it's otherwise very tricky for us to
929 // ensure that we only emit this deferred error once.
930 if (!LocsWithCUDACallDiags
.insert({Caller
, Loc
}).second
)
933 SemaDiagnosticBuilder(DiagKind
, Loc
, diag::err_ref_bad_target
, Caller
,
935 << llvm::to_underlying(IdentifyTarget(Callee
)) << /*function*/ 0 << Callee
936 << llvm::to_underlying(IdentifyTarget(Caller
));
937 if (!Callee
->getBuiltinID())
938 SemaDiagnosticBuilder(DiagKind
, Callee
->getLocation(),
939 diag::note_previous_decl
, Caller
, SemaRef
)
941 return DiagKind
!= SemaDiagnosticBuilder::K_Immediate
&&
942 DiagKind
!= SemaDiagnosticBuilder::K_ImmediateWithCallStack
;
945 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
946 // A lambda function may capture a stack variable by reference when it is
947 // defined and uses the capture by reference when the lambda is called. When
948 // the capture and use happen on different sides, the capture is invalid and
949 // should be diagnosed.
950 void SemaCUDA::CheckLambdaCapture(CXXMethodDecl
*Callee
,
951 const sema::Capture
&Capture
) {
952 // In host compilation we only need to check lambda functions emitted on host
953 // side. In such lambda functions, a reference capture is invalid only
954 // if the lambda structure is populated by a device function or kernel then
955 // is passed to and called by a host function. However that is impossible,
956 // since a device function or kernel can only call a device function, also a
957 // kernel cannot pass a lambda back to a host function since we cannot
958 // define a kernel argument type which can hold the lambda before the lambda
959 // itself is defined.
960 if (!getLangOpts().CUDAIsDevice
)
963 // File-scope lambda can only do init captures for global variables, which
964 // results in passing by value for these global variables.
965 FunctionDecl
*Caller
= SemaRef
.getCurFunctionDecl(/*AllowLambda=*/true);
969 // In device compilation, we only need to check lambda functions which are
970 // emitted on device side. For such lambdas, a reference capture is invalid
971 // only if the lambda structure is populated by a host function then passed
972 // to and called in a device function or kernel.
973 bool CalleeIsDevice
= Callee
->hasAttr
<CUDADeviceAttr
>();
975 !Caller
->hasAttr
<CUDAGlobalAttr
>() && !Caller
->hasAttr
<CUDADeviceAttr
>();
976 bool ShouldCheck
= CalleeIsDevice
&& CallerIsHost
;
977 if (!ShouldCheck
|| !Capture
.isReferenceCapture())
979 auto DiagKind
= SemaDiagnosticBuilder::K_Deferred
;
980 if (Capture
.isVariableCapture() && !getLangOpts().HIPStdPar
) {
981 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
982 diag::err_capture_bad_target
, Callee
, SemaRef
)
983 << Capture
.getVariable();
984 } else if (Capture
.isThisCapture()) {
985 // Capture of this pointer is allowed since this pointer may be pointing to
986 // managed memory which is accessible on both device and host sides. It only
987 // results in invalid memory access if this pointer points to memory not
988 // accessible on device side.
989 SemaDiagnosticBuilder(DiagKind
, Capture
.getLocation(),
990 diag::warn_maybe_capture_bad_target_this_ptr
, Callee
,
995 void SemaCUDA::SetLambdaAttrs(CXXMethodDecl
*Method
) {
996 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
997 if (Method
->hasAttr
<CUDAHostAttr
>() || Method
->hasAttr
<CUDADeviceAttr
>())
999 Method
->addAttr(CUDADeviceAttr::CreateImplicit(getASTContext()));
1000 Method
->addAttr(CUDAHostAttr::CreateImplicit(getASTContext()));
1003 void SemaCUDA::checkTargetOverload(FunctionDecl
*NewFD
,
1004 const LookupResult
&Previous
) {
1005 assert(getLangOpts().CUDA
&& "Should only be called during CUDA compilation");
1006 CUDAFunctionTarget NewTarget
= IdentifyTarget(NewFD
);
1007 for (NamedDecl
*OldND
: Previous
) {
1008 FunctionDecl
*OldFD
= OldND
->getAsFunction();
1012 CUDAFunctionTarget OldTarget
= IdentifyTarget(OldFD
);
1013 // Don't allow HD and global functions to overload other functions with the
1014 // same signature. We allow overloading based on CUDA attributes so that
1015 // functions can have different implementations on the host and device, but
1016 // HD/global functions "exist" in some sense on both the host and device, so
1017 // should have the same implementation on both sides.
1018 if (NewTarget
!= OldTarget
&&
1019 !SemaRef
.IsOverload(NewFD
, OldFD
, /* UseMemberUsingDeclRules = */ false,
1020 /* ConsiderCudaAttrs = */ false)) {
1021 if ((NewTarget
== CUDAFunctionTarget::HostDevice
&&
1022 !(getLangOpts().OffloadImplicitHostDeviceTemplates
&&
1023 isImplicitHostDeviceFunction(NewFD
) &&
1024 OldTarget
== CUDAFunctionTarget::Device
)) ||
1025 (OldTarget
== CUDAFunctionTarget::HostDevice
&&
1026 !(getLangOpts().OffloadImplicitHostDeviceTemplates
&&
1027 isImplicitHostDeviceFunction(OldFD
) &&
1028 NewTarget
== CUDAFunctionTarget::Device
)) ||
1029 (NewTarget
== CUDAFunctionTarget::Global
) ||
1030 (OldTarget
== CUDAFunctionTarget::Global
)) {
1031 Diag(NewFD
->getLocation(), diag::err_cuda_ovl_target
)
1032 << llvm::to_underlying(NewTarget
) << NewFD
->getDeclName()
1033 << llvm::to_underlying(OldTarget
) << OldFD
;
1034 Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
1035 NewFD
->setInvalidDecl();
1038 if ((NewTarget
== CUDAFunctionTarget::Host
&&
1039 OldTarget
== CUDAFunctionTarget::Device
) ||
1040 (NewTarget
== CUDAFunctionTarget::Device
&&
1041 OldTarget
== CUDAFunctionTarget::Host
)) {
1042 Diag(NewFD
->getLocation(), diag::warn_offload_incompatible_redeclare
)
1043 << llvm::to_underlying(NewTarget
) << llvm::to_underlying(OldTarget
);
1044 Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
1050 template <typename AttrTy
>
1051 static void copyAttrIfPresent(Sema
&S
, FunctionDecl
*FD
,
1052 const FunctionDecl
&TemplateFD
) {
1053 if (AttrTy
*Attribute
= TemplateFD
.getAttr
<AttrTy
>()) {
1054 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
1055 Clone
->setInherited(true);
1060 void SemaCUDA::inheritTargetAttrs(FunctionDecl
*FD
,
1061 const FunctionTemplateDecl
&TD
) {
1062 const FunctionDecl
&TemplateFD
= *TD
.getTemplatedDecl();
1063 copyAttrIfPresent
<CUDAGlobalAttr
>(SemaRef
, FD
, TemplateFD
);
1064 copyAttrIfPresent
<CUDAHostAttr
>(SemaRef
, FD
, TemplateFD
);
1065 copyAttrIfPresent
<CUDADeviceAttr
>(SemaRef
, FD
, TemplateFD
);
1068 std::string
SemaCUDA::getConfigureFuncName() const {
1069 if (getLangOpts().OffloadViaLLVM
)
1070 return "__llvmPushCallConfiguration";
1072 if (getLangOpts().HIP
)
1073 return getLangOpts().HIPUseNewLaunchAPI
? "__hipPushCallConfiguration"
1074 : "hipConfigureCall";
1076 // New CUDA kernel launch sequence.
1077 if (CudaFeatureEnabled(getASTContext().getTargetInfo().getSDKVersion(),
1078 CudaFeature::CUDA_USES_NEW_LAUNCH
))
1079 return "__cudaPushCallConfiguration";
1081 // Legacy CUDA kernel configuration call
1082 return "cudaConfigureCall";