[flang] Update CommandTest for AIX (NFC) (#118403)
[llvm-project.git] / clang / lib / Sema / SemaCoroutine.cpp
blob3a22097152df564984fda6d9e21f33bb4ea0a7b6
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ Coroutines.
11 // This file contains references to sections of the Coroutines TS, which
12 // can be found at http://wg21.link/coroutines.
14 //===----------------------------------------------------------------------===//
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "clang/Sema/EnterExpressionEvaluationContext.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Overload.h"
27 #include "clang/Sema/ScopeInfo.h"
29 using namespace clang;
30 using namespace sema;
32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
57 ClassTemplateDecl *CoroTraits =
58 S.lookupCoroutineTraits(KwLoc, FuncLoc);
59 if (!CoroTraits)
60 return QualType();
62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
63 // to [dcl.fct.def.coroutine]3
64 TemplateArgumentListInfo Args(KwLoc, KwLoc);
65 auto AddArg = [&](QualType T) {
66 Args.addArgument(TemplateArgumentLoc(
67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
69 AddArg(FnType->getReturnType());
70 // If the function is a non-static member function, add the type
71 // of the implicit object parameter before the formal parameters.
72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
73 if (MD->isImplicitObjectMemberFunction()) {
74 // [over.match.funcs]4
75 // For non-static member functions, the type of the implicit object
76 // parameter is
77 // -- "lvalue reference to cv X" for functions declared without a
78 // ref-qualifier or with the & ref-qualifier
79 // -- "rvalue reference to cv X" for functions declared with the &&
80 // ref-qualifier
81 QualType T = MD->getFunctionObjectParameterType();
82 T = FnType->getRefQualifier() == RQ_RValue
83 ? S.Context.getRValueReferenceType(T)
84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
85 AddArg(T);
88 for (QualType T : FnType->getParamTypes())
89 AddArg(T);
91 // Build the template-id.
92 QualType CoroTrait =
93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
94 if (CoroTrait.isNull())
95 return QualType();
96 if (S.RequireCompleteType(KwLoc, CoroTrait,
97 diag::err_coroutine_type_missing_specialization))
98 return QualType();
100 auto *RD = CoroTrait->getAsCXXRecordDecl();
101 assert(RD && "specialization of class template is not a class?");
103 // Look up the ::promise_type member.
104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
105 Sema::LookupOrdinaryName);
106 S.LookupQualifiedName(R, RD);
107 auto *Promise = R.getAsSingle<TypeDecl>();
108 if (!Promise) {
109 S.Diag(FuncLoc,
110 diag::err_implied_std_coroutine_traits_promise_type_not_found)
111 << RD;
112 return QualType();
114 // The promise type is required to be a class type.
115 QualType PromiseType = S.Context.getTypeDeclType(Promise);
117 auto buildElaboratedType = [&]() {
118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
120 CoroTrait.getTypePtr());
121 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
122 PromiseType);
125 if (!PromiseType->getAsCXXRecordDecl()) {
126 S.Diag(FuncLoc,
127 diag::err_implied_std_coroutine_traits_promise_type_not_class)
128 << buildElaboratedType();
129 return QualType();
131 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
132 diag::err_coroutine_promise_type_incomplete))
133 return QualType();
135 return PromiseType;
138 /// Look up the std::coroutine_handle<PromiseType>.
139 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
140 SourceLocation Loc) {
141 if (PromiseType.isNull())
142 return QualType();
144 NamespaceDecl *CoroNamespace = S.getStdNamespace();
145 assert(CoroNamespace && "Should already be diagnosed");
147 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
148 Loc, Sema::LookupOrdinaryName);
149 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
150 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
151 << "std::coroutine_handle";
152 return QualType();
155 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
156 if (!CoroHandle) {
157 Result.suppressDiagnostics();
158 // We found something weird. Complain about the first thing we found.
159 NamedDecl *Found = *Result.begin();
160 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
161 return QualType();
164 // Form template argument list for coroutine_handle<Promise>.
165 TemplateArgumentListInfo Args(Loc, Loc);
166 Args.addArgument(TemplateArgumentLoc(
167 TemplateArgument(PromiseType),
168 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
170 // Build the template-id.
171 QualType CoroHandleType =
172 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
173 if (CoroHandleType.isNull())
174 return QualType();
175 if (S.RequireCompleteType(Loc, CoroHandleType,
176 diag::err_coroutine_type_missing_specialization))
177 return QualType();
179 return CoroHandleType;
182 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
183 StringRef Keyword) {
184 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
185 // a function body.
186 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
187 // appear in a default argument." But the diagnostic QoI here could be
188 // improved to inform the user that default arguments specifically are not
189 // allowed.
190 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
191 if (!FD) {
192 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
193 ? diag::err_coroutine_objc_method
194 : diag::err_coroutine_outside_function) << Keyword;
195 return false;
198 // An enumeration for mapping the diagnostic type to the correct diagnostic
199 // selection index.
200 enum InvalidFuncDiag {
201 DiagCtor = 0,
202 DiagDtor,
203 DiagMain,
204 DiagConstexpr,
205 DiagAutoRet,
206 DiagVarargs,
207 DiagConsteval,
209 bool Diagnosed = false;
210 auto DiagInvalid = [&](InvalidFuncDiag ID) {
211 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
212 Diagnosed = true;
213 return false;
216 // Diagnose when a constructor, destructor
217 // or the function 'main' are declared as a coroutine.
218 auto *MD = dyn_cast<CXXMethodDecl>(FD);
219 // [class.ctor]p11: "A constructor shall not be a coroutine."
220 if (MD && isa<CXXConstructorDecl>(MD))
221 return DiagInvalid(DiagCtor);
222 // [class.dtor]p17: "A destructor shall not be a coroutine."
223 else if (MD && isa<CXXDestructorDecl>(MD))
224 return DiagInvalid(DiagDtor);
225 // [basic.start.main]p3: "The function main shall not be a coroutine."
226 else if (FD->isMain())
227 return DiagInvalid(DiagMain);
229 // Emit a diagnostics for each of the following conditions which is not met.
230 // [expr.const]p2: "An expression e is a core constant expression unless the
231 // evaluation of e [...] would evaluate one of the following expressions:
232 // [...] an await-expression [...] a yield-expression."
233 if (FD->isConstexpr())
234 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
235 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
236 // placeholder type shall not be a coroutine."
237 if (FD->getReturnType()->isUndeducedType())
238 DiagInvalid(DiagAutoRet);
239 // [dcl.fct.def.coroutine]p1
240 // The parameter-declaration-clause of the coroutine shall not terminate with
241 // an ellipsis that is not part of a parameter-declaration.
242 if (FD->isVariadic())
243 DiagInvalid(DiagVarargs);
245 return !Diagnosed;
248 /// Build a call to 'operator co_await' if there is a suitable operator for
249 /// the given expression.
250 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
251 UnresolvedLookupExpr *Lookup) {
252 UnresolvedSet<16> Functions;
253 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
254 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
257 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
258 SourceLocation Loc, Expr *E) {
259 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
260 if (R.isInvalid())
261 return ExprError();
262 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
263 cast<UnresolvedLookupExpr>(R.get()));
266 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
267 SourceLocation Loc) {
268 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
269 if (CoroHandleType.isNull())
270 return ExprError();
272 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
273 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
274 Sema::LookupOrdinaryName);
275 if (!S.LookupQualifiedName(Found, LookupCtx)) {
276 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
277 << "from_address";
278 return ExprError();
281 Expr *FramePtr =
282 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
284 CXXScopeSpec SS;
285 ExprResult FromAddr =
286 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
287 if (FromAddr.isInvalid())
288 return ExprError();
290 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
293 struct ReadySuspendResumeResult {
294 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
295 Expr *Results[3];
296 OpaqueValueExpr *OpaqueValue;
297 bool IsInvalid;
300 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
301 StringRef Name, MultiExprArg Args) {
302 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
304 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
305 CXXScopeSpec SS;
306 ExprResult Result = S.BuildMemberReferenceExpr(
307 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
308 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
309 /*Scope=*/nullptr);
310 if (Result.isInvalid())
311 return ExprError();
313 // We meant exactly what we asked for. No need for typo correction.
314 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
315 S.clearDelayedTypo(TE);
316 S.Diag(Loc, diag::err_no_member)
317 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
318 << Base->getSourceRange();
319 return ExprError();
322 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
327 // on its address. This is to enable the support for coroutine-handle
328 // returning await_suspend that results in a guaranteed tail call to the target
329 // coroutine.
330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
331 SourceLocation Loc) {
332 if (RetType->isReferenceType())
333 return nullptr;
334 Type const *T = RetType.getTypePtr();
335 if (!T->isClassType() && !T->isStructureType())
336 return nullptr;
338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
340 // a private function in SemaExprCXX.cpp
342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", {});
343 if (AddressExpr.isInvalid())
344 return nullptr;
346 Expr *JustAddress = AddressExpr.get();
348 // Check that the type of AddressExpr is void*
349 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
350 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
351 diag::warn_coroutine_handle_address_invalid_return_type)
352 << JustAddress->getType();
354 // Clean up temporary objects, because the resulting expression
355 // will become the body of await_suspend wrapper.
356 return S.MaybeCreateExprWithCleanups(JustAddress);
359 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
360 /// expression.
361 /// The generated AST tries to clean up temporary objects as early as
362 /// possible so that they don't live across suspension points if possible.
363 /// Having temporary objects living across suspension points unnecessarily can
364 /// lead to large frame size, and also lead to memory corruptions if the
365 /// coroutine frame is destroyed after coming back from suspension. This is done
366 /// by wrapping both the await_ready call and the await_suspend call with
367 /// ExprWithCleanups. In the end of this function, we also need to explicitly
368 /// set cleanup state so that the CoawaitExpr is also wrapped with an
369 /// ExprWithCleanups to clean up the awaiter associated with the co_await
370 /// expression.
371 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
372 SourceLocation Loc, Expr *E) {
373 OpaqueValueExpr *Operand = new (S.Context)
374 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
376 // Assume valid until we see otherwise.
377 // Further operations are responsible for setting IsInalid to true.
378 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
380 using ACT = ReadySuspendResumeResult::AwaitCallType;
382 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
383 MultiExprArg Arg) -> Expr * {
384 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
385 if (Result.isInvalid()) {
386 Calls.IsInvalid = true;
387 return nullptr;
389 Calls.Results[CallType] = Result.get();
390 return Result.get();
393 CallExpr *AwaitReady =
394 cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", {}));
395 if (!AwaitReady)
396 return Calls;
397 if (!AwaitReady->getType()->isDependentType()) {
398 // [expr.await]p3 [...]
399 // — await-ready is the expression e.await_ready(), contextually converted
400 // to bool.
401 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
402 if (Conv.isInvalid()) {
403 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
404 diag::note_await_ready_no_bool_conversion);
405 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
406 << AwaitReady->getDirectCallee() << E->getSourceRange();
407 Calls.IsInvalid = true;
408 } else
409 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
412 ExprResult CoroHandleRes =
413 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
414 if (CoroHandleRes.isInvalid()) {
415 Calls.IsInvalid = true;
416 return Calls;
418 Expr *CoroHandle = CoroHandleRes.get();
419 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
420 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
421 if (!AwaitSuspend)
422 return Calls;
423 if (!AwaitSuspend->getType()->isDependentType()) {
424 // [expr.await]p3 [...]
425 // - await-suspend is the expression e.await_suspend(h), which shall be
426 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
427 // type Z.
428 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
430 // Support for coroutine_handle returning await_suspend.
431 if (Expr *TailCallSuspend =
432 maybeTailCall(S, RetType, AwaitSuspend, Loc))
433 // Note that we don't wrap the expression with ExprWithCleanups here
434 // because that might interfere with tailcall contract (e.g. inserting
435 // clean up instructions in-between tailcall and return). Instead
436 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
437 // call.
438 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
439 else {
440 // non-class prvalues always have cv-unqualified types
441 if (RetType->isReferenceType() ||
442 (!RetType->isBooleanType() && !RetType->isVoidType())) {
443 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
444 diag::err_await_suspend_invalid_return_type)
445 << RetType;
446 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
447 << AwaitSuspend->getDirectCallee();
448 Calls.IsInvalid = true;
449 } else
450 Calls.Results[ACT::ACT_Suspend] =
451 S.MaybeCreateExprWithCleanups(AwaitSuspend);
455 BuildSubExpr(ACT::ACT_Resume, "await_resume", {});
457 // Make sure the awaiter object gets a chance to be cleaned up.
458 S.Cleanup.setExprNeedsCleanups(true);
460 return Calls;
463 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
464 SourceLocation Loc, StringRef Name,
465 MultiExprArg Args) {
467 // Form a reference to the promise.
468 ExprResult PromiseRef = S.BuildDeclRefExpr(
469 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
470 if (PromiseRef.isInvalid())
471 return ExprError();
473 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
476 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
477 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
478 auto *FD = cast<FunctionDecl>(CurContext);
479 bool IsThisDependentType = [&] {
480 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD))
481 return MD->isImplicitObjectMemberFunction() &&
482 MD->getThisType()->isDependentType();
483 return false;
484 }();
486 QualType T = FD->getType()->isDependentType() || IsThisDependentType
487 ? Context.DependentTy
488 : lookupPromiseType(*this, FD, Loc);
489 if (T.isNull())
490 return nullptr;
492 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
493 &PP.getIdentifierTable().get("__promise"), T,
494 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
495 VD->setImplicit();
496 CheckVariableDeclarationType(VD);
497 if (VD->isInvalidDecl())
498 return nullptr;
500 auto *ScopeInfo = getCurFunction();
502 // Build a list of arguments, based on the coroutine function's arguments,
503 // that if present will be passed to the promise type's constructor.
504 llvm::SmallVector<Expr *, 4> CtorArgExprs;
506 // Add implicit object parameter.
507 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
508 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
509 ExprResult ThisExpr = ActOnCXXThis(Loc);
510 if (ThisExpr.isInvalid())
511 return nullptr;
512 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
513 if (ThisExpr.isInvalid())
514 return nullptr;
515 CtorArgExprs.push_back(ThisExpr.get());
519 // Add the coroutine function's parameters.
520 auto &Moves = ScopeInfo->CoroutineParameterMoves;
521 for (auto *PD : FD->parameters()) {
522 if (PD->getType()->isDependentType())
523 continue;
525 auto RefExpr = ExprEmpty();
526 auto Move = Moves.find(PD);
527 assert(Move != Moves.end() &&
528 "Coroutine function parameter not inserted into move map");
529 // If a reference to the function parameter exists in the coroutine
530 // frame, use that reference.
531 auto *MoveDecl =
532 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
533 RefExpr =
534 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
535 ExprValueKind::VK_LValue, FD->getLocation());
536 if (RefExpr.isInvalid())
537 return nullptr;
538 CtorArgExprs.push_back(RefExpr.get());
541 // If we have a non-zero number of constructor arguments, try to use them.
542 // Otherwise, fall back to the promise type's default constructor.
543 if (!CtorArgExprs.empty()) {
544 // Create an initialization sequence for the promise type using the
545 // constructor arguments, wrapped in a parenthesized list expression.
546 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
547 CtorArgExprs, FD->getLocation());
548 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
549 InitializationKind Kind = InitializationKind::CreateForInit(
550 VD->getLocation(), /*DirectInit=*/true, PLE);
551 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
552 /*TopLevelOfInitList=*/false,
553 /*TreatUnavailableAsInvalid=*/false);
555 // [dcl.fct.def.coroutine]5.7
556 // promise-constructor-arguments is determined as follows: overload
557 // resolution is performed on a promise constructor call created by
558 // assembling an argument list q_1 ... q_n . If a viable constructor is
559 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
560 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
561 if (InitSeq) {
562 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
563 if (Result.isInvalid()) {
564 VD->setInvalidDecl();
565 } else if (Result.get()) {
566 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
567 VD->setInitStyle(VarDecl::CallInit);
568 CheckCompleteVariableDeclaration(VD);
570 } else
571 ActOnUninitializedDecl(VD);
572 } else
573 ActOnUninitializedDecl(VD);
575 FD->addDecl(VD);
576 return VD;
579 /// Check that this is a context in which a coroutine suspension can appear.
580 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
581 StringRef Keyword,
582 bool IsImplicit = false) {
583 if (!isValidCoroutineContext(S, Loc, Keyword))
584 return nullptr;
586 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
588 auto *ScopeInfo = S.getCurFunction();
589 assert(ScopeInfo && "missing function scope for function");
591 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
592 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
594 if (ScopeInfo->CoroutinePromise)
595 return ScopeInfo;
597 if (!S.buildCoroutineParameterMoves(Loc))
598 return nullptr;
600 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
601 if (!ScopeInfo->CoroutinePromise)
602 return nullptr;
604 return ScopeInfo;
607 /// Recursively check \p E and all its children to see if any call target
608 /// (including constructor call) is declared noexcept. Also any value returned
609 /// from the call has a noexcept destructor.
610 static void checkNoThrow(Sema &S, const Stmt *E,
611 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
612 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
613 // In the case of dtor, the call to dtor is implicit and hence we should
614 // pass nullptr to canCalleeThrow.
615 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
616 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
617 // co_await promise.final_suspend() could end up calling
618 // __builtin_coro_resume for symmetric transfer if await_suspend()
619 // returns a handle. In that case, even __builtin_coro_resume is not
620 // declared as noexcept and may throw, it does not throw _into_ the
621 // coroutine that just suspended, but rather throws back out from
622 // whoever called coroutine_handle::resume(), hence we claim that
623 // logically it does not throw.
624 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
625 return;
627 if (ThrowingDecls.empty()) {
628 // [dcl.fct.def.coroutine]p15
629 // The expression co_await promise.final_suspend() shall not be
630 // potentially-throwing ([except.spec]).
632 // First time seeing an error, emit the error message.
633 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
634 diag::err_coroutine_promise_final_suspend_requires_nothrow);
636 ThrowingDecls.insert(D);
640 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
641 CXXConstructorDecl *Ctor = CE->getConstructor();
642 checkDeclNoexcept(Ctor);
643 // Check the corresponding destructor of the constructor.
644 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
645 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
646 if (CE->isTypeDependent())
647 return;
649 checkDeclNoexcept(CE->getCalleeDecl());
650 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
651 // Check the destructor of the call return type, if any.
652 if (ReturnType.isDestructedType() ==
653 QualType::DestructionKind::DK_cxx_destructor) {
654 const auto *T =
655 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
656 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
657 /*IsDtor=*/true);
659 } else
660 for (const auto *Child : E->children()) {
661 if (!Child)
662 continue;
663 checkNoThrow(S, Child, ThrowingDecls);
667 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
668 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
669 // We first collect all declarations that should not throw but not declared
670 // with noexcept. We then sort them based on the location before printing.
671 // This is to avoid emitting the same note multiple times on the same
672 // declaration, and also provide a deterministic order for the messages.
673 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
674 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
675 ThrowingDecls.end()};
676 sort(SortedDecls, [](const Decl *A, const Decl *B) {
677 return A->getEndLoc() < B->getEndLoc();
679 for (const auto *D : SortedDecls) {
680 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
682 return ThrowingDecls.empty();
685 // [stmt.return.coroutine]p1:
686 // A coroutine shall not enclose a return statement ([stmt.return]).
687 static void checkReturnStmtInCoroutine(Sema &S, FunctionScopeInfo *FSI) {
688 assert(FSI && "FunctionScopeInfo is null");
689 assert(FSI->FirstCoroutineStmtLoc.isValid() &&
690 "first coroutine location not set");
691 if (FSI->FirstReturnLoc.isInvalid())
692 return;
693 S.Diag(FSI->FirstReturnLoc, diag::err_return_in_coroutine);
694 S.Diag(FSI->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
695 << FSI->getFirstCoroutineStmtKeyword();
698 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
699 StringRef Keyword) {
700 // Ignore previous expr evaluation contexts.
701 EnterExpressionEvaluationContext PotentiallyEvaluated(
702 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
703 if (!checkCoroutineContext(*this, KWLoc, Keyword))
704 return false;
705 auto *ScopeInfo = getCurFunction();
706 assert(ScopeInfo->CoroutinePromise);
708 // Avoid duplicate errors, report only on first keyword.
709 if (ScopeInfo->FirstCoroutineStmtLoc == KWLoc)
710 checkReturnStmtInCoroutine(*this, ScopeInfo);
712 // If we have existing coroutine statements then we have already built
713 // the initial and final suspend points.
714 if (!ScopeInfo->NeedsCoroutineSuspends)
715 return true;
717 ScopeInfo->setNeedsCoroutineSuspends(false);
719 auto *Fn = cast<FunctionDecl>(CurContext);
720 SourceLocation Loc = Fn->getLocation();
721 // Build the initial suspend point
722 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
723 ExprResult Operand =
724 buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, {});
725 if (Operand.isInvalid())
726 return StmtError();
727 ExprResult Suspend =
728 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
729 if (Suspend.isInvalid())
730 return StmtError();
731 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
732 /*IsImplicit*/ true);
733 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
734 if (Suspend.isInvalid()) {
735 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
736 << ((Name == "initial_suspend") ? 0 : 1);
737 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
738 return StmtError();
740 return cast<Stmt>(Suspend.get());
743 StmtResult InitSuspend = buildSuspends("initial_suspend");
744 if (InitSuspend.isInvalid())
745 return true;
747 StmtResult FinalSuspend = buildSuspends("final_suspend");
748 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
749 return true;
751 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
753 return true;
756 // Recursively walks up the scope hierarchy until either a 'catch' or a function
757 // scope is found, whichever comes first.
758 static bool isWithinCatchScope(Scope *S) {
759 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
760 // lambdas that use 'co_await' are allowed. The loop below ends when a
761 // function scope is found in order to ensure the following behavior:
763 // void foo() { // <- function scope
764 // try { //
765 // co_await x; // <- 'co_await' is OK within a function scope
766 // } catch { // <- catch scope
767 // co_await x; // <- 'co_await' is not OK within a catch scope
768 // []() { // <- function scope
769 // co_await x; // <- 'co_await' is OK within a function scope
770 // }();
771 // }
772 // }
773 while (S && !S->isFunctionScope()) {
774 if (S->isCatchScope())
775 return true;
776 S = S->getParent();
778 return false;
781 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
782 // a *potentially evaluated* expression within the compound-statement of a
783 // function-body *outside of a handler* [...] A context within a function
784 // where an await-expression can appear is called a suspension context of the
785 // function."
786 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
787 StringRef Keyword) {
788 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
789 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
790 // \c sizeof.
791 if (S.isUnevaluatedContext()) {
792 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
793 return false;
796 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
797 if (isWithinCatchScope(S.getCurScope())) {
798 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
799 return false;
802 return true;
805 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
806 if (!checkSuspensionContext(*this, Loc, "co_await"))
807 return ExprError();
809 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
810 CorrectDelayedTyposInExpr(E);
811 return ExprError();
814 if (E->hasPlaceholderType()) {
815 ExprResult R = CheckPlaceholderExpr(E);
816 if (R.isInvalid()) return ExprError();
817 E = R.get();
820 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
821 if (Lookup.isInvalid())
822 return ExprError();
823 return BuildUnresolvedCoawaitExpr(Loc, E,
824 cast<UnresolvedLookupExpr>(Lookup.get()));
827 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
828 DeclarationName OpName =
829 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
830 LookupResult Operators(*this, OpName, SourceLocation(),
831 Sema::LookupOperatorName);
832 LookupName(Operators, S);
834 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
835 const auto &Functions = Operators.asUnresolvedSet();
836 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
837 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
838 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Functions.begin(),
839 Functions.end(), /*KnownDependent=*/false,
840 /*KnownInstantiationDependent=*/false);
841 assert(CoawaitOp);
842 return CoawaitOp;
845 static bool isAttributedCoroAwaitElidable(const QualType &QT) {
846 auto *Record = QT->getAsCXXRecordDecl();
847 return Record && Record->hasAttr<CoroAwaitElidableAttr>();
850 static void applySafeElideContext(Expr *Operand) {
851 auto *Call = dyn_cast<CallExpr>(Operand->IgnoreImplicit());
852 if (!Call || !Call->isPRValue())
853 return;
855 if (!isAttributedCoroAwaitElidable(Call->getType()))
856 return;
858 Call->setCoroElideSafe();
860 // Check parameter
861 auto *Fn = llvm::dyn_cast_if_present<FunctionDecl>(Call->getCalleeDecl());
862 if (!Fn)
863 return;
865 size_t ParmIdx = 0;
866 for (ParmVarDecl *PD : Fn->parameters()) {
867 if (PD->hasAttr<CoroAwaitElidableArgumentAttr>())
868 applySafeElideContext(Call->getArg(ParmIdx));
870 ParmIdx++;
874 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
875 // DependentCoawaitExpr if needed.
876 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
877 UnresolvedLookupExpr *Lookup) {
878 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
879 if (!FSI)
880 return ExprError();
882 if (Operand->hasPlaceholderType()) {
883 ExprResult R = CheckPlaceholderExpr(Operand);
884 if (R.isInvalid())
885 return ExprError();
886 Operand = R.get();
889 auto *Promise = FSI->CoroutinePromise;
890 if (Promise->getType()->isDependentType()) {
891 Expr *Res = new (Context)
892 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
893 return Res;
896 auto *RD = Promise->getType()->getAsCXXRecordDecl();
898 bool CurFnAwaitElidable = isAttributedCoroAwaitElidable(
899 getCurFunctionDecl(/*AllowLambda=*/true)->getReturnType());
901 if (CurFnAwaitElidable)
902 applySafeElideContext(Operand);
904 Expr *Transformed = Operand;
905 if (lookupMember(*this, "await_transform", RD, Loc)) {
906 ExprResult R =
907 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
908 if (R.isInvalid()) {
909 Diag(Loc,
910 diag::note_coroutine_promise_implicit_await_transform_required_here)
911 << Operand->getSourceRange();
912 return ExprError();
914 Transformed = R.get();
916 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
917 if (Awaiter.isInvalid())
918 return ExprError();
920 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
923 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
924 Expr *Awaiter, bool IsImplicit) {
925 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
926 if (!Coroutine)
927 return ExprError();
929 if (Awaiter->hasPlaceholderType()) {
930 ExprResult R = CheckPlaceholderExpr(Awaiter);
931 if (R.isInvalid()) return ExprError();
932 Awaiter = R.get();
935 if (Awaiter->getType()->isDependentType()) {
936 Expr *Res = new (Context)
937 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
938 return Res;
941 // If the expression is a temporary, materialize it as an lvalue so that we
942 // can use it multiple times.
943 if (Awaiter->isPRValue())
944 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
946 // The location of the `co_await` token cannot be used when constructing
947 // the member call expressions since it's before the location of `Expr`, which
948 // is used as the start of the member call expression.
949 SourceLocation CallLoc = Awaiter->getExprLoc();
951 // Build the await_ready, await_suspend, await_resume calls.
952 ReadySuspendResumeResult RSS =
953 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
954 if (RSS.IsInvalid)
955 return ExprError();
957 Expr *Res = new (Context)
958 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
959 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
961 return Res;
964 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
965 if (!checkSuspensionContext(*this, Loc, "co_yield"))
966 return ExprError();
968 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
969 CorrectDelayedTyposInExpr(E);
970 return ExprError();
973 // Build yield_value call.
974 ExprResult Awaitable = buildPromiseCall(
975 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
976 if (Awaitable.isInvalid())
977 return ExprError();
979 // Build 'operator co_await' call.
980 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
981 if (Awaitable.isInvalid())
982 return ExprError();
984 return BuildCoyieldExpr(Loc, Awaitable.get());
986 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
987 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
988 if (!Coroutine)
989 return ExprError();
991 if (E->hasPlaceholderType()) {
992 ExprResult R = CheckPlaceholderExpr(E);
993 if (R.isInvalid()) return ExprError();
994 E = R.get();
997 Expr *Operand = E;
999 if (E->getType()->isDependentType()) {
1000 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
1001 return Res;
1004 // If the expression is a temporary, materialize it as an lvalue so that we
1005 // can use it multiple times.
1006 if (E->isPRValue())
1007 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
1009 // Build the await_ready, await_suspend, await_resume calls.
1010 ReadySuspendResumeResult RSS = buildCoawaitCalls(
1011 *this, Coroutine->CoroutinePromise, Loc, E);
1012 if (RSS.IsInvalid)
1013 return ExprError();
1015 Expr *Res =
1016 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
1017 RSS.Results[2], RSS.OpaqueValue);
1019 return Res;
1022 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
1023 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
1024 CorrectDelayedTyposInExpr(E);
1025 return StmtError();
1027 return BuildCoreturnStmt(Loc, E);
1030 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
1031 bool IsImplicit) {
1032 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
1033 if (!FSI)
1034 return StmtError();
1036 if (E && E->hasPlaceholderType() &&
1037 !E->hasPlaceholderType(BuiltinType::Overload)) {
1038 ExprResult R = CheckPlaceholderExpr(E);
1039 if (R.isInvalid()) return StmtError();
1040 E = R.get();
1043 VarDecl *Promise = FSI->CoroutinePromise;
1044 ExprResult PC;
1045 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
1046 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
1047 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
1048 } else {
1049 E = MakeFullDiscardedValueExpr(E).get();
1050 PC = buildPromiseCall(*this, Promise, Loc, "return_void", {});
1052 if (PC.isInvalid())
1053 return StmtError();
1055 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1057 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1058 return Res;
1061 /// Look up the std::nothrow object.
1062 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1063 NamespaceDecl *Std = S.getStdNamespace();
1064 assert(Std && "Should already be diagnosed");
1066 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1067 Sema::LookupOrdinaryName);
1068 if (!S.LookupQualifiedName(Result, Std)) {
1069 // <coroutine> is not requred to include <new>, so we couldn't omit
1070 // the check here.
1071 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1072 return nullptr;
1075 auto *VD = Result.getAsSingle<VarDecl>();
1076 if (!VD) {
1077 Result.suppressDiagnostics();
1078 // We found something weird. Complain about the first thing we found.
1079 NamedDecl *Found = *Result.begin();
1080 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1081 return nullptr;
1084 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1085 if (DR.isInvalid())
1086 return nullptr;
1088 return DR.get();
1091 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1092 SourceLocation Loc) {
1093 EnumDecl *StdAlignValT = S.getStdAlignValT();
1094 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1095 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1098 // Find an appropriate delete for the promise.
1099 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1100 FunctionDecl *&OperatorDelete) {
1101 DeclarationName DeleteName =
1102 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1104 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1105 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1107 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1109 // [dcl.fct.def.coroutine]p12
1110 // The deallocation function's name is looked up by searching for it in the
1111 // scope of the promise type. If nothing is found, a search is performed in
1112 // the global scope.
1113 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1114 /*Diagnose*/ true, /*WantSize*/ true,
1115 /*WantAligned*/ Overaligned))
1116 return false;
1118 // [dcl.fct.def.coroutine]p12
1119 // If both a usual deallocation function with only a pointer parameter and a
1120 // usual deallocation function with both a pointer parameter and a size
1121 // parameter are found, then the selected deallocation function shall be the
1122 // one with two parameters. Otherwise, the selected deallocation function
1123 // shall be the function with one parameter.
1124 if (!OperatorDelete) {
1125 // Look for a global declaration.
1126 // Coroutines can always provide their required size.
1127 const bool CanProvideSize = true;
1128 // Sema::FindUsualDeallocationFunction will try to find the one with two
1129 // parameters first. It will return the deallocation function with one
1130 // parameter if failed.
1131 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1132 Overaligned, DeleteName);
1134 if (!OperatorDelete)
1135 return false;
1138 S.MarkFunctionReferenced(Loc, OperatorDelete);
1139 return true;
1143 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1144 FunctionScopeInfo *Fn = getCurFunction();
1145 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1146 if (!Body) {
1147 assert(FD->isInvalidDecl() &&
1148 "a null body is only allowed for invalid declarations");
1149 return;
1151 // We have a function that uses coroutine keywords, but we failed to build
1152 // the promise type.
1153 if (!Fn->CoroutinePromise)
1154 return FD->setInvalidDecl();
1156 if (isa<CoroutineBodyStmt>(Body)) {
1157 // Nothing todo. the body is already a transformed coroutine body statement.
1158 return;
1161 // The always_inline attribute doesn't reliably apply to a coroutine,
1162 // because the coroutine will be split into pieces and some pieces
1163 // might be called indirectly, as in a virtual call. Even the ramp
1164 // function cannot be inlined at -O0, due to pipeline ordering
1165 // problems (see https://llvm.org/PR53413). Tell the user about it.
1166 if (FD->hasAttr<AlwaysInlineAttr>())
1167 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1169 // The design of coroutines means we cannot allow use of VLAs within one, so
1170 // diagnose if we've seen a VLA in the body of this function.
1171 if (Fn->FirstVLALoc.isValid())
1172 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
1174 // Coroutines will get splitted into pieces. The GNU address of label
1175 // extension wouldn't be meaningful in coroutines.
1176 for (AddrLabelExpr *ALE : Fn->AddrLabels)
1177 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1179 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1180 if (Builder.isInvalid() || !Builder.buildStatements())
1181 return FD->setInvalidDecl();
1183 // Build body for the coroutine wrapper statement.
1184 Body = CoroutineBodyStmt::Create(Context, Builder);
1187 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1188 if (auto *CS = dyn_cast<CompoundStmt>(Body))
1189 return CS;
1191 // The body of the coroutine may be a try statement if it is in
1192 // 'function-try-block' syntax. Here we wrap it into a compound
1193 // statement for consistency.
1194 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1195 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1196 SourceLocation(), SourceLocation());
1199 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1200 sema::FunctionScopeInfo &Fn,
1201 Stmt *Body)
1202 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1203 IsPromiseDependentType(
1204 !Fn.CoroutinePromise ||
1205 Fn.CoroutinePromise->getType()->isDependentType()) {
1206 this->Body = buildCoroutineBody(Body, S.getASTContext());
1208 for (auto KV : Fn.CoroutineParameterMoves)
1209 this->ParamMovesVector.push_back(KV.second);
1210 this->ParamMoves = this->ParamMovesVector;
1212 if (!IsPromiseDependentType) {
1213 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1214 assert(PromiseRecordDecl && "Type should have already been checked");
1216 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1219 bool CoroutineStmtBuilder::buildStatements() {
1220 assert(this->IsValid && "coroutine already invalid");
1221 this->IsValid = makeReturnObject();
1222 if (this->IsValid && !IsPromiseDependentType)
1223 buildDependentStatements();
1224 return this->IsValid;
1227 bool CoroutineStmtBuilder::buildDependentStatements() {
1228 assert(this->IsValid && "coroutine already invalid");
1229 assert(!this->IsPromiseDependentType &&
1230 "coroutine cannot have a dependent promise type");
1231 this->IsValid = makeOnException() && makeOnFallthrough() &&
1232 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1233 makeNewAndDeleteExpr();
1234 return this->IsValid;
1237 bool CoroutineStmtBuilder::makePromiseStmt() {
1238 // Form a declaration statement for the promise declaration, so that AST
1239 // visitors can more easily find it.
1240 StmtResult PromiseStmt =
1241 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1242 if (PromiseStmt.isInvalid())
1243 return false;
1245 this->Promise = PromiseStmt.get();
1246 return true;
1249 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1250 if (Fn.hasInvalidCoroutineSuspends())
1251 return false;
1252 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1253 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1254 return true;
1257 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1258 CXXRecordDecl *PromiseRecordDecl,
1259 FunctionScopeInfo &Fn) {
1260 auto Loc = E->getExprLoc();
1261 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1262 auto *Decl = DeclRef->getDecl();
1263 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1264 if (Method->isStatic())
1265 return true;
1266 else
1267 Loc = Decl->getLocation();
1271 S.Diag(
1272 Loc,
1273 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1274 << PromiseRecordDecl;
1275 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1276 << Fn.getFirstCoroutineStmtKeyword();
1277 return false;
1280 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1281 assert(!IsPromiseDependentType &&
1282 "cannot make statement while the promise type is dependent");
1284 // [dcl.fct.def.coroutine]p10
1285 // If a search for the name get_return_object_on_allocation_failure in
1286 // the scope of the promise type ([class.member.lookup]) finds any
1287 // declarations, then the result of a call to an allocation function used to
1288 // obtain storage for the coroutine state is assumed to return nullptr if it
1289 // fails to obtain storage, ... If the allocation function returns nullptr,
1290 // ... and the return value is obtained by a call to
1291 // T::get_return_object_on_allocation_failure(), where T is the
1292 // promise type.
1293 DeclarationName DN =
1294 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1295 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1296 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1297 return true;
1299 CXXScopeSpec SS;
1300 ExprResult DeclNameExpr =
1301 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1302 if (DeclNameExpr.isInvalid())
1303 return false;
1305 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1306 return false;
1308 ExprResult ReturnObjectOnAllocationFailure =
1309 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1310 if (ReturnObjectOnAllocationFailure.isInvalid())
1311 return false;
1313 StmtResult ReturnStmt =
1314 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1315 if (ReturnStmt.isInvalid()) {
1316 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1317 << DN;
1318 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1319 << Fn.getFirstCoroutineStmtKeyword();
1320 return false;
1323 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1324 return true;
1327 // Collect placement arguments for allocation function of coroutine FD.
1328 // Return true if we collect placement arguments succesfully. Return false,
1329 // otherwise.
1330 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1331 SmallVectorImpl<Expr *> &PlacementArgs) {
1332 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1333 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
1334 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1335 if (ThisExpr.isInvalid())
1336 return false;
1337 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1338 if (ThisExpr.isInvalid())
1339 return false;
1340 PlacementArgs.push_back(ThisExpr.get());
1344 for (auto *PD : FD.parameters()) {
1345 if (PD->getType()->isDependentType())
1346 continue;
1348 // Build a reference to the parameter.
1349 auto PDLoc = PD->getLocation();
1350 ExprResult PDRefExpr =
1351 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1352 ExprValueKind::VK_LValue, PDLoc);
1353 if (PDRefExpr.isInvalid())
1354 return false;
1356 PlacementArgs.push_back(PDRefExpr.get());
1359 return true;
1362 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1363 // Form and check allocation and deallocation calls.
1364 assert(!IsPromiseDependentType &&
1365 "cannot make statement while the promise type is dependent");
1366 QualType PromiseType = Fn.CoroutinePromise->getType();
1368 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1369 return false;
1371 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1373 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1374 // parameter list composed of the requested size of the coroutine state being
1375 // allocated, followed by the coroutine function's arguments. If a matching
1376 // allocation function exists, use it. Otherwise, use an allocation function
1377 // that just takes the requested size.
1379 // [dcl.fct.def.coroutine]p9
1380 // An implementation may need to allocate additional storage for a
1381 // coroutine.
1382 // This storage is known as the coroutine state and is obtained by calling a
1383 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1384 // allocation function's name is looked up by searching for it in the scope of
1385 // the promise type.
1386 // - If any declarations are found, overload resolution is performed on a
1387 // function call created by assembling an argument list. The first argument is
1388 // the amount of space requested, and has type std::size_t. The
1389 // lvalues p1 ... pn are the succeeding arguments.
1391 // ...where "p1 ... pn" are defined earlier as:
1393 // [dcl.fct.def.coroutine]p3
1394 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1395 // Pn>`
1396 // , where R is the return type of the function, and `P1, ..., Pn` are the
1397 // sequence of types of the non-object function parameters, preceded by the
1398 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1399 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1400 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1401 // the i-th non-object function parameter for a non-static member function,
1402 // and p_i denotes the i-th function parameter otherwise. For a non-static
1403 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1404 // lvalue that denotes the parameter copy corresponding to p_i.
1406 FunctionDecl *OperatorNew = nullptr;
1407 SmallVector<Expr *, 1> PlacementArgs;
1409 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1410 DeclarationName NewName =
1411 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1412 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1414 if (PromiseType->isRecordType())
1415 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1417 return !R.empty() && !R.isAmbiguous();
1418 }();
1420 // Helper function to indicate whether the last lookup found the aligned
1421 // allocation function.
1422 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1423 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1424 Sema::AFS_Both,
1425 bool WithoutPlacementArgs = false,
1426 bool ForceNonAligned = false) {
1427 // [dcl.fct.def.coroutine]p9
1428 // The allocation function's name is looked up by searching for it in the
1429 // scope of the promise type.
1430 // - If any declarations are found, ...
1431 // - If no declarations are found in the scope of the promise type, a search
1432 // is performed in the global scope.
1433 if (NewScope == Sema::AFS_Both)
1434 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1436 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1437 FunctionDecl *UnusedResult = nullptr;
1438 S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1439 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1440 /*isArray*/ false, PassAlignment,
1441 WithoutPlacementArgs ? MultiExprArg{}
1442 : PlacementArgs,
1443 OperatorNew, UnusedResult, /*Diagnose*/ false);
1446 // We don't expect to call to global operator new with (size, p0, …, pn).
1447 // So if we choose to lookup the allocation function in global scope, we
1448 // shouldn't lookup placement arguments.
1449 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1450 return false;
1452 LookupAllocationFunction();
1454 if (PromiseContainsNew && !PlacementArgs.empty()) {
1455 // [dcl.fct.def.coroutine]p9
1456 // If no viable function is found ([over.match.viable]), overload
1457 // resolution
1458 // is performed again on a function call created by passing just the amount
1459 // of space required as an argument of type std::size_t.
1461 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1462 // Otherwise, overload resolution is performed again on a function call
1463 // created
1464 // by passing the amount of space requested as an argument of type
1465 // std::size_t as the first argument, and the requested alignment as
1466 // an argument of type std:align_val_t as the second argument.
1467 if (!OperatorNew ||
1468 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1469 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1470 /*WithoutPlacementArgs*/ true);
1473 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1474 // Otherwise, overload resolution is performed again on a function call
1475 // created
1476 // by passing the amount of space requested as an argument of type
1477 // std::size_t as the first argument, and the lvalues p1 ... pn as the
1478 // succeeding arguments. Otherwise, overload resolution is performed again
1479 // on a function call created by passing just the amount of space required as
1480 // an argument of type std::size_t.
1482 // So within the proposed change in P2014RO, the priority order of aligned
1483 // allocation functions wiht promise_type is:
1485 // void* operator new( std::size_t, std::align_val_t, placement_args... );
1486 // void* operator new( std::size_t, std::align_val_t);
1487 // void* operator new( std::size_t, placement_args... );
1488 // void* operator new( std::size_t);
1490 // Helper variable to emit warnings.
1491 bool FoundNonAlignedInPromise = false;
1492 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1493 if (!OperatorNew || !PassAlignment) {
1494 FoundNonAlignedInPromise = OperatorNew;
1496 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1497 /*WithoutPlacementArgs*/ false,
1498 /*ForceNonAligned*/ true);
1500 if (!OperatorNew && !PlacementArgs.empty())
1501 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1502 /*WithoutPlacementArgs*/ true,
1503 /*ForceNonAligned*/ true);
1506 bool IsGlobalOverload =
1507 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1508 // If we didn't find a class-local new declaration and non-throwing new
1509 // was is required then we need to lookup the non-throwing global operator
1510 // instead.
1511 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1512 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1513 if (!StdNoThrow)
1514 return false;
1515 PlacementArgs = {StdNoThrow};
1516 OperatorNew = nullptr;
1517 LookupAllocationFunction(Sema::AFS_Global);
1520 // If we found a non-aligned allocation function in the promise_type,
1521 // it indicates the user forgot to update the allocation function. Let's emit
1522 // a warning here.
1523 if (FoundNonAlignedInPromise) {
1524 S.Diag(OperatorNew->getLocation(),
1525 diag::warn_non_aligned_allocation_function)
1526 << &FD;
1529 if (!OperatorNew) {
1530 if (PromiseContainsNew)
1531 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1532 else if (RequiresNoThrowAlloc)
1533 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1534 << &FD << S.getLangOpts().CoroAlignedAllocation;
1536 return false;
1539 if (RequiresNoThrowAlloc) {
1540 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1541 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1542 S.Diag(OperatorNew->getLocation(),
1543 diag::err_coroutine_promise_new_requires_nothrow)
1544 << OperatorNew;
1545 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1546 << OperatorNew;
1547 return false;
1551 FunctionDecl *OperatorDelete = nullptr;
1552 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1553 // FIXME: We should add an error here. According to:
1554 // [dcl.fct.def.coroutine]p12
1555 // If no usual deallocation function is found, the program is ill-formed.
1556 return false;
1559 Expr *FramePtr =
1560 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1562 Expr *FrameSize =
1563 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1565 Expr *FrameAlignment = nullptr;
1567 if (S.getLangOpts().CoroAlignedAllocation) {
1568 FrameAlignment =
1569 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1571 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1572 if (!AlignValTy)
1573 return false;
1575 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1576 FrameAlignment, SourceRange(Loc, Loc),
1577 SourceRange(Loc, Loc))
1578 .get();
1581 // Make new call.
1582 ExprResult NewRef =
1583 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1584 if (NewRef.isInvalid())
1585 return false;
1587 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1588 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1589 NewArgs.push_back(FrameAlignment);
1591 if (OperatorNew->getNumParams() > NewArgs.size())
1592 llvm::append_range(NewArgs, PlacementArgs);
1594 ExprResult NewExpr =
1595 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1596 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1597 if (NewExpr.isInvalid())
1598 return false;
1600 // Make delete call.
1602 QualType OpDeleteQualType = OperatorDelete->getType();
1604 ExprResult DeleteRef =
1605 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1606 if (DeleteRef.isInvalid())
1607 return false;
1609 Expr *CoroFree =
1610 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1612 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1614 // [dcl.fct.def.coroutine]p12
1615 // The selected deallocation function shall be called with the address of
1616 // the block of storage to be reclaimed as its first argument. If a
1617 // deallocation function with a parameter of type std::size_t is
1618 // used, the size of the block is passed as the corresponding argument.
1619 const auto *OpDeleteType =
1620 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1621 if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1622 S.getASTContext().hasSameUnqualifiedType(
1623 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1624 DeleteArgs.push_back(FrameSize);
1626 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1627 // If deallocation function lookup finds a usual deallocation function with
1628 // a pointer parameter, size parameter and alignment parameter then this
1629 // will be the selected deallocation function, otherwise if lookup finds a
1630 // usual deallocation function with both a pointer parameter and a size
1631 // parameter, then this will be the selected deallocation function.
1632 // Otherwise, if lookup finds a usual deallocation function with only a
1633 // pointer parameter, then this will be the selected deallocation
1634 // function.
1636 // So we are not forced to pass alignment to the deallocation function.
1637 if (S.getLangOpts().CoroAlignedAllocation &&
1638 OpDeleteType->getNumParams() > DeleteArgs.size() &&
1639 S.getASTContext().hasSameUnqualifiedType(
1640 OpDeleteType->getParamType(DeleteArgs.size()),
1641 FrameAlignment->getType()))
1642 DeleteArgs.push_back(FrameAlignment);
1644 ExprResult DeleteExpr =
1645 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1646 DeleteExpr =
1647 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1648 if (DeleteExpr.isInvalid())
1649 return false;
1651 this->Allocate = NewExpr.get();
1652 this->Deallocate = DeleteExpr.get();
1654 return true;
1657 bool CoroutineStmtBuilder::makeOnFallthrough() {
1658 assert(!IsPromiseDependentType &&
1659 "cannot make statement while the promise type is dependent");
1661 // [dcl.fct.def.coroutine]/p6
1662 // If searches for the names return_void and return_value in the scope of
1663 // the promise type each find any declarations, the program is ill-formed.
1664 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1665 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1666 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1667 // end note]
1668 bool HasRVoid, HasRValue;
1669 LookupResult LRVoid =
1670 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1671 LookupResult LRValue =
1672 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1674 StmtResult Fallthrough;
1675 if (HasRVoid && HasRValue) {
1676 // FIXME Improve this diagnostic
1677 S.Diag(FD.getLocation(),
1678 diag::err_coroutine_promise_incompatible_return_functions)
1679 << PromiseRecordDecl;
1680 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1681 diag::note_member_first_declared_here)
1682 << LRVoid.getLookupName();
1683 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1684 diag::note_member_first_declared_here)
1685 << LRValue.getLookupName();
1686 return false;
1687 } else if (!HasRVoid && !HasRValue) {
1688 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1689 // think the coroutine has defined a return_value method. So it might emit
1690 // **false** positive warning. e.g.,
1692 // promise_without_return_func foo() {
1693 // co_await something();
1694 // }
1696 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1697 // co_return statements, which isn't correct.
1698 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1699 if (Fallthrough.isInvalid())
1700 return false;
1701 } else if (HasRVoid) {
1702 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1703 /*IsImplicit=*/true);
1704 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1705 if (Fallthrough.isInvalid())
1706 return false;
1709 this->OnFallthrough = Fallthrough.get();
1710 return true;
1713 bool CoroutineStmtBuilder::makeOnException() {
1714 // Try to form 'p.unhandled_exception();'
1715 assert(!IsPromiseDependentType &&
1716 "cannot make statement while the promise type is dependent");
1718 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1720 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1721 auto DiagID =
1722 RequireUnhandledException
1723 ? diag::err_coroutine_promise_unhandled_exception_required
1724 : diag::
1725 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1726 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1727 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1728 << PromiseRecordDecl;
1729 return !RequireUnhandledException;
1732 // If exceptions are disabled, don't try to build OnException.
1733 if (!S.getLangOpts().CXXExceptions)
1734 return true;
1736 ExprResult UnhandledException =
1737 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "unhandled_exception", {});
1738 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1739 /*DiscardedValue*/ false);
1740 if (UnhandledException.isInvalid())
1741 return false;
1743 // Since the body of the coroutine will be wrapped in try-catch, it will
1744 // be incompatible with SEH __try if present in a function.
1745 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1746 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1747 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1748 << Fn.getFirstCoroutineStmtKeyword();
1749 return false;
1752 this->OnException = UnhandledException.get();
1753 return true;
1756 bool CoroutineStmtBuilder::makeReturnObject() {
1757 // [dcl.fct.def.coroutine]p7
1758 // The expression promise.get_return_object() is used to initialize the
1759 // returned reference or prvalue result object of a call to a coroutine.
1760 ExprResult ReturnObject =
1761 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", {});
1762 if (ReturnObject.isInvalid())
1763 return false;
1765 this->ReturnValue = ReturnObject.get();
1766 return true;
1769 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1770 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1771 auto *MethodDecl = MbrRef->getMethodDecl();
1772 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1773 << MethodDecl;
1775 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1776 << Fn.getFirstCoroutineStmtKeyword();
1779 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1780 assert(!IsPromiseDependentType &&
1781 "cannot make statement while the promise type is dependent");
1782 assert(this->ReturnValue && "ReturnValue must be already formed");
1784 QualType const GroType = this->ReturnValue->getType();
1785 assert(!GroType->isDependentType() &&
1786 "get_return_object type must no longer be dependent");
1788 QualType const FnRetType = FD.getReturnType();
1789 assert(!FnRetType->isDependentType() &&
1790 "get_return_object type must no longer be dependent");
1792 // The call to get_­return_­object is sequenced before the call to
1793 // initial_­suspend and is invoked at most once, but there are caveats
1794 // regarding on whether the prvalue result object may be initialized
1795 // directly/eager or delayed, depending on the types involved.
1797 // More info at https://github.com/cplusplus/papers/issues/1414
1798 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1800 if (FnRetType->isVoidType()) {
1801 ExprResult Res =
1802 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1803 if (Res.isInvalid())
1804 return false;
1806 if (!GroMatchesRetType)
1807 this->ResultDecl = Res.get();
1808 return true;
1811 if (GroType->isVoidType()) {
1812 // Trigger a nice error message.
1813 InitializedEntity Entity =
1814 InitializedEntity::InitializeResult(Loc, FnRetType);
1815 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1816 noteMemberDeclaredHere(S, ReturnValue, Fn);
1817 return false;
1820 StmtResult ReturnStmt;
1821 clang::VarDecl *GroDecl = nullptr;
1822 if (GroMatchesRetType) {
1823 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1824 } else {
1825 GroDecl = VarDecl::Create(
1826 S.Context, &FD, FD.getLocation(), FD.getLocation(),
1827 &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1828 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1829 GroDecl->setImplicit();
1831 S.CheckVariableDeclarationType(GroDecl);
1832 if (GroDecl->isInvalidDecl())
1833 return false;
1835 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1836 ExprResult Res =
1837 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1838 if (Res.isInvalid())
1839 return false;
1841 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1842 if (Res.isInvalid())
1843 return false;
1845 S.AddInitializerToDecl(GroDecl, Res.get(),
1846 /*DirectInit=*/false);
1848 S.FinalizeDeclaration(GroDecl);
1850 // Form a declaration statement for the return declaration, so that AST
1851 // visitors can more easily find it.
1852 StmtResult GroDeclStmt =
1853 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1854 if (GroDeclStmt.isInvalid())
1855 return false;
1857 this->ResultDecl = GroDeclStmt.get();
1859 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1860 if (declRef.isInvalid())
1861 return false;
1863 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1866 if (ReturnStmt.isInvalid()) {
1867 noteMemberDeclaredHere(S, ReturnValue, Fn);
1868 return false;
1871 if (!GroMatchesRetType &&
1872 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1873 GroDecl->setNRVOVariable(true);
1875 this->ReturnStmt = ReturnStmt.get();
1876 return true;
1879 // Create a static_cast\<T&&>(expr).
1880 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1881 if (T.isNull())
1882 T = E->getType();
1883 QualType TargetType = S.BuildReferenceType(
1884 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1885 SourceLocation ExprLoc = E->getBeginLoc();
1886 TypeSourceInfo *TargetLoc =
1887 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1889 return S
1890 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1891 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1892 .get();
1895 /// Build a variable declaration for move parameter.
1896 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1897 IdentifierInfo *II) {
1898 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1899 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1900 TInfo, SC_None);
1901 Decl->setImplicit();
1902 return Decl;
1905 // Build statements that move coroutine function parameters to the coroutine
1906 // frame, and store them on the function scope info.
1907 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1908 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1909 auto *FD = cast<FunctionDecl>(CurContext);
1911 auto *ScopeInfo = getCurFunction();
1912 if (!ScopeInfo->CoroutineParameterMoves.empty())
1913 return false;
1915 // [dcl.fct.def.coroutine]p13
1916 // When a coroutine is invoked, after initializing its parameters
1917 // ([expr.call]), a copy is created for each coroutine parameter. For a
1918 // parameter of type cv T, the copy is a variable of type cv T with
1919 // automatic storage duration that is direct-initialized from an xvalue of
1920 // type T referring to the parameter.
1921 for (auto *PD : FD->parameters()) {
1922 if (PD->getType()->isDependentType())
1923 continue;
1925 // Preserve the referenced state for unused parameter diagnostics.
1926 bool DeclReferenced = PD->isReferenced();
1928 ExprResult PDRefExpr =
1929 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1930 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1932 PD->setReferenced(DeclReferenced);
1934 if (PDRefExpr.isInvalid())
1935 return false;
1937 Expr *CExpr = nullptr;
1938 if (PD->getType()->getAsCXXRecordDecl() ||
1939 PD->getType()->isRValueReferenceType())
1940 CExpr = castForMoving(*this, PDRefExpr.get());
1941 else
1942 CExpr = PDRefExpr.get();
1943 // [dcl.fct.def.coroutine]p13
1944 // The initialization and destruction of each parameter copy occurs in the
1945 // context of the called coroutine.
1946 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1947 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1949 // Convert decl to a statement.
1950 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1951 if (Stmt.isInvalid())
1952 return false;
1954 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1956 return true;
1959 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1960 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1961 if (!Res)
1962 return StmtError();
1963 return Res;
1966 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1967 SourceLocation FuncLoc) {
1968 if (StdCoroutineTraitsCache)
1969 return StdCoroutineTraitsCache;
1971 IdentifierInfo const &TraitIdent =
1972 PP.getIdentifierTable().get("coroutine_traits");
1974 NamespaceDecl *StdSpace = getStdNamespace();
1975 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1976 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
1978 if (!Found) {
1979 // The goggles, we found nothing!
1980 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1981 << "std::coroutine_traits";
1982 return nullptr;
1985 // coroutine_traits is required to be a class template.
1986 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1987 if (!StdCoroutineTraitsCache) {
1988 Result.suppressDiagnostics();
1989 NamedDecl *Found = *Result.begin();
1990 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1991 return nullptr;
1994 return StdCoroutineTraitsCache;