[OpenACC] Enable 'attach' clause for combined constructs
[llvm-project.git] / clang / lib / Sema / SemaExpr.cpp
bloba85924f78c9e27461d0b205a7983fa9ec2cc80cf
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for expressions.
11 //===----------------------------------------------------------------------===//
13 #include "CheckExprLifetime.h"
14 #include "TreeTransform.h"
15 #include "UsedDeclVisitor.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/DynamicRecursiveASTVisitor.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/Expr.h"
27 #include "clang/AST/ExprCXX.h"
28 #include "clang/AST/ExprObjC.h"
29 #include "clang/AST/MangleNumberingContext.h"
30 #include "clang/AST/OperationKinds.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/TypeLoc.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/DiagnosticSema.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/TypeTraits.h"
40 #include "clang/Lex/LiteralSupport.h"
41 #include "clang/Lex/Preprocessor.h"
42 #include "clang/Sema/AnalysisBasedWarnings.h"
43 #include "clang/Sema/DeclSpec.h"
44 #include "clang/Sema/DelayedDiagnostic.h"
45 #include "clang/Sema/Designator.h"
46 #include "clang/Sema/EnterExpressionEvaluationContext.h"
47 #include "clang/Sema/Initialization.h"
48 #include "clang/Sema/Lookup.h"
49 #include "clang/Sema/Overload.h"
50 #include "clang/Sema/ParsedTemplate.h"
51 #include "clang/Sema/Scope.h"
52 #include "clang/Sema/ScopeInfo.h"
53 #include "clang/Sema/SemaCUDA.h"
54 #include "clang/Sema/SemaFixItUtils.h"
55 #include "clang/Sema/SemaHLSL.h"
56 #include "clang/Sema/SemaInternal.h"
57 #include "clang/Sema/SemaObjC.h"
58 #include "clang/Sema/SemaOpenMP.h"
59 #include "clang/Sema/SemaPseudoObject.h"
60 #include "clang/Sema/Template.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/STLForwardCompat.h"
63 #include "llvm/ADT/StringExtras.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/SaveAndRestore.h"
66 #include "llvm/Support/TimeProfiler.h"
67 #include "llvm/Support/TypeSize.h"
68 #include <optional>
70 using namespace clang;
71 using namespace sema;
73 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
74 // See if this is an auto-typed variable whose initializer we are parsing.
75 if (ParsingInitForAutoVars.count(D))
76 return false;
78 // See if this is a deleted function.
79 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
80 if (FD->isDeleted())
81 return false;
83 // If the function has a deduced return type, and we can't deduce it,
84 // then we can't use it either.
85 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
86 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
87 return false;
89 // See if this is an aligned allocation/deallocation function that is
90 // unavailable.
91 if (TreatUnavailableAsInvalid &&
92 isUnavailableAlignedAllocationFunction(*FD))
93 return false;
96 // See if this function is unavailable.
97 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
98 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
99 return false;
101 if (isa<UnresolvedUsingIfExistsDecl>(D))
102 return false;
104 return true;
107 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
108 // Warn if this is used but marked unused.
109 if (const auto *A = D->getAttr<UnusedAttr>()) {
110 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
111 // should diagnose them.
112 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
113 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
114 const Decl *DC = cast_or_null<Decl>(S.ObjC().getCurObjCLexicalContext());
115 if (DC && !DC->hasAttr<UnusedAttr>())
116 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
121 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
122 assert(Decl && Decl->isDeleted());
124 if (Decl->isDefaulted()) {
125 // If the method was explicitly defaulted, point at that declaration.
126 if (!Decl->isImplicit())
127 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
129 // Try to diagnose why this special member function was implicitly
130 // deleted. This might fail, if that reason no longer applies.
131 DiagnoseDeletedDefaultedFunction(Decl);
132 return;
135 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
136 if (Ctor && Ctor->isInheritingConstructor())
137 return NoteDeletedInheritingConstructor(Ctor);
139 Diag(Decl->getLocation(), diag::note_availability_specified_here)
140 << Decl << 1;
143 /// Determine whether a FunctionDecl was ever declared with an
144 /// explicit storage class.
145 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
146 for (auto *I : D->redecls()) {
147 if (I->getStorageClass() != SC_None)
148 return true;
150 return false;
153 /// Check whether we're in an extern inline function and referring to a
154 /// variable or function with internal linkage (C11 6.7.4p3).
156 /// This is only a warning because we used to silently accept this code, but
157 /// in many cases it will not behave correctly. This is not enabled in C++ mode
158 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
159 /// and so while there may still be user mistakes, most of the time we can't
160 /// prove that there are errors.
161 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
162 const NamedDecl *D,
163 SourceLocation Loc) {
164 // This is disabled under C++; there are too many ways for this to fire in
165 // contexts where the warning is a false positive, or where it is technically
166 // correct but benign.
167 if (S.getLangOpts().CPlusPlus)
168 return;
170 // Check if this is an inlined function or method.
171 FunctionDecl *Current = S.getCurFunctionDecl();
172 if (!Current)
173 return;
174 if (!Current->isInlined())
175 return;
176 if (!Current->isExternallyVisible())
177 return;
179 // Check if the decl has internal linkage.
180 if (D->getFormalLinkage() != Linkage::Internal)
181 return;
183 // Downgrade from ExtWarn to Extension if
184 // (1) the supposedly external inline function is in the main file,
185 // and probably won't be included anywhere else.
186 // (2) the thing we're referencing is a pure function.
187 // (3) the thing we're referencing is another inline function.
188 // This last can give us false negatives, but it's better than warning on
189 // wrappers for simple C library functions.
190 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
191 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
192 if (!DowngradeWarning && UsedFn)
193 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
195 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
196 : diag::ext_internal_in_extern_inline)
197 << /*IsVar=*/!UsedFn << D;
199 S.MaybeSuggestAddingStaticToDecl(Current);
201 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
202 << D;
205 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
206 const FunctionDecl *First = Cur->getFirstDecl();
208 // Suggest "static" on the function, if possible.
209 if (!hasAnyExplicitStorageClass(First)) {
210 SourceLocation DeclBegin = First->getSourceRange().getBegin();
211 Diag(DeclBegin, diag::note_convert_inline_to_static)
212 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
216 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
217 const ObjCInterfaceDecl *UnknownObjCClass,
218 bool ObjCPropertyAccess,
219 bool AvoidPartialAvailabilityChecks,
220 ObjCInterfaceDecl *ClassReceiver,
221 bool SkipTrailingRequiresClause) {
222 SourceLocation Loc = Locs.front();
223 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
224 // If there were any diagnostics suppressed by template argument deduction,
225 // emit them now.
226 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
227 if (Pos != SuppressedDiagnostics.end()) {
228 for (const PartialDiagnosticAt &Suppressed : Pos->second)
229 Diag(Suppressed.first, Suppressed.second);
231 // Clear out the list of suppressed diagnostics, so that we don't emit
232 // them again for this specialization. However, we don't obsolete this
233 // entry from the table, because we want to avoid ever emitting these
234 // diagnostics again.
235 Pos->second.clear();
238 // C++ [basic.start.main]p3:
239 // The function 'main' shall not be used within a program.
240 if (cast<FunctionDecl>(D)->isMain())
241 Diag(Loc, diag::ext_main_used);
243 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
246 // See if this is an auto-typed variable whose initializer we are parsing.
247 if (ParsingInitForAutoVars.count(D)) {
248 if (isa<BindingDecl>(D)) {
249 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
250 << D->getDeclName();
251 } else {
252 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
253 << D->getDeclName() << cast<VarDecl>(D)->getType();
255 return true;
258 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
259 // See if this is a deleted function.
260 if (FD->isDeleted()) {
261 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
262 if (Ctor && Ctor->isInheritingConstructor())
263 Diag(Loc, diag::err_deleted_inherited_ctor_use)
264 << Ctor->getParent()
265 << Ctor->getInheritedConstructor().getConstructor()->getParent();
266 else {
267 StringLiteral *Msg = FD->getDeletedMessage();
268 Diag(Loc, diag::err_deleted_function_use)
269 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
271 NoteDeletedFunction(FD);
272 return true;
275 // [expr.prim.id]p4
276 // A program that refers explicitly or implicitly to a function with a
277 // trailing requires-clause whose constraint-expression is not satisfied,
278 // other than to declare it, is ill-formed. [...]
280 // See if this is a function with constraints that need to be satisfied.
281 // Check this before deducing the return type, as it might instantiate the
282 // definition.
283 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
284 ConstraintSatisfaction Satisfaction;
285 if (CheckFunctionConstraints(FD, Satisfaction, Loc,
286 /*ForOverloadResolution*/ true))
287 // A diagnostic will have already been generated (non-constant
288 // constraint expression, for example)
289 return true;
290 if (!Satisfaction.IsSatisfied) {
291 Diag(Loc,
292 diag::err_reference_to_function_with_unsatisfied_constraints)
293 << D;
294 DiagnoseUnsatisfiedConstraint(Satisfaction);
295 return true;
299 // If the function has a deduced return type, and we can't deduce it,
300 // then we can't use it either.
301 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
302 DeduceReturnType(FD, Loc))
303 return true;
305 if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, FD))
306 return true;
310 if (auto *Concept = dyn_cast<ConceptDecl>(D);
311 Concept && CheckConceptUseInDefinition(Concept, Loc))
312 return true;
314 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
315 // Lambdas are only default-constructible or assignable in C++2a onwards.
316 if (MD->getParent()->isLambda() &&
317 ((isa<CXXConstructorDecl>(MD) &&
318 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
319 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
320 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
321 << !isa<CXXConstructorDecl>(MD);
325 auto getReferencedObjCProp = [](const NamedDecl *D) ->
326 const ObjCPropertyDecl * {
327 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
328 return MD->findPropertyDecl();
329 return nullptr;
331 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
332 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
333 return true;
334 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
335 return true;
338 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
339 // Only the variables omp_in and omp_out are allowed in the combiner.
340 // Only the variables omp_priv and omp_orig are allowed in the
341 // initializer-clause.
342 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
343 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
344 isa<VarDecl>(D)) {
345 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
346 << getCurFunction()->HasOMPDeclareReductionCombiner;
347 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
348 return true;
351 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
352 // List-items in map clauses on this construct may only refer to the declared
353 // variable var and entities that could be referenced by a procedure defined
354 // at the same location.
355 // [OpenMP 5.2] Also allow iterator declared variables.
356 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
357 !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
358 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
359 << OpenMP().getOpenMPDeclareMapperVarName();
360 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
361 return true;
364 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
365 Diag(Loc, diag::err_use_of_empty_using_if_exists);
366 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
367 return true;
370 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
371 AvoidPartialAvailabilityChecks, ClassReceiver);
373 DiagnoseUnusedOfDecl(*this, D, Loc);
375 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
378 if (getLangOpts().getFPEvalMethod() !=
379 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
380 PP.getLastFPEvalPragmaLocation().isValid() &&
381 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
382 Diag(D->getLocation(),
383 diag::err_type_available_only_in_default_eval_method)
384 << D->getName();
387 if (auto *VD = dyn_cast<ValueDecl>(D))
388 checkTypeSupport(VD->getType(), Loc, VD);
390 if (LangOpts.SYCLIsDevice ||
391 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
392 if (!Context.getTargetInfo().isTLSSupported())
393 if (const auto *VD = dyn_cast<VarDecl>(D))
394 if (VD->getTLSKind() != VarDecl::TLS_None)
395 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
398 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
399 !isUnevaluatedContext()) {
400 // C++ [expr.prim.req.nested] p3
401 // A local parameter shall only appear as an unevaluated operand
402 // (Clause 8) within the constraint-expression.
403 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
404 << D;
405 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
406 return true;
409 return false;
412 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
413 ArrayRef<Expr *> Args) {
414 const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
415 if (!Attr)
416 return;
418 // The number of formal parameters of the declaration.
419 unsigned NumFormalParams;
421 // The kind of declaration. This is also an index into a %select in
422 // the diagnostic.
423 enum { CK_Function, CK_Method, CK_Block } CalleeKind;
425 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
426 NumFormalParams = MD->param_size();
427 CalleeKind = CK_Method;
428 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
429 NumFormalParams = FD->param_size();
430 CalleeKind = CK_Function;
431 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
432 QualType Ty = VD->getType();
433 const FunctionType *Fn = nullptr;
434 if (const auto *PtrTy = Ty->getAs<PointerType>()) {
435 Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
436 if (!Fn)
437 return;
438 CalleeKind = CK_Function;
439 } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
440 Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
441 CalleeKind = CK_Block;
442 } else {
443 return;
446 if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
447 NumFormalParams = proto->getNumParams();
448 else
449 NumFormalParams = 0;
450 } else {
451 return;
454 // "NullPos" is the number of formal parameters at the end which
455 // effectively count as part of the variadic arguments. This is
456 // useful if you would prefer to not have *any* formal parameters,
457 // but the language forces you to have at least one.
458 unsigned NullPos = Attr->getNullPos();
459 assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
460 NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
462 // The number of arguments which should follow the sentinel.
463 unsigned NumArgsAfterSentinel = Attr->getSentinel();
465 // If there aren't enough arguments for all the formal parameters,
466 // the sentinel, and the args after the sentinel, complain.
467 if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
468 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
469 Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
470 return;
473 // Otherwise, find the sentinel expression.
474 const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
475 if (!SentinelExpr)
476 return;
477 if (SentinelExpr->isValueDependent())
478 return;
479 if (Context.isSentinelNullExpr(SentinelExpr))
480 return;
482 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
483 // or 'NULL' if those are actually defined in the context. Only use
484 // 'nil' for ObjC methods, where it's much more likely that the
485 // variadic arguments form a list of object pointers.
486 SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
487 std::string NullValue;
488 if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
489 NullValue = "nil";
490 else if (getLangOpts().CPlusPlus11)
491 NullValue = "nullptr";
492 else if (PP.isMacroDefined("NULL"))
493 NullValue = "NULL";
494 else
495 NullValue = "(void*) 0";
497 if (MissingNilLoc.isInvalid())
498 Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
499 else
500 Diag(MissingNilLoc, diag::warn_missing_sentinel)
501 << int(CalleeKind)
502 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
503 Diag(D->getLocation(), diag::note_sentinel_here)
504 << int(CalleeKind) << Attr->getRange();
507 SourceRange Sema::getExprRange(Expr *E) const {
508 return E ? E->getSourceRange() : SourceRange();
511 //===----------------------------------------------------------------------===//
512 // Standard Promotions and Conversions
513 //===----------------------------------------------------------------------===//
515 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
516 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
517 // Handle any placeholder expressions which made it here.
518 if (E->hasPlaceholderType()) {
519 ExprResult result = CheckPlaceholderExpr(E);
520 if (result.isInvalid()) return ExprError();
521 E = result.get();
524 QualType Ty = E->getType();
525 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
527 if (Ty->isFunctionType()) {
528 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
529 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
530 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
531 return ExprError();
533 E = ImpCastExprToType(E, Context.getPointerType(Ty),
534 CK_FunctionToPointerDecay).get();
535 } else if (Ty->isArrayType()) {
536 // In C90 mode, arrays only promote to pointers if the array expression is
537 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
538 // type 'array of type' is converted to an expression that has type 'pointer
539 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
540 // that has type 'array of type' ...". The relevant change is "an lvalue"
541 // (C90) to "an expression" (C99).
543 // C++ 4.2p1:
544 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
545 // T" can be converted to an rvalue of type "pointer to T".
547 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
548 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
549 CK_ArrayToPointerDecay);
550 if (Res.isInvalid())
551 return ExprError();
552 E = Res.get();
555 return E;
558 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
559 // Check to see if we are dereferencing a null pointer. If so,
560 // and if not volatile-qualified, this is undefined behavior that the
561 // optimizer will delete, so warn about it. People sometimes try to use this
562 // to get a deterministic trap and are surprised by clang's behavior. This
563 // only handles the pattern "*null", which is a very syntactic check.
564 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
565 if (UO && UO->getOpcode() == UO_Deref &&
566 UO->getSubExpr()->getType()->isPointerType()) {
567 const LangAS AS =
568 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
569 if ((!isTargetAddressSpace(AS) ||
570 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
571 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
572 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
573 !UO->getType().isVolatileQualified()) {
574 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
575 S.PDiag(diag::warn_indirection_through_null)
576 << UO->getSubExpr()->getSourceRange());
577 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
578 S.PDiag(diag::note_indirection_through_null));
583 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
584 SourceLocation AssignLoc,
585 const Expr* RHS) {
586 const ObjCIvarDecl *IV = OIRE->getDecl();
587 if (!IV)
588 return;
590 DeclarationName MemberName = IV->getDeclName();
591 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
592 if (!Member || !Member->isStr("isa"))
593 return;
595 const Expr *Base = OIRE->getBase();
596 QualType BaseType = Base->getType();
597 if (OIRE->isArrow())
598 BaseType = BaseType->getPointeeType();
599 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
600 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
601 ObjCInterfaceDecl *ClassDeclared = nullptr;
602 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
603 if (!ClassDeclared->getSuperClass()
604 && (*ClassDeclared->ivar_begin()) == IV) {
605 if (RHS) {
606 NamedDecl *ObjectSetClass =
607 S.LookupSingleName(S.TUScope,
608 &S.Context.Idents.get("object_setClass"),
609 SourceLocation(), S.LookupOrdinaryName);
610 if (ObjectSetClass) {
611 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
612 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
613 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
614 "object_setClass(")
615 << FixItHint::CreateReplacement(
616 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
617 << FixItHint::CreateInsertion(RHSLocEnd, ")");
619 else
620 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
621 } else {
622 NamedDecl *ObjectGetClass =
623 S.LookupSingleName(S.TUScope,
624 &S.Context.Idents.get("object_getClass"),
625 SourceLocation(), S.LookupOrdinaryName);
626 if (ObjectGetClass)
627 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
628 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
629 "object_getClass(")
630 << FixItHint::CreateReplacement(
631 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
632 else
633 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
635 S.Diag(IV->getLocation(), diag::note_ivar_decl);
640 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
641 // Handle any placeholder expressions which made it here.
642 if (E->hasPlaceholderType()) {
643 ExprResult result = CheckPlaceholderExpr(E);
644 if (result.isInvalid()) return ExprError();
645 E = result.get();
648 // C++ [conv.lval]p1:
649 // A glvalue of a non-function, non-array type T can be
650 // converted to a prvalue.
651 if (!E->isGLValue()) return E;
653 QualType T = E->getType();
654 assert(!T.isNull() && "r-value conversion on typeless expression?");
656 // lvalue-to-rvalue conversion cannot be applied to types that decay to
657 // pointers (i.e. function or array types).
658 if (T->canDecayToPointerType())
659 return E;
661 // We don't want to throw lvalue-to-rvalue casts on top of
662 // expressions of certain types in C++.
663 if (getLangOpts().CPlusPlus) {
664 if (T == Context.OverloadTy || T->isRecordType() ||
665 (T->isDependentType() && !T->isAnyPointerType() &&
666 !T->isMemberPointerType()))
667 return E;
670 // The C standard is actually really unclear on this point, and
671 // DR106 tells us what the result should be but not why. It's
672 // generally best to say that void types just doesn't undergo
673 // lvalue-to-rvalue at all. Note that expressions of unqualified
674 // 'void' type are never l-values, but qualified void can be.
675 if (T->isVoidType())
676 return E;
678 // OpenCL usually rejects direct accesses to values of 'half' type.
679 if (getLangOpts().OpenCL &&
680 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
681 T->isHalfType()) {
682 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
683 << 0 << T;
684 return ExprError();
687 CheckForNullPointerDereference(*this, E);
688 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
689 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
690 &Context.Idents.get("object_getClass"),
691 SourceLocation(), LookupOrdinaryName);
692 if (ObjectGetClass)
693 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
694 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
695 << FixItHint::CreateReplacement(
696 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
697 else
698 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
700 else if (const ObjCIvarRefExpr *OIRE =
701 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
702 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
704 // C++ [conv.lval]p1:
705 // [...] If T is a non-class type, the type of the prvalue is the
706 // cv-unqualified version of T. Otherwise, the type of the
707 // rvalue is T.
709 // C99 6.3.2.1p2:
710 // If the lvalue has qualified type, the value has the unqualified
711 // version of the type of the lvalue; otherwise, the value has the
712 // type of the lvalue.
713 if (T.hasQualifiers())
714 T = T.getUnqualifiedType();
716 // Under the MS ABI, lock down the inheritance model now.
717 if (T->isMemberPointerType() &&
718 Context.getTargetInfo().getCXXABI().isMicrosoft())
719 (void)isCompleteType(E->getExprLoc(), T);
721 ExprResult Res = CheckLValueToRValueConversionOperand(E);
722 if (Res.isInvalid())
723 return Res;
724 E = Res.get();
726 // Loading a __weak object implicitly retains the value, so we need a cleanup to
727 // balance that.
728 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
729 Cleanup.setExprNeedsCleanups(true);
731 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
732 Cleanup.setExprNeedsCleanups(true);
734 // C++ [conv.lval]p3:
735 // If T is cv std::nullptr_t, the result is a null pointer constant.
736 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
737 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
738 CurFPFeatureOverrides());
740 // C11 6.3.2.1p2:
741 // ... if the lvalue has atomic type, the value has the non-atomic version
742 // of the type of the lvalue ...
743 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
744 T = Atomic->getValueType().getUnqualifiedType();
745 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
746 nullptr, VK_PRValue, FPOptionsOverride());
749 return Res;
752 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
753 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
754 if (Res.isInvalid())
755 return ExprError();
756 Res = DefaultLvalueConversion(Res.get());
757 if (Res.isInvalid())
758 return ExprError();
759 return Res;
762 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
763 QualType Ty = E->getType();
764 ExprResult Res = E;
765 // Only do implicit cast for a function type, but not for a pointer
766 // to function type.
767 if (Ty->isFunctionType()) {
768 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
769 CK_FunctionToPointerDecay);
770 if (Res.isInvalid())
771 return ExprError();
773 Res = DefaultLvalueConversion(Res.get());
774 if (Res.isInvalid())
775 return ExprError();
776 return Res.get();
779 /// UsualUnaryConversions - Performs various conversions that are common to most
780 /// operators (C99 6.3). The conversions of array and function types are
781 /// sometimes suppressed. For example, the array->pointer conversion doesn't
782 /// apply if the array is an argument to the sizeof or address (&) operators.
783 /// In these instances, this routine should *not* be called.
784 ExprResult Sema::UsualUnaryConversions(Expr *E) {
785 // First, convert to an r-value.
786 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
787 if (Res.isInvalid())
788 return ExprError();
789 E = Res.get();
791 QualType Ty = E->getType();
792 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
794 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
795 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
796 (getLangOpts().getFPEvalMethod() !=
797 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
798 PP.getLastFPEvalPragmaLocation().isValid())) {
799 switch (EvalMethod) {
800 default:
801 llvm_unreachable("Unrecognized float evaluation method");
802 break;
803 case LangOptions::FEM_UnsetOnCommandLine:
804 llvm_unreachable("Float evaluation method should be set by now");
805 break;
806 case LangOptions::FEM_Double:
807 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
808 // Widen the expression to double.
809 return Ty->isComplexType()
810 ? ImpCastExprToType(E,
811 Context.getComplexType(Context.DoubleTy),
812 CK_FloatingComplexCast)
813 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
814 break;
815 case LangOptions::FEM_Extended:
816 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
817 // Widen the expression to long double.
818 return Ty->isComplexType()
819 ? ImpCastExprToType(
820 E, Context.getComplexType(Context.LongDoubleTy),
821 CK_FloatingComplexCast)
822 : ImpCastExprToType(E, Context.LongDoubleTy,
823 CK_FloatingCast);
824 break;
828 // Half FP have to be promoted to float unless it is natively supported
829 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
830 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
832 // Try to perform integral promotions if the object has a theoretically
833 // promotable type.
834 if (Ty->isIntegralOrUnscopedEnumerationType()) {
835 // C99 6.3.1.1p2:
837 // The following may be used in an expression wherever an int or
838 // unsigned int may be used:
839 // - an object or expression with an integer type whose integer
840 // conversion rank is less than or equal to the rank of int
841 // and unsigned int.
842 // - A bit-field of type _Bool, int, signed int, or unsigned int.
844 // If an int can represent all values of the original type, the
845 // value is converted to an int; otherwise, it is converted to an
846 // unsigned int. These are called the integer promotions. All
847 // other types are unchanged by the integer promotions.
849 QualType PTy = Context.isPromotableBitField(E);
850 if (!PTy.isNull()) {
851 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
852 return E;
854 if (Context.isPromotableIntegerType(Ty)) {
855 QualType PT = Context.getPromotedIntegerType(Ty);
856 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
857 return E;
860 return E;
863 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
864 /// do not have a prototype. Arguments that have type float or __fp16
865 /// are promoted to double. All other argument types are converted by
866 /// UsualUnaryConversions().
867 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
868 QualType Ty = E->getType();
869 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
871 ExprResult Res = UsualUnaryConversions(E);
872 if (Res.isInvalid())
873 return ExprError();
874 E = Res.get();
876 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
877 // promote to double.
878 // Note that default argument promotion applies only to float (and
879 // half/fp16); it does not apply to _Float16.
880 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
881 if (BTy && (BTy->getKind() == BuiltinType::Half ||
882 BTy->getKind() == BuiltinType::Float)) {
883 if (getLangOpts().OpenCL &&
884 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
885 if (BTy->getKind() == BuiltinType::Half) {
886 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
888 } else {
889 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
892 if (BTy &&
893 getLangOpts().getExtendIntArgs() ==
894 LangOptions::ExtendArgsKind::ExtendTo64 &&
895 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
896 Context.getTypeSizeInChars(BTy) <
897 Context.getTypeSizeInChars(Context.LongLongTy)) {
898 E = (Ty->isUnsignedIntegerType())
899 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
900 .get()
901 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
902 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
903 "Unexpected typesize for LongLongTy");
906 // C++ performs lvalue-to-rvalue conversion as a default argument
907 // promotion, even on class types, but note:
908 // C++11 [conv.lval]p2:
909 // When an lvalue-to-rvalue conversion occurs in an unevaluated
910 // operand or a subexpression thereof the value contained in the
911 // referenced object is not accessed. Otherwise, if the glvalue
912 // has a class type, the conversion copy-initializes a temporary
913 // of type T from the glvalue and the result of the conversion
914 // is a prvalue for the temporary.
915 // FIXME: add some way to gate this entire thing for correctness in
916 // potentially potentially evaluated contexts.
917 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
918 ExprResult Temp = PerformCopyInitialization(
919 InitializedEntity::InitializeTemporary(E->getType()),
920 E->getExprLoc(), E);
921 if (Temp.isInvalid())
922 return ExprError();
923 E = Temp.get();
926 // C++ [expr.call]p7, per CWG722:
927 // An argument that has (possibly cv-qualified) type std::nullptr_t is
928 // converted to void* ([conv.ptr]).
929 // (This does not apply to C23 nullptr)
930 if (getLangOpts().CPlusPlus && E->getType()->isNullPtrType())
931 E = ImpCastExprToType(E, Context.VoidPtrTy, CK_NullToPointer).get();
933 return E;
936 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
937 if (Ty->isIncompleteType()) {
938 // C++11 [expr.call]p7:
939 // After these conversions, if the argument does not have arithmetic,
940 // enumeration, pointer, pointer to member, or class type, the program
941 // is ill-formed.
943 // Since we've already performed null pointer conversion, array-to-pointer
944 // decay and function-to-pointer decay, the only such type in C++ is cv
945 // void. This also handles initializer lists as variadic arguments.
946 if (Ty->isVoidType())
947 return VAK_Invalid;
949 if (Ty->isObjCObjectType())
950 return VAK_Invalid;
951 return VAK_Valid;
954 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
955 return VAK_Invalid;
957 if (Context.getTargetInfo().getTriple().isWasm() &&
958 Ty.isWebAssemblyReferenceType()) {
959 return VAK_Invalid;
962 if (Ty.isCXX98PODType(Context))
963 return VAK_Valid;
965 // C++11 [expr.call]p7:
966 // Passing a potentially-evaluated argument of class type (Clause 9)
967 // having a non-trivial copy constructor, a non-trivial move constructor,
968 // or a non-trivial destructor, with no corresponding parameter,
969 // is conditionally-supported with implementation-defined semantics.
970 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
971 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
972 if (!Record->hasNonTrivialCopyConstructor() &&
973 !Record->hasNonTrivialMoveConstructor() &&
974 !Record->hasNonTrivialDestructor())
975 return VAK_ValidInCXX11;
977 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
978 return VAK_Valid;
980 if (Ty->isObjCObjectType())
981 return VAK_Invalid;
983 if (getLangOpts().MSVCCompat)
984 return VAK_MSVCUndefined;
986 if (getLangOpts().HLSL && Ty->getAs<HLSLAttributedResourceType>())
987 return VAK_Valid;
989 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
990 // permitted to reject them. We should consider doing so.
991 return VAK_Undefined;
994 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
995 // Don't allow one to pass an Objective-C interface to a vararg.
996 const QualType &Ty = E->getType();
997 VarArgKind VAK = isValidVarArgType(Ty);
999 // Complain about passing non-POD types through varargs.
1000 switch (VAK) {
1001 case VAK_ValidInCXX11:
1002 DiagRuntimeBehavior(
1003 E->getBeginLoc(), nullptr,
1004 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
1005 [[fallthrough]];
1006 case VAK_Valid:
1007 if (Ty->isRecordType()) {
1008 // This is unlikely to be what the user intended. If the class has a
1009 // 'c_str' member function, the user probably meant to call that.
1010 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1011 PDiag(diag::warn_pass_class_arg_to_vararg)
1012 << Ty << CT << hasCStrMethod(E) << ".c_str()");
1014 break;
1016 case VAK_Undefined:
1017 case VAK_MSVCUndefined:
1018 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1019 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1020 << getLangOpts().CPlusPlus11 << Ty << CT);
1021 break;
1023 case VAK_Invalid:
1024 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1025 Diag(E->getBeginLoc(),
1026 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1027 << Ty << CT;
1028 else if (Ty->isObjCObjectType())
1029 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1030 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1031 << Ty << CT);
1032 else
1033 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1034 << isa<InitListExpr>(E) << Ty << CT;
1035 break;
1039 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1040 FunctionDecl *FDecl) {
1041 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1042 // Strip the unbridged-cast placeholder expression off, if applicable.
1043 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1044 (CT == VariadicMethod ||
1045 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1046 E = ObjC().stripARCUnbridgedCast(E);
1048 // Otherwise, do normal placeholder checking.
1049 } else {
1050 ExprResult ExprRes = CheckPlaceholderExpr(E);
1051 if (ExprRes.isInvalid())
1052 return ExprError();
1053 E = ExprRes.get();
1057 ExprResult ExprRes = DefaultArgumentPromotion(E);
1058 if (ExprRes.isInvalid())
1059 return ExprError();
1061 // Copy blocks to the heap.
1062 if (ExprRes.get()->getType()->isBlockPointerType())
1063 maybeExtendBlockObject(ExprRes);
1065 E = ExprRes.get();
1067 // Diagnostics regarding non-POD argument types are
1068 // emitted along with format string checking in Sema::CheckFunctionCall().
1069 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1070 // Turn this into a trap.
1071 CXXScopeSpec SS;
1072 SourceLocation TemplateKWLoc;
1073 UnqualifiedId Name;
1074 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1075 E->getBeginLoc());
1076 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1077 /*HasTrailingLParen=*/true,
1078 /*IsAddressOfOperand=*/false);
1079 if (TrapFn.isInvalid())
1080 return ExprError();
1082 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), {},
1083 E->getEndLoc());
1084 if (Call.isInvalid())
1085 return ExprError();
1087 ExprResult Comma =
1088 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1089 if (Comma.isInvalid())
1090 return ExprError();
1091 return Comma.get();
1094 if (!getLangOpts().CPlusPlus &&
1095 RequireCompleteType(E->getExprLoc(), E->getType(),
1096 diag::err_call_incomplete_argument))
1097 return ExprError();
1099 return E;
1102 /// Convert complex integers to complex floats and real integers to
1103 /// real floats as required for complex arithmetic. Helper function of
1104 /// UsualArithmeticConversions()
1106 /// \return false if the integer expression is an integer type and is
1107 /// successfully converted to the (complex) float type.
1108 static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1109 ExprResult &ComplexExpr,
1110 QualType IntTy,
1111 QualType ComplexTy,
1112 bool SkipCast) {
1113 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1114 if (SkipCast) return false;
1115 if (IntTy->isIntegerType()) {
1116 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1117 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1118 } else {
1119 assert(IntTy->isComplexIntegerType());
1120 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1121 CK_IntegralComplexToFloatingComplex);
1123 return false;
1126 // This handles complex/complex, complex/float, or float/complex.
1127 // When both operands are complex, the shorter operand is converted to the
1128 // type of the longer, and that is the type of the result. This corresponds
1129 // to what is done when combining two real floating-point operands.
1130 // The fun begins when size promotion occur across type domains.
1131 // From H&S 6.3.4: When one operand is complex and the other is a real
1132 // floating-point type, the less precise type is converted, within it's
1133 // real or complex domain, to the precision of the other type. For example,
1134 // when combining a "long double" with a "double _Complex", the
1135 // "double _Complex" is promoted to "long double _Complex".
1136 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1137 QualType ShorterType,
1138 QualType LongerType,
1139 bool PromotePrecision) {
1140 bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1141 QualType Result =
1142 LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1144 if (PromotePrecision) {
1145 if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1146 Shorter =
1147 S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1148 } else {
1149 if (LongerIsComplex)
1150 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1151 Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1154 return Result;
1157 /// Handle arithmetic conversion with complex types. Helper function of
1158 /// UsualArithmeticConversions()
1159 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1160 ExprResult &RHS, QualType LHSType,
1161 QualType RHSType, bool IsCompAssign) {
1162 // Handle (complex) integer types.
1163 if (!handleComplexIntegerToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1164 /*SkipCast=*/false))
1165 return LHSType;
1166 if (!handleComplexIntegerToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1167 /*SkipCast=*/IsCompAssign))
1168 return RHSType;
1170 // Compute the rank of the two types, regardless of whether they are complex.
1171 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1172 if (Order < 0)
1173 // Promote the precision of the LHS if not an assignment.
1174 return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1175 /*PromotePrecision=*/!IsCompAssign);
1176 // Promote the precision of the RHS unless it is already the same as the LHS.
1177 return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1178 /*PromotePrecision=*/Order > 0);
1181 /// Handle arithmetic conversion from integer to float. Helper function
1182 /// of UsualArithmeticConversions()
1183 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1184 ExprResult &IntExpr,
1185 QualType FloatTy, QualType IntTy,
1186 bool ConvertFloat, bool ConvertInt) {
1187 if (IntTy->isIntegerType()) {
1188 if (ConvertInt)
1189 // Convert intExpr to the lhs floating point type.
1190 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1191 CK_IntegralToFloating);
1192 return FloatTy;
1195 // Convert both sides to the appropriate complex float.
1196 assert(IntTy->isComplexIntegerType());
1197 QualType result = S.Context.getComplexType(FloatTy);
1199 // _Complex int -> _Complex float
1200 if (ConvertInt)
1201 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1202 CK_IntegralComplexToFloatingComplex);
1204 // float -> _Complex float
1205 if (ConvertFloat)
1206 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1207 CK_FloatingRealToComplex);
1209 return result;
1212 /// Handle arithmethic conversion with floating point types. Helper
1213 /// function of UsualArithmeticConversions()
1214 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1215 ExprResult &RHS, QualType LHSType,
1216 QualType RHSType, bool IsCompAssign) {
1217 bool LHSFloat = LHSType->isRealFloatingType();
1218 bool RHSFloat = RHSType->isRealFloatingType();
1220 // N1169 4.1.4: If one of the operands has a floating type and the other
1221 // operand has a fixed-point type, the fixed-point operand
1222 // is converted to the floating type [...]
1223 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1224 if (LHSFloat)
1225 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1226 else if (!IsCompAssign)
1227 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1228 return LHSFloat ? LHSType : RHSType;
1231 // If we have two real floating types, convert the smaller operand
1232 // to the bigger result.
1233 if (LHSFloat && RHSFloat) {
1234 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1235 if (order > 0) {
1236 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1237 return LHSType;
1240 assert(order < 0 && "illegal float comparison");
1241 if (!IsCompAssign)
1242 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1243 return RHSType;
1246 if (LHSFloat) {
1247 // Half FP has to be promoted to float unless it is natively supported
1248 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1249 LHSType = S.Context.FloatTy;
1251 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1252 /*ConvertFloat=*/!IsCompAssign,
1253 /*ConvertInt=*/ true);
1255 assert(RHSFloat);
1256 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1257 /*ConvertFloat=*/ true,
1258 /*ConvertInt=*/!IsCompAssign);
1261 /// Diagnose attempts to convert between __float128, __ibm128 and
1262 /// long double if there is no support for such conversion.
1263 /// Helper function of UsualArithmeticConversions().
1264 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1265 QualType RHSType) {
1266 // No issue if either is not a floating point type.
1267 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1268 return false;
1270 // No issue if both have the same 128-bit float semantics.
1271 auto *LHSComplex = LHSType->getAs<ComplexType>();
1272 auto *RHSComplex = RHSType->getAs<ComplexType>();
1274 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1275 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1277 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1278 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1280 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1281 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1282 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1283 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1284 return false;
1286 return true;
1289 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1291 namespace {
1292 /// These helper callbacks are placed in an anonymous namespace to
1293 /// permit their use as function template parameters.
1294 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1295 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1298 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1299 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1300 CK_IntegralComplexCast);
1304 /// Handle integer arithmetic conversions. Helper function of
1305 /// UsualArithmeticConversions()
1306 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1307 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1308 ExprResult &RHS, QualType LHSType,
1309 QualType RHSType, bool IsCompAssign) {
1310 // The rules for this case are in C99 6.3.1.8
1311 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1312 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1313 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1314 if (LHSSigned == RHSSigned) {
1315 // Same signedness; use the higher-ranked type
1316 if (order >= 0) {
1317 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1318 return LHSType;
1319 } else if (!IsCompAssign)
1320 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1321 return RHSType;
1322 } else if (order != (LHSSigned ? 1 : -1)) {
1323 // The unsigned type has greater than or equal rank to the
1324 // signed type, so use the unsigned type
1325 if (RHSSigned) {
1326 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1327 return LHSType;
1328 } else if (!IsCompAssign)
1329 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1330 return RHSType;
1331 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1332 // The two types are different widths; if we are here, that
1333 // means the signed type is larger than the unsigned type, so
1334 // use the signed type.
1335 if (LHSSigned) {
1336 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1337 return LHSType;
1338 } else if (!IsCompAssign)
1339 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1340 return RHSType;
1341 } else {
1342 // The signed type is higher-ranked than the unsigned type,
1343 // but isn't actually any bigger (like unsigned int and long
1344 // on most 32-bit systems). Use the unsigned type corresponding
1345 // to the signed type.
1346 QualType result =
1347 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1348 RHS = (*doRHSCast)(S, RHS.get(), result);
1349 if (!IsCompAssign)
1350 LHS = (*doLHSCast)(S, LHS.get(), result);
1351 return result;
1355 /// Handle conversions with GCC complex int extension. Helper function
1356 /// of UsualArithmeticConversions()
1357 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1358 ExprResult &RHS, QualType LHSType,
1359 QualType RHSType,
1360 bool IsCompAssign) {
1361 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1362 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1364 if (LHSComplexInt && RHSComplexInt) {
1365 QualType LHSEltType = LHSComplexInt->getElementType();
1366 QualType RHSEltType = RHSComplexInt->getElementType();
1367 QualType ScalarType =
1368 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1369 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1371 return S.Context.getComplexType(ScalarType);
1374 if (LHSComplexInt) {
1375 QualType LHSEltType = LHSComplexInt->getElementType();
1376 QualType ScalarType =
1377 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1378 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1379 QualType ComplexType = S.Context.getComplexType(ScalarType);
1380 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1381 CK_IntegralRealToComplex);
1383 return ComplexType;
1386 assert(RHSComplexInt);
1388 QualType RHSEltType = RHSComplexInt->getElementType();
1389 QualType ScalarType =
1390 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1391 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1392 QualType ComplexType = S.Context.getComplexType(ScalarType);
1394 if (!IsCompAssign)
1395 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1396 CK_IntegralRealToComplex);
1397 return ComplexType;
1400 /// Return the rank of a given fixed point or integer type. The value itself
1401 /// doesn't matter, but the values must be increasing with proper increasing
1402 /// rank as described in N1169 4.1.1.
1403 static unsigned GetFixedPointRank(QualType Ty) {
1404 const auto *BTy = Ty->getAs<BuiltinType>();
1405 assert(BTy && "Expected a builtin type.");
1407 switch (BTy->getKind()) {
1408 case BuiltinType::ShortFract:
1409 case BuiltinType::UShortFract:
1410 case BuiltinType::SatShortFract:
1411 case BuiltinType::SatUShortFract:
1412 return 1;
1413 case BuiltinType::Fract:
1414 case BuiltinType::UFract:
1415 case BuiltinType::SatFract:
1416 case BuiltinType::SatUFract:
1417 return 2;
1418 case BuiltinType::LongFract:
1419 case BuiltinType::ULongFract:
1420 case BuiltinType::SatLongFract:
1421 case BuiltinType::SatULongFract:
1422 return 3;
1423 case BuiltinType::ShortAccum:
1424 case BuiltinType::UShortAccum:
1425 case BuiltinType::SatShortAccum:
1426 case BuiltinType::SatUShortAccum:
1427 return 4;
1428 case BuiltinType::Accum:
1429 case BuiltinType::UAccum:
1430 case BuiltinType::SatAccum:
1431 case BuiltinType::SatUAccum:
1432 return 5;
1433 case BuiltinType::LongAccum:
1434 case BuiltinType::ULongAccum:
1435 case BuiltinType::SatLongAccum:
1436 case BuiltinType::SatULongAccum:
1437 return 6;
1438 default:
1439 if (BTy->isInteger())
1440 return 0;
1441 llvm_unreachable("Unexpected fixed point or integer type");
1445 /// handleFixedPointConversion - Fixed point operations between fixed
1446 /// point types and integers or other fixed point types do not fall under
1447 /// usual arithmetic conversion since these conversions could result in loss
1448 /// of precsision (N1169 4.1.4). These operations should be calculated with
1449 /// the full precision of their result type (N1169 4.1.6.2.1).
1450 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1451 QualType RHSTy) {
1452 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1453 "Expected at least one of the operands to be a fixed point type");
1454 assert((LHSTy->isFixedPointOrIntegerType() ||
1455 RHSTy->isFixedPointOrIntegerType()) &&
1456 "Special fixed point arithmetic operation conversions are only "
1457 "applied to ints or other fixed point types");
1459 // If one operand has signed fixed-point type and the other operand has
1460 // unsigned fixed-point type, then the unsigned fixed-point operand is
1461 // converted to its corresponding signed fixed-point type and the resulting
1462 // type is the type of the converted operand.
1463 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1464 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1465 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1466 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1468 // The result type is the type with the highest rank, whereby a fixed-point
1469 // conversion rank is always greater than an integer conversion rank; if the
1470 // type of either of the operands is a saturating fixedpoint type, the result
1471 // type shall be the saturating fixed-point type corresponding to the type
1472 // with the highest rank; the resulting value is converted (taking into
1473 // account rounding and overflow) to the precision of the resulting type.
1474 // Same ranks between signed and unsigned types are resolved earlier, so both
1475 // types are either signed or both unsigned at this point.
1476 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1477 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1479 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1481 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1482 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1484 return ResultTy;
1487 /// Check that the usual arithmetic conversions can be performed on this pair of
1488 /// expressions that might be of enumeration type.
1489 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1490 SourceLocation Loc,
1491 Sema::ArithConvKind ACK) {
1492 // C++2a [expr.arith.conv]p1:
1493 // If one operand is of enumeration type and the other operand is of a
1494 // different enumeration type or a floating-point type, this behavior is
1495 // deprecated ([depr.arith.conv.enum]).
1497 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1498 // Eventually we will presumably reject these cases (in C++23 onwards?).
1499 QualType L = LHS->getEnumCoercedType(S.Context),
1500 R = RHS->getEnumCoercedType(S.Context);
1501 bool LEnum = L->isUnscopedEnumerationType(),
1502 REnum = R->isUnscopedEnumerationType();
1503 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1504 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1505 (REnum && L->isFloatingType())) {
1506 S.Diag(Loc, S.getLangOpts().CPlusPlus26
1507 ? diag::err_arith_conv_enum_float_cxx26
1508 : S.getLangOpts().CPlusPlus20
1509 ? diag::warn_arith_conv_enum_float_cxx20
1510 : diag::warn_arith_conv_enum_float)
1511 << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1512 << L << R;
1513 } else if (!IsCompAssign && LEnum && REnum &&
1514 !S.Context.hasSameUnqualifiedType(L, R)) {
1515 unsigned DiagID;
1516 // In C++ 26, usual arithmetic conversions between 2 different enum types
1517 // are ill-formed.
1518 if (S.getLangOpts().CPlusPlus26)
1519 DiagID = diag::err_conv_mixed_enum_types_cxx26;
1520 else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1521 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1522 // If either enumeration type is unnamed, it's less likely that the
1523 // user cares about this, but this situation is still deprecated in
1524 // C++2a. Use a different warning group.
1525 DiagID = S.getLangOpts().CPlusPlus20
1526 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1527 : diag::warn_arith_conv_mixed_anon_enum_types;
1528 } else if (ACK == Sema::ACK_Conditional) {
1529 // Conditional expressions are separated out because they have
1530 // historically had a different warning flag.
1531 DiagID = S.getLangOpts().CPlusPlus20
1532 ? diag::warn_conditional_mixed_enum_types_cxx20
1533 : diag::warn_conditional_mixed_enum_types;
1534 } else if (ACK == Sema::ACK_Comparison) {
1535 // Comparison expressions are separated out because they have
1536 // historically had a different warning flag.
1537 DiagID = S.getLangOpts().CPlusPlus20
1538 ? diag::warn_comparison_mixed_enum_types_cxx20
1539 : diag::warn_comparison_mixed_enum_types;
1540 } else {
1541 DiagID = S.getLangOpts().CPlusPlus20
1542 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1543 : diag::warn_arith_conv_mixed_enum_types;
1545 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1546 << (int)ACK << L << R;
1550 /// UsualArithmeticConversions - Performs various conversions that are common to
1551 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1552 /// routine returns the first non-arithmetic type found. The client is
1553 /// responsible for emitting appropriate error diagnostics.
1554 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1555 SourceLocation Loc,
1556 ArithConvKind ACK) {
1557 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1559 if (ACK != ACK_CompAssign) {
1560 LHS = UsualUnaryConversions(LHS.get());
1561 if (LHS.isInvalid())
1562 return QualType();
1565 RHS = UsualUnaryConversions(RHS.get());
1566 if (RHS.isInvalid())
1567 return QualType();
1569 // For conversion purposes, we ignore any qualifiers.
1570 // For example, "const float" and "float" are equivalent.
1571 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1572 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1574 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1575 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1576 LHSType = AtomicLHS->getValueType();
1578 // If both types are identical, no conversion is needed.
1579 if (Context.hasSameType(LHSType, RHSType))
1580 return Context.getCommonSugaredType(LHSType, RHSType);
1582 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1583 // The caller can deal with this (e.g. pointer + int).
1584 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1585 return QualType();
1587 // Apply unary and bitfield promotions to the LHS's type.
1588 QualType LHSUnpromotedType = LHSType;
1589 if (Context.isPromotableIntegerType(LHSType))
1590 LHSType = Context.getPromotedIntegerType(LHSType);
1591 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1592 if (!LHSBitfieldPromoteTy.isNull())
1593 LHSType = LHSBitfieldPromoteTy;
1594 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1595 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1597 // If both types are identical, no conversion is needed.
1598 if (Context.hasSameType(LHSType, RHSType))
1599 return Context.getCommonSugaredType(LHSType, RHSType);
1601 // At this point, we have two different arithmetic types.
1603 // Diagnose attempts to convert between __ibm128, __float128 and long double
1604 // where such conversions currently can't be handled.
1605 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1606 return QualType();
1608 // Handle complex types first (C99 6.3.1.8p1).
1609 if (LHSType->isComplexType() || RHSType->isComplexType())
1610 return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1611 ACK == ACK_CompAssign);
1613 // Now handle "real" floating types (i.e. float, double, long double).
1614 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1615 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1616 ACK == ACK_CompAssign);
1618 // Handle GCC complex int extension.
1619 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1620 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1621 ACK == ACK_CompAssign);
1623 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1624 return handleFixedPointConversion(*this, LHSType, RHSType);
1626 // Finally, we have two differing integer types.
1627 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1628 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1631 //===----------------------------------------------------------------------===//
1632 // Semantic Analysis for various Expression Types
1633 //===----------------------------------------------------------------------===//
1636 ExprResult Sema::ActOnGenericSelectionExpr(
1637 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1638 bool PredicateIsExpr, void *ControllingExprOrType,
1639 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1640 unsigned NumAssocs = ArgTypes.size();
1641 assert(NumAssocs == ArgExprs.size());
1643 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1644 for (unsigned i = 0; i < NumAssocs; ++i) {
1645 if (ArgTypes[i])
1646 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1647 else
1648 Types[i] = nullptr;
1651 // If we have a controlling type, we need to convert it from a parsed type
1652 // into a semantic type and then pass that along.
1653 if (!PredicateIsExpr) {
1654 TypeSourceInfo *ControllingType;
1655 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1656 &ControllingType);
1657 assert(ControllingType && "couldn't get the type out of the parser");
1658 ControllingExprOrType = ControllingType;
1661 ExprResult ER = CreateGenericSelectionExpr(
1662 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1663 llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1664 delete [] Types;
1665 return ER;
1668 ExprResult Sema::CreateGenericSelectionExpr(
1669 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1670 bool PredicateIsExpr, void *ControllingExprOrType,
1671 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1672 unsigned NumAssocs = Types.size();
1673 assert(NumAssocs == Exprs.size());
1674 assert(ControllingExprOrType &&
1675 "Must have either a controlling expression or a controlling type");
1677 Expr *ControllingExpr = nullptr;
1678 TypeSourceInfo *ControllingType = nullptr;
1679 if (PredicateIsExpr) {
1680 // Decay and strip qualifiers for the controlling expression type, and
1681 // handle placeholder type replacement. See committee discussion from WG14
1682 // DR423.
1683 EnterExpressionEvaluationContext Unevaluated(
1684 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1685 ExprResult R = DefaultFunctionArrayLvalueConversion(
1686 reinterpret_cast<Expr *>(ControllingExprOrType));
1687 if (R.isInvalid())
1688 return ExprError();
1689 ControllingExpr = R.get();
1690 } else {
1691 // The extension form uses the type directly rather than converting it.
1692 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1693 if (!ControllingType)
1694 return ExprError();
1697 bool TypeErrorFound = false,
1698 IsResultDependent = ControllingExpr
1699 ? ControllingExpr->isTypeDependent()
1700 : ControllingType->getType()->isDependentType(),
1701 ContainsUnexpandedParameterPack =
1702 ControllingExpr
1703 ? ControllingExpr->containsUnexpandedParameterPack()
1704 : ControllingType->getType()->containsUnexpandedParameterPack();
1706 // The controlling expression is an unevaluated operand, so side effects are
1707 // likely unintended.
1708 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1709 ControllingExpr->HasSideEffects(Context, false))
1710 Diag(ControllingExpr->getExprLoc(),
1711 diag::warn_side_effects_unevaluated_context);
1713 for (unsigned i = 0; i < NumAssocs; ++i) {
1714 if (Exprs[i]->containsUnexpandedParameterPack())
1715 ContainsUnexpandedParameterPack = true;
1717 if (Types[i]) {
1718 if (Types[i]->getType()->containsUnexpandedParameterPack())
1719 ContainsUnexpandedParameterPack = true;
1721 if (Types[i]->getType()->isDependentType()) {
1722 IsResultDependent = true;
1723 } else {
1724 // We relax the restriction on use of incomplete types and non-object
1725 // types with the type-based extension of _Generic. Allowing incomplete
1726 // objects means those can be used as "tags" for a type-safe way to map
1727 // to a value. Similarly, matching on function types rather than
1728 // function pointer types can be useful. However, the restriction on VM
1729 // types makes sense to retain as there are open questions about how
1730 // the selection can be made at compile time.
1732 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1733 // complete object type other than a variably modified type."
1734 unsigned D = 0;
1735 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1736 D = diag::err_assoc_type_incomplete;
1737 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1738 D = diag::err_assoc_type_nonobject;
1739 else if (Types[i]->getType()->isVariablyModifiedType())
1740 D = diag::err_assoc_type_variably_modified;
1741 else if (ControllingExpr) {
1742 // Because the controlling expression undergoes lvalue conversion,
1743 // array conversion, and function conversion, an association which is
1744 // of array type, function type, or is qualified can never be
1745 // reached. We will warn about this so users are less surprised by
1746 // the unreachable association. However, we don't have to handle
1747 // function types; that's not an object type, so it's handled above.
1749 // The logic is somewhat different for C++ because C++ has different
1750 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1751 // If T is a non-class type, the type of the prvalue is the cv-
1752 // unqualified version of T. Otherwise, the type of the prvalue is T.
1753 // The result of these rules is that all qualified types in an
1754 // association in C are unreachable, and in C++, only qualified non-
1755 // class types are unreachable.
1757 // NB: this does not apply when the first operand is a type rather
1758 // than an expression, because the type form does not undergo
1759 // conversion.
1760 unsigned Reason = 0;
1761 QualType QT = Types[i]->getType();
1762 if (QT->isArrayType())
1763 Reason = 1;
1764 else if (QT.hasQualifiers() &&
1765 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1766 Reason = 2;
1768 if (Reason)
1769 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1770 diag::warn_unreachable_association)
1771 << QT << (Reason - 1);
1774 if (D != 0) {
1775 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1776 << Types[i]->getTypeLoc().getSourceRange()
1777 << Types[i]->getType();
1778 TypeErrorFound = true;
1781 // C11 6.5.1.1p2 "No two generic associations in the same generic
1782 // selection shall specify compatible types."
1783 for (unsigned j = i+1; j < NumAssocs; ++j)
1784 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1785 Context.typesAreCompatible(Types[i]->getType(),
1786 Types[j]->getType())) {
1787 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1788 diag::err_assoc_compatible_types)
1789 << Types[j]->getTypeLoc().getSourceRange()
1790 << Types[j]->getType()
1791 << Types[i]->getType();
1792 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1793 diag::note_compat_assoc)
1794 << Types[i]->getTypeLoc().getSourceRange()
1795 << Types[i]->getType();
1796 TypeErrorFound = true;
1801 if (TypeErrorFound)
1802 return ExprError();
1804 // If we determined that the generic selection is result-dependent, don't
1805 // try to compute the result expression.
1806 if (IsResultDependent) {
1807 if (ControllingExpr)
1808 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1809 Types, Exprs, DefaultLoc, RParenLoc,
1810 ContainsUnexpandedParameterPack);
1811 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1812 Exprs, DefaultLoc, RParenLoc,
1813 ContainsUnexpandedParameterPack);
1816 SmallVector<unsigned, 1> CompatIndices;
1817 unsigned DefaultIndex = -1U;
1818 // Look at the canonical type of the controlling expression in case it was a
1819 // deduced type like __auto_type. However, when issuing diagnostics, use the
1820 // type the user wrote in source rather than the canonical one.
1821 for (unsigned i = 0; i < NumAssocs; ++i) {
1822 if (!Types[i])
1823 DefaultIndex = i;
1824 else if (ControllingExpr &&
1825 Context.typesAreCompatible(
1826 ControllingExpr->getType().getCanonicalType(),
1827 Types[i]->getType()))
1828 CompatIndices.push_back(i);
1829 else if (ControllingType &&
1830 Context.typesAreCompatible(
1831 ControllingType->getType().getCanonicalType(),
1832 Types[i]->getType()))
1833 CompatIndices.push_back(i);
1836 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1837 TypeSourceInfo *ControllingType) {
1838 // We strip parens here because the controlling expression is typically
1839 // parenthesized in macro definitions.
1840 if (ControllingExpr)
1841 ControllingExpr = ControllingExpr->IgnoreParens();
1843 SourceRange SR = ControllingExpr
1844 ? ControllingExpr->getSourceRange()
1845 : ControllingType->getTypeLoc().getSourceRange();
1846 QualType QT = ControllingExpr ? ControllingExpr->getType()
1847 : ControllingType->getType();
1849 return std::make_pair(SR, QT);
1852 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1853 // type compatible with at most one of the types named in its generic
1854 // association list."
1855 if (CompatIndices.size() > 1) {
1856 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1857 SourceRange SR = P.first;
1858 Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1859 << SR << P.second << (unsigned)CompatIndices.size();
1860 for (unsigned I : CompatIndices) {
1861 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1862 diag::note_compat_assoc)
1863 << Types[I]->getTypeLoc().getSourceRange()
1864 << Types[I]->getType();
1866 return ExprError();
1869 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1870 // its controlling expression shall have type compatible with exactly one of
1871 // the types named in its generic association list."
1872 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1873 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1874 SourceRange SR = P.first;
1875 Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1876 return ExprError();
1879 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1880 // type name that is compatible with the type of the controlling expression,
1881 // then the result expression of the generic selection is the expression
1882 // in that generic association. Otherwise, the result expression of the
1883 // generic selection is the expression in the default generic association."
1884 unsigned ResultIndex =
1885 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1887 if (ControllingExpr) {
1888 return GenericSelectionExpr::Create(
1889 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1890 ContainsUnexpandedParameterPack, ResultIndex);
1892 return GenericSelectionExpr::Create(
1893 Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1894 ContainsUnexpandedParameterPack, ResultIndex);
1897 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1898 switch (Kind) {
1899 default:
1900 llvm_unreachable("unexpected TokenKind");
1901 case tok::kw___func__:
1902 return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1903 case tok::kw___FUNCTION__:
1904 return PredefinedIdentKind::Function;
1905 case tok::kw___FUNCDNAME__:
1906 return PredefinedIdentKind::FuncDName; // [MS]
1907 case tok::kw___FUNCSIG__:
1908 return PredefinedIdentKind::FuncSig; // [MS]
1909 case tok::kw_L__FUNCTION__:
1910 return PredefinedIdentKind::LFunction; // [MS]
1911 case tok::kw_L__FUNCSIG__:
1912 return PredefinedIdentKind::LFuncSig; // [MS]
1913 case tok::kw___PRETTY_FUNCTION__:
1914 return PredefinedIdentKind::PrettyFunction; // [GNU]
1918 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1919 /// to determine the value of a PredefinedExpr. This can be either a
1920 /// block, lambda, captured statement, function, otherwise a nullptr.
1921 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1922 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1923 DC = DC->getParent();
1924 return cast_or_null<Decl>(DC);
1927 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1928 /// location of the token and the offset of the ud-suffix within it.
1929 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1930 unsigned Offset) {
1931 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1932 S.getLangOpts());
1935 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1936 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1937 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1938 IdentifierInfo *UDSuffix,
1939 SourceLocation UDSuffixLoc,
1940 ArrayRef<Expr*> Args,
1941 SourceLocation LitEndLoc) {
1942 assert(Args.size() <= 2 && "too many arguments for literal operator");
1944 QualType ArgTy[2];
1945 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1946 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1947 if (ArgTy[ArgIdx]->isArrayType())
1948 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1951 DeclarationName OpName =
1952 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1953 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1954 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1956 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1957 if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1958 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1959 /*AllowStringTemplatePack*/ false,
1960 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1961 return ExprError();
1963 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1966 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1967 // StringToks needs backing storage as it doesn't hold array elements itself
1968 std::vector<Token> ExpandedToks;
1969 if (getLangOpts().MicrosoftExt)
1970 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1972 StringLiteralParser Literal(StringToks, PP,
1973 StringLiteralEvalMethod::Unevaluated);
1974 if (Literal.hadError)
1975 return ExprError();
1977 SmallVector<SourceLocation, 4> StringTokLocs;
1978 for (const Token &Tok : StringToks)
1979 StringTokLocs.push_back(Tok.getLocation());
1981 StringLiteral *Lit = StringLiteral::Create(
1982 Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1983 &StringTokLocs[0], StringTokLocs.size());
1985 if (!Literal.getUDSuffix().empty()) {
1986 SourceLocation UDSuffixLoc =
1987 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1988 Literal.getUDSuffixOffset());
1989 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1992 return Lit;
1995 std::vector<Token>
1996 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1997 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1998 // local macros that expand to string literals that may be concatenated.
1999 // These macros are expanded here (in Sema), because StringLiteralParser
2000 // (in Lex) doesn't know the enclosing function (because it hasn't been
2001 // parsed yet).
2002 assert(getLangOpts().MicrosoftExt);
2004 // Note: Although function local macros are defined only inside functions,
2005 // we ensure a valid `CurrentDecl` even outside of a function. This allows
2006 // expansion of macros into empty string literals without additional checks.
2007 Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
2008 if (!CurrentDecl)
2009 CurrentDecl = Context.getTranslationUnitDecl();
2011 std::vector<Token> ExpandedToks;
2012 ExpandedToks.reserve(Toks.size());
2013 for (const Token &Tok : Toks) {
2014 if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2015 assert(tok::isStringLiteral(Tok.getKind()));
2016 ExpandedToks.emplace_back(Tok);
2017 continue;
2019 if (isa<TranslationUnitDecl>(CurrentDecl))
2020 Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2021 // Stringify predefined expression
2022 Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2023 << Tok.getKind();
2024 SmallString<64> Str;
2025 llvm::raw_svector_ostream OS(Str);
2026 Token &Exp = ExpandedToks.emplace_back();
2027 Exp.startToken();
2028 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2029 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2030 OS << 'L';
2031 Exp.setKind(tok::wide_string_literal);
2032 } else {
2033 Exp.setKind(tok::string_literal);
2035 OS << '"'
2036 << Lexer::Stringify(PredefinedExpr::ComputeName(
2037 getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2038 << '"';
2039 PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2041 return ExpandedToks;
2044 ExprResult
2045 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2046 assert(!StringToks.empty() && "Must have at least one string!");
2048 // StringToks needs backing storage as it doesn't hold array elements itself
2049 std::vector<Token> ExpandedToks;
2050 if (getLangOpts().MicrosoftExt)
2051 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2053 StringLiteralParser Literal(StringToks, PP);
2054 if (Literal.hadError)
2055 return ExprError();
2057 SmallVector<SourceLocation, 4> StringTokLocs;
2058 for (const Token &Tok : StringToks)
2059 StringTokLocs.push_back(Tok.getLocation());
2061 QualType CharTy = Context.CharTy;
2062 StringLiteralKind Kind = StringLiteralKind::Ordinary;
2063 if (Literal.isWide()) {
2064 CharTy = Context.getWideCharType();
2065 Kind = StringLiteralKind::Wide;
2066 } else if (Literal.isUTF8()) {
2067 if (getLangOpts().Char8)
2068 CharTy = Context.Char8Ty;
2069 else if (getLangOpts().C23)
2070 CharTy = Context.UnsignedCharTy;
2071 Kind = StringLiteralKind::UTF8;
2072 } else if (Literal.isUTF16()) {
2073 CharTy = Context.Char16Ty;
2074 Kind = StringLiteralKind::UTF16;
2075 } else if (Literal.isUTF32()) {
2076 CharTy = Context.Char32Ty;
2077 Kind = StringLiteralKind::UTF32;
2078 } else if (Literal.isPascal()) {
2079 CharTy = Context.UnsignedCharTy;
2082 // Warn on u8 string literals before C++20 and C23, whose type
2083 // was an array of char before but becomes an array of char8_t.
2084 // In C++20, it cannot be used where a pointer to char is expected.
2085 // In C23, it might have an unexpected value if char was signed.
2086 if (Kind == StringLiteralKind::UTF8 &&
2087 (getLangOpts().CPlusPlus
2088 ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2089 : !getLangOpts().C23)) {
2090 Diag(StringTokLocs.front(), getLangOpts().CPlusPlus
2091 ? diag::warn_cxx20_compat_utf8_string
2092 : diag::warn_c23_compat_utf8_string);
2094 // Create removals for all 'u8' prefixes in the string literal(s). This
2095 // ensures C++20/C23 compatibility (but may change the program behavior when
2096 // built by non-Clang compilers for which the execution character set is
2097 // not always UTF-8).
2098 auto RemovalDiag = PDiag(diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2099 SourceLocation RemovalDiagLoc;
2100 for (const Token &Tok : StringToks) {
2101 if (Tok.getKind() == tok::utf8_string_literal) {
2102 if (RemovalDiagLoc.isInvalid())
2103 RemovalDiagLoc = Tok.getLocation();
2104 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2105 Tok.getLocation(),
2106 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2107 getSourceManager(), getLangOpts())));
2110 Diag(RemovalDiagLoc, RemovalDiag);
2113 QualType StrTy =
2114 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2116 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2117 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2118 Kind, Literal.Pascal, StrTy,
2119 &StringTokLocs[0],
2120 StringTokLocs.size());
2121 if (Literal.getUDSuffix().empty())
2122 return Lit;
2124 // We're building a user-defined literal.
2125 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2126 SourceLocation UDSuffixLoc =
2127 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2128 Literal.getUDSuffixOffset());
2130 // Make sure we're allowed user-defined literals here.
2131 if (!UDLScope)
2132 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2134 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2135 // operator "" X (str, len)
2136 QualType SizeType = Context.getSizeType();
2138 DeclarationName OpName =
2139 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2140 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2141 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2143 QualType ArgTy[] = {
2144 Context.getArrayDecayedType(StrTy), SizeType
2147 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2148 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2149 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2150 /*AllowStringTemplatePack*/ true,
2151 /*DiagnoseMissing*/ true, Lit)) {
2153 case LOLR_Cooked: {
2154 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2155 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2156 StringTokLocs[0]);
2157 Expr *Args[] = { Lit, LenArg };
2159 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2162 case LOLR_Template: {
2163 TemplateArgumentListInfo ExplicitArgs;
2164 TemplateArgument Arg(Lit);
2165 TemplateArgumentLocInfo ArgInfo(Lit);
2166 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2167 return BuildLiteralOperatorCall(R, OpNameInfo, {}, StringTokLocs.back(),
2168 &ExplicitArgs);
2171 case LOLR_StringTemplatePack: {
2172 TemplateArgumentListInfo ExplicitArgs;
2174 unsigned CharBits = Context.getIntWidth(CharTy);
2175 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2176 llvm::APSInt Value(CharBits, CharIsUnsigned);
2178 TemplateArgument TypeArg(CharTy);
2179 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2180 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2182 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2183 Value = Lit->getCodeUnit(I);
2184 TemplateArgument Arg(Context, Value, CharTy);
2185 TemplateArgumentLocInfo ArgInfo;
2186 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2188 return BuildLiteralOperatorCall(R, OpNameInfo, {}, StringTokLocs.back(),
2189 &ExplicitArgs);
2191 case LOLR_Raw:
2192 case LOLR_ErrorNoDiagnostic:
2193 llvm_unreachable("unexpected literal operator lookup result");
2194 case LOLR_Error:
2195 return ExprError();
2197 llvm_unreachable("unexpected literal operator lookup result");
2200 DeclRefExpr *
2201 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2202 SourceLocation Loc,
2203 const CXXScopeSpec *SS) {
2204 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2205 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2208 DeclRefExpr *
2209 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2210 const DeclarationNameInfo &NameInfo,
2211 const CXXScopeSpec *SS, NamedDecl *FoundD,
2212 SourceLocation TemplateKWLoc,
2213 const TemplateArgumentListInfo *TemplateArgs) {
2214 NestedNameSpecifierLoc NNS =
2215 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2216 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2217 TemplateArgs);
2220 // CUDA/HIP: Check whether a captured reference variable is referencing a
2221 // host variable in a device or host device lambda.
2222 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2223 VarDecl *VD) {
2224 if (!S.getLangOpts().CUDA || !VD->hasInit())
2225 return false;
2226 assert(VD->getType()->isReferenceType());
2228 // Check whether the reference variable is referencing a host variable.
2229 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2230 if (!DRE)
2231 return false;
2232 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2233 if (!Referee || !Referee->hasGlobalStorage() ||
2234 Referee->hasAttr<CUDADeviceAttr>())
2235 return false;
2237 // Check whether the current function is a device or host device lambda.
2238 // Check whether the reference variable is a capture by getDeclContext()
2239 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2240 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2241 if (MD && MD->getParent()->isLambda() &&
2242 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2243 VD->getDeclContext() != MD)
2244 return true;
2246 return false;
2249 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2250 // A declaration named in an unevaluated operand never constitutes an odr-use.
2251 if (isUnevaluatedContext())
2252 return NOUR_Unevaluated;
2254 // C++2a [basic.def.odr]p4:
2255 // A variable x whose name appears as a potentially-evaluated expression e
2256 // is odr-used by e unless [...] x is a reference that is usable in
2257 // constant expressions.
2258 // CUDA/HIP:
2259 // If a reference variable referencing a host variable is captured in a
2260 // device or host device lambda, the value of the referee must be copied
2261 // to the capture and the reference variable must be treated as odr-use
2262 // since the value of the referee is not known at compile time and must
2263 // be loaded from the captured.
2264 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2265 if (VD->getType()->isReferenceType() &&
2266 !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2267 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2268 VD->isUsableInConstantExpressions(Context))
2269 return NOUR_Constant;
2272 // All remaining non-variable cases constitute an odr-use. For variables, we
2273 // need to wait and see how the expression is used.
2274 return NOUR_None;
2277 DeclRefExpr *
2278 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2279 const DeclarationNameInfo &NameInfo,
2280 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2281 SourceLocation TemplateKWLoc,
2282 const TemplateArgumentListInfo *TemplateArgs) {
2283 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2284 NeedToCaptureVariable(D, NameInfo.getLoc());
2286 DeclRefExpr *E = DeclRefExpr::Create(
2287 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2288 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2289 MarkDeclRefReferenced(E);
2291 // C++ [except.spec]p17:
2292 // An exception-specification is considered to be needed when:
2293 // - in an expression, the function is the unique lookup result or
2294 // the selected member of a set of overloaded functions.
2296 // We delay doing this until after we've built the function reference and
2297 // marked it as used so that:
2298 // a) if the function is defaulted, we get errors from defining it before /
2299 // instead of errors from computing its exception specification, and
2300 // b) if the function is a defaulted comparison, we can use the body we
2301 // build when defining it as input to the exception specification
2302 // computation rather than computing a new body.
2303 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2304 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2305 if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2306 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2310 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2311 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2312 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2313 getCurFunction()->recordUseOfWeak(E);
2315 const auto *FD = dyn_cast<FieldDecl>(D);
2316 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2317 FD = IFD->getAnonField();
2318 if (FD) {
2319 UnusedPrivateFields.remove(FD);
2320 // Just in case we're building an illegal pointer-to-member.
2321 if (FD->isBitField())
2322 E->setObjectKind(OK_BitField);
2325 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2326 // designates a bit-field.
2327 if (const auto *BD = dyn_cast<BindingDecl>(D))
2328 if (const auto *BE = BD->getBinding())
2329 E->setObjectKind(BE->getObjectKind());
2331 return E;
2334 void
2335 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2336 TemplateArgumentListInfo &Buffer,
2337 DeclarationNameInfo &NameInfo,
2338 const TemplateArgumentListInfo *&TemplateArgs) {
2339 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2340 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2341 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2343 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2344 Id.TemplateId->NumArgs);
2345 translateTemplateArguments(TemplateArgsPtr, Buffer);
2347 TemplateName TName = Id.TemplateId->Template.get();
2348 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2349 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2350 TemplateArgs = &Buffer;
2351 } else {
2352 NameInfo = GetNameFromUnqualifiedId(Id);
2353 TemplateArgs = nullptr;
2357 static void emitEmptyLookupTypoDiagnostic(
2358 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2359 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2360 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2361 DeclContext *Ctx =
2362 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2363 if (!TC) {
2364 // Emit a special diagnostic for failed member lookups.
2365 // FIXME: computing the declaration context might fail here (?)
2366 if (Ctx)
2367 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2368 << SS.getRange();
2369 else
2370 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2371 return;
2374 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2375 bool DroppedSpecifier =
2376 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2377 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2378 ? diag::note_implicit_param_decl
2379 : diag::note_previous_decl;
2380 if (!Ctx)
2381 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2382 SemaRef.PDiag(NoteID));
2383 else
2384 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2385 << Typo << Ctx << DroppedSpecifier
2386 << SS.getRange(),
2387 SemaRef.PDiag(NoteID));
2390 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2391 // During a default argument instantiation the CurContext points
2392 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2393 // function parameter list, hence add an explicit check.
2394 bool isDefaultArgument =
2395 !CodeSynthesisContexts.empty() &&
2396 CodeSynthesisContexts.back().Kind ==
2397 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2398 const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2399 bool isInstance = CurMethod && CurMethod->isInstance() &&
2400 R.getNamingClass() == CurMethod->getParent() &&
2401 !isDefaultArgument;
2403 // There are two ways we can find a class-scope declaration during template
2404 // instantiation that we did not find in the template definition: if it is a
2405 // member of a dependent base class, or if it is declared after the point of
2406 // use in the same class. Distinguish these by comparing the class in which
2407 // the member was found to the naming class of the lookup.
2408 unsigned DiagID = diag::err_found_in_dependent_base;
2409 unsigned NoteID = diag::note_member_declared_at;
2410 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2411 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2412 : diag::err_found_later_in_class;
2413 } else if (getLangOpts().MSVCCompat) {
2414 DiagID = diag::ext_found_in_dependent_base;
2415 NoteID = diag::note_dependent_member_use;
2418 if (isInstance) {
2419 // Give a code modification hint to insert 'this->'.
2420 Diag(R.getNameLoc(), DiagID)
2421 << R.getLookupName()
2422 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2423 CheckCXXThisCapture(R.getNameLoc());
2424 } else {
2425 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2426 // they're not shadowed).
2427 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2430 for (const NamedDecl *D : R)
2431 Diag(D->getLocation(), NoteID);
2433 // Return true if we are inside a default argument instantiation
2434 // and the found name refers to an instance member function, otherwise
2435 // the caller will try to create an implicit member call and this is wrong
2436 // for default arguments.
2438 // FIXME: Is this special case necessary? We could allow the caller to
2439 // diagnose this.
2440 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2441 Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2442 return true;
2445 // Tell the callee to try to recover.
2446 return false;
2449 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2450 CorrectionCandidateCallback &CCC,
2451 TemplateArgumentListInfo *ExplicitTemplateArgs,
2452 ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2453 TypoExpr **Out) {
2454 DeclarationName Name = R.getLookupName();
2456 unsigned diagnostic = diag::err_undeclared_var_use;
2457 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2458 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2459 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2460 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2461 diagnostic = diag::err_undeclared_use;
2462 diagnostic_suggest = diag::err_undeclared_use_suggest;
2465 // If the original lookup was an unqualified lookup, fake an
2466 // unqualified lookup. This is useful when (for example) the
2467 // original lookup would not have found something because it was a
2468 // dependent name.
2469 DeclContext *DC =
2470 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2471 while (DC) {
2472 if (isa<CXXRecordDecl>(DC)) {
2473 if (ExplicitTemplateArgs) {
2474 if (LookupTemplateName(
2475 R, S, SS, Context.getRecordType(cast<CXXRecordDecl>(DC)),
2476 /*EnteringContext*/ false, TemplateNameIsRequired,
2477 /*RequiredTemplateKind*/ nullptr, /*AllowTypoCorrection*/ true))
2478 return true;
2479 } else {
2480 LookupQualifiedName(R, DC);
2483 if (!R.empty()) {
2484 // Don't give errors about ambiguities in this lookup.
2485 R.suppressDiagnostics();
2487 // If there's a best viable function among the results, only mention
2488 // that one in the notes.
2489 OverloadCandidateSet Candidates(R.getNameLoc(),
2490 OverloadCandidateSet::CSK_Normal);
2491 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2492 OverloadCandidateSet::iterator Best;
2493 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2494 OR_Success) {
2495 R.clear();
2496 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2497 R.resolveKind();
2500 return DiagnoseDependentMemberLookup(R);
2503 R.clear();
2506 DC = DC->getLookupParent();
2509 // We didn't find anything, so try to correct for a typo.
2510 TypoCorrection Corrected;
2511 if (S && Out) {
2512 SourceLocation TypoLoc = R.getNameLoc();
2513 assert(!ExplicitTemplateArgs &&
2514 "Diagnosing an empty lookup with explicit template args!");
2515 *Out = CorrectTypoDelayed(
2516 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2517 [=](const TypoCorrection &TC) {
2518 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2519 diagnostic, diagnostic_suggest);
2521 nullptr, CTK_ErrorRecovery, LookupCtx);
2522 if (*Out)
2523 return true;
2524 } else if (S && (Corrected =
2525 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2526 &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2527 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2528 bool DroppedSpecifier =
2529 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2530 R.setLookupName(Corrected.getCorrection());
2532 bool AcceptableWithRecovery = false;
2533 bool AcceptableWithoutRecovery = false;
2534 NamedDecl *ND = Corrected.getFoundDecl();
2535 if (ND) {
2536 if (Corrected.isOverloaded()) {
2537 OverloadCandidateSet OCS(R.getNameLoc(),
2538 OverloadCandidateSet::CSK_Normal);
2539 OverloadCandidateSet::iterator Best;
2540 for (NamedDecl *CD : Corrected) {
2541 if (FunctionTemplateDecl *FTD =
2542 dyn_cast<FunctionTemplateDecl>(CD))
2543 AddTemplateOverloadCandidate(
2544 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2545 Args, OCS);
2546 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2547 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2548 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2549 Args, OCS);
2551 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2552 case OR_Success:
2553 ND = Best->FoundDecl;
2554 Corrected.setCorrectionDecl(ND);
2555 break;
2556 default:
2557 // FIXME: Arbitrarily pick the first declaration for the note.
2558 Corrected.setCorrectionDecl(ND);
2559 break;
2562 R.addDecl(ND);
2563 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2564 CXXRecordDecl *Record = nullptr;
2565 if (Corrected.getCorrectionSpecifier()) {
2566 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2567 Record = Ty->getAsCXXRecordDecl();
2569 if (!Record)
2570 Record = cast<CXXRecordDecl>(
2571 ND->getDeclContext()->getRedeclContext());
2572 R.setNamingClass(Record);
2575 auto *UnderlyingND = ND->getUnderlyingDecl();
2576 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2577 isa<FunctionTemplateDecl>(UnderlyingND);
2578 // FIXME: If we ended up with a typo for a type name or
2579 // Objective-C class name, we're in trouble because the parser
2580 // is in the wrong place to recover. Suggest the typo
2581 // correction, but don't make it a fix-it since we're not going
2582 // to recover well anyway.
2583 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2584 getAsTypeTemplateDecl(UnderlyingND) ||
2585 isa<ObjCInterfaceDecl>(UnderlyingND);
2586 } else {
2587 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2588 // because we aren't able to recover.
2589 AcceptableWithoutRecovery = true;
2592 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2593 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2594 ? diag::note_implicit_param_decl
2595 : diag::note_previous_decl;
2596 if (SS.isEmpty())
2597 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2598 PDiag(NoteID), AcceptableWithRecovery);
2599 else
2600 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2601 << Name << computeDeclContext(SS, false)
2602 << DroppedSpecifier << SS.getRange(),
2603 PDiag(NoteID), AcceptableWithRecovery);
2605 // Tell the callee whether to try to recover.
2606 return !AcceptableWithRecovery;
2609 R.clear();
2611 // Emit a special diagnostic for failed member lookups.
2612 // FIXME: computing the declaration context might fail here (?)
2613 if (!SS.isEmpty()) {
2614 Diag(R.getNameLoc(), diag::err_no_member)
2615 << Name << computeDeclContext(SS, false)
2616 << SS.getRange();
2617 return true;
2620 // Give up, we can't recover.
2621 Diag(R.getNameLoc(), diagnostic) << Name;
2622 return true;
2625 /// In Microsoft mode, if we are inside a template class whose parent class has
2626 /// dependent base classes, and we can't resolve an unqualified identifier, then
2627 /// assume the identifier is a member of a dependent base class. We can only
2628 /// recover successfully in static methods, instance methods, and other contexts
2629 /// where 'this' is available. This doesn't precisely match MSVC's
2630 /// instantiation model, but it's close enough.
2631 static Expr *
2632 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2633 DeclarationNameInfo &NameInfo,
2634 SourceLocation TemplateKWLoc,
2635 const TemplateArgumentListInfo *TemplateArgs) {
2636 // Only try to recover from lookup into dependent bases in static methods or
2637 // contexts where 'this' is available.
2638 QualType ThisType = S.getCurrentThisType();
2639 const CXXRecordDecl *RD = nullptr;
2640 if (!ThisType.isNull())
2641 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2642 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2643 RD = MD->getParent();
2644 if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2645 return nullptr;
2647 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2648 // is available, suggest inserting 'this->' as a fixit.
2649 SourceLocation Loc = NameInfo.getLoc();
2650 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2651 DB << NameInfo.getName() << RD;
2653 if (!ThisType.isNull()) {
2654 DB << FixItHint::CreateInsertion(Loc, "this->");
2655 return CXXDependentScopeMemberExpr::Create(
2656 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2657 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2658 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2661 // Synthesize a fake NNS that points to the derived class. This will
2662 // perform name lookup during template instantiation.
2663 CXXScopeSpec SS;
2664 auto *NNS =
2665 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2666 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2667 return DependentScopeDeclRefExpr::Create(
2668 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2669 TemplateArgs);
2672 ExprResult
2673 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2674 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2675 bool HasTrailingLParen, bool IsAddressOfOperand,
2676 CorrectionCandidateCallback *CCC,
2677 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2678 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2679 "cannot be direct & operand and have a trailing lparen");
2680 if (SS.isInvalid())
2681 return ExprError();
2683 TemplateArgumentListInfo TemplateArgsBuffer;
2685 // Decompose the UnqualifiedId into the following data.
2686 DeclarationNameInfo NameInfo;
2687 const TemplateArgumentListInfo *TemplateArgs;
2688 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2690 DeclarationName Name = NameInfo.getName();
2691 IdentifierInfo *II = Name.getAsIdentifierInfo();
2692 SourceLocation NameLoc = NameInfo.getLoc();
2694 if (II && II->isEditorPlaceholder()) {
2695 // FIXME: When typed placeholders are supported we can create a typed
2696 // placeholder expression node.
2697 return ExprError();
2700 // This specially handles arguments of attributes appertains to a type of C
2701 // struct field such that the name lookup within a struct finds the member
2702 // name, which is not the case for other contexts in C.
2703 if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2704 // See if this is reference to a field of struct.
2705 LookupResult R(*this, NameInfo, LookupMemberName);
2706 // LookupName handles a name lookup from within anonymous struct.
2707 if (LookupName(R, S)) {
2708 if (auto *VD = dyn_cast<ValueDecl>(R.getFoundDecl())) {
2709 QualType type = VD->getType().getNonReferenceType();
2710 // This will eventually be translated into MemberExpr upon
2711 // the use of instantiated struct fields.
2712 return BuildDeclRefExpr(VD, type, VK_LValue, NameLoc);
2717 // Perform the required lookup.
2718 LookupResult R(*this, NameInfo,
2719 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2720 ? LookupObjCImplicitSelfParam
2721 : LookupOrdinaryName);
2722 if (TemplateKWLoc.isValid() || TemplateArgs) {
2723 // Lookup the template name again to correctly establish the context in
2724 // which it was found. This is really unfortunate as we already did the
2725 // lookup to determine that it was a template name in the first place. If
2726 // this becomes a performance hit, we can work harder to preserve those
2727 // results until we get here but it's likely not worth it.
2728 AssumedTemplateKind AssumedTemplate;
2729 if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2730 /*EnteringContext=*/false, TemplateKWLoc,
2731 &AssumedTemplate))
2732 return ExprError();
2734 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2735 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2736 IsAddressOfOperand, TemplateArgs);
2737 } else {
2738 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2739 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType(),
2740 /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2742 // If the result might be in a dependent base class, this is a dependent
2743 // id-expression.
2744 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2745 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2746 IsAddressOfOperand, TemplateArgs);
2748 // If this reference is in an Objective-C method, then we need to do
2749 // some special Objective-C lookup, too.
2750 if (IvarLookupFollowUp) {
2751 ExprResult E(ObjC().LookupInObjCMethod(R, S, II, true));
2752 if (E.isInvalid())
2753 return ExprError();
2755 if (Expr *Ex = E.getAs<Expr>())
2756 return Ex;
2760 if (R.isAmbiguous())
2761 return ExprError();
2763 // This could be an implicitly declared function reference if the language
2764 // mode allows it as a feature.
2765 if (R.empty() && HasTrailingLParen && II &&
2766 getLangOpts().implicitFunctionsAllowed()) {
2767 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2768 if (D) R.addDecl(D);
2771 // Determine whether this name might be a candidate for
2772 // argument-dependent lookup.
2773 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2775 if (R.empty() && !ADL) {
2776 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2777 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2778 TemplateKWLoc, TemplateArgs))
2779 return E;
2782 // Don't diagnose an empty lookup for inline assembly.
2783 if (IsInlineAsmIdentifier)
2784 return ExprError();
2786 // If this name wasn't predeclared and if this is not a function
2787 // call, diagnose the problem.
2788 TypoExpr *TE = nullptr;
2789 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2790 : nullptr);
2791 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2792 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2793 "Typo correction callback misconfigured");
2794 if (CCC) {
2795 // Make sure the callback knows what the typo being diagnosed is.
2796 CCC->setTypoName(II);
2797 if (SS.isValid())
2798 CCC->setTypoNNS(SS.getScopeRep());
2800 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2801 // a template name, but we happen to have always already looked up the name
2802 // before we get here if it must be a template name.
2803 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2804 {}, nullptr, &TE)) {
2805 if (TE && KeywordReplacement) {
2806 auto &State = getTypoExprState(TE);
2807 auto BestTC = State.Consumer->getNextCorrection();
2808 if (BestTC.isKeyword()) {
2809 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2810 if (State.DiagHandler)
2811 State.DiagHandler(BestTC);
2812 KeywordReplacement->startToken();
2813 KeywordReplacement->setKind(II->getTokenID());
2814 KeywordReplacement->setIdentifierInfo(II);
2815 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2816 // Clean up the state associated with the TypoExpr, since it has
2817 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2818 clearDelayedTypo(TE);
2819 // Signal that a correction to a keyword was performed by returning a
2820 // valid-but-null ExprResult.
2821 return (Expr*)nullptr;
2823 State.Consumer->resetCorrectionStream();
2825 return TE ? TE : ExprError();
2828 assert(!R.empty() &&
2829 "DiagnoseEmptyLookup returned false but added no results");
2831 // If we found an Objective-C instance variable, let
2832 // LookupInObjCMethod build the appropriate expression to
2833 // reference the ivar.
2834 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2835 R.clear();
2836 ExprResult E(ObjC().LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2837 // In a hopelessly buggy code, Objective-C instance variable
2838 // lookup fails and no expression will be built to reference it.
2839 if (!E.isInvalid() && !E.get())
2840 return ExprError();
2841 return E;
2845 // This is guaranteed from this point on.
2846 assert(!R.empty() || ADL);
2848 // Check whether this might be a C++ implicit instance member access.
2849 // C++ [class.mfct.non-static]p3:
2850 // When an id-expression that is not part of a class member access
2851 // syntax and not used to form a pointer to member is used in the
2852 // body of a non-static member function of class X, if name lookup
2853 // resolves the name in the id-expression to a non-static non-type
2854 // member of some class C, the id-expression is transformed into a
2855 // class member access expression using (*this) as the
2856 // postfix-expression to the left of the . operator.
2858 // But we don't actually need to do this for '&' operands if R
2859 // resolved to a function or overloaded function set, because the
2860 // expression is ill-formed if it actually works out to be a
2861 // non-static member function:
2863 // C++ [expr.ref]p4:
2864 // Otherwise, if E1.E2 refers to a non-static member function. . .
2865 // [t]he expression can be used only as the left-hand operand of a
2866 // member function call.
2868 // There are other safeguards against such uses, but it's important
2869 // to get this right here so that we don't end up making a
2870 // spuriously dependent expression if we're inside a dependent
2871 // instance method.
2872 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2873 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2876 if (TemplateArgs || TemplateKWLoc.isValid()) {
2878 // In C++1y, if this is a variable template id, then check it
2879 // in BuildTemplateIdExpr().
2880 // The single lookup result must be a variable template declaration.
2881 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2882 Id.TemplateId->Kind == TNK_Var_template) {
2883 assert(R.getAsSingle<VarTemplateDecl>() &&
2884 "There should only be one declaration found.");
2887 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2890 return BuildDeclarationNameExpr(SS, R, ADL);
2893 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2894 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2895 bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2896 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2897 LookupParsedName(R, /*S=*/nullptr, &SS, /*ObjectType=*/QualType());
2899 if (R.isAmbiguous())
2900 return ExprError();
2902 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2903 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2904 NameInfo, /*TemplateArgs=*/nullptr);
2906 if (R.empty()) {
2907 // Don't diagnose problems with invalid record decl, the secondary no_member
2908 // diagnostic during template instantiation is likely bogus, e.g. if a class
2909 // is invalid because it's derived from an invalid base class, then missing
2910 // members were likely supposed to be inherited.
2911 DeclContext *DC = computeDeclContext(SS);
2912 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2913 if (CD->isInvalidDecl())
2914 return ExprError();
2915 Diag(NameInfo.getLoc(), diag::err_no_member)
2916 << NameInfo.getName() << DC << SS.getRange();
2917 return ExprError();
2920 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2921 // Diagnose a missing typename if this resolved unambiguously to a type in
2922 // a dependent context. If we can recover with a type, downgrade this to
2923 // a warning in Microsoft compatibility mode.
2924 unsigned DiagID = diag::err_typename_missing;
2925 if (RecoveryTSI && getLangOpts().MSVCCompat)
2926 DiagID = diag::ext_typename_missing;
2927 SourceLocation Loc = SS.getBeginLoc();
2928 auto D = Diag(Loc, DiagID);
2929 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2930 << SourceRange(Loc, NameInfo.getEndLoc());
2932 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2933 // context.
2934 if (!RecoveryTSI)
2935 return ExprError();
2937 // Only issue the fixit if we're prepared to recover.
2938 D << FixItHint::CreateInsertion(Loc, "typename ");
2940 // Recover by pretending this was an elaborated type.
2941 QualType Ty = Context.getTypeDeclType(TD);
2942 TypeLocBuilder TLB;
2943 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2945 QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2946 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2947 QTL.setElaboratedKeywordLoc(SourceLocation());
2948 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2950 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2952 return ExprEmpty();
2955 // If necessary, build an implicit class member access.
2956 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2957 return BuildPossibleImplicitMemberExpr(SS,
2958 /*TemplateKWLoc=*/SourceLocation(),
2959 R, /*TemplateArgs=*/nullptr,
2960 /*S=*/nullptr);
2962 return BuildDeclarationNameExpr(SS, R, /*ADL=*/false);
2965 ExprResult
2966 Sema::PerformObjectMemberConversion(Expr *From,
2967 NestedNameSpecifier *Qualifier,
2968 NamedDecl *FoundDecl,
2969 NamedDecl *Member) {
2970 const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2971 if (!RD)
2972 return From;
2974 QualType DestRecordType;
2975 QualType DestType;
2976 QualType FromRecordType;
2977 QualType FromType = From->getType();
2978 bool PointerConversions = false;
2979 if (isa<FieldDecl>(Member)) {
2980 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2981 auto FromPtrType = FromType->getAs<PointerType>();
2982 DestRecordType = Context.getAddrSpaceQualType(
2983 DestRecordType, FromPtrType
2984 ? FromType->getPointeeType().getAddressSpace()
2985 : FromType.getAddressSpace());
2987 if (FromPtrType) {
2988 DestType = Context.getPointerType(DestRecordType);
2989 FromRecordType = FromPtrType->getPointeeType();
2990 PointerConversions = true;
2991 } else {
2992 DestType = DestRecordType;
2993 FromRecordType = FromType;
2995 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
2996 if (!Method->isImplicitObjectMemberFunction())
2997 return From;
2999 DestType = Method->getThisType().getNonReferenceType();
3000 DestRecordType = Method->getFunctionObjectParameterType();
3002 if (FromType->getAs<PointerType>()) {
3003 FromRecordType = FromType->getPointeeType();
3004 PointerConversions = true;
3005 } else {
3006 FromRecordType = FromType;
3007 DestType = DestRecordType;
3010 LangAS FromAS = FromRecordType.getAddressSpace();
3011 LangAS DestAS = DestRecordType.getAddressSpace();
3012 if (FromAS != DestAS) {
3013 QualType FromRecordTypeWithoutAS =
3014 Context.removeAddrSpaceQualType(FromRecordType);
3015 QualType FromTypeWithDestAS =
3016 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3017 if (PointerConversions)
3018 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3019 From = ImpCastExprToType(From, FromTypeWithDestAS,
3020 CK_AddressSpaceConversion, From->getValueKind())
3021 .get();
3023 } else {
3024 // No conversion necessary.
3025 return From;
3028 if (DestType->isDependentType() || FromType->isDependentType())
3029 return From;
3031 // If the unqualified types are the same, no conversion is necessary.
3032 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3033 return From;
3035 SourceRange FromRange = From->getSourceRange();
3036 SourceLocation FromLoc = FromRange.getBegin();
3038 ExprValueKind VK = From->getValueKind();
3040 // C++ [class.member.lookup]p8:
3041 // [...] Ambiguities can often be resolved by qualifying a name with its
3042 // class name.
3044 // If the member was a qualified name and the qualified referred to a
3045 // specific base subobject type, we'll cast to that intermediate type
3046 // first and then to the object in which the member is declared. That allows
3047 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3049 // class Base { public: int x; };
3050 // class Derived1 : public Base { };
3051 // class Derived2 : public Base { };
3052 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3054 // void VeryDerived::f() {
3055 // x = 17; // error: ambiguous base subobjects
3056 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3057 // }
3058 if (Qualifier && Qualifier->getAsType()) {
3059 QualType QType = QualType(Qualifier->getAsType(), 0);
3060 assert(QType->isRecordType() && "lookup done with non-record type");
3062 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3064 // In C++98, the qualifier type doesn't actually have to be a base
3065 // type of the object type, in which case we just ignore it.
3066 // Otherwise build the appropriate casts.
3067 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3068 CXXCastPath BasePath;
3069 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3070 FromLoc, FromRange, &BasePath))
3071 return ExprError();
3073 if (PointerConversions)
3074 QType = Context.getPointerType(QType);
3075 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3076 VK, &BasePath).get();
3078 FromType = QType;
3079 FromRecordType = QRecordType;
3081 // If the qualifier type was the same as the destination type,
3082 // we're done.
3083 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3084 return From;
3088 CXXCastPath BasePath;
3089 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3090 FromLoc, FromRange, &BasePath,
3091 /*IgnoreAccess=*/true))
3092 return ExprError();
3094 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3095 VK, &BasePath);
3098 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3099 const LookupResult &R,
3100 bool HasTrailingLParen) {
3101 // Only when used directly as the postfix-expression of a call.
3102 if (!HasTrailingLParen)
3103 return false;
3105 // Never if a scope specifier was provided.
3106 if (SS.isNotEmpty())
3107 return false;
3109 // Only in C++ or ObjC++.
3110 if (!getLangOpts().CPlusPlus)
3111 return false;
3113 // Turn off ADL when we find certain kinds of declarations during
3114 // normal lookup:
3115 for (const NamedDecl *D : R) {
3116 // C++0x [basic.lookup.argdep]p3:
3117 // -- a declaration of a class member
3118 // Since using decls preserve this property, we check this on the
3119 // original decl.
3120 if (D->isCXXClassMember())
3121 return false;
3123 // C++0x [basic.lookup.argdep]p3:
3124 // -- a block-scope function declaration that is not a
3125 // using-declaration
3126 // NOTE: we also trigger this for function templates (in fact, we
3127 // don't check the decl type at all, since all other decl types
3128 // turn off ADL anyway).
3129 if (isa<UsingShadowDecl>(D))
3130 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3131 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3132 return false;
3134 // C++0x [basic.lookup.argdep]p3:
3135 // -- a declaration that is neither a function or a function
3136 // template
3137 // And also for builtin functions.
3138 if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3139 // But also builtin functions.
3140 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3141 return false;
3142 } else if (!isa<FunctionTemplateDecl>(D))
3143 return false;
3146 return true;
3150 /// Diagnoses obvious problems with the use of the given declaration
3151 /// as an expression. This is only actually called for lookups that
3152 /// were not overloaded, and it doesn't promise that the declaration
3153 /// will in fact be used.
3154 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3155 bool AcceptInvalid) {
3156 if (D->isInvalidDecl() && !AcceptInvalid)
3157 return true;
3159 if (isa<TypedefNameDecl>(D)) {
3160 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3161 return true;
3164 if (isa<ObjCInterfaceDecl>(D)) {
3165 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3166 return true;
3169 if (isa<NamespaceDecl>(D)) {
3170 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3171 return true;
3174 return false;
3177 // Certain multiversion types should be treated as overloaded even when there is
3178 // only one result.
3179 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3180 assert(R.isSingleResult() && "Expected only a single result");
3181 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3182 return FD &&
3183 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3186 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3187 LookupResult &R, bool NeedsADL,
3188 bool AcceptInvalidDecl) {
3189 // If this is a single, fully-resolved result and we don't need ADL,
3190 // just build an ordinary singleton decl ref.
3191 if (!NeedsADL && R.isSingleResult() &&
3192 !R.getAsSingle<FunctionTemplateDecl>() &&
3193 !ShouldLookupResultBeMultiVersionOverload(R))
3194 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3195 R.getRepresentativeDecl(), nullptr,
3196 AcceptInvalidDecl);
3198 // We only need to check the declaration if there's exactly one
3199 // result, because in the overloaded case the results can only be
3200 // functions and function templates.
3201 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3202 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3203 AcceptInvalidDecl))
3204 return ExprError();
3206 // Otherwise, just build an unresolved lookup expression. Suppress
3207 // any lookup-related diagnostics; we'll hash these out later, when
3208 // we've picked a target.
3209 R.suppressDiagnostics();
3211 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3212 Context, R.getNamingClass(), SS.getWithLocInContext(Context),
3213 R.getLookupNameInfo(), NeedsADL, R.begin(), R.end(),
3214 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3216 return ULE;
3219 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3220 SourceLocation loc,
3221 ValueDecl *var);
3223 ExprResult Sema::BuildDeclarationNameExpr(
3224 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3225 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3226 bool AcceptInvalidDecl) {
3227 assert(D && "Cannot refer to a NULL declaration");
3228 assert(!isa<FunctionTemplateDecl>(D) &&
3229 "Cannot refer unambiguously to a function template");
3231 SourceLocation Loc = NameInfo.getLoc();
3232 if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3233 // Recovery from invalid cases (e.g. D is an invalid Decl).
3234 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3235 // diagnostics, as invalid decls use int as a fallback type.
3236 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3239 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
3240 // Specifically diagnose references to class templates that are missing
3241 // a template argument list.
3242 diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3243 return ExprError();
3246 // Make sure that we're referring to a value.
3247 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3248 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3249 Diag(D->getLocation(), diag::note_declared_at);
3250 return ExprError();
3253 // Check whether this declaration can be used. Note that we suppress
3254 // this check when we're going to perform argument-dependent lookup
3255 // on this function name, because this might not be the function
3256 // that overload resolution actually selects.
3257 if (DiagnoseUseOfDecl(D, Loc))
3258 return ExprError();
3260 auto *VD = cast<ValueDecl>(D);
3262 // Only create DeclRefExpr's for valid Decl's.
3263 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3264 return ExprError();
3266 // Handle members of anonymous structs and unions. If we got here,
3267 // and the reference is to a class member indirect field, then this
3268 // must be the subject of a pointer-to-member expression.
3269 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3270 IndirectField && !IndirectField->isCXXClassMember())
3271 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3272 IndirectField);
3274 QualType type = VD->getType();
3275 if (type.isNull())
3276 return ExprError();
3277 ExprValueKind valueKind = VK_PRValue;
3279 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3280 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3281 // is expanded by some outer '...' in the context of the use.
3282 type = type.getNonPackExpansionType();
3284 switch (D->getKind()) {
3285 // Ignore all the non-ValueDecl kinds.
3286 #define ABSTRACT_DECL(kind)
3287 #define VALUE(type, base)
3288 #define DECL(type, base) case Decl::type:
3289 #include "clang/AST/DeclNodes.inc"
3290 llvm_unreachable("invalid value decl kind");
3292 // These shouldn't make it here.
3293 case Decl::ObjCAtDefsField:
3294 llvm_unreachable("forming non-member reference to ivar?");
3296 // Enum constants are always r-values and never references.
3297 // Unresolved using declarations are dependent.
3298 case Decl::EnumConstant:
3299 case Decl::UnresolvedUsingValue:
3300 case Decl::OMPDeclareReduction:
3301 case Decl::OMPDeclareMapper:
3302 valueKind = VK_PRValue;
3303 break;
3305 // Fields and indirect fields that got here must be for
3306 // pointer-to-member expressions; we just call them l-values for
3307 // internal consistency, because this subexpression doesn't really
3308 // exist in the high-level semantics.
3309 case Decl::Field:
3310 case Decl::IndirectField:
3311 case Decl::ObjCIvar:
3312 assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3313 "building reference to field in C?");
3315 // These can't have reference type in well-formed programs, but
3316 // for internal consistency we do this anyway.
3317 type = type.getNonReferenceType();
3318 valueKind = VK_LValue;
3319 break;
3321 // Non-type template parameters are either l-values or r-values
3322 // depending on the type.
3323 case Decl::NonTypeTemplateParm: {
3324 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3325 type = reftype->getPointeeType();
3326 valueKind = VK_LValue; // even if the parameter is an r-value reference
3327 break;
3330 // [expr.prim.id.unqual]p2:
3331 // If the entity is a template parameter object for a template
3332 // parameter of type T, the type of the expression is const T.
3333 // [...] The expression is an lvalue if the entity is a [...] template
3334 // parameter object.
3335 if (type->isRecordType()) {
3336 type = type.getUnqualifiedType().withConst();
3337 valueKind = VK_LValue;
3338 break;
3341 // For non-references, we need to strip qualifiers just in case
3342 // the template parameter was declared as 'const int' or whatever.
3343 valueKind = VK_PRValue;
3344 type = type.getUnqualifiedType();
3345 break;
3348 case Decl::Var:
3349 case Decl::VarTemplateSpecialization:
3350 case Decl::VarTemplatePartialSpecialization:
3351 case Decl::Decomposition:
3352 case Decl::OMPCapturedExpr:
3353 // In C, "extern void blah;" is valid and is an r-value.
3354 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3355 type->isVoidType()) {
3356 valueKind = VK_PRValue;
3357 break;
3359 [[fallthrough]];
3361 case Decl::ImplicitParam:
3362 case Decl::ParmVar: {
3363 // These are always l-values.
3364 valueKind = VK_LValue;
3365 type = type.getNonReferenceType();
3367 // FIXME: Does the addition of const really only apply in
3368 // potentially-evaluated contexts? Since the variable isn't actually
3369 // captured in an unevaluated context, it seems that the answer is no.
3370 if (!isUnevaluatedContext()) {
3371 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3372 if (!CapturedType.isNull())
3373 type = CapturedType;
3376 break;
3379 case Decl::Binding:
3380 // These are always lvalues.
3381 valueKind = VK_LValue;
3382 type = type.getNonReferenceType();
3383 break;
3385 case Decl::Function: {
3386 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3387 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3388 type = Context.BuiltinFnTy;
3389 valueKind = VK_PRValue;
3390 break;
3394 const FunctionType *fty = type->castAs<FunctionType>();
3396 // If we're referring to a function with an __unknown_anytype
3397 // result type, make the entire expression __unknown_anytype.
3398 if (fty->getReturnType() == Context.UnknownAnyTy) {
3399 type = Context.UnknownAnyTy;
3400 valueKind = VK_PRValue;
3401 break;
3404 // Functions are l-values in C++.
3405 if (getLangOpts().CPlusPlus) {
3406 valueKind = VK_LValue;
3407 break;
3410 // C99 DR 316 says that, if a function type comes from a
3411 // function definition (without a prototype), that type is only
3412 // used for checking compatibility. Therefore, when referencing
3413 // the function, we pretend that we don't have the full function
3414 // type.
3415 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3416 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3417 fty->getExtInfo());
3419 // Functions are r-values in C.
3420 valueKind = VK_PRValue;
3421 break;
3424 case Decl::CXXDeductionGuide:
3425 llvm_unreachable("building reference to deduction guide");
3427 case Decl::MSProperty:
3428 case Decl::MSGuid:
3429 case Decl::TemplateParamObject:
3430 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3431 // capture in OpenMP, or duplicated between host and device?
3432 valueKind = VK_LValue;
3433 break;
3435 case Decl::UnnamedGlobalConstant:
3436 valueKind = VK_LValue;
3437 break;
3439 case Decl::CXXMethod:
3440 // If we're referring to a method with an __unknown_anytype
3441 // result type, make the entire expression __unknown_anytype.
3442 // This should only be possible with a type written directly.
3443 if (const FunctionProtoType *proto =
3444 dyn_cast<FunctionProtoType>(VD->getType()))
3445 if (proto->getReturnType() == Context.UnknownAnyTy) {
3446 type = Context.UnknownAnyTy;
3447 valueKind = VK_PRValue;
3448 break;
3451 // C++ methods are l-values if static, r-values if non-static.
3452 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3453 valueKind = VK_LValue;
3454 break;
3456 [[fallthrough]];
3458 case Decl::CXXConversion:
3459 case Decl::CXXDestructor:
3460 case Decl::CXXConstructor:
3461 valueKind = VK_PRValue;
3462 break;
3465 auto *E =
3466 BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3467 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3468 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3469 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3470 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3471 // diagnostics).
3472 if (VD->isInvalidDecl() && E)
3473 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3474 return E;
3477 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3478 SmallString<32> &Target) {
3479 Target.resize(CharByteWidth * (Source.size() + 1));
3480 char *ResultPtr = &Target[0];
3481 const llvm::UTF8 *ErrorPtr;
3482 bool success =
3483 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3484 (void)success;
3485 assert(success);
3486 Target.resize(ResultPtr - &Target[0]);
3489 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3490 PredefinedIdentKind IK) {
3491 Decl *currentDecl = getPredefinedExprDecl(CurContext);
3492 if (!currentDecl) {
3493 Diag(Loc, diag::ext_predef_outside_function);
3494 currentDecl = Context.getTranslationUnitDecl();
3497 QualType ResTy;
3498 StringLiteral *SL = nullptr;
3499 if (cast<DeclContext>(currentDecl)->isDependentContext())
3500 ResTy = Context.DependentTy;
3501 else {
3502 // Pre-defined identifiers are of type char[x], where x is the length of
3503 // the string.
3504 bool ForceElaboratedPrinting =
3505 IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3506 auto Str =
3507 PredefinedExpr::ComputeName(IK, currentDecl, ForceElaboratedPrinting);
3508 unsigned Length = Str.length();
3510 llvm::APInt LengthI(32, Length + 1);
3511 if (IK == PredefinedIdentKind::LFunction ||
3512 IK == PredefinedIdentKind::LFuncSig) {
3513 ResTy =
3514 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3515 SmallString<32> RawChars;
3516 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3517 Str, RawChars);
3518 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3519 ArraySizeModifier::Normal,
3520 /*IndexTypeQuals*/ 0);
3521 SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3522 /*Pascal*/ false, ResTy, Loc);
3523 } else {
3524 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3525 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3526 ArraySizeModifier::Normal,
3527 /*IndexTypeQuals*/ 0);
3528 SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3529 /*Pascal*/ false, ResTy, Loc);
3533 return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3534 SL);
3537 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3538 return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3541 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3542 SmallString<16> CharBuffer;
3543 bool Invalid = false;
3544 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3545 if (Invalid)
3546 return ExprError();
3548 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3549 PP, Tok.getKind());
3550 if (Literal.hadError())
3551 return ExprError();
3553 QualType Ty;
3554 if (Literal.isWide())
3555 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3556 else if (Literal.isUTF8() && getLangOpts().C23)
3557 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3558 else if (Literal.isUTF8() && getLangOpts().Char8)
3559 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3560 else if (Literal.isUTF16())
3561 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3562 else if (Literal.isUTF32())
3563 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3564 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3565 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3566 else
3567 Ty = Context.CharTy; // 'x' -> char in C++;
3568 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3570 CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3571 if (Literal.isWide())
3572 Kind = CharacterLiteralKind::Wide;
3573 else if (Literal.isUTF16())
3574 Kind = CharacterLiteralKind::UTF16;
3575 else if (Literal.isUTF32())
3576 Kind = CharacterLiteralKind::UTF32;
3577 else if (Literal.isUTF8())
3578 Kind = CharacterLiteralKind::UTF8;
3580 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3581 Tok.getLocation());
3583 if (Literal.getUDSuffix().empty())
3584 return Lit;
3586 // We're building a user-defined literal.
3587 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3588 SourceLocation UDSuffixLoc =
3589 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3591 // Make sure we're allowed user-defined literals here.
3592 if (!UDLScope)
3593 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3595 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3596 // operator "" X (ch)
3597 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3598 Lit, Tok.getLocation());
3601 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, int64_t Val) {
3602 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3603 return IntegerLiteral::Create(Context,
3604 llvm::APInt(IntSize, Val, /*isSigned=*/true),
3605 Context.IntTy, Loc);
3608 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3609 QualType Ty, SourceLocation Loc) {
3610 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3612 using llvm::APFloat;
3613 APFloat Val(Format);
3615 llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3616 if (RM == llvm::RoundingMode::Dynamic)
3617 RM = llvm::RoundingMode::NearestTiesToEven;
3618 APFloat::opStatus result = Literal.GetFloatValue(Val, RM);
3620 // Overflow is always an error, but underflow is only an error if
3621 // we underflowed to zero (APFloat reports denormals as underflow).
3622 if ((result & APFloat::opOverflow) ||
3623 ((result & APFloat::opUnderflow) && Val.isZero())) {
3624 unsigned diagnostic;
3625 SmallString<20> buffer;
3626 if (result & APFloat::opOverflow) {
3627 diagnostic = diag::warn_float_overflow;
3628 APFloat::getLargest(Format).toString(buffer);
3629 } else {
3630 diagnostic = diag::warn_float_underflow;
3631 APFloat::getSmallest(Format).toString(buffer);
3634 S.Diag(Loc, diagnostic) << Ty << buffer.str();
3637 bool isExact = (result == APFloat::opOK);
3638 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3641 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3642 assert(E && "Invalid expression");
3644 if (E->isValueDependent())
3645 return false;
3647 QualType QT = E->getType();
3648 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3649 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3650 return true;
3653 llvm::APSInt ValueAPS;
3654 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3656 if (R.isInvalid())
3657 return true;
3659 // GCC allows the value of unroll count to be 0.
3660 // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3661 // "The values of 0 and 1 block any unrolling of the loop."
3662 // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3663 // '#pragma unroll' cases.
3664 bool ValueIsPositive =
3665 AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3666 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3667 Diag(E->getExprLoc(), diag::err_requires_positive_value)
3668 << toString(ValueAPS, 10) << ValueIsPositive;
3669 return true;
3672 return false;
3675 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3676 // Fast path for a single digit (which is quite common). A single digit
3677 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3678 if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3679 const uint8_t Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3680 return ActOnIntegerConstant(Tok.getLocation(), Val);
3683 SmallString<128> SpellingBuffer;
3684 // NumericLiteralParser wants to overread by one character. Add padding to
3685 // the buffer in case the token is copied to the buffer. If getSpelling()
3686 // returns a StringRef to the memory buffer, it should have a null char at
3687 // the EOF, so it is also safe.
3688 SpellingBuffer.resize(Tok.getLength() + 1);
3690 // Get the spelling of the token, which eliminates trigraphs, etc.
3691 bool Invalid = false;
3692 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3693 if (Invalid)
3694 return ExprError();
3696 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3697 PP.getSourceManager(), PP.getLangOpts(),
3698 PP.getTargetInfo(), PP.getDiagnostics());
3699 if (Literal.hadError)
3700 return ExprError();
3702 if (Literal.hasUDSuffix()) {
3703 // We're building a user-defined literal.
3704 const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3705 SourceLocation UDSuffixLoc =
3706 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3708 // Make sure we're allowed user-defined literals here.
3709 if (!UDLScope)
3710 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3712 QualType CookedTy;
3713 if (Literal.isFloatingLiteral()) {
3714 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3715 // long double, the literal is treated as a call of the form
3716 // operator "" X (f L)
3717 CookedTy = Context.LongDoubleTy;
3718 } else {
3719 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3720 // unsigned long long, the literal is treated as a call of the form
3721 // operator "" X (n ULL)
3722 CookedTy = Context.UnsignedLongLongTy;
3725 DeclarationName OpName =
3726 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3727 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3728 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3730 SourceLocation TokLoc = Tok.getLocation();
3732 // Perform literal operator lookup to determine if we're building a raw
3733 // literal or a cooked one.
3734 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3735 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3736 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3737 /*AllowStringTemplatePack*/ false,
3738 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3739 case LOLR_ErrorNoDiagnostic:
3740 // Lookup failure for imaginary constants isn't fatal, there's still the
3741 // GNU extension producing _Complex types.
3742 break;
3743 case LOLR_Error:
3744 return ExprError();
3745 case LOLR_Cooked: {
3746 Expr *Lit;
3747 if (Literal.isFloatingLiteral()) {
3748 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3749 } else {
3750 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3751 if (Literal.GetIntegerValue(ResultVal))
3752 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3753 << /* Unsigned */ 1;
3754 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3755 Tok.getLocation());
3757 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3760 case LOLR_Raw: {
3761 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3762 // literal is treated as a call of the form
3763 // operator "" X ("n")
3764 unsigned Length = Literal.getUDSuffixOffset();
3765 QualType StrTy = Context.getConstantArrayType(
3766 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3767 llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
3768 Expr *Lit =
3769 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3770 StringLiteralKind::Ordinary,
3771 /*Pascal*/ false, StrTy, &TokLoc, 1);
3772 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3775 case LOLR_Template: {
3776 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3777 // template), L is treated as a call fo the form
3778 // operator "" X <'c1', 'c2', ... 'ck'>()
3779 // where n is the source character sequence c1 c2 ... ck.
3780 TemplateArgumentListInfo ExplicitArgs;
3781 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3782 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3783 llvm::APSInt Value(CharBits, CharIsUnsigned);
3784 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3785 Value = TokSpelling[I];
3786 TemplateArgument Arg(Context, Value, Context.CharTy);
3787 TemplateArgumentLocInfo ArgInfo;
3788 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3790 return BuildLiteralOperatorCall(R, OpNameInfo, {}, TokLoc, &ExplicitArgs);
3792 case LOLR_StringTemplatePack:
3793 llvm_unreachable("unexpected literal operator lookup result");
3797 Expr *Res;
3799 if (Literal.isFixedPointLiteral()) {
3800 QualType Ty;
3802 if (Literal.isAccum) {
3803 if (Literal.isHalf) {
3804 Ty = Context.ShortAccumTy;
3805 } else if (Literal.isLong) {
3806 Ty = Context.LongAccumTy;
3807 } else {
3808 Ty = Context.AccumTy;
3810 } else if (Literal.isFract) {
3811 if (Literal.isHalf) {
3812 Ty = Context.ShortFractTy;
3813 } else if (Literal.isLong) {
3814 Ty = Context.LongFractTy;
3815 } else {
3816 Ty = Context.FractTy;
3820 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3822 bool isSigned = !Literal.isUnsigned;
3823 unsigned scale = Context.getFixedPointScale(Ty);
3824 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3826 llvm::APInt Val(bit_width, 0, isSigned);
3827 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3828 bool ValIsZero = Val.isZero() && !Overflowed;
3830 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3831 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3832 // Clause 6.4.4 - The value of a constant shall be in the range of
3833 // representable values for its type, with exception for constants of a
3834 // fract type with a value of exactly 1; such a constant shall denote
3835 // the maximal value for the type.
3836 --Val;
3837 else if (Val.ugt(MaxVal) || Overflowed)
3838 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3840 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3841 Tok.getLocation(), scale);
3842 } else if (Literal.isFloatingLiteral()) {
3843 QualType Ty;
3844 if (Literal.isHalf){
3845 if (getLangOpts().HLSL ||
3846 getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3847 Ty = Context.HalfTy;
3848 else {
3849 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3850 return ExprError();
3852 } else if (Literal.isFloat)
3853 Ty = Context.FloatTy;
3854 else if (Literal.isLong)
3855 Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3856 else if (Literal.isFloat16)
3857 Ty = Context.Float16Ty;
3858 else if (Literal.isFloat128)
3859 Ty = Context.Float128Ty;
3860 else if (getLangOpts().HLSL)
3861 Ty = Context.FloatTy;
3862 else
3863 Ty = Context.DoubleTy;
3865 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3867 if (Ty == Context.DoubleTy) {
3868 if (getLangOpts().SinglePrecisionConstants) {
3869 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3870 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3872 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3873 "cl_khr_fp64", getLangOpts())) {
3874 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3875 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3876 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3877 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3880 } else if (!Literal.isIntegerLiteral()) {
3881 return ExprError();
3882 } else {
3883 QualType Ty;
3885 // 'z/uz' literals are a C++23 feature.
3886 if (Literal.isSizeT)
3887 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3888 ? getLangOpts().CPlusPlus23
3889 ? diag::warn_cxx20_compat_size_t_suffix
3890 : diag::ext_cxx23_size_t_suffix
3891 : diag::err_cxx23_size_t_suffix);
3893 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3894 // but we do not currently support the suffix in C++ mode because it's not
3895 // entirely clear whether WG21 will prefer this suffix to return a library
3896 // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3897 // literals are a C++ extension.
3898 if (Literal.isBitInt)
3899 PP.Diag(Tok.getLocation(),
3900 getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3901 : getLangOpts().C23 ? diag::warn_c23_compat_bitint_suffix
3902 : diag::ext_c23_bitint_suffix);
3904 // Get the value in the widest-possible width. What is "widest" depends on
3905 // whether the literal is a bit-precise integer or not. For a bit-precise
3906 // integer type, try to scan the source to determine how many bits are
3907 // needed to represent the value. This may seem a bit expensive, but trying
3908 // to get the integer value from an overly-wide APInt is *extremely*
3909 // expensive, so the naive approach of assuming
3910 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3911 unsigned BitsNeeded =
3912 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3913 Literal.getLiteralDigits(), Literal.getRadix())
3914 : Context.getTargetInfo().getIntMaxTWidth();
3915 llvm::APInt ResultVal(BitsNeeded, 0);
3917 if (Literal.GetIntegerValue(ResultVal)) {
3918 // If this value didn't fit into uintmax_t, error and force to ull.
3919 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3920 << /* Unsigned */ 1;
3921 Ty = Context.UnsignedLongLongTy;
3922 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3923 "long long is not intmax_t?");
3924 } else {
3925 // If this value fits into a ULL, try to figure out what else it fits into
3926 // according to the rules of C99 6.4.4.1p5.
3928 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3929 // be an unsigned int.
3930 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3932 // HLSL doesn't really have `long` or `long long`. We support the `ll`
3933 // suffix for portability of code with C++, but both `l` and `ll` are
3934 // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3935 // same.
3936 if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3937 Literal.isLong = true;
3938 Literal.isLongLong = false;
3941 // Check from smallest to largest, picking the smallest type we can.
3942 unsigned Width = 0;
3944 // Microsoft specific integer suffixes are explicitly sized.
3945 if (Literal.MicrosoftInteger) {
3946 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3947 Width = 8;
3948 Ty = Context.CharTy;
3949 } else {
3950 Width = Literal.MicrosoftInteger;
3951 Ty = Context.getIntTypeForBitwidth(Width,
3952 /*Signed=*/!Literal.isUnsigned);
3956 // Bit-precise integer literals are automagically-sized based on the
3957 // width required by the literal.
3958 if (Literal.isBitInt) {
3959 // The signed version has one more bit for the sign value. There are no
3960 // zero-width bit-precise integers, even if the literal value is 0.
3961 Width = std::max(ResultVal.getActiveBits(), 1u) +
3962 (Literal.isUnsigned ? 0u : 1u);
3964 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3965 // and reset the type to the largest supported width.
3966 unsigned int MaxBitIntWidth =
3967 Context.getTargetInfo().getMaxBitIntWidth();
3968 if (Width > MaxBitIntWidth) {
3969 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3970 << Literal.isUnsigned;
3971 Width = MaxBitIntWidth;
3974 // Reset the result value to the smaller APInt and select the correct
3975 // type to be used. Note, we zext even for signed values because the
3976 // literal itself is always an unsigned value (a preceeding - is a
3977 // unary operator, not part of the literal).
3978 ResultVal = ResultVal.zextOrTrunc(Width);
3979 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
3982 // Check C++23 size_t literals.
3983 if (Literal.isSizeT) {
3984 assert(!Literal.MicrosoftInteger &&
3985 "size_t literals can't be Microsoft literals");
3986 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3987 Context.getTargetInfo().getSizeType());
3989 // Does it fit in size_t?
3990 if (ResultVal.isIntN(SizeTSize)) {
3991 // Does it fit in ssize_t?
3992 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3993 Ty = Context.getSignedSizeType();
3994 else if (AllowUnsigned)
3995 Ty = Context.getSizeType();
3996 Width = SizeTSize;
4000 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4001 !Literal.isSizeT) {
4002 // Are int/unsigned possibilities?
4003 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4005 // Does it fit in a unsigned int?
4006 if (ResultVal.isIntN(IntSize)) {
4007 // Does it fit in a signed int?
4008 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4009 Ty = Context.IntTy;
4010 else if (AllowUnsigned)
4011 Ty = Context.UnsignedIntTy;
4012 Width = IntSize;
4016 // Are long/unsigned long possibilities?
4017 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4018 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4020 // Does it fit in a unsigned long?
4021 if (ResultVal.isIntN(LongSize)) {
4022 // Does it fit in a signed long?
4023 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4024 Ty = Context.LongTy;
4025 else if (AllowUnsigned)
4026 Ty = Context.UnsignedLongTy;
4027 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4028 // is compatible.
4029 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4030 const unsigned LongLongSize =
4031 Context.getTargetInfo().getLongLongWidth();
4032 Diag(Tok.getLocation(),
4033 getLangOpts().CPlusPlus
4034 ? Literal.isLong
4035 ? diag::warn_old_implicitly_unsigned_long_cxx
4036 : /*C++98 UB*/ diag::
4037 ext_old_implicitly_unsigned_long_cxx
4038 : diag::warn_old_implicitly_unsigned_long)
4039 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4040 : /*will be ill-formed*/ 1);
4041 Ty = Context.UnsignedLongTy;
4043 Width = LongSize;
4047 // Check long long if needed.
4048 if (Ty.isNull() && !Literal.isSizeT) {
4049 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4051 // Does it fit in a unsigned long long?
4052 if (ResultVal.isIntN(LongLongSize)) {
4053 // Does it fit in a signed long long?
4054 // To be compatible with MSVC, hex integer literals ending with the
4055 // LL or i64 suffix are always signed in Microsoft mode.
4056 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4057 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4058 Ty = Context.LongLongTy;
4059 else if (AllowUnsigned)
4060 Ty = Context.UnsignedLongLongTy;
4061 Width = LongLongSize;
4063 // 'long long' is a C99 or C++11 feature, whether the literal
4064 // explicitly specified 'long long' or we needed the extra width.
4065 if (getLangOpts().CPlusPlus)
4066 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4067 ? diag::warn_cxx98_compat_longlong
4068 : diag::ext_cxx11_longlong);
4069 else if (!getLangOpts().C99)
4070 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4074 // If we still couldn't decide a type, we either have 'size_t' literal
4075 // that is out of range, or a decimal literal that does not fit in a
4076 // signed long long and has no U suffix.
4077 if (Ty.isNull()) {
4078 if (Literal.isSizeT)
4079 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4080 << Literal.isUnsigned;
4081 else
4082 Diag(Tok.getLocation(),
4083 diag::ext_integer_literal_too_large_for_signed);
4084 Ty = Context.UnsignedLongLongTy;
4085 Width = Context.getTargetInfo().getLongLongWidth();
4088 if (ResultVal.getBitWidth() != Width)
4089 ResultVal = ResultVal.trunc(Width);
4091 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4094 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4095 if (Literal.isImaginary) {
4096 Res = new (Context) ImaginaryLiteral(Res,
4097 Context.getComplexType(Res->getType()));
4099 // In C++, this is a GNU extension. In C, it's a C2y extension.
4100 unsigned DiagId;
4101 if (getLangOpts().CPlusPlus)
4102 DiagId = diag::ext_gnu_imaginary_constant;
4103 else if (getLangOpts().C2y)
4104 DiagId = diag::warn_c23_compat_imaginary_constant;
4105 else
4106 DiagId = diag::ext_c2y_imaginary_constant;
4107 Diag(Tok.getLocation(), DiagId);
4109 return Res;
4112 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4113 assert(E && "ActOnParenExpr() missing expr");
4114 QualType ExprTy = E->getType();
4115 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4116 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4117 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4118 return new (Context) ParenExpr(L, R, E);
4121 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4122 SourceLocation Loc,
4123 SourceRange ArgRange) {
4124 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4125 // scalar or vector data type argument..."
4126 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4127 // type (C99 6.2.5p18) or void.
4128 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4129 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4130 << T << ArgRange;
4131 return true;
4134 assert((T->isVoidType() || !T->isIncompleteType()) &&
4135 "Scalar types should always be complete");
4136 return false;
4139 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4140 SourceLocation Loc,
4141 SourceRange ArgRange) {
4142 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4143 if (!T->isVectorType() && !T->isSizelessVectorType())
4144 return S.Diag(Loc, diag::err_builtin_non_vector_type)
4145 << ""
4146 << "__builtin_vectorelements" << T << ArgRange;
4148 return false;
4151 static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4152 SourceLocation Loc,
4153 SourceRange ArgRange) {
4154 if (S.checkPointerAuthEnabled(Loc, ArgRange))
4155 return true;
4157 if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4158 !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4159 S.Diag(Loc, diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4160 return true;
4163 return false;
4166 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4167 SourceLocation Loc,
4168 SourceRange ArgRange,
4169 UnaryExprOrTypeTrait TraitKind) {
4170 // Invalid types must be hard errors for SFINAE in C++.
4171 if (S.LangOpts.CPlusPlus)
4172 return true;
4174 // C99 6.5.3.4p1:
4175 if (T->isFunctionType() &&
4176 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4177 TraitKind == UETT_PreferredAlignOf)) {
4178 // sizeof(function)/alignof(function) is allowed as an extension.
4179 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4180 << getTraitSpelling(TraitKind) << ArgRange;
4181 return false;
4184 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4185 // this is an error (OpenCL v1.1 s6.3.k)
4186 if (T->isVoidType()) {
4187 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4188 : diag::ext_sizeof_alignof_void_type;
4189 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4190 return false;
4193 return true;
4196 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4197 SourceLocation Loc,
4198 SourceRange ArgRange,
4199 UnaryExprOrTypeTrait TraitKind) {
4200 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4201 // runtime doesn't allow it.
4202 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4203 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4204 << T << (TraitKind == UETT_SizeOf)
4205 << ArgRange;
4206 return true;
4209 return false;
4212 /// Check whether E is a pointer from a decayed array type (the decayed
4213 /// pointer type is equal to T) and emit a warning if it is.
4214 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4215 const Expr *E) {
4216 // Don't warn if the operation changed the type.
4217 if (T != E->getType())
4218 return;
4220 // Now look for array decays.
4221 const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4222 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4223 return;
4225 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4226 << ICE->getType()
4227 << ICE->getSubExpr()->getType();
4230 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4231 UnaryExprOrTypeTrait ExprKind) {
4232 QualType ExprTy = E->getType();
4233 assert(!ExprTy->isReferenceType());
4235 bool IsUnevaluatedOperand =
4236 (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4237 ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4238 ExprKind == UETT_VecStep);
4239 if (IsUnevaluatedOperand) {
4240 ExprResult Result = CheckUnevaluatedOperand(E);
4241 if (Result.isInvalid())
4242 return true;
4243 E = Result.get();
4246 // The operand for sizeof and alignof is in an unevaluated expression context,
4247 // so side effects could result in unintended consequences.
4248 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4249 // used to build SFINAE gadgets.
4250 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4251 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4252 !E->isInstantiationDependent() &&
4253 !E->getType()->isVariableArrayType() &&
4254 E->HasSideEffects(Context, false))
4255 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4257 if (ExprKind == UETT_VecStep)
4258 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4259 E->getSourceRange());
4261 if (ExprKind == UETT_VectorElements)
4262 return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4263 E->getSourceRange());
4265 // Explicitly list some types as extensions.
4266 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4267 E->getSourceRange(), ExprKind))
4268 return false;
4270 // WebAssembly tables are always illegal operands to unary expressions and
4271 // type traits.
4272 if (Context.getTargetInfo().getTriple().isWasm() &&
4273 E->getType()->isWebAssemblyTableType()) {
4274 Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4275 << getTraitSpelling(ExprKind);
4276 return true;
4279 // 'alignof' applied to an expression only requires the base element type of
4280 // the expression to be complete. 'sizeof' requires the expression's type to
4281 // be complete (and will attempt to complete it if it's an array of unknown
4282 // bound).
4283 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4284 if (RequireCompleteSizedType(
4285 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4286 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4287 getTraitSpelling(ExprKind), E->getSourceRange()))
4288 return true;
4289 } else {
4290 if (RequireCompleteSizedExprType(
4291 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4292 getTraitSpelling(ExprKind), E->getSourceRange()))
4293 return true;
4296 // Completing the expression's type may have changed it.
4297 ExprTy = E->getType();
4298 assert(!ExprTy->isReferenceType());
4300 if (ExprTy->isFunctionType()) {
4301 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4302 << getTraitSpelling(ExprKind) << E->getSourceRange();
4303 return true;
4306 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4307 E->getSourceRange(), ExprKind))
4308 return true;
4310 if (ExprKind == UETT_SizeOf) {
4311 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4312 if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4313 QualType OType = PVD->getOriginalType();
4314 QualType Type = PVD->getType();
4315 if (Type->isPointerType() && OType->isArrayType()) {
4316 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4317 << Type << OType;
4318 Diag(PVD->getLocation(), diag::note_declared_at);
4323 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4324 // decays into a pointer and returns an unintended result. This is most
4325 // likely a typo for "sizeof(array) op x".
4326 if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4327 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4328 BO->getLHS());
4329 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4330 BO->getRHS());
4334 return false;
4337 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4338 // Cannot know anything else if the expression is dependent.
4339 if (E->isTypeDependent())
4340 return false;
4342 if (E->getObjectKind() == OK_BitField) {
4343 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4344 << 1 << E->getSourceRange();
4345 return true;
4348 ValueDecl *D = nullptr;
4349 Expr *Inner = E->IgnoreParens();
4350 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4351 D = DRE->getDecl();
4352 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4353 D = ME->getMemberDecl();
4356 // If it's a field, require the containing struct to have a
4357 // complete definition so that we can compute the layout.
4359 // This can happen in C++11 onwards, either by naming the member
4360 // in a way that is not transformed into a member access expression
4361 // (in an unevaluated operand, for instance), or by naming the member
4362 // in a trailing-return-type.
4364 // For the record, since __alignof__ on expressions is a GCC
4365 // extension, GCC seems to permit this but always gives the
4366 // nonsensical answer 0.
4368 // We don't really need the layout here --- we could instead just
4369 // directly check for all the appropriate alignment-lowing
4370 // attributes --- but that would require duplicating a lot of
4371 // logic that just isn't worth duplicating for such a marginal
4372 // use-case.
4373 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4374 // Fast path this check, since we at least know the record has a
4375 // definition if we can find a member of it.
4376 if (!FD->getParent()->isCompleteDefinition()) {
4377 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4378 << E->getSourceRange();
4379 return true;
4382 // Otherwise, if it's a field, and the field doesn't have
4383 // reference type, then it must have a complete type (or be a
4384 // flexible array member, which we explicitly want to
4385 // white-list anyway), which makes the following checks trivial.
4386 if (!FD->getType()->isReferenceType())
4387 return false;
4390 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4393 bool Sema::CheckVecStepExpr(Expr *E) {
4394 E = E->IgnoreParens();
4396 // Cannot know anything else if the expression is dependent.
4397 if (E->isTypeDependent())
4398 return false;
4400 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4403 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4404 CapturingScopeInfo *CSI) {
4405 assert(T->isVariablyModifiedType());
4406 assert(CSI != nullptr);
4408 // We're going to walk down into the type and look for VLA expressions.
4409 do {
4410 const Type *Ty = T.getTypePtr();
4411 switch (Ty->getTypeClass()) {
4412 #define TYPE(Class, Base)
4413 #define ABSTRACT_TYPE(Class, Base)
4414 #define NON_CANONICAL_TYPE(Class, Base)
4415 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4416 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4417 #include "clang/AST/TypeNodes.inc"
4418 T = QualType();
4419 break;
4420 // These types are never variably-modified.
4421 case Type::Builtin:
4422 case Type::Complex:
4423 case Type::Vector:
4424 case Type::ExtVector:
4425 case Type::ConstantMatrix:
4426 case Type::Record:
4427 case Type::Enum:
4428 case Type::TemplateSpecialization:
4429 case Type::ObjCObject:
4430 case Type::ObjCInterface:
4431 case Type::ObjCObjectPointer:
4432 case Type::ObjCTypeParam:
4433 case Type::Pipe:
4434 case Type::BitInt:
4435 llvm_unreachable("type class is never variably-modified!");
4436 case Type::Elaborated:
4437 T = cast<ElaboratedType>(Ty)->getNamedType();
4438 break;
4439 case Type::Adjusted:
4440 T = cast<AdjustedType>(Ty)->getOriginalType();
4441 break;
4442 case Type::Decayed:
4443 T = cast<DecayedType>(Ty)->getPointeeType();
4444 break;
4445 case Type::ArrayParameter:
4446 T = cast<ArrayParameterType>(Ty)->getElementType();
4447 break;
4448 case Type::Pointer:
4449 T = cast<PointerType>(Ty)->getPointeeType();
4450 break;
4451 case Type::BlockPointer:
4452 T = cast<BlockPointerType>(Ty)->getPointeeType();
4453 break;
4454 case Type::LValueReference:
4455 case Type::RValueReference:
4456 T = cast<ReferenceType>(Ty)->getPointeeType();
4457 break;
4458 case Type::MemberPointer:
4459 T = cast<MemberPointerType>(Ty)->getPointeeType();
4460 break;
4461 case Type::ConstantArray:
4462 case Type::IncompleteArray:
4463 // Losing element qualification here is fine.
4464 T = cast<ArrayType>(Ty)->getElementType();
4465 break;
4466 case Type::VariableArray: {
4467 // Losing element qualification here is fine.
4468 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4470 // Unknown size indication requires no size computation.
4471 // Otherwise, evaluate and record it.
4472 auto Size = VAT->getSizeExpr();
4473 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4474 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4475 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4477 T = VAT->getElementType();
4478 break;
4480 case Type::FunctionProto:
4481 case Type::FunctionNoProto:
4482 T = cast<FunctionType>(Ty)->getReturnType();
4483 break;
4484 case Type::Paren:
4485 case Type::TypeOf:
4486 case Type::UnaryTransform:
4487 case Type::Attributed:
4488 case Type::BTFTagAttributed:
4489 case Type::HLSLAttributedResource:
4490 case Type::SubstTemplateTypeParm:
4491 case Type::MacroQualified:
4492 case Type::CountAttributed:
4493 // Keep walking after single level desugaring.
4494 T = T.getSingleStepDesugaredType(Context);
4495 break;
4496 case Type::Typedef:
4497 T = cast<TypedefType>(Ty)->desugar();
4498 break;
4499 case Type::Decltype:
4500 T = cast<DecltypeType>(Ty)->desugar();
4501 break;
4502 case Type::PackIndexing:
4503 T = cast<PackIndexingType>(Ty)->desugar();
4504 break;
4505 case Type::Using:
4506 T = cast<UsingType>(Ty)->desugar();
4507 break;
4508 case Type::Auto:
4509 case Type::DeducedTemplateSpecialization:
4510 T = cast<DeducedType>(Ty)->getDeducedType();
4511 break;
4512 case Type::TypeOfExpr:
4513 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4514 break;
4515 case Type::Atomic:
4516 T = cast<AtomicType>(Ty)->getValueType();
4517 break;
4519 } while (!T.isNull() && T->isVariablyModifiedType());
4522 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4523 SourceLocation OpLoc,
4524 SourceRange ExprRange,
4525 UnaryExprOrTypeTrait ExprKind,
4526 StringRef KWName) {
4527 if (ExprType->isDependentType())
4528 return false;
4530 // C++ [expr.sizeof]p2:
4531 // When applied to a reference or a reference type, the result
4532 // is the size of the referenced type.
4533 // C++11 [expr.alignof]p3:
4534 // When alignof is applied to a reference type, the result
4535 // shall be the alignment of the referenced type.
4536 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4537 ExprType = Ref->getPointeeType();
4539 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4540 // When alignof or _Alignof is applied to an array type, the result
4541 // is the alignment of the element type.
4542 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4543 ExprKind == UETT_OpenMPRequiredSimdAlign) {
4544 // If the trait is 'alignof' in C before C2y, the ability to apply the
4545 // trait to an incomplete array is an extension.
4546 if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4547 ExprType->isIncompleteArrayType())
4548 Diag(OpLoc, getLangOpts().C2y
4549 ? diag::warn_c2y_compat_alignof_incomplete_array
4550 : diag::ext_c2y_alignof_incomplete_array);
4551 ExprType = Context.getBaseElementType(ExprType);
4554 if (ExprKind == UETT_VecStep)
4555 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4557 if (ExprKind == UETT_VectorElements)
4558 return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4559 ExprRange);
4561 if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4562 return checkPtrAuthTypeDiscriminatorOperandType(*this, ExprType, OpLoc,
4563 ExprRange);
4565 // Explicitly list some types as extensions.
4566 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4567 ExprKind))
4568 return false;
4570 if (RequireCompleteSizedType(
4571 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4572 KWName, ExprRange))
4573 return true;
4575 if (ExprType->isFunctionType()) {
4576 Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4577 return true;
4580 // WebAssembly tables are always illegal operands to unary expressions and
4581 // type traits.
4582 if (Context.getTargetInfo().getTriple().isWasm() &&
4583 ExprType->isWebAssemblyTableType()) {
4584 Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4585 << getTraitSpelling(ExprKind);
4586 return true;
4589 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4590 ExprKind))
4591 return true;
4593 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4594 if (auto *TT = ExprType->getAs<TypedefType>()) {
4595 for (auto I = FunctionScopes.rbegin(),
4596 E = std::prev(FunctionScopes.rend());
4597 I != E; ++I) {
4598 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4599 if (CSI == nullptr)
4600 break;
4601 DeclContext *DC = nullptr;
4602 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4603 DC = LSI->CallOperator;
4604 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4605 DC = CRSI->TheCapturedDecl;
4606 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4607 DC = BSI->TheDecl;
4608 if (DC) {
4609 if (DC->containsDecl(TT->getDecl()))
4610 break;
4611 captureVariablyModifiedType(Context, ExprType, CSI);
4617 return false;
4620 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4621 SourceLocation OpLoc,
4622 UnaryExprOrTypeTrait ExprKind,
4623 SourceRange R) {
4624 if (!TInfo)
4625 return ExprError();
4627 QualType T = TInfo->getType();
4629 if (!T->isDependentType() &&
4630 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4631 getTraitSpelling(ExprKind)))
4632 return ExprError();
4634 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4635 // properly deal with VLAs in nested calls of sizeof and typeof.
4636 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4637 TInfo->getType()->isVariablyModifiedType())
4638 TInfo = TransformToPotentiallyEvaluated(TInfo);
4640 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4641 return new (Context) UnaryExprOrTypeTraitExpr(
4642 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4645 ExprResult
4646 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4647 UnaryExprOrTypeTrait ExprKind) {
4648 ExprResult PE = CheckPlaceholderExpr(E);
4649 if (PE.isInvalid())
4650 return ExprError();
4652 E = PE.get();
4654 // Verify that the operand is valid.
4655 bool isInvalid = false;
4656 if (E->isTypeDependent()) {
4657 // Delay type-checking for type-dependent expressions.
4658 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4659 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4660 } else if (ExprKind == UETT_VecStep) {
4661 isInvalid = CheckVecStepExpr(E);
4662 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4663 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4664 isInvalid = true;
4665 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4666 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4667 isInvalid = true;
4668 } else if (ExprKind == UETT_VectorElements) {
4669 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4670 } else {
4671 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4674 if (isInvalid)
4675 return ExprError();
4677 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4678 PE = TransformToPotentiallyEvaluated(E);
4679 if (PE.isInvalid()) return ExprError();
4680 E = PE.get();
4683 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4684 return new (Context) UnaryExprOrTypeTraitExpr(
4685 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4688 ExprResult
4689 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4690 UnaryExprOrTypeTrait ExprKind, bool IsType,
4691 void *TyOrEx, SourceRange ArgRange) {
4692 // If error parsing type, ignore.
4693 if (!TyOrEx) return ExprError();
4695 if (IsType) {
4696 TypeSourceInfo *TInfo;
4697 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4698 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4701 Expr *ArgEx = (Expr *)TyOrEx;
4702 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4703 return Result;
4706 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4707 SourceLocation OpLoc, SourceRange R) {
4708 if (!TInfo)
4709 return true;
4710 return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4711 UETT_AlignOf, KWName);
4714 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4715 SourceLocation OpLoc, SourceRange R) {
4716 TypeSourceInfo *TInfo;
4717 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4718 &TInfo);
4719 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4722 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4723 bool IsReal) {
4724 if (V.get()->isTypeDependent())
4725 return S.Context.DependentTy;
4727 // _Real and _Imag are only l-values for normal l-values.
4728 if (V.get()->getObjectKind() != OK_Ordinary) {
4729 V = S.DefaultLvalueConversion(V.get());
4730 if (V.isInvalid())
4731 return QualType();
4734 // These operators return the element type of a complex type.
4735 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4736 return CT->getElementType();
4738 // Otherwise they pass through real integer and floating point types here.
4739 if (V.get()->getType()->isArithmeticType())
4740 return V.get()->getType();
4742 // Test for placeholders.
4743 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4744 if (PR.isInvalid()) return QualType();
4745 if (PR.get() != V.get()) {
4746 V = PR;
4747 return CheckRealImagOperand(S, V, Loc, IsReal);
4750 // Reject anything else.
4751 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4752 << (IsReal ? "__real" : "__imag");
4753 return QualType();
4758 ExprResult
4759 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4760 tok::TokenKind Kind, Expr *Input) {
4761 UnaryOperatorKind Opc;
4762 switch (Kind) {
4763 default: llvm_unreachable("Unknown unary op!");
4764 case tok::plusplus: Opc = UO_PostInc; break;
4765 case tok::minusminus: Opc = UO_PostDec; break;
4768 // Since this might is a postfix expression, get rid of ParenListExprs.
4769 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4770 if (Result.isInvalid()) return ExprError();
4771 Input = Result.get();
4773 return BuildUnaryOp(S, OpLoc, Opc, Input);
4776 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4778 /// \return true on error
4779 static bool checkArithmeticOnObjCPointer(Sema &S,
4780 SourceLocation opLoc,
4781 Expr *op) {
4782 assert(op->getType()->isObjCObjectPointerType());
4783 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4784 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4785 return false;
4787 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4788 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4789 << op->getSourceRange();
4790 return true;
4793 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4794 auto *BaseNoParens = Base->IgnoreParens();
4795 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4796 return MSProp->getPropertyDecl()->getType()->isArrayType();
4797 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4800 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4801 // Typically this is DependentTy, but can sometimes be more precise.
4803 // There are cases when we could determine a non-dependent type:
4804 // - LHS and RHS may have non-dependent types despite being type-dependent
4805 // (e.g. unbounded array static members of the current instantiation)
4806 // - one may be a dependent-sized array with known element type
4807 // - one may be a dependent-typed valid index (enum in current instantiation)
4809 // We *always* return a dependent type, in such cases it is DependentTy.
4810 // This avoids creating type-dependent expressions with non-dependent types.
4811 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4812 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4813 const ASTContext &Ctx) {
4814 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4815 QualType LTy = LHS->getType(), RTy = RHS->getType();
4816 QualType Result = Ctx.DependentTy;
4817 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4818 if (const PointerType *PT = LTy->getAs<PointerType>())
4819 Result = PT->getPointeeType();
4820 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4821 Result = AT->getElementType();
4822 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4823 if (const PointerType *PT = RTy->getAs<PointerType>())
4824 Result = PT->getPointeeType();
4825 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4826 Result = AT->getElementType();
4828 // Ensure we return a dependent type.
4829 return Result->isDependentType() ? Result : Ctx.DependentTy;
4832 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4833 SourceLocation lbLoc,
4834 MultiExprArg ArgExprs,
4835 SourceLocation rbLoc) {
4837 if (base && !base->getType().isNull() &&
4838 base->hasPlaceholderType(BuiltinType::ArraySection)) {
4839 auto *AS = cast<ArraySectionExpr>(base);
4840 if (AS->isOMPArraySection())
4841 return OpenMP().ActOnOMPArraySectionExpr(
4842 base, lbLoc, ArgExprs.front(), SourceLocation(), SourceLocation(),
4843 /*Length*/ nullptr,
4844 /*Stride=*/nullptr, rbLoc);
4846 return OpenACC().ActOnArraySectionExpr(base, lbLoc, ArgExprs.front(),
4847 SourceLocation(), /*Length*/ nullptr,
4848 rbLoc);
4851 // Since this might be a postfix expression, get rid of ParenListExprs.
4852 if (isa<ParenListExpr>(base)) {
4853 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4854 if (result.isInvalid())
4855 return ExprError();
4856 base = result.get();
4859 // Check if base and idx form a MatrixSubscriptExpr.
4861 // Helper to check for comma expressions, which are not allowed as indices for
4862 // matrix subscript expressions.
4863 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4864 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4865 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4866 << SourceRange(base->getBeginLoc(), rbLoc);
4867 return true;
4869 return false;
4871 // The matrix subscript operator ([][])is considered a single operator.
4872 // Separating the index expressions by parenthesis is not allowed.
4873 if (base && !base->getType().isNull() &&
4874 base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4875 !isa<MatrixSubscriptExpr>(base)) {
4876 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4877 << SourceRange(base->getBeginLoc(), rbLoc);
4878 return ExprError();
4880 // If the base is a MatrixSubscriptExpr, try to create a new
4881 // MatrixSubscriptExpr.
4882 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4883 if (matSubscriptE) {
4884 assert(ArgExprs.size() == 1);
4885 if (CheckAndReportCommaError(ArgExprs.front()))
4886 return ExprError();
4888 assert(matSubscriptE->isIncomplete() &&
4889 "base has to be an incomplete matrix subscript");
4890 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4891 matSubscriptE->getRowIdx(),
4892 ArgExprs.front(), rbLoc);
4894 if (base->getType()->isWebAssemblyTableType()) {
4895 Diag(base->getExprLoc(), diag::err_wasm_table_art)
4896 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4897 return ExprError();
4900 CheckInvalidBuiltinCountedByRef(base, ArraySubscriptKind);
4902 // Handle any non-overload placeholder types in the base and index
4903 // expressions. We can't handle overloads here because the other
4904 // operand might be an overloadable type, in which case the overload
4905 // resolution for the operator overload should get the first crack
4906 // at the overload.
4907 bool IsMSPropertySubscript = false;
4908 if (base->getType()->isNonOverloadPlaceholderType()) {
4909 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4910 if (!IsMSPropertySubscript) {
4911 ExprResult result = CheckPlaceholderExpr(base);
4912 if (result.isInvalid())
4913 return ExprError();
4914 base = result.get();
4918 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4919 if (base->getType()->isMatrixType()) {
4920 assert(ArgExprs.size() == 1);
4921 if (CheckAndReportCommaError(ArgExprs.front()))
4922 return ExprError();
4924 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4925 rbLoc);
4928 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4929 Expr *idx = ArgExprs[0];
4930 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4931 (isa<CXXOperatorCallExpr>(idx) &&
4932 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4933 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4934 << SourceRange(base->getBeginLoc(), rbLoc);
4938 if (ArgExprs.size() == 1 &&
4939 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4940 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4941 if (result.isInvalid())
4942 return ExprError();
4943 ArgExprs[0] = result.get();
4944 } else {
4945 if (CheckArgsForPlaceholders(ArgExprs))
4946 return ExprError();
4949 // Build an unanalyzed expression if either operand is type-dependent.
4950 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4951 (base->isTypeDependent() ||
4952 Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
4953 !isa<PackExpansionExpr>(ArgExprs[0])) {
4954 return new (Context) ArraySubscriptExpr(
4955 base, ArgExprs.front(),
4956 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4957 VK_LValue, OK_Ordinary, rbLoc);
4960 // MSDN, property (C++)
4961 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4962 // This attribute can also be used in the declaration of an empty array in a
4963 // class or structure definition. For example:
4964 // __declspec(property(get=GetX, put=PutX)) int x[];
4965 // The above statement indicates that x[] can be used with one or more array
4966 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4967 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4968 if (IsMSPropertySubscript) {
4969 assert(ArgExprs.size() == 1);
4970 // Build MS property subscript expression if base is MS property reference
4971 // or MS property subscript.
4972 return new (Context)
4973 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4974 VK_LValue, OK_Ordinary, rbLoc);
4977 // Use C++ overloaded-operator rules if either operand has record
4978 // type. The spec says to do this if either type is *overloadable*,
4979 // but enum types can't declare subscript operators or conversion
4980 // operators, so there's nothing interesting for overload resolution
4981 // to do if there aren't any record types involved.
4983 // ObjC pointers have their own subscripting logic that is not tied
4984 // to overload resolution and so should not take this path.
4985 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4986 ((base->getType()->isRecordType() ||
4987 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
4988 ArgExprs[0]->getType()->isRecordType())))) {
4989 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4992 ExprResult Res =
4993 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4995 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4996 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4998 return Res;
5001 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5002 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5003 InitializationKind Kind =
5004 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5005 InitializationSequence InitSeq(*this, Entity, Kind, E);
5006 return InitSeq.Perform(*this, Entity, Kind, E);
5009 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5010 Expr *ColumnIdx,
5011 SourceLocation RBLoc) {
5012 ExprResult BaseR = CheckPlaceholderExpr(Base);
5013 if (BaseR.isInvalid())
5014 return BaseR;
5015 Base = BaseR.get();
5017 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5018 if (RowR.isInvalid())
5019 return RowR;
5020 RowIdx = RowR.get();
5022 if (!ColumnIdx)
5023 return new (Context) MatrixSubscriptExpr(
5024 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5026 // Build an unanalyzed expression if any of the operands is type-dependent.
5027 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5028 ColumnIdx->isTypeDependent())
5029 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5030 Context.DependentTy, RBLoc);
5032 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5033 if (ColumnR.isInvalid())
5034 return ColumnR;
5035 ColumnIdx = ColumnR.get();
5037 // Check that IndexExpr is an integer expression. If it is a constant
5038 // expression, check that it is less than Dim (= the number of elements in the
5039 // corresponding dimension).
5040 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5041 bool IsColumnIdx) -> Expr * {
5042 if (!IndexExpr->getType()->isIntegerType() &&
5043 !IndexExpr->isTypeDependent()) {
5044 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5045 << IsColumnIdx;
5046 return nullptr;
5049 if (std::optional<llvm::APSInt> Idx =
5050 IndexExpr->getIntegerConstantExpr(Context)) {
5051 if ((*Idx < 0 || *Idx >= Dim)) {
5052 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5053 << IsColumnIdx << Dim;
5054 return nullptr;
5058 ExprResult ConvExpr = IndexExpr;
5059 assert(!ConvExpr.isInvalid() &&
5060 "should be able to convert any integer type to size type");
5061 return ConvExpr.get();
5064 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5065 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5066 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5067 if (!RowIdx || !ColumnIdx)
5068 return ExprError();
5070 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5071 MTy->getElementType(), RBLoc);
5074 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5075 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5076 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5078 // For expressions like `&(*s).b`, the base is recorded and what should be
5079 // checked.
5080 const MemberExpr *Member = nullptr;
5081 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5082 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5084 LastRecord.PossibleDerefs.erase(StrippedExpr);
5087 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5088 if (isUnevaluatedContext())
5089 return;
5091 QualType ResultTy = E->getType();
5092 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5094 // Bail if the element is an array since it is not memory access.
5095 if (isa<ArrayType>(ResultTy))
5096 return;
5098 if (ResultTy->hasAttr(attr::NoDeref)) {
5099 LastRecord.PossibleDerefs.insert(E);
5100 return;
5103 // Check if the base type is a pointer to a member access of a struct
5104 // marked with noderef.
5105 const Expr *Base = E->getBase();
5106 QualType BaseTy = Base->getType();
5107 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5108 // Not a pointer access
5109 return;
5111 const MemberExpr *Member = nullptr;
5112 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5113 Member->isArrow())
5114 Base = Member->getBase();
5116 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5117 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5118 LastRecord.PossibleDerefs.insert(E);
5122 ExprResult
5123 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5124 Expr *Idx, SourceLocation RLoc) {
5125 Expr *LHSExp = Base;
5126 Expr *RHSExp = Idx;
5128 ExprValueKind VK = VK_LValue;
5129 ExprObjectKind OK = OK_Ordinary;
5131 // Per C++ core issue 1213, the result is an xvalue if either operand is
5132 // a non-lvalue array, and an lvalue otherwise.
5133 if (getLangOpts().CPlusPlus11) {
5134 for (auto *Op : {LHSExp, RHSExp}) {
5135 Op = Op->IgnoreImplicit();
5136 if (Op->getType()->isArrayType() && !Op->isLValue())
5137 VK = VK_XValue;
5141 // Perform default conversions.
5142 if (!LHSExp->getType()->isSubscriptableVectorType()) {
5143 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5144 if (Result.isInvalid())
5145 return ExprError();
5146 LHSExp = Result.get();
5148 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5149 if (Result.isInvalid())
5150 return ExprError();
5151 RHSExp = Result.get();
5153 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5155 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5156 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5157 // in the subscript position. As a result, we need to derive the array base
5158 // and index from the expression types.
5159 Expr *BaseExpr, *IndexExpr;
5160 QualType ResultType;
5161 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5162 BaseExpr = LHSExp;
5163 IndexExpr = RHSExp;
5164 ResultType =
5165 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5166 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5167 BaseExpr = LHSExp;
5168 IndexExpr = RHSExp;
5169 ResultType = PTy->getPointeeType();
5170 } else if (const ObjCObjectPointerType *PTy =
5171 LHSTy->getAs<ObjCObjectPointerType>()) {
5172 BaseExpr = LHSExp;
5173 IndexExpr = RHSExp;
5175 // Use custom logic if this should be the pseudo-object subscript
5176 // expression.
5177 if (!LangOpts.isSubscriptPointerArithmetic())
5178 return ObjC().BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr,
5179 nullptr, nullptr);
5181 ResultType = PTy->getPointeeType();
5182 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5183 // Handle the uncommon case of "123[Ptr]".
5184 BaseExpr = RHSExp;
5185 IndexExpr = LHSExp;
5186 ResultType = PTy->getPointeeType();
5187 } else if (const ObjCObjectPointerType *PTy =
5188 RHSTy->getAs<ObjCObjectPointerType>()) {
5189 // Handle the uncommon case of "123[Ptr]".
5190 BaseExpr = RHSExp;
5191 IndexExpr = LHSExp;
5192 ResultType = PTy->getPointeeType();
5193 if (!LangOpts.isSubscriptPointerArithmetic()) {
5194 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5195 << ResultType << BaseExpr->getSourceRange();
5196 return ExprError();
5198 } else if (LHSTy->isSubscriptableVectorType()) {
5199 if (LHSTy->isBuiltinType() &&
5200 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5201 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5202 if (BTy->isSVEBool())
5203 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5204 << LHSExp->getSourceRange()
5205 << RHSExp->getSourceRange());
5206 ResultType = BTy->getSveEltType(Context);
5207 } else {
5208 const VectorType *VTy = LHSTy->getAs<VectorType>();
5209 ResultType = VTy->getElementType();
5211 BaseExpr = LHSExp; // vectors: V[123]
5212 IndexExpr = RHSExp;
5213 // We apply C++ DR1213 to vector subscripting too.
5214 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5215 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5216 if (Materialized.isInvalid())
5217 return ExprError();
5218 LHSExp = Materialized.get();
5220 VK = LHSExp->getValueKind();
5221 if (VK != VK_PRValue)
5222 OK = OK_VectorComponent;
5224 QualType BaseType = BaseExpr->getType();
5225 Qualifiers BaseQuals = BaseType.getQualifiers();
5226 Qualifiers MemberQuals = ResultType.getQualifiers();
5227 Qualifiers Combined = BaseQuals + MemberQuals;
5228 if (Combined != MemberQuals)
5229 ResultType = Context.getQualifiedType(ResultType, Combined);
5230 } else if (LHSTy->isArrayType()) {
5231 // If we see an array that wasn't promoted by
5232 // DefaultFunctionArrayLvalueConversion, it must be an array that
5233 // wasn't promoted because of the C90 rule that doesn't
5234 // allow promoting non-lvalue arrays. Warn, then
5235 // force the promotion here.
5236 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5237 << LHSExp->getSourceRange();
5238 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5239 CK_ArrayToPointerDecay).get();
5240 LHSTy = LHSExp->getType();
5242 BaseExpr = LHSExp;
5243 IndexExpr = RHSExp;
5244 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5245 } else if (RHSTy->isArrayType()) {
5246 // Same as previous, except for 123[f().a] case
5247 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5248 << RHSExp->getSourceRange();
5249 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5250 CK_ArrayToPointerDecay).get();
5251 RHSTy = RHSExp->getType();
5253 BaseExpr = RHSExp;
5254 IndexExpr = LHSExp;
5255 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5256 } else {
5257 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5258 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5260 // C99 6.5.2.1p1
5261 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5262 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5263 << IndexExpr->getSourceRange());
5265 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5266 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
5267 !IndexExpr->isTypeDependent()) {
5268 std::optional<llvm::APSInt> IntegerContantExpr =
5269 IndexExpr->getIntegerConstantExpr(getASTContext());
5270 if (!IntegerContantExpr.has_value() ||
5271 IntegerContantExpr.value().isNegative())
5272 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5275 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5276 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5277 // type. Note that Functions are not objects, and that (in C99 parlance)
5278 // incomplete types are not object types.
5279 if (ResultType->isFunctionType()) {
5280 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5281 << ResultType << BaseExpr->getSourceRange();
5282 return ExprError();
5285 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5286 // GNU extension: subscripting on pointer to void
5287 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5288 << BaseExpr->getSourceRange();
5290 // C forbids expressions of unqualified void type from being l-values.
5291 // See IsCForbiddenLValueType.
5292 if (!ResultType.hasQualifiers())
5293 VK = VK_PRValue;
5294 } else if (!ResultType->isDependentType() &&
5295 !ResultType.isWebAssemblyReferenceType() &&
5296 RequireCompleteSizedType(
5297 LLoc, ResultType,
5298 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5299 return ExprError();
5301 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5302 !ResultType.isCForbiddenLValueType());
5304 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5305 FunctionScopes.size() > 1) {
5306 if (auto *TT =
5307 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5308 for (auto I = FunctionScopes.rbegin(),
5309 E = std::prev(FunctionScopes.rend());
5310 I != E; ++I) {
5311 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5312 if (CSI == nullptr)
5313 break;
5314 DeclContext *DC = nullptr;
5315 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5316 DC = LSI->CallOperator;
5317 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5318 DC = CRSI->TheCapturedDecl;
5319 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5320 DC = BSI->TheDecl;
5321 if (DC) {
5322 if (DC->containsDecl(TT->getDecl()))
5323 break;
5324 captureVariablyModifiedType(
5325 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5331 return new (Context)
5332 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5335 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5336 ParmVarDecl *Param, Expr *RewrittenInit,
5337 bool SkipImmediateInvocations) {
5338 if (Param->hasUnparsedDefaultArg()) {
5339 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5340 // If we've already cleared out the location for the default argument,
5341 // that means we're parsing it right now.
5342 if (!UnparsedDefaultArgLocs.count(Param)) {
5343 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5344 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5345 Param->setInvalidDecl();
5346 return true;
5349 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5350 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5351 Diag(UnparsedDefaultArgLocs[Param],
5352 diag::note_default_argument_declared_here);
5353 return true;
5356 if (Param->hasUninstantiatedDefaultArg()) {
5357 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5358 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5359 return true;
5362 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5363 assert(Init && "default argument but no initializer?");
5365 // If the default expression creates temporaries, we need to
5366 // push them to the current stack of expression temporaries so they'll
5367 // be properly destroyed.
5368 // FIXME: We should really be rebuilding the default argument with new
5369 // bound temporaries; see the comment in PR5810.
5370 // We don't need to do that with block decls, though, because
5371 // blocks in default argument expression can never capture anything.
5372 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5373 // Set the "needs cleanups" bit regardless of whether there are
5374 // any explicit objects.
5375 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5376 // Append all the objects to the cleanup list. Right now, this
5377 // should always be a no-op, because blocks in default argument
5378 // expressions should never be able to capture anything.
5379 assert(!InitWithCleanup->getNumObjects() &&
5380 "default argument expression has capturing blocks?");
5382 // C++ [expr.const]p15.1:
5383 // An expression or conversion is in an immediate function context if it is
5384 // potentially evaluated and [...] its innermost enclosing non-block scope
5385 // is a function parameter scope of an immediate function.
5386 EnterExpressionEvaluationContext EvalContext(
5387 *this,
5388 FD->isImmediateFunction()
5389 ? ExpressionEvaluationContext::ImmediateFunctionContext
5390 : ExpressionEvaluationContext::PotentiallyEvaluated,
5391 Param);
5392 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5393 SkipImmediateInvocations;
5394 runWithSufficientStackSpace(CallLoc, [&] {
5395 MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
5397 return false;
5400 struct ImmediateCallVisitor : DynamicRecursiveASTVisitor {
5401 const ASTContext &Context;
5402 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {
5403 ShouldVisitImplicitCode = true;
5406 bool HasImmediateCalls = false;
5408 bool VisitCallExpr(CallExpr *E) override {
5409 if (const FunctionDecl *FD = E->getDirectCallee())
5410 HasImmediateCalls |= FD->isImmediateFunction();
5411 return DynamicRecursiveASTVisitor::VisitStmt(E);
5414 bool VisitCXXConstructExpr(CXXConstructExpr *E) override {
5415 if (const FunctionDecl *FD = E->getConstructor())
5416 HasImmediateCalls |= FD->isImmediateFunction();
5417 return DynamicRecursiveASTVisitor::VisitStmt(E);
5420 // SourceLocExpr are not immediate invocations
5421 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5422 // need to be rebuilt so that they refer to the correct SourceLocation and
5423 // DeclContext.
5424 bool VisitSourceLocExpr(SourceLocExpr *E) override {
5425 HasImmediateCalls = true;
5426 return DynamicRecursiveASTVisitor::VisitStmt(E);
5429 // A nested lambda might have parameters with immediate invocations
5430 // in their default arguments.
5431 // The compound statement is not visited (as it does not constitute a
5432 // subexpression).
5433 // FIXME: We should consider visiting and transforming captures
5434 // with init expressions.
5435 bool VisitLambdaExpr(LambdaExpr *E) override {
5436 return VisitCXXMethodDecl(E->getCallOperator());
5439 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
5440 return TraverseStmt(E->getExpr());
5443 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) override {
5444 return TraverseStmt(E->getExpr());
5448 struct EnsureImmediateInvocationInDefaultArgs
5449 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5450 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5451 : TreeTransform(SemaRef) {}
5453 bool AlwaysRebuild() { return true; }
5455 // Lambda can only have immediate invocations in the default
5456 // args of their parameters, which is transformed upon calling the closure.
5457 // The body is not a subexpression, so we have nothing to do.
5458 // FIXME: Immediate calls in capture initializers should be transformed.
5459 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5460 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5462 // Make sure we don't rebuild the this pointer as it would
5463 // cause it to incorrectly point it to the outermost class
5464 // in the case of nested struct initialization.
5465 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5467 // Rewrite to source location to refer to the context in which they are used.
5468 ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5469 DeclContext *DC = E->getParentContext();
5470 if (DC == SemaRef.CurContext)
5471 return E;
5473 // FIXME: During instantiation, because the rebuild of defaults arguments
5474 // is not always done in the context of the template instantiator,
5475 // we run the risk of producing a dependent source location
5476 // that would never be rebuilt.
5477 // This usually happens during overload resolution, or in contexts
5478 // where the value of the source location does not matter.
5479 // However, we should find a better way to deal with source location
5480 // of function templates.
5481 if (!SemaRef.CurrentInstantiationScope ||
5482 !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5483 DC = SemaRef.CurContext;
5485 return getDerived().RebuildSourceLocExpr(
5486 E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), DC);
5490 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5491 FunctionDecl *FD, ParmVarDecl *Param,
5492 Expr *Init) {
5493 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5495 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5496 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5497 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5498 InitializationContext =
5499 OutermostDeclarationWithDelayedImmediateInvocations();
5500 if (!InitializationContext.has_value())
5501 InitializationContext.emplace(CallLoc, Param, CurContext);
5503 if (!Init && !Param->hasUnparsedDefaultArg()) {
5504 // Mark that we are replacing a default argument first.
5505 // If we are instantiating a template we won't have to
5506 // retransform immediate calls.
5507 // C++ [expr.const]p15.1:
5508 // An expression or conversion is in an immediate function context if it
5509 // is potentially evaluated and [...] its innermost enclosing non-block
5510 // scope is a function parameter scope of an immediate function.
5511 EnterExpressionEvaluationContext EvalContext(
5512 *this,
5513 FD->isImmediateFunction()
5514 ? ExpressionEvaluationContext::ImmediateFunctionContext
5515 : ExpressionEvaluationContext::PotentiallyEvaluated,
5516 Param);
5518 if (Param->hasUninstantiatedDefaultArg()) {
5519 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5520 return ExprError();
5522 // CWG2631
5523 // An immediate invocation that is not evaluated where it appears is
5524 // evaluated and checked for whether it is a constant expression at the
5525 // point where the enclosing initializer is used in a function call.
5526 ImmediateCallVisitor V(getASTContext());
5527 if (!NestedDefaultChecking)
5528 V.TraverseDecl(Param);
5530 // Rewrite the call argument that was created from the corresponding
5531 // parameter's default argument.
5532 if (V.HasImmediateCalls ||
5533 (NeedRebuild && isa_and_present<ExprWithCleanups>(Param->getInit()))) {
5534 if (V.HasImmediateCalls)
5535 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5536 CallLoc, Param, CurContext};
5537 // Pass down lifetime extending flag, and collect temporaries in
5538 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5539 currentEvaluationContext().InLifetimeExtendingContext =
5540 parentEvaluationContext().InLifetimeExtendingContext;
5541 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5542 ExprResult Res;
5543 runWithSufficientStackSpace(CallLoc, [&] {
5544 Res = Immediate.TransformInitializer(Param->getInit(),
5545 /*NotCopy=*/false);
5547 if (Res.isInvalid())
5548 return ExprError();
5549 Res = ConvertParamDefaultArgument(Param, Res.get(),
5550 Res.get()->getBeginLoc());
5551 if (Res.isInvalid())
5552 return ExprError();
5553 Init = Res.get();
5557 if (CheckCXXDefaultArgExpr(
5558 CallLoc, FD, Param, Init,
5559 /*SkipImmediateInvocations=*/NestedDefaultChecking))
5560 return ExprError();
5562 return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
5563 Init, InitializationContext->Context);
5566 static FieldDecl *FindFieldDeclInstantiationPattern(const ASTContext &Ctx,
5567 FieldDecl *Field) {
5568 if (FieldDecl *Pattern = Ctx.getInstantiatedFromUnnamedFieldDecl(Field))
5569 return Pattern;
5570 auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5571 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5572 DeclContext::lookup_result Lookup =
5573 ClassPattern->lookup(Field->getDeclName());
5574 auto Rng = llvm::make_filter_range(
5575 Lookup, [](auto &&L) { return isa<FieldDecl>(*L); });
5576 if (Rng.empty())
5577 return nullptr;
5578 // FIXME: this breaks clang/test/Modules/pr28812.cpp
5579 // assert(std::distance(Rng.begin(), Rng.end()) <= 1
5580 // && "Duplicated instantiation pattern for field decl");
5581 return cast<FieldDecl>(*Rng.begin());
5584 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5585 assert(Field->hasInClassInitializer());
5587 // If we might have already tried and failed to instantiate, don't try again.
5588 if (Field->isInvalidDecl())
5589 return ExprError();
5591 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5593 auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5595 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5596 InitializationContext =
5597 OutermostDeclarationWithDelayedImmediateInvocations();
5598 if (!InitializationContext.has_value())
5599 InitializationContext.emplace(Loc, Field, CurContext);
5601 Expr *Init = nullptr;
5603 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5604 bool NeedRebuild = needsRebuildOfDefaultArgOrInit();
5605 EnterExpressionEvaluationContext EvalContext(
5606 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5608 if (!Field->getInClassInitializer()) {
5609 // Maybe we haven't instantiated the in-class initializer. Go check the
5610 // pattern FieldDecl to see if it has one.
5611 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
5612 FieldDecl *Pattern =
5613 FindFieldDeclInstantiationPattern(getASTContext(), Field);
5614 assert(Pattern && "We must have set the Pattern!");
5615 if (!Pattern->hasInClassInitializer() ||
5616 InstantiateInClassInitializer(Loc, Field, Pattern,
5617 getTemplateInstantiationArgs(Field))) {
5618 Field->setInvalidDecl();
5619 return ExprError();
5624 // CWG2631
5625 // An immediate invocation that is not evaluated where it appears is
5626 // evaluated and checked for whether it is a constant expression at the
5627 // point where the enclosing initializer is used in a [...] a constructor
5628 // definition, or an aggregate initialization.
5629 ImmediateCallVisitor V(getASTContext());
5630 if (!NestedDefaultChecking)
5631 V.TraverseDecl(Field);
5633 // CWG1815
5634 // Support lifetime extension of temporary created by aggregate
5635 // initialization using a default member initializer. We should rebuild
5636 // the initializer in a lifetime extension context if the initializer
5637 // expression is an ExprWithCleanups. Then make sure the normal lifetime
5638 // extension code recurses into the default initializer and does lifetime
5639 // extension when warranted.
5640 bool ContainsAnyTemporaries =
5641 isa_and_present<ExprWithCleanups>(Field->getInClassInitializer());
5642 if (Field->getInClassInitializer() &&
5643 !Field->getInClassInitializer()->containsErrors() &&
5644 (V.HasImmediateCalls || (NeedRebuild && ContainsAnyTemporaries))) {
5645 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5646 CurContext};
5647 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5648 NestedDefaultChecking;
5649 // Pass down lifetime extending flag, and collect temporaries in
5650 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5651 currentEvaluationContext().InLifetimeExtendingContext =
5652 parentEvaluationContext().InLifetimeExtendingContext;
5653 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5654 ExprResult Res;
5655 runWithSufficientStackSpace(Loc, [&] {
5656 Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
5657 /*CXXDirectInit=*/false);
5659 if (!Res.isInvalid())
5660 Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
5661 if (Res.isInvalid()) {
5662 Field->setInvalidDecl();
5663 return ExprError();
5665 Init = Res.get();
5668 if (Field->getInClassInitializer()) {
5669 Expr *E = Init ? Init : Field->getInClassInitializer();
5670 if (!NestedDefaultChecking)
5671 runWithSufficientStackSpace(Loc, [&] {
5672 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5674 if (isInLifetimeExtendingContext())
5675 DiscardCleanupsInEvaluationContext();
5676 // C++11 [class.base.init]p7:
5677 // The initialization of each base and member constitutes a
5678 // full-expression.
5679 ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
5680 if (Res.isInvalid()) {
5681 Field->setInvalidDecl();
5682 return ExprError();
5684 Init = Res.get();
5686 return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
5687 Field, InitializationContext->Context,
5688 Init);
5691 // DR1351:
5692 // If the brace-or-equal-initializer of a non-static data member
5693 // invokes a defaulted default constructor of its class or of an
5694 // enclosing class in a potentially evaluated subexpression, the
5695 // program is ill-formed.
5697 // This resolution is unworkable: the exception specification of the
5698 // default constructor can be needed in an unevaluated context, in
5699 // particular, in the operand of a noexcept-expression, and we can be
5700 // unable to compute an exception specification for an enclosed class.
5702 // Any attempt to resolve the exception specification of a defaulted default
5703 // constructor before the initializer is lexically complete will ultimately
5704 // come here at which point we can diagnose it.
5705 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5706 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
5707 << OutermostClass << Field;
5708 Diag(Field->getEndLoc(),
5709 diag::note_default_member_initializer_not_yet_parsed);
5710 // Recover by marking the field invalid, unless we're in a SFINAE context.
5711 if (!isSFINAEContext())
5712 Field->setInvalidDecl();
5713 return ExprError();
5716 Sema::VariadicCallType
5717 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5718 Expr *Fn) {
5719 if (Proto && Proto->isVariadic()) {
5720 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5721 return VariadicConstructor;
5722 else if (Fn && Fn->getType()->isBlockPointerType())
5723 return VariadicBlock;
5724 else if (FDecl) {
5725 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5726 if (Method->isInstance())
5727 return VariadicMethod;
5728 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5729 return VariadicMethod;
5730 return VariadicFunction;
5732 return VariadicDoesNotApply;
5735 namespace {
5736 class FunctionCallCCC final : public FunctionCallFilterCCC {
5737 public:
5738 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5739 unsigned NumArgs, MemberExpr *ME)
5740 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5741 FunctionName(FuncName) {}
5743 bool ValidateCandidate(const TypoCorrection &candidate) override {
5744 if (!candidate.getCorrectionSpecifier() ||
5745 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5746 return false;
5749 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5752 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5753 return std::make_unique<FunctionCallCCC>(*this);
5756 private:
5757 const IdentifierInfo *const FunctionName;
5761 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5762 FunctionDecl *FDecl,
5763 ArrayRef<Expr *> Args) {
5764 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5765 DeclarationName FuncName = FDecl->getDeclName();
5766 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5768 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5769 if (TypoCorrection Corrected = S.CorrectTypo(
5770 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5771 S.getScopeForContext(S.CurContext), nullptr, CCC,
5772 Sema::CTK_ErrorRecovery)) {
5773 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5774 if (Corrected.isOverloaded()) {
5775 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5776 OverloadCandidateSet::iterator Best;
5777 for (NamedDecl *CD : Corrected) {
5778 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5779 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5780 OCS);
5782 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5783 case OR_Success:
5784 ND = Best->FoundDecl;
5785 Corrected.setCorrectionDecl(ND);
5786 break;
5787 default:
5788 break;
5791 ND = ND->getUnderlyingDecl();
5792 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5793 return Corrected;
5796 return TypoCorrection();
5799 // [C++26][[expr.unary.op]/p4
5800 // A pointer to member is only formed when an explicit &
5801 // is used and its operand is a qualified-id not enclosed in parentheses.
5802 static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5803 if (!isa<ParenExpr>(Fn))
5804 return false;
5806 Fn = Fn->IgnoreParens();
5808 auto *UO = dyn_cast<UnaryOperator>(Fn);
5809 if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5810 return false;
5811 if (auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
5812 return DRE->hasQualifier();
5814 if (auto *OVL = dyn_cast<OverloadExpr>(UO->getSubExpr()->IgnoreParens()))
5815 return OVL->getQualifier();
5816 return false;
5819 bool
5820 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5821 FunctionDecl *FDecl,
5822 const FunctionProtoType *Proto,
5823 ArrayRef<Expr *> Args,
5824 SourceLocation RParenLoc,
5825 bool IsExecConfig) {
5826 // Bail out early if calling a builtin with custom typechecking.
5827 if (FDecl)
5828 if (unsigned ID = FDecl->getBuiltinID())
5829 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5830 return false;
5832 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5833 // assignment, to the types of the corresponding parameter, ...
5835 bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5836 bool HasExplicitObjectParameter =
5837 !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5838 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5839 unsigned NumParams = Proto->getNumParams();
5840 bool Invalid = false;
5841 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5842 unsigned FnKind = Fn->getType()->isBlockPointerType()
5843 ? 1 /* block */
5844 : (IsExecConfig ? 3 /* kernel function (exec config) */
5845 : 0 /* function */);
5847 // If too few arguments are available (and we don't have default
5848 // arguments for the remaining parameters), don't make the call.
5849 if (Args.size() < NumParams) {
5850 if (Args.size() < MinArgs) {
5851 TypoCorrection TC;
5852 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5853 unsigned diag_id =
5854 MinArgs == NumParams && !Proto->isVariadic()
5855 ? diag::err_typecheck_call_too_few_args_suggest
5856 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5857 diagnoseTypo(
5858 TC, PDiag(diag_id)
5859 << FnKind << MinArgs - ExplicitObjectParameterOffset
5860 << static_cast<unsigned>(Args.size()) -
5861 ExplicitObjectParameterOffset
5862 << HasExplicitObjectParameter << TC.getCorrectionRange());
5863 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5864 FDecl->getParamDecl(ExplicitObjectParameterOffset)
5865 ->getDeclName())
5866 Diag(RParenLoc,
5867 MinArgs == NumParams && !Proto->isVariadic()
5868 ? diag::err_typecheck_call_too_few_args_one
5869 : diag::err_typecheck_call_too_few_args_at_least_one)
5870 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5871 << HasExplicitObjectParameter << Fn->getSourceRange();
5872 else
5873 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5874 ? diag::err_typecheck_call_too_few_args
5875 : diag::err_typecheck_call_too_few_args_at_least)
5876 << FnKind << MinArgs - ExplicitObjectParameterOffset
5877 << static_cast<unsigned>(Args.size()) -
5878 ExplicitObjectParameterOffset
5879 << HasExplicitObjectParameter << Fn->getSourceRange();
5881 // Emit the location of the prototype.
5882 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5883 Diag(FDecl->getLocation(), diag::note_callee_decl)
5884 << FDecl << FDecl->getParametersSourceRange();
5886 return true;
5888 // We reserve space for the default arguments when we create
5889 // the call expression, before calling ConvertArgumentsForCall.
5890 assert((Call->getNumArgs() == NumParams) &&
5891 "We should have reserved space for the default arguments before!");
5894 // If too many are passed and not variadic, error on the extras and drop
5895 // them.
5896 if (Args.size() > NumParams) {
5897 if (!Proto->isVariadic()) {
5898 TypoCorrection TC;
5899 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5900 unsigned diag_id =
5901 MinArgs == NumParams && !Proto->isVariadic()
5902 ? diag::err_typecheck_call_too_many_args_suggest
5903 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5904 diagnoseTypo(
5905 TC, PDiag(diag_id)
5906 << FnKind << NumParams - ExplicitObjectParameterOffset
5907 << static_cast<unsigned>(Args.size()) -
5908 ExplicitObjectParameterOffset
5909 << HasExplicitObjectParameter << TC.getCorrectionRange());
5910 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5911 FDecl->getParamDecl(ExplicitObjectParameterOffset)
5912 ->getDeclName())
5913 Diag(Args[NumParams]->getBeginLoc(),
5914 MinArgs == NumParams
5915 ? diag::err_typecheck_call_too_many_args_one
5916 : diag::err_typecheck_call_too_many_args_at_most_one)
5917 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5918 << static_cast<unsigned>(Args.size()) -
5919 ExplicitObjectParameterOffset
5920 << HasExplicitObjectParameter << Fn->getSourceRange()
5921 << SourceRange(Args[NumParams]->getBeginLoc(),
5922 Args.back()->getEndLoc());
5923 else
5924 Diag(Args[NumParams]->getBeginLoc(),
5925 MinArgs == NumParams
5926 ? diag::err_typecheck_call_too_many_args
5927 : diag::err_typecheck_call_too_many_args_at_most)
5928 << FnKind << NumParams - ExplicitObjectParameterOffset
5929 << static_cast<unsigned>(Args.size()) -
5930 ExplicitObjectParameterOffset
5931 << HasExplicitObjectParameter << Fn->getSourceRange()
5932 << SourceRange(Args[NumParams]->getBeginLoc(),
5933 Args.back()->getEndLoc());
5935 // Emit the location of the prototype.
5936 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5937 Diag(FDecl->getLocation(), diag::note_callee_decl)
5938 << FDecl << FDecl->getParametersSourceRange();
5940 // This deletes the extra arguments.
5941 Call->shrinkNumArgs(NumParams);
5942 return true;
5945 SmallVector<Expr *, 8> AllArgs;
5946 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5948 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5949 AllArgs, CallType);
5950 if (Invalid)
5951 return true;
5952 unsigned TotalNumArgs = AllArgs.size();
5953 for (unsigned i = 0; i < TotalNumArgs; ++i)
5954 Call->setArg(i, AllArgs[i]);
5956 Call->computeDependence();
5957 return false;
5960 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5961 const FunctionProtoType *Proto,
5962 unsigned FirstParam, ArrayRef<Expr *> Args,
5963 SmallVectorImpl<Expr *> &AllArgs,
5964 VariadicCallType CallType, bool AllowExplicit,
5965 bool IsListInitialization) {
5966 unsigned NumParams = Proto->getNumParams();
5967 bool Invalid = false;
5968 size_t ArgIx = 0;
5969 // Continue to check argument types (even if we have too few/many args).
5970 for (unsigned i = FirstParam; i < NumParams; i++) {
5971 QualType ProtoArgType = Proto->getParamType(i);
5973 Expr *Arg;
5974 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5975 if (ArgIx < Args.size()) {
5976 Arg = Args[ArgIx++];
5978 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5979 diag::err_call_incomplete_argument, Arg))
5980 return true;
5982 // Strip the unbridged-cast placeholder expression off, if applicable.
5983 bool CFAudited = false;
5984 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5985 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5986 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5987 Arg = ObjC().stripARCUnbridgedCast(Arg);
5988 else if (getLangOpts().ObjCAutoRefCount &&
5989 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5990 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5991 CFAudited = true;
5993 if (Proto->getExtParameterInfo(i).isNoEscape() &&
5994 ProtoArgType->isBlockPointerType())
5995 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5996 BE->getBlockDecl()->setDoesNotEscape();
5997 if ((Proto->getExtParameterInfo(i).getABI() == ParameterABI::HLSLOut ||
5998 Proto->getExtParameterInfo(i).getABI() == ParameterABI::HLSLInOut)) {
5999 ExprResult ArgExpr = HLSL().ActOnOutParamExpr(Param, Arg);
6000 if (ArgExpr.isInvalid())
6001 return true;
6002 Arg = ArgExpr.getAs<Expr>();
6005 InitializedEntity Entity =
6006 Param ? InitializedEntity::InitializeParameter(Context, Param,
6007 ProtoArgType)
6008 : InitializedEntity::InitializeParameter(
6009 Context, ProtoArgType, Proto->isParamConsumed(i));
6011 // Remember that parameter belongs to a CF audited API.
6012 if (CFAudited)
6013 Entity.setParameterCFAudited();
6015 ExprResult ArgE = PerformCopyInitialization(
6016 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6017 if (ArgE.isInvalid())
6018 return true;
6020 Arg = ArgE.getAs<Expr>();
6021 } else {
6022 assert(Param && "can't use default arguments without a known callee");
6024 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6025 if (ArgExpr.isInvalid())
6026 return true;
6028 Arg = ArgExpr.getAs<Expr>();
6031 // Check for array bounds violations for each argument to the call. This
6032 // check only triggers warnings when the argument isn't a more complex Expr
6033 // with its own checking, such as a BinaryOperator.
6034 CheckArrayAccess(Arg);
6036 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6037 CheckStaticArrayArgument(CallLoc, Param, Arg);
6039 AllArgs.push_back(Arg);
6042 // If this is a variadic call, handle args passed through "...".
6043 if (CallType != VariadicDoesNotApply) {
6044 // Assume that extern "C" functions with variadic arguments that
6045 // return __unknown_anytype aren't *really* variadic.
6046 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6047 FDecl->isExternC()) {
6048 for (Expr *A : Args.slice(ArgIx)) {
6049 QualType paramType; // ignored
6050 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6051 Invalid |= arg.isInvalid();
6052 AllArgs.push_back(arg.get());
6055 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6056 } else {
6057 for (Expr *A : Args.slice(ArgIx)) {
6058 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6059 Invalid |= Arg.isInvalid();
6060 AllArgs.push_back(Arg.get());
6064 // Check for array bounds violations.
6065 for (Expr *A : Args.slice(ArgIx))
6066 CheckArrayAccess(A);
6068 return Invalid;
6071 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6072 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6073 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6074 TL = DTL.getOriginalLoc();
6075 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6076 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6077 << ATL.getLocalSourceRange();
6080 void
6081 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6082 ParmVarDecl *Param,
6083 const Expr *ArgExpr) {
6084 // Static array parameters are not supported in C++.
6085 if (!Param || getLangOpts().CPlusPlus)
6086 return;
6088 QualType OrigTy = Param->getOriginalType();
6090 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6091 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6092 return;
6094 if (ArgExpr->isNullPointerConstant(Context,
6095 Expr::NPC_NeverValueDependent)) {
6096 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6097 DiagnoseCalleeStaticArrayParam(*this, Param);
6098 return;
6101 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6102 if (!CAT)
6103 return;
6105 const ConstantArrayType *ArgCAT =
6106 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6107 if (!ArgCAT)
6108 return;
6110 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6111 ArgCAT->getElementType())) {
6112 if (ArgCAT->getSize().ult(CAT->getSize())) {
6113 Diag(CallLoc, diag::warn_static_array_too_small)
6114 << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6115 << (unsigned)CAT->getZExtSize() << 0;
6116 DiagnoseCalleeStaticArrayParam(*this, Param);
6118 return;
6121 std::optional<CharUnits> ArgSize =
6122 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6123 std::optional<CharUnits> ParmSize =
6124 getASTContext().getTypeSizeInCharsIfKnown(CAT);
6125 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6126 Diag(CallLoc, diag::warn_static_array_too_small)
6127 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6128 << (unsigned)ParmSize->getQuantity() << 1;
6129 DiagnoseCalleeStaticArrayParam(*this, Param);
6133 /// Given a function expression of unknown-any type, try to rebuild it
6134 /// to have a function type.
6135 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6137 /// Is the given type a placeholder that we need to lower out
6138 /// immediately during argument processing?
6139 static bool isPlaceholderToRemoveAsArg(QualType type) {
6140 // Placeholders are never sugared.
6141 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6142 if (!placeholder) return false;
6144 switch (placeholder->getKind()) {
6145 // Ignore all the non-placeholder types.
6146 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6147 case BuiltinType::Id:
6148 #include "clang/Basic/OpenCLImageTypes.def"
6149 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6150 case BuiltinType::Id:
6151 #include "clang/Basic/OpenCLExtensionTypes.def"
6152 // In practice we'll never use this, since all SVE types are sugared
6153 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6154 #define SVE_TYPE(Name, Id, SingletonId) \
6155 case BuiltinType::Id:
6156 #include "clang/Basic/AArch64SVEACLETypes.def"
6157 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6158 case BuiltinType::Id:
6159 #include "clang/Basic/PPCTypes.def"
6160 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6161 #include "clang/Basic/RISCVVTypes.def"
6162 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6163 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6164 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
6165 #include "clang/Basic/AMDGPUTypes.def"
6166 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6167 #include "clang/Basic/HLSLIntangibleTypes.def"
6168 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6169 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6170 #include "clang/AST/BuiltinTypes.def"
6171 return false;
6173 case BuiltinType::UnresolvedTemplate:
6174 // We cannot lower out overload sets; they might validly be resolved
6175 // by the call machinery.
6176 case BuiltinType::Overload:
6177 return false;
6179 // Unbridged casts in ARC can be handled in some call positions and
6180 // should be left in place.
6181 case BuiltinType::ARCUnbridgedCast:
6182 return false;
6184 // Pseudo-objects should be converted as soon as possible.
6185 case BuiltinType::PseudoObject:
6186 return true;
6188 // The debugger mode could theoretically but currently does not try
6189 // to resolve unknown-typed arguments based on known parameter types.
6190 case BuiltinType::UnknownAny:
6191 return true;
6193 // These are always invalid as call arguments and should be reported.
6194 case BuiltinType::BoundMember:
6195 case BuiltinType::BuiltinFn:
6196 case BuiltinType::IncompleteMatrixIdx:
6197 case BuiltinType::ArraySection:
6198 case BuiltinType::OMPArrayShaping:
6199 case BuiltinType::OMPIterator:
6200 return true;
6203 llvm_unreachable("bad builtin type kind");
6206 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6207 // Apply this processing to all the arguments at once instead of
6208 // dying at the first failure.
6209 bool hasInvalid = false;
6210 for (size_t i = 0, e = args.size(); i != e; i++) {
6211 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6212 ExprResult result = CheckPlaceholderExpr(args[i]);
6213 if (result.isInvalid()) hasInvalid = true;
6214 else args[i] = result.get();
6217 return hasInvalid;
6220 /// If a builtin function has a pointer argument with no explicit address
6221 /// space, then it should be able to accept a pointer to any address
6222 /// space as input. In order to do this, we need to replace the
6223 /// standard builtin declaration with one that uses the same address space
6224 /// as the call.
6226 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6227 /// it does not contain any pointer arguments without
6228 /// an address space qualifer. Otherwise the rewritten
6229 /// FunctionDecl is returned.
6230 /// TODO: Handle pointer return types.
6231 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6232 FunctionDecl *FDecl,
6233 MultiExprArg ArgExprs) {
6235 QualType DeclType = FDecl->getType();
6236 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6238 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6239 ArgExprs.size() < FT->getNumParams())
6240 return nullptr;
6242 bool NeedsNewDecl = false;
6243 unsigned i = 0;
6244 SmallVector<QualType, 8> OverloadParams;
6246 for (QualType ParamType : FT->param_types()) {
6248 // Convert array arguments to pointer to simplify type lookup.
6249 ExprResult ArgRes =
6250 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6251 if (ArgRes.isInvalid())
6252 return nullptr;
6253 Expr *Arg = ArgRes.get();
6254 QualType ArgType = Arg->getType();
6255 if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6256 !ArgType->isPointerType() ||
6257 !ArgType->getPointeeType().hasAddressSpace() ||
6258 isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6259 OverloadParams.push_back(ParamType);
6260 continue;
6263 QualType PointeeType = ParamType->getPointeeType();
6264 if (PointeeType.hasAddressSpace())
6265 continue;
6267 NeedsNewDecl = true;
6268 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6270 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6271 OverloadParams.push_back(Context.getPointerType(PointeeType));
6274 if (!NeedsNewDecl)
6275 return nullptr;
6277 FunctionProtoType::ExtProtoInfo EPI;
6278 EPI.Variadic = FT->isVariadic();
6279 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6280 OverloadParams, EPI);
6281 DeclContext *Parent = FDecl->getParent();
6282 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6283 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6284 FDecl->getIdentifier(), OverloadTy,
6285 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6286 false,
6287 /*hasPrototype=*/true);
6288 SmallVector<ParmVarDecl*, 16> Params;
6289 FT = cast<FunctionProtoType>(OverloadTy);
6290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6291 QualType ParamType = FT->getParamType(i);
6292 ParmVarDecl *Parm =
6293 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6294 SourceLocation(), nullptr, ParamType,
6295 /*TInfo=*/nullptr, SC_None, nullptr);
6296 Parm->setScopeInfo(0, i);
6297 Params.push_back(Parm);
6299 OverloadDecl->setParams(Params);
6300 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6301 return OverloadDecl;
6304 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6305 FunctionDecl *Callee,
6306 MultiExprArg ArgExprs) {
6307 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6308 // similar attributes) really don't like it when functions are called with an
6309 // invalid number of args.
6310 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6311 /*PartialOverloading=*/false) &&
6312 !Callee->isVariadic())
6313 return;
6314 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6315 return;
6317 if (const EnableIfAttr *Attr =
6318 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6319 S.Diag(Fn->getBeginLoc(),
6320 isa<CXXMethodDecl>(Callee)
6321 ? diag::err_ovl_no_viable_member_function_in_call
6322 : diag::err_ovl_no_viable_function_in_call)
6323 << Callee << Callee->getSourceRange();
6324 S.Diag(Callee->getLocation(),
6325 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6326 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6327 return;
6331 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6332 const UnresolvedMemberExpr *const UME, Sema &S) {
6334 const auto GetFunctionLevelDCIfCXXClass =
6335 [](Sema &S) -> const CXXRecordDecl * {
6336 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6337 if (!DC || !DC->getParent())
6338 return nullptr;
6340 // If the call to some member function was made from within a member
6341 // function body 'M' return return 'M's parent.
6342 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6343 return MD->getParent()->getCanonicalDecl();
6344 // else the call was made from within a default member initializer of a
6345 // class, so return the class.
6346 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6347 return RD->getCanonicalDecl();
6348 return nullptr;
6350 // If our DeclContext is neither a member function nor a class (in the
6351 // case of a lambda in a default member initializer), we can't have an
6352 // enclosing 'this'.
6354 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6355 if (!CurParentClass)
6356 return false;
6358 // The naming class for implicit member functions call is the class in which
6359 // name lookup starts.
6360 const CXXRecordDecl *const NamingClass =
6361 UME->getNamingClass()->getCanonicalDecl();
6362 assert(NamingClass && "Must have naming class even for implicit access");
6364 // If the unresolved member functions were found in a 'naming class' that is
6365 // related (either the same or derived from) to the class that contains the
6366 // member function that itself contained the implicit member access.
6368 return CurParentClass == NamingClass ||
6369 CurParentClass->isDerivedFrom(NamingClass);
6372 static void
6373 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6374 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6376 if (!UME)
6377 return;
6379 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6380 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6381 // already been captured, or if this is an implicit member function call (if
6382 // it isn't, an attempt to capture 'this' should already have been made).
6383 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6384 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6385 return;
6387 // Check if the naming class in which the unresolved members were found is
6388 // related (same as or is a base of) to the enclosing class.
6390 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6391 return;
6394 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6395 // If the enclosing function is not dependent, then this lambda is
6396 // capture ready, so if we can capture this, do so.
6397 if (!EnclosingFunctionCtx->isDependentContext()) {
6398 // If the current lambda and all enclosing lambdas can capture 'this' -
6399 // then go ahead and capture 'this' (since our unresolved overload set
6400 // contains at least one non-static member function).
6401 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6402 S.CheckCXXThisCapture(CallLoc);
6403 } else if (S.CurContext->isDependentContext()) {
6404 // ... since this is an implicit member reference, that might potentially
6405 // involve a 'this' capture, mark 'this' for potential capture in
6406 // enclosing lambdas.
6407 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6408 CurLSI->addPotentialThisCapture(CallLoc);
6412 // Once a call is fully resolved, warn for unqualified calls to specific
6413 // C++ standard functions, like move and forward.
6414 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6415 const CallExpr *Call) {
6416 // We are only checking unary move and forward so exit early here.
6417 if (Call->getNumArgs() != 1)
6418 return;
6420 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6421 if (!E || isa<UnresolvedLookupExpr>(E))
6422 return;
6423 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
6424 if (!DRE || !DRE->getLocation().isValid())
6425 return;
6427 if (DRE->getQualifier())
6428 return;
6430 const FunctionDecl *FD = Call->getDirectCallee();
6431 if (!FD)
6432 return;
6434 // Only warn for some functions deemed more frequent or problematic.
6435 unsigned BuiltinID = FD->getBuiltinID();
6436 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6437 return;
6439 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6440 << FD->getQualifiedNameAsString()
6441 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6444 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6445 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6446 Expr *ExecConfig) {
6447 ExprResult Call =
6448 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6449 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6450 if (Call.isInvalid())
6451 return Call;
6453 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6454 // language modes.
6455 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
6456 ULE && ULE->hasExplicitTemplateArgs() &&
6457 ULE->decls_begin() == ULE->decls_end()) {
6458 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6459 ? diag::warn_cxx17_compat_adl_only_template_id
6460 : diag::ext_adl_only_template_id)
6461 << ULE->getName();
6464 if (LangOpts.OpenMP)
6465 Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6466 ExecConfig);
6467 if (LangOpts.CPlusPlus) {
6468 if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
6469 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6471 // If we previously found that the id-expression of this call refers to a
6472 // consteval function but the call is dependent, we should not treat is an
6473 // an invalid immediate call.
6474 if (auto *DRE = dyn_cast<DeclRefExpr>(Fn->IgnoreParens());
6475 DRE && Call.get()->isValueDependent()) {
6476 currentEvaluationContext().ReferenceToConsteval.erase(DRE);
6479 return Call;
6482 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6483 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6484 Expr *ExecConfig, bool IsExecConfig,
6485 bool AllowRecovery) {
6486 // Since this might be a postfix expression, get rid of ParenListExprs.
6487 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6488 if (Result.isInvalid()) return ExprError();
6489 Fn = Result.get();
6491 if (CheckArgsForPlaceholders(ArgExprs))
6492 return ExprError();
6494 // The result of __builtin_counted_by_ref cannot be used as a function
6495 // argument. It allows leaking and modification of bounds safety information.
6496 for (const Expr *Arg : ArgExprs)
6497 if (CheckInvalidBuiltinCountedByRef(Arg, FunctionArgKind))
6498 return ExprError();
6500 if (getLangOpts().CPlusPlus) {
6501 // If this is a pseudo-destructor expression, build the call immediately.
6502 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6503 if (!ArgExprs.empty()) {
6504 // Pseudo-destructor calls should not have any arguments.
6505 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6506 << FixItHint::CreateRemoval(
6507 SourceRange(ArgExprs.front()->getBeginLoc(),
6508 ArgExprs.back()->getEndLoc()));
6511 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6512 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6514 if (Fn->getType() == Context.PseudoObjectTy) {
6515 ExprResult result = CheckPlaceholderExpr(Fn);
6516 if (result.isInvalid()) return ExprError();
6517 Fn = result.get();
6520 // Determine whether this is a dependent call inside a C++ template,
6521 // in which case we won't do any semantic analysis now.
6522 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6523 if (ExecConfig) {
6524 return CUDAKernelCallExpr::Create(Context, Fn,
6525 cast<CallExpr>(ExecConfig), ArgExprs,
6526 Context.DependentTy, VK_PRValue,
6527 RParenLoc, CurFPFeatureOverrides());
6528 } else {
6530 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6531 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6532 Fn->getBeginLoc());
6534 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6535 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6539 // Determine whether this is a call to an object (C++ [over.call.object]).
6540 if (Fn->getType()->isRecordType())
6541 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6542 RParenLoc);
6544 if (Fn->getType() == Context.UnknownAnyTy) {
6545 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6546 if (result.isInvalid()) return ExprError();
6547 Fn = result.get();
6550 if (Fn->getType() == Context.BoundMemberTy) {
6551 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6552 RParenLoc, ExecConfig, IsExecConfig,
6553 AllowRecovery);
6557 // Check for overloaded calls. This can happen even in C due to extensions.
6558 if (Fn->getType() == Context.OverloadTy) {
6559 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6561 // We aren't supposed to apply this logic if there's an '&' involved.
6562 if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6563 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6564 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6565 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6566 OverloadExpr *ovl = find.Expression;
6567 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6568 return BuildOverloadedCallExpr(
6569 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6570 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6571 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6572 RParenLoc, ExecConfig, IsExecConfig,
6573 AllowRecovery);
6577 // If we're directly calling a function, get the appropriate declaration.
6578 if (Fn->getType() == Context.UnknownAnyTy) {
6579 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6580 if (result.isInvalid()) return ExprError();
6581 Fn = result.get();
6584 Expr *NakedFn = Fn->IgnoreParens();
6586 bool CallingNDeclIndirectly = false;
6587 NamedDecl *NDecl = nullptr;
6588 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6589 if (UnOp->getOpcode() == UO_AddrOf) {
6590 CallingNDeclIndirectly = true;
6591 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6595 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6596 NDecl = DRE->getDecl();
6598 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6599 if (FDecl && FDecl->getBuiltinID()) {
6600 // Rewrite the function decl for this builtin by replacing parameters
6601 // with no explicit address space with the address space of the arguments
6602 // in ArgExprs.
6603 if ((FDecl =
6604 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6605 NDecl = FDecl;
6606 Fn = DeclRefExpr::Create(
6607 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6608 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6609 nullptr, DRE->isNonOdrUse());
6612 } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
6613 NDecl = ME->getMemberDecl();
6615 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6616 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6617 FD, /*Complain=*/true, Fn->getBeginLoc()))
6618 return ExprError();
6620 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6622 // If this expression is a call to a builtin function in HIP device
6623 // compilation, allow a pointer-type argument to default address space to be
6624 // passed as a pointer-type parameter to a non-default address space.
6625 // If Arg is declared in the default address space and Param is declared
6626 // in a non-default address space, perform an implicit address space cast to
6627 // the parameter type.
6628 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6629 FD->getBuiltinID()) {
6630 for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6631 ++Idx) {
6632 ParmVarDecl *Param = FD->getParamDecl(Idx);
6633 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6634 !ArgExprs[Idx]->getType()->isPointerType())
6635 continue;
6637 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6638 auto ArgTy = ArgExprs[Idx]->getType();
6639 auto ArgPtTy = ArgTy->getPointeeType();
6640 auto ArgAS = ArgPtTy.getAddressSpace();
6642 // Add address space cast if target address spaces are different
6643 bool NeedImplicitASC =
6644 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6645 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6646 // or from specific AS which has target AS matching that of Param.
6647 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6648 if (!NeedImplicitASC)
6649 continue;
6651 // First, ensure that the Arg is an RValue.
6652 if (ArgExprs[Idx]->isGLValue()) {
6653 ArgExprs[Idx] = ImplicitCastExpr::Create(
6654 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6655 nullptr, VK_PRValue, FPOptionsOverride());
6658 // Construct a new arg type with address space of Param
6659 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6660 ArgPtQuals.setAddressSpace(ParamAS);
6661 auto NewArgPtTy =
6662 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6663 auto NewArgTy =
6664 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6665 ArgTy.getQualifiers());
6667 // Finally perform an implicit address space cast
6668 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6669 CK_AddressSpaceConversion)
6670 .get();
6675 if (Context.isDependenceAllowed() &&
6676 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6677 assert(!getLangOpts().CPlusPlus);
6678 assert((Fn->containsErrors() ||
6679 llvm::any_of(ArgExprs,
6680 [](clang::Expr *E) { return E->containsErrors(); })) &&
6681 "should only occur in error-recovery path.");
6682 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6683 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6685 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6686 ExecConfig, IsExecConfig);
6689 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6690 MultiExprArg CallArgs) {
6691 StringRef Name = Context.BuiltinInfo.getName(Id);
6692 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6693 Sema::LookupOrdinaryName);
6694 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6696 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6697 assert(BuiltInDecl && "failed to find builtin declaration");
6699 ExprResult DeclRef =
6700 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6701 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6703 ExprResult Call =
6704 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6706 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6707 return Call.get();
6710 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6711 SourceLocation BuiltinLoc,
6712 SourceLocation RParenLoc) {
6713 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6714 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6717 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6718 SourceLocation BuiltinLoc,
6719 SourceLocation RParenLoc) {
6720 ExprValueKind VK = VK_PRValue;
6721 ExprObjectKind OK = OK_Ordinary;
6722 QualType SrcTy = E->getType();
6723 if (!SrcTy->isDependentType() &&
6724 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6725 return ExprError(
6726 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6727 << DestTy << SrcTy << E->getSourceRange());
6728 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6731 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6732 SourceLocation BuiltinLoc,
6733 SourceLocation RParenLoc) {
6734 TypeSourceInfo *TInfo;
6735 GetTypeFromParser(ParsedDestTy, &TInfo);
6736 return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6739 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6740 SourceLocation LParenLoc,
6741 ArrayRef<Expr *> Args,
6742 SourceLocation RParenLoc, Expr *Config,
6743 bool IsExecConfig, ADLCallKind UsesADL) {
6744 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6745 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6747 // Functions with 'interrupt' attribute cannot be called directly.
6748 if (FDecl) {
6749 if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6750 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6751 return ExprError();
6753 if (FDecl->hasAttr<ARMInterruptAttr>()) {
6754 Diag(Fn->getExprLoc(), diag::err_arm_interrupt_called);
6755 return ExprError();
6759 // X86 interrupt handlers may only call routines with attribute
6760 // no_caller_saved_registers since there is no efficient way to
6761 // save and restore the non-GPR state.
6762 if (auto *Caller = getCurFunctionDecl()) {
6763 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6764 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6765 const TargetInfo &TI = Context.getTargetInfo();
6766 bool HasNonGPRRegisters =
6767 TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
6768 if (HasNonGPRRegisters &&
6769 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6770 Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
6771 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6772 if (FDecl)
6773 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6778 // Promote the function operand.
6779 // We special-case function promotion here because we only allow promoting
6780 // builtin functions to function pointers in the callee of a call.
6781 ExprResult Result;
6782 QualType ResultTy;
6783 if (BuiltinID &&
6784 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6785 // Extract the return type from the (builtin) function pointer type.
6786 // FIXME Several builtins still have setType in
6787 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6788 // Builtins.td to ensure they are correct before removing setType calls.
6789 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6790 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6791 ResultTy = FDecl->getCallResultType();
6792 } else {
6793 Result = CallExprUnaryConversions(Fn);
6794 ResultTy = Context.BoolTy;
6796 if (Result.isInvalid())
6797 return ExprError();
6798 Fn = Result.get();
6800 // Check for a valid function type, but only if it is not a builtin which
6801 // requires custom type checking. These will be handled by
6802 // CheckBuiltinFunctionCall below just after creation of the call expression.
6803 const FunctionType *FuncT = nullptr;
6804 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6805 retry:
6806 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6807 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6808 // have type pointer to function".
6809 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6810 if (!FuncT)
6811 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6812 << Fn->getType() << Fn->getSourceRange());
6813 } else if (const BlockPointerType *BPT =
6814 Fn->getType()->getAs<BlockPointerType>()) {
6815 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6816 } else {
6817 // Handle calls to expressions of unknown-any type.
6818 if (Fn->getType() == Context.UnknownAnyTy) {
6819 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6820 if (rewrite.isInvalid())
6821 return ExprError();
6822 Fn = rewrite.get();
6823 goto retry;
6826 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6827 << Fn->getType() << Fn->getSourceRange());
6831 // Get the number of parameters in the function prototype, if any.
6832 // We will allocate space for max(Args.size(), NumParams) arguments
6833 // in the call expression.
6834 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6835 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6837 CallExpr *TheCall;
6838 if (Config) {
6839 assert(UsesADL == ADLCallKind::NotADL &&
6840 "CUDAKernelCallExpr should not use ADL");
6841 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6842 Args, ResultTy, VK_PRValue, RParenLoc,
6843 CurFPFeatureOverrides(), NumParams);
6844 } else {
6845 TheCall =
6846 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6847 CurFPFeatureOverrides(), NumParams, UsesADL);
6850 if (!Context.isDependenceAllowed()) {
6851 // Forget about the nulled arguments since typo correction
6852 // do not handle them well.
6853 TheCall->shrinkNumArgs(Args.size());
6854 // C cannot always handle TypoExpr nodes in builtin calls and direct
6855 // function calls as their argument checking don't necessarily handle
6856 // dependent types properly, so make sure any TypoExprs have been
6857 // dealt with.
6858 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6859 if (!Result.isUsable()) return ExprError();
6860 CallExpr *TheOldCall = TheCall;
6861 TheCall = dyn_cast<CallExpr>(Result.get());
6862 bool CorrectedTypos = TheCall != TheOldCall;
6863 if (!TheCall) return Result;
6864 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6866 // A new call expression node was created if some typos were corrected.
6867 // However it may not have been constructed with enough storage. In this
6868 // case, rebuild the node with enough storage. The waste of space is
6869 // immaterial since this only happens when some typos were corrected.
6870 if (CorrectedTypos && Args.size() < NumParams) {
6871 if (Config)
6872 TheCall = CUDAKernelCallExpr::Create(
6873 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6874 RParenLoc, CurFPFeatureOverrides(), NumParams);
6875 else
6876 TheCall =
6877 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6878 CurFPFeatureOverrides(), NumParams, UsesADL);
6880 // We can now handle the nulled arguments for the default arguments.
6881 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6884 // Bail out early if calling a builtin with custom type checking.
6885 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6886 ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6887 if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(BuiltinID))
6888 E = CheckForImmediateInvocation(E, FDecl);
6889 return E;
6892 if (getLangOpts().CUDA) {
6893 if (Config) {
6894 // CUDA: Kernel calls must be to global functions
6895 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6896 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6897 << FDecl << Fn->getSourceRange());
6899 // CUDA: Kernel function must have 'void' return type
6900 if (!FuncT->getReturnType()->isVoidType() &&
6901 !FuncT->getReturnType()->getAs<AutoType>() &&
6902 !FuncT->getReturnType()->isInstantiationDependentType())
6903 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6904 << Fn->getType() << Fn->getSourceRange());
6905 } else {
6906 // CUDA: Calls to global functions must be configured
6907 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6908 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6909 << FDecl << Fn->getSourceRange());
6913 // Check for a valid return type
6914 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6915 FDecl))
6916 return ExprError();
6918 // We know the result type of the call, set it.
6919 TheCall->setType(FuncT->getCallResultType(Context));
6920 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6922 // WebAssembly tables can't be used as arguments.
6923 if (Context.getTargetInfo().getTriple().isWasm()) {
6924 for (const Expr *Arg : Args) {
6925 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6926 return ExprError(Diag(Arg->getExprLoc(),
6927 diag::err_wasm_table_as_function_parameter));
6932 if (Proto) {
6933 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6934 IsExecConfig))
6935 return ExprError();
6936 } else {
6937 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6939 if (FDecl) {
6940 // Check if we have too few/too many template arguments, based
6941 // on our knowledge of the function definition.
6942 const FunctionDecl *Def = nullptr;
6943 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6944 Proto = Def->getType()->getAs<FunctionProtoType>();
6945 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6946 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6947 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6950 // If the function we're calling isn't a function prototype, but we have
6951 // a function prototype from a prior declaratiom, use that prototype.
6952 if (!FDecl->hasPrototype())
6953 Proto = FDecl->getType()->getAs<FunctionProtoType>();
6956 // If we still haven't found a prototype to use but there are arguments to
6957 // the call, diagnose this as calling a function without a prototype.
6958 // However, if we found a function declaration, check to see if
6959 // -Wdeprecated-non-prototype was disabled where the function was declared.
6960 // If so, we will silence the diagnostic here on the assumption that this
6961 // interface is intentional and the user knows what they're doing. We will
6962 // also silence the diagnostic if there is a function declaration but it
6963 // was implicitly defined (the user already gets diagnostics about the
6964 // creation of the implicit function declaration, so the additional warning
6965 // is not helpful).
6966 if (!Proto && !Args.empty() &&
6967 (!FDecl || (!FDecl->isImplicit() &&
6968 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
6969 FDecl->getLocation()))))
6970 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
6971 << (FDecl != nullptr) << FDecl;
6973 // Promote the arguments (C99 6.5.2.2p6).
6974 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6975 Expr *Arg = Args[i];
6977 if (Proto && i < Proto->getNumParams()) {
6978 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6979 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6980 ExprResult ArgE =
6981 PerformCopyInitialization(Entity, SourceLocation(), Arg);
6982 if (ArgE.isInvalid())
6983 return true;
6985 Arg = ArgE.getAs<Expr>();
6987 } else {
6988 ExprResult ArgE = DefaultArgumentPromotion(Arg);
6990 if (ArgE.isInvalid())
6991 return true;
6993 Arg = ArgE.getAs<Expr>();
6996 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6997 diag::err_call_incomplete_argument, Arg))
6998 return ExprError();
7000 TheCall->setArg(i, Arg);
7002 TheCall->computeDependence();
7005 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7006 if (Method->isImplicitObjectMemberFunction())
7007 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7008 << Fn->getSourceRange() << 0);
7010 // Check for sentinels
7011 if (NDecl)
7012 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7014 // Warn for unions passing across security boundary (CMSE).
7015 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7016 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7017 if (const auto *RT =
7018 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7019 if (RT->getDecl()->isOrContainsUnion())
7020 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7021 << 0 << i;
7026 // Do special checking on direct calls to functions.
7027 if (FDecl) {
7028 if (CheckFunctionCall(FDecl, TheCall, Proto))
7029 return ExprError();
7031 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7033 if (BuiltinID)
7034 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7035 } else if (NDecl) {
7036 if (CheckPointerCall(NDecl, TheCall, Proto))
7037 return ExprError();
7038 } else {
7039 if (CheckOtherCall(TheCall, Proto))
7040 return ExprError();
7043 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7046 ExprResult
7047 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7048 SourceLocation RParenLoc, Expr *InitExpr) {
7049 assert(Ty && "ActOnCompoundLiteral(): missing type");
7050 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7052 TypeSourceInfo *TInfo;
7053 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7054 if (!TInfo)
7055 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7057 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7060 ExprResult
7061 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7062 SourceLocation RParenLoc, Expr *LiteralExpr) {
7063 QualType literalType = TInfo->getType();
7065 if (literalType->isArrayType()) {
7066 if (RequireCompleteSizedType(
7067 LParenLoc, Context.getBaseElementType(literalType),
7068 diag::err_array_incomplete_or_sizeless_type,
7069 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7070 return ExprError();
7071 if (literalType->isVariableArrayType()) {
7072 // C23 6.7.10p4: An entity of variable length array type shall not be
7073 // initialized except by an empty initializer.
7075 // The C extension warnings are issued from ParseBraceInitializer() and
7076 // do not need to be issued here. However, we continue to issue an error
7077 // in the case there are initializers or we are compiling C++. We allow
7078 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7079 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7080 // FIXME: should we allow this construct in C++ when it makes sense to do
7081 // so?
7083 // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7084 // shall specify an object type or an array of unknown size, but not a
7085 // variable length array type. This seems odd, as it allows 'int a[size] =
7086 // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7087 // says, this is what's implemented here for C (except for the extension
7088 // that permits constant foldable size arrays)
7090 auto diagID = LangOpts.CPlusPlus
7091 ? diag::err_variable_object_no_init
7092 : diag::err_compound_literal_with_vla_type;
7093 if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7094 diagID))
7095 return ExprError();
7097 } else if (!literalType->isDependentType() &&
7098 RequireCompleteType(LParenLoc, literalType,
7099 diag::err_typecheck_decl_incomplete_type,
7100 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7101 return ExprError();
7103 InitializedEntity Entity
7104 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7105 InitializationKind Kind
7106 = InitializationKind::CreateCStyleCast(LParenLoc,
7107 SourceRange(LParenLoc, RParenLoc),
7108 /*InitList=*/true);
7109 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7110 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7111 &literalType);
7112 if (Result.isInvalid())
7113 return ExprError();
7114 LiteralExpr = Result.get();
7116 bool isFileScope = !CurContext->isFunctionOrMethod();
7118 // In C, compound literals are l-values for some reason.
7119 // For GCC compatibility, in C++, file-scope array compound literals with
7120 // constant initializers are also l-values, and compound literals are
7121 // otherwise prvalues.
7123 // (GCC also treats C++ list-initialized file-scope array prvalues with
7124 // constant initializers as l-values, but that's non-conforming, so we don't
7125 // follow it there.)
7127 // FIXME: It would be better to handle the lvalue cases as materializing and
7128 // lifetime-extending a temporary object, but our materialized temporaries
7129 // representation only supports lifetime extension from a variable, not "out
7130 // of thin air".
7131 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7132 // is bound to the result of applying array-to-pointer decay to the compound
7133 // literal.
7134 // FIXME: GCC supports compound literals of reference type, which should
7135 // obviously have a value kind derived from the kind of reference involved.
7136 ExprValueKind VK =
7137 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7138 ? VK_PRValue
7139 : VK_LValue;
7141 if (isFileScope)
7142 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7143 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7144 Expr *Init = ILE->getInit(i);
7145 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7148 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7149 VK, LiteralExpr, isFileScope);
7150 if (isFileScope) {
7151 if (!LiteralExpr->isTypeDependent() &&
7152 !LiteralExpr->isValueDependent() &&
7153 !literalType->isDependentType()) // C99 6.5.2.5p3
7154 if (CheckForConstantInitializer(LiteralExpr))
7155 return ExprError();
7156 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7157 literalType.getAddressSpace() != LangAS::Default) {
7158 // Embedded-C extensions to C99 6.5.2.5:
7159 // "If the compound literal occurs inside the body of a function, the
7160 // type name shall not be qualified by an address-space qualifier."
7161 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7162 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7163 return ExprError();
7166 if (!isFileScope && !getLangOpts().CPlusPlus) {
7167 // Compound literals that have automatic storage duration are destroyed at
7168 // the end of the scope in C; in C++, they're just temporaries.
7170 // Emit diagnostics if it is or contains a C union type that is non-trivial
7171 // to destruct.
7172 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7173 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7174 NTCUC_CompoundLiteral, NTCUK_Destruct);
7176 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7177 if (literalType.isDestructedType()) {
7178 Cleanup.setExprNeedsCleanups(true);
7179 ExprCleanupObjects.push_back(E);
7180 getCurFunction()->setHasBranchProtectedScope();
7184 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7185 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7186 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7187 E->getInitializer()->getExprLoc());
7189 return MaybeBindToTemporary(E);
7192 ExprResult
7193 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7194 SourceLocation RBraceLoc) {
7195 // Only produce each kind of designated initialization diagnostic once.
7196 SourceLocation FirstDesignator;
7197 bool DiagnosedArrayDesignator = false;
7198 bool DiagnosedNestedDesignator = false;
7199 bool DiagnosedMixedDesignator = false;
7201 // Check that any designated initializers are syntactically valid in the
7202 // current language mode.
7203 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7204 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7205 if (FirstDesignator.isInvalid())
7206 FirstDesignator = DIE->getBeginLoc();
7208 if (!getLangOpts().CPlusPlus)
7209 break;
7211 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7212 DiagnosedNestedDesignator = true;
7213 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7214 << DIE->getDesignatorsSourceRange();
7217 for (auto &Desig : DIE->designators()) {
7218 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7219 DiagnosedArrayDesignator = true;
7220 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7221 << Desig.getSourceRange();
7225 if (!DiagnosedMixedDesignator &&
7226 !isa<DesignatedInitExpr>(InitArgList[0])) {
7227 DiagnosedMixedDesignator = true;
7228 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7229 << DIE->getSourceRange();
7230 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7231 << InitArgList[0]->getSourceRange();
7233 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7234 isa<DesignatedInitExpr>(InitArgList[0])) {
7235 DiagnosedMixedDesignator = true;
7236 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7237 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7238 << DIE->getSourceRange();
7239 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7240 << InitArgList[I]->getSourceRange();
7244 if (FirstDesignator.isValid()) {
7245 // Only diagnose designated initiaization as a C++20 extension if we didn't
7246 // already diagnose use of (non-C++20) C99 designator syntax.
7247 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7248 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7249 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7250 ? diag::warn_cxx17_compat_designated_init
7251 : diag::ext_cxx_designated_init);
7252 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7253 Diag(FirstDesignator, diag::ext_designated_init);
7257 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7260 ExprResult
7261 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7262 SourceLocation RBraceLoc) {
7263 // Semantic analysis for initializers is done by ActOnDeclarator() and
7264 // CheckInitializer() - it requires knowledge of the object being initialized.
7266 // Immediately handle non-overload placeholders. Overloads can be
7267 // resolved contextually, but everything else here can't.
7268 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7269 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7270 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7272 // Ignore failures; dropping the entire initializer list because
7273 // of one failure would be terrible for indexing/etc.
7274 if (result.isInvalid()) continue;
7276 InitArgList[I] = result.get();
7280 InitListExpr *E =
7281 new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7282 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7283 return E;
7286 void Sema::maybeExtendBlockObject(ExprResult &E) {
7287 assert(E.get()->getType()->isBlockPointerType());
7288 assert(E.get()->isPRValue());
7290 // Only do this in an r-value context.
7291 if (!getLangOpts().ObjCAutoRefCount) return;
7293 E = ImplicitCastExpr::Create(
7294 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7295 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7296 Cleanup.setExprNeedsCleanups(true);
7299 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7300 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7301 // Also, callers should have filtered out the invalid cases with
7302 // pointers. Everything else should be possible.
7304 QualType SrcTy = Src.get()->getType();
7305 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7306 return CK_NoOp;
7308 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7309 case Type::STK_MemberPointer:
7310 llvm_unreachable("member pointer type in C");
7312 case Type::STK_CPointer:
7313 case Type::STK_BlockPointer:
7314 case Type::STK_ObjCObjectPointer:
7315 switch (DestTy->getScalarTypeKind()) {
7316 case Type::STK_CPointer: {
7317 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7318 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7319 if (SrcAS != DestAS)
7320 return CK_AddressSpaceConversion;
7321 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7322 return CK_NoOp;
7323 return CK_BitCast;
7325 case Type::STK_BlockPointer:
7326 return (SrcKind == Type::STK_BlockPointer
7327 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7328 case Type::STK_ObjCObjectPointer:
7329 if (SrcKind == Type::STK_ObjCObjectPointer)
7330 return CK_BitCast;
7331 if (SrcKind == Type::STK_CPointer)
7332 return CK_CPointerToObjCPointerCast;
7333 maybeExtendBlockObject(Src);
7334 return CK_BlockPointerToObjCPointerCast;
7335 case Type::STK_Bool:
7336 return CK_PointerToBoolean;
7337 case Type::STK_Integral:
7338 return CK_PointerToIntegral;
7339 case Type::STK_Floating:
7340 case Type::STK_FloatingComplex:
7341 case Type::STK_IntegralComplex:
7342 case Type::STK_MemberPointer:
7343 case Type::STK_FixedPoint:
7344 llvm_unreachable("illegal cast from pointer");
7346 llvm_unreachable("Should have returned before this");
7348 case Type::STK_FixedPoint:
7349 switch (DestTy->getScalarTypeKind()) {
7350 case Type::STK_FixedPoint:
7351 return CK_FixedPointCast;
7352 case Type::STK_Bool:
7353 return CK_FixedPointToBoolean;
7354 case Type::STK_Integral:
7355 return CK_FixedPointToIntegral;
7356 case Type::STK_Floating:
7357 return CK_FixedPointToFloating;
7358 case Type::STK_IntegralComplex:
7359 case Type::STK_FloatingComplex:
7360 Diag(Src.get()->getExprLoc(),
7361 diag::err_unimplemented_conversion_with_fixed_point_type)
7362 << DestTy;
7363 return CK_IntegralCast;
7364 case Type::STK_CPointer:
7365 case Type::STK_ObjCObjectPointer:
7366 case Type::STK_BlockPointer:
7367 case Type::STK_MemberPointer:
7368 llvm_unreachable("illegal cast to pointer type");
7370 llvm_unreachable("Should have returned before this");
7372 case Type::STK_Bool: // casting from bool is like casting from an integer
7373 case Type::STK_Integral:
7374 switch (DestTy->getScalarTypeKind()) {
7375 case Type::STK_CPointer:
7376 case Type::STK_ObjCObjectPointer:
7377 case Type::STK_BlockPointer:
7378 if (Src.get()->isNullPointerConstant(Context,
7379 Expr::NPC_ValueDependentIsNull))
7380 return CK_NullToPointer;
7381 return CK_IntegralToPointer;
7382 case Type::STK_Bool:
7383 return CK_IntegralToBoolean;
7384 case Type::STK_Integral:
7385 return CK_IntegralCast;
7386 case Type::STK_Floating:
7387 return CK_IntegralToFloating;
7388 case Type::STK_IntegralComplex:
7389 Src = ImpCastExprToType(Src.get(),
7390 DestTy->castAs<ComplexType>()->getElementType(),
7391 CK_IntegralCast);
7392 return CK_IntegralRealToComplex;
7393 case Type::STK_FloatingComplex:
7394 Src = ImpCastExprToType(Src.get(),
7395 DestTy->castAs<ComplexType>()->getElementType(),
7396 CK_IntegralToFloating);
7397 return CK_FloatingRealToComplex;
7398 case Type::STK_MemberPointer:
7399 llvm_unreachable("member pointer type in C");
7400 case Type::STK_FixedPoint:
7401 return CK_IntegralToFixedPoint;
7403 llvm_unreachable("Should have returned before this");
7405 case Type::STK_Floating:
7406 switch (DestTy->getScalarTypeKind()) {
7407 case Type::STK_Floating:
7408 return CK_FloatingCast;
7409 case Type::STK_Bool:
7410 return CK_FloatingToBoolean;
7411 case Type::STK_Integral:
7412 return CK_FloatingToIntegral;
7413 case Type::STK_FloatingComplex:
7414 Src = ImpCastExprToType(Src.get(),
7415 DestTy->castAs<ComplexType>()->getElementType(),
7416 CK_FloatingCast);
7417 return CK_FloatingRealToComplex;
7418 case Type::STK_IntegralComplex:
7419 Src = ImpCastExprToType(Src.get(),
7420 DestTy->castAs<ComplexType>()->getElementType(),
7421 CK_FloatingToIntegral);
7422 return CK_IntegralRealToComplex;
7423 case Type::STK_CPointer:
7424 case Type::STK_ObjCObjectPointer:
7425 case Type::STK_BlockPointer:
7426 llvm_unreachable("valid float->pointer cast?");
7427 case Type::STK_MemberPointer:
7428 llvm_unreachable("member pointer type in C");
7429 case Type::STK_FixedPoint:
7430 return CK_FloatingToFixedPoint;
7432 llvm_unreachable("Should have returned before this");
7434 case Type::STK_FloatingComplex:
7435 switch (DestTy->getScalarTypeKind()) {
7436 case Type::STK_FloatingComplex:
7437 return CK_FloatingComplexCast;
7438 case Type::STK_IntegralComplex:
7439 return CK_FloatingComplexToIntegralComplex;
7440 case Type::STK_Floating: {
7441 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7442 if (Context.hasSameType(ET, DestTy))
7443 return CK_FloatingComplexToReal;
7444 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7445 return CK_FloatingCast;
7447 case Type::STK_Bool:
7448 return CK_FloatingComplexToBoolean;
7449 case Type::STK_Integral:
7450 Src = ImpCastExprToType(Src.get(),
7451 SrcTy->castAs<ComplexType>()->getElementType(),
7452 CK_FloatingComplexToReal);
7453 return CK_FloatingToIntegral;
7454 case Type::STK_CPointer:
7455 case Type::STK_ObjCObjectPointer:
7456 case Type::STK_BlockPointer:
7457 llvm_unreachable("valid complex float->pointer cast?");
7458 case Type::STK_MemberPointer:
7459 llvm_unreachable("member pointer type in C");
7460 case Type::STK_FixedPoint:
7461 Diag(Src.get()->getExprLoc(),
7462 diag::err_unimplemented_conversion_with_fixed_point_type)
7463 << SrcTy;
7464 return CK_IntegralCast;
7466 llvm_unreachable("Should have returned before this");
7468 case Type::STK_IntegralComplex:
7469 switch (DestTy->getScalarTypeKind()) {
7470 case Type::STK_FloatingComplex:
7471 return CK_IntegralComplexToFloatingComplex;
7472 case Type::STK_IntegralComplex:
7473 return CK_IntegralComplexCast;
7474 case Type::STK_Integral: {
7475 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7476 if (Context.hasSameType(ET, DestTy))
7477 return CK_IntegralComplexToReal;
7478 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7479 return CK_IntegralCast;
7481 case Type::STK_Bool:
7482 return CK_IntegralComplexToBoolean;
7483 case Type::STK_Floating:
7484 Src = ImpCastExprToType(Src.get(),
7485 SrcTy->castAs<ComplexType>()->getElementType(),
7486 CK_IntegralComplexToReal);
7487 return CK_IntegralToFloating;
7488 case Type::STK_CPointer:
7489 case Type::STK_ObjCObjectPointer:
7490 case Type::STK_BlockPointer:
7491 llvm_unreachable("valid complex int->pointer cast?");
7492 case Type::STK_MemberPointer:
7493 llvm_unreachable("member pointer type in C");
7494 case Type::STK_FixedPoint:
7495 Diag(Src.get()->getExprLoc(),
7496 diag::err_unimplemented_conversion_with_fixed_point_type)
7497 << SrcTy;
7498 return CK_IntegralCast;
7500 llvm_unreachable("Should have returned before this");
7503 llvm_unreachable("Unhandled scalar cast");
7506 static bool breakDownVectorType(QualType type, uint64_t &len,
7507 QualType &eltType) {
7508 // Vectors are simple.
7509 if (const VectorType *vecType = type->getAs<VectorType>()) {
7510 len = vecType->getNumElements();
7511 eltType = vecType->getElementType();
7512 assert(eltType->isScalarType());
7513 return true;
7516 // We allow lax conversion to and from non-vector types, but only if
7517 // they're real types (i.e. non-complex, non-pointer scalar types).
7518 if (!type->isRealType()) return false;
7520 len = 1;
7521 eltType = type;
7522 return true;
7525 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7526 assert(srcTy->isVectorType() || destTy->isVectorType());
7528 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7529 if (!FirstType->isSVESizelessBuiltinType())
7530 return false;
7532 const auto *VecTy = SecondType->getAs<VectorType>();
7533 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7536 return ValidScalableConversion(srcTy, destTy) ||
7537 ValidScalableConversion(destTy, srcTy);
7540 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7541 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7542 return false;
7544 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7545 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7547 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7548 matSrcType->getNumColumns() == matDestType->getNumColumns();
7551 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7552 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7554 uint64_t SrcLen, DestLen;
7555 QualType SrcEltTy, DestEltTy;
7556 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7557 return false;
7558 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7559 return false;
7561 // ASTContext::getTypeSize will return the size rounded up to a
7562 // power of 2, so instead of using that, we need to use the raw
7563 // element size multiplied by the element count.
7564 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7565 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7567 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7570 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7571 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7572 "expected at least one type to be a vector here");
7574 bool IsSrcTyAltivec =
7575 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7576 VectorKind::AltiVecVector) ||
7577 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7578 VectorKind::AltiVecBool) ||
7579 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7580 VectorKind::AltiVecPixel));
7582 bool IsDestTyAltivec = DestTy->isVectorType() &&
7583 ((DestTy->castAs<VectorType>()->getVectorKind() ==
7584 VectorKind::AltiVecVector) ||
7585 (DestTy->castAs<VectorType>()->getVectorKind() ==
7586 VectorKind::AltiVecBool) ||
7587 (DestTy->castAs<VectorType>()->getVectorKind() ==
7588 VectorKind::AltiVecPixel));
7590 return (IsSrcTyAltivec || IsDestTyAltivec);
7593 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7594 assert(destTy->isVectorType() || srcTy->isVectorType());
7596 // Disallow lax conversions between scalars and ExtVectors (these
7597 // conversions are allowed for other vector types because common headers
7598 // depend on them). Most scalar OP ExtVector cases are handled by the
7599 // splat path anyway, which does what we want (convert, not bitcast).
7600 // What this rules out for ExtVectors is crazy things like char4*float.
7601 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7602 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7604 return areVectorTypesSameSize(srcTy, destTy);
7607 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7608 assert(destTy->isVectorType() || srcTy->isVectorType());
7610 switch (Context.getLangOpts().getLaxVectorConversions()) {
7611 case LangOptions::LaxVectorConversionKind::None:
7612 return false;
7614 case LangOptions::LaxVectorConversionKind::Integer:
7615 if (!srcTy->isIntegralOrEnumerationType()) {
7616 auto *Vec = srcTy->getAs<VectorType>();
7617 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7618 return false;
7620 if (!destTy->isIntegralOrEnumerationType()) {
7621 auto *Vec = destTy->getAs<VectorType>();
7622 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7623 return false;
7625 // OK, integer (vector) -> integer (vector) bitcast.
7626 break;
7628 case LangOptions::LaxVectorConversionKind::All:
7629 break;
7632 return areLaxCompatibleVectorTypes(srcTy, destTy);
7635 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7636 CastKind &Kind) {
7637 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7638 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7639 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7640 << DestTy << SrcTy << R;
7642 } else if (SrcTy->isMatrixType()) {
7643 return Diag(R.getBegin(),
7644 diag::err_invalid_conversion_between_matrix_and_type)
7645 << SrcTy << DestTy << R;
7646 } else if (DestTy->isMatrixType()) {
7647 return Diag(R.getBegin(),
7648 diag::err_invalid_conversion_between_matrix_and_type)
7649 << DestTy << SrcTy << R;
7652 Kind = CK_MatrixCast;
7653 return false;
7656 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7657 CastKind &Kind) {
7658 assert(VectorTy->isVectorType() && "Not a vector type!");
7660 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7661 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7662 return Diag(R.getBegin(),
7663 Ty->isVectorType() ?
7664 diag::err_invalid_conversion_between_vectors :
7665 diag::err_invalid_conversion_between_vector_and_integer)
7666 << VectorTy << Ty << R;
7667 } else
7668 return Diag(R.getBegin(),
7669 diag::err_invalid_conversion_between_vector_and_scalar)
7670 << VectorTy << Ty << R;
7672 Kind = CK_BitCast;
7673 return false;
7676 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7677 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7679 if (DestElemTy == SplattedExpr->getType())
7680 return SplattedExpr;
7682 assert(DestElemTy->isFloatingType() ||
7683 DestElemTy->isIntegralOrEnumerationType());
7685 CastKind CK;
7686 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7687 // OpenCL requires that we convert `true` boolean expressions to -1, but
7688 // only when splatting vectors.
7689 if (DestElemTy->isFloatingType()) {
7690 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7691 // in two steps: boolean to signed integral, then to floating.
7692 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7693 CK_BooleanToSignedIntegral);
7694 SplattedExpr = CastExprRes.get();
7695 CK = CK_IntegralToFloating;
7696 } else {
7697 CK = CK_BooleanToSignedIntegral;
7699 } else {
7700 ExprResult CastExprRes = SplattedExpr;
7701 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7702 if (CastExprRes.isInvalid())
7703 return ExprError();
7704 SplattedExpr = CastExprRes.get();
7706 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7709 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7710 Expr *CastExpr, CastKind &Kind) {
7711 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7713 QualType SrcTy = CastExpr->getType();
7715 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7716 // an ExtVectorType.
7717 // In OpenCL, casts between vectors of different types are not allowed.
7718 // (See OpenCL 6.2).
7719 if (SrcTy->isVectorType()) {
7720 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7721 (getLangOpts().OpenCL &&
7722 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7723 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7724 << DestTy << SrcTy << R;
7725 return ExprError();
7727 Kind = CK_BitCast;
7728 return CastExpr;
7731 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7732 // conversion will take place first from scalar to elt type, and then
7733 // splat from elt type to vector.
7734 if (SrcTy->isPointerType())
7735 return Diag(R.getBegin(),
7736 diag::err_invalid_conversion_between_vector_and_scalar)
7737 << DestTy << SrcTy << R;
7739 Kind = CK_VectorSplat;
7740 return prepareVectorSplat(DestTy, CastExpr);
7743 ExprResult
7744 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7745 Declarator &D, ParsedType &Ty,
7746 SourceLocation RParenLoc, Expr *CastExpr) {
7747 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7748 "ActOnCastExpr(): missing type or expr");
7750 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7751 if (D.isInvalidType())
7752 return ExprError();
7754 if (getLangOpts().CPlusPlus) {
7755 // Check that there are no default arguments (C++ only).
7756 CheckExtraCXXDefaultArguments(D);
7757 } else {
7758 // Make sure any TypoExprs have been dealt with.
7759 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7760 if (!Res.isUsable())
7761 return ExprError();
7762 CastExpr = Res.get();
7765 checkUnusedDeclAttributes(D);
7767 QualType castType = castTInfo->getType();
7768 Ty = CreateParsedType(castType, castTInfo);
7770 bool isVectorLiteral = false;
7772 // Check for an altivec or OpenCL literal,
7773 // i.e. all the elements are integer constants.
7774 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7775 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7776 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7777 && castType->isVectorType() && (PE || PLE)) {
7778 if (PLE && PLE->getNumExprs() == 0) {
7779 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7780 return ExprError();
7782 if (PE || PLE->getNumExprs() == 1) {
7783 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7784 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7785 isVectorLiteral = true;
7787 else
7788 isVectorLiteral = true;
7791 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7792 // then handle it as such.
7793 if (isVectorLiteral)
7794 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7796 // If the Expr being casted is a ParenListExpr, handle it specially.
7797 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7798 // sequence of BinOp comma operators.
7799 if (isa<ParenListExpr>(CastExpr)) {
7800 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7801 if (Result.isInvalid()) return ExprError();
7802 CastExpr = Result.get();
7805 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7806 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7808 ObjC().CheckTollFreeBridgeCast(castType, CastExpr);
7810 ObjC().CheckObjCBridgeRelatedCast(castType, CastExpr);
7812 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7814 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7817 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7818 SourceLocation RParenLoc, Expr *E,
7819 TypeSourceInfo *TInfo) {
7820 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7821 "Expected paren or paren list expression");
7823 Expr **exprs;
7824 unsigned numExprs;
7825 Expr *subExpr;
7826 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7827 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7828 LiteralLParenLoc = PE->getLParenLoc();
7829 LiteralRParenLoc = PE->getRParenLoc();
7830 exprs = PE->getExprs();
7831 numExprs = PE->getNumExprs();
7832 } else { // isa<ParenExpr> by assertion at function entrance
7833 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7834 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7835 subExpr = cast<ParenExpr>(E)->getSubExpr();
7836 exprs = &subExpr;
7837 numExprs = 1;
7840 QualType Ty = TInfo->getType();
7841 assert(Ty->isVectorType() && "Expected vector type");
7843 SmallVector<Expr *, 8> initExprs;
7844 const VectorType *VTy = Ty->castAs<VectorType>();
7845 unsigned numElems = VTy->getNumElements();
7847 // '(...)' form of vector initialization in AltiVec: the number of
7848 // initializers must be one or must match the size of the vector.
7849 // If a single value is specified in the initializer then it will be
7850 // replicated to all the components of the vector
7851 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7852 VTy->getElementType()))
7853 return ExprError();
7854 if (ShouldSplatAltivecScalarInCast(VTy)) {
7855 // The number of initializers must be one or must match the size of the
7856 // vector. If a single value is specified in the initializer then it will
7857 // be replicated to all the components of the vector
7858 if (numExprs == 1) {
7859 QualType ElemTy = VTy->getElementType();
7860 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7861 if (Literal.isInvalid())
7862 return ExprError();
7863 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7864 PrepareScalarCast(Literal, ElemTy));
7865 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7867 else if (numExprs < numElems) {
7868 Diag(E->getExprLoc(),
7869 diag::err_incorrect_number_of_vector_initializers);
7870 return ExprError();
7872 else
7873 initExprs.append(exprs, exprs + numExprs);
7875 else {
7876 // For OpenCL, when the number of initializers is a single value,
7877 // it will be replicated to all components of the vector.
7878 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7879 numExprs == 1) {
7880 QualType ElemTy = VTy->getElementType();
7881 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7882 if (Literal.isInvalid())
7883 return ExprError();
7884 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7885 PrepareScalarCast(Literal, ElemTy));
7886 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7889 initExprs.append(exprs, exprs + numExprs);
7891 // FIXME: This means that pretty-printing the final AST will produce curly
7892 // braces instead of the original commas.
7893 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7894 initExprs, LiteralRParenLoc);
7895 initE->setType(Ty);
7896 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7899 ExprResult
7900 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7901 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7902 if (!E)
7903 return OrigExpr;
7905 ExprResult Result(E->getExpr(0));
7907 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7908 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7909 E->getExpr(i));
7911 if (Result.isInvalid()) return ExprError();
7913 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7916 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7917 SourceLocation R,
7918 MultiExprArg Val) {
7919 return ParenListExpr::Create(Context, L, Val, R);
7922 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7923 SourceLocation QuestionLoc) {
7924 const Expr *NullExpr = LHSExpr;
7925 const Expr *NonPointerExpr = RHSExpr;
7926 Expr::NullPointerConstantKind NullKind =
7927 NullExpr->isNullPointerConstant(Context,
7928 Expr::NPC_ValueDependentIsNotNull);
7930 if (NullKind == Expr::NPCK_NotNull) {
7931 NullExpr = RHSExpr;
7932 NonPointerExpr = LHSExpr;
7933 NullKind =
7934 NullExpr->isNullPointerConstant(Context,
7935 Expr::NPC_ValueDependentIsNotNull);
7938 if (NullKind == Expr::NPCK_NotNull)
7939 return false;
7941 if (NullKind == Expr::NPCK_ZeroExpression)
7942 return false;
7944 if (NullKind == Expr::NPCK_ZeroLiteral) {
7945 // In this case, check to make sure that we got here from a "NULL"
7946 // string in the source code.
7947 NullExpr = NullExpr->IgnoreParenImpCasts();
7948 SourceLocation loc = NullExpr->getExprLoc();
7949 if (!findMacroSpelling(loc, "NULL"))
7950 return false;
7953 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7954 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7955 << NonPointerExpr->getType() << DiagType
7956 << NonPointerExpr->getSourceRange();
7957 return true;
7960 /// Return false if the condition expression is valid, true otherwise.
7961 static bool checkCondition(Sema &S, const Expr *Cond,
7962 SourceLocation QuestionLoc) {
7963 QualType CondTy = Cond->getType();
7965 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7966 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7967 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7968 << CondTy << Cond->getSourceRange();
7969 return true;
7972 // C99 6.5.15p2
7973 if (CondTy->isScalarType()) return false;
7975 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7976 << CondTy << Cond->getSourceRange();
7977 return true;
7980 /// Return false if the NullExpr can be promoted to PointerTy,
7981 /// true otherwise.
7982 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7983 QualType PointerTy) {
7984 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7985 !NullExpr.get()->isNullPointerConstant(S.Context,
7986 Expr::NPC_ValueDependentIsNull))
7987 return true;
7989 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7990 return false;
7993 /// Checks compatibility between two pointers and return the resulting
7994 /// type.
7995 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7996 ExprResult &RHS,
7997 SourceLocation Loc) {
7998 QualType LHSTy = LHS.get()->getType();
7999 QualType RHSTy = RHS.get()->getType();
8001 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8002 // Two identical pointers types are always compatible.
8003 return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8006 QualType lhptee, rhptee;
8008 // Get the pointee types.
8009 bool IsBlockPointer = false;
8010 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8011 lhptee = LHSBTy->getPointeeType();
8012 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8013 IsBlockPointer = true;
8014 } else {
8015 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8016 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8019 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8020 // differently qualified versions of compatible types, the result type is
8021 // a pointer to an appropriately qualified version of the composite
8022 // type.
8024 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8025 // clause doesn't make sense for our extensions. E.g. address space 2 should
8026 // be incompatible with address space 3: they may live on different devices or
8027 // anything.
8028 Qualifiers lhQual = lhptee.getQualifiers();
8029 Qualifiers rhQual = rhptee.getQualifiers();
8031 LangAS ResultAddrSpace = LangAS::Default;
8032 LangAS LAddrSpace = lhQual.getAddressSpace();
8033 LangAS RAddrSpace = rhQual.getAddressSpace();
8035 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8036 // spaces is disallowed.
8037 if (lhQual.isAddressSpaceSupersetOf(rhQual, S.getASTContext()))
8038 ResultAddrSpace = LAddrSpace;
8039 else if (rhQual.isAddressSpaceSupersetOf(lhQual, S.getASTContext()))
8040 ResultAddrSpace = RAddrSpace;
8041 else {
8042 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8043 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8044 << RHS.get()->getSourceRange();
8045 return QualType();
8048 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8049 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8050 lhQual.removeCVRQualifiers();
8051 rhQual.removeCVRQualifiers();
8053 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8054 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8055 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8056 // qual types are compatible iff
8057 // * corresponded types are compatible
8058 // * CVR qualifiers are equal
8059 // * address spaces are equal
8060 // Thus for conditional operator we merge CVR and address space unqualified
8061 // pointees and if there is a composite type we return a pointer to it with
8062 // merged qualifiers.
8063 LHSCastKind =
8064 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8065 RHSCastKind =
8066 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8067 lhQual.removeAddressSpace();
8068 rhQual.removeAddressSpace();
8070 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8071 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8073 QualType CompositeTy = S.Context.mergeTypes(
8074 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8075 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8077 if (CompositeTy.isNull()) {
8078 // In this situation, we assume void* type. No especially good
8079 // reason, but this is what gcc does, and we do have to pick
8080 // to get a consistent AST.
8081 QualType incompatTy;
8082 incompatTy = S.Context.getPointerType(
8083 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8084 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8085 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8087 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8088 // for casts between types with incompatible address space qualifiers.
8089 // For the following code the compiler produces casts between global and
8090 // local address spaces of the corresponded innermost pointees:
8091 // local int *global *a;
8092 // global int *global *b;
8093 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8094 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8095 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8096 << RHS.get()->getSourceRange();
8098 return incompatTy;
8101 // The pointer types are compatible.
8102 // In case of OpenCL ResultTy should have the address space qualifier
8103 // which is a superset of address spaces of both the 2nd and the 3rd
8104 // operands of the conditional operator.
8105 QualType ResultTy = [&, ResultAddrSpace]() {
8106 if (S.getLangOpts().OpenCL) {
8107 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8108 CompositeQuals.setAddressSpace(ResultAddrSpace);
8109 return S.Context
8110 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8111 .withCVRQualifiers(MergedCVRQual);
8113 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8114 }();
8115 if (IsBlockPointer)
8116 ResultTy = S.Context.getBlockPointerType(ResultTy);
8117 else
8118 ResultTy = S.Context.getPointerType(ResultTy);
8120 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8121 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8122 return ResultTy;
8125 /// Return the resulting type when the operands are both block pointers.
8126 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8127 ExprResult &LHS,
8128 ExprResult &RHS,
8129 SourceLocation Loc) {
8130 QualType LHSTy = LHS.get()->getType();
8131 QualType RHSTy = RHS.get()->getType();
8133 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8134 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8135 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8136 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8137 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8138 return destType;
8140 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8141 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8142 << RHS.get()->getSourceRange();
8143 return QualType();
8146 // We have 2 block pointer types.
8147 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8150 /// Return the resulting type when the operands are both pointers.
8151 static QualType
8152 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8153 ExprResult &RHS,
8154 SourceLocation Loc) {
8155 // get the pointer types
8156 QualType LHSTy = LHS.get()->getType();
8157 QualType RHSTy = RHS.get()->getType();
8159 // get the "pointed to" types
8160 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8161 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8163 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8164 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8165 // Figure out necessary qualifiers (C99 6.5.15p6)
8166 QualType destPointee
8167 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8168 QualType destType = S.Context.getPointerType(destPointee);
8169 // Add qualifiers if necessary.
8170 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8171 // Promote to void*.
8172 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8173 return destType;
8175 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8176 QualType destPointee
8177 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8178 QualType destType = S.Context.getPointerType(destPointee);
8179 // Add qualifiers if necessary.
8180 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8181 // Promote to void*.
8182 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8183 return destType;
8186 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8189 /// Return false if the first expression is not an integer and the second
8190 /// expression is not a pointer, true otherwise.
8191 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8192 Expr* PointerExpr, SourceLocation Loc,
8193 bool IsIntFirstExpr) {
8194 if (!PointerExpr->getType()->isPointerType() ||
8195 !Int.get()->getType()->isIntegerType())
8196 return false;
8198 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8199 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8201 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8202 << Expr1->getType() << Expr2->getType()
8203 << Expr1->getSourceRange() << Expr2->getSourceRange();
8204 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8205 CK_IntegralToPointer);
8206 return true;
8209 /// Simple conversion between integer and floating point types.
8211 /// Used when handling the OpenCL conditional operator where the
8212 /// condition is a vector while the other operands are scalar.
8214 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8215 /// types are either integer or floating type. Between the two
8216 /// operands, the type with the higher rank is defined as the "result
8217 /// type". The other operand needs to be promoted to the same type. No
8218 /// other type promotion is allowed. We cannot use
8219 /// UsualArithmeticConversions() for this purpose, since it always
8220 /// promotes promotable types.
8221 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8222 ExprResult &RHS,
8223 SourceLocation QuestionLoc) {
8224 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8225 if (LHS.isInvalid())
8226 return QualType();
8227 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8228 if (RHS.isInvalid())
8229 return QualType();
8231 // For conversion purposes, we ignore any qualifiers.
8232 // For example, "const float" and "float" are equivalent.
8233 QualType LHSType =
8234 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8235 QualType RHSType =
8236 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8238 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8239 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8240 << LHSType << LHS.get()->getSourceRange();
8241 return QualType();
8244 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8245 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8246 << RHSType << RHS.get()->getSourceRange();
8247 return QualType();
8250 // If both types are identical, no conversion is needed.
8251 if (LHSType == RHSType)
8252 return LHSType;
8254 // Now handle "real" floating types (i.e. float, double, long double).
8255 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8256 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8257 /*IsCompAssign = */ false);
8259 // Finally, we have two differing integer types.
8260 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8261 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8264 /// Convert scalar operands to a vector that matches the
8265 /// condition in length.
8267 /// Used when handling the OpenCL conditional operator where the
8268 /// condition is a vector while the other operands are scalar.
8270 /// We first compute the "result type" for the scalar operands
8271 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8272 /// into a vector of that type where the length matches the condition
8273 /// vector type. s6.11.6 requires that the element types of the result
8274 /// and the condition must have the same number of bits.
8275 static QualType
8276 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8277 QualType CondTy, SourceLocation QuestionLoc) {
8278 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8279 if (ResTy.isNull()) return QualType();
8281 const VectorType *CV = CondTy->getAs<VectorType>();
8282 assert(CV);
8284 // Determine the vector result type
8285 unsigned NumElements = CV->getNumElements();
8286 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8288 // Ensure that all types have the same number of bits
8289 if (S.Context.getTypeSize(CV->getElementType())
8290 != S.Context.getTypeSize(ResTy)) {
8291 // Since VectorTy is created internally, it does not pretty print
8292 // with an OpenCL name. Instead, we just print a description.
8293 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8294 SmallString<64> Str;
8295 llvm::raw_svector_ostream OS(Str);
8296 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8297 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8298 << CondTy << OS.str();
8299 return QualType();
8302 // Convert operands to the vector result type
8303 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8304 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8306 return VectorTy;
8309 /// Return false if this is a valid OpenCL condition vector
8310 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8311 SourceLocation QuestionLoc) {
8312 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8313 // integral type.
8314 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8315 assert(CondTy);
8316 QualType EleTy = CondTy->getElementType();
8317 if (EleTy->isIntegerType()) return false;
8319 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8320 << Cond->getType() << Cond->getSourceRange();
8321 return true;
8324 /// Return false if the vector condition type and the vector
8325 /// result type are compatible.
8327 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8328 /// number of elements, and their element types have the same number
8329 /// of bits.
8330 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8331 SourceLocation QuestionLoc) {
8332 const VectorType *CV = CondTy->getAs<VectorType>();
8333 const VectorType *RV = VecResTy->getAs<VectorType>();
8334 assert(CV && RV);
8336 if (CV->getNumElements() != RV->getNumElements()) {
8337 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8338 << CondTy << VecResTy;
8339 return true;
8342 QualType CVE = CV->getElementType();
8343 QualType RVE = RV->getElementType();
8345 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8346 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8347 << CondTy << VecResTy;
8348 return true;
8351 return false;
8354 /// Return the resulting type for the conditional operator in
8355 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
8356 /// s6.3.i) when the condition is a vector type.
8357 static QualType
8358 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8359 ExprResult &LHS, ExprResult &RHS,
8360 SourceLocation QuestionLoc) {
8361 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8362 if (Cond.isInvalid())
8363 return QualType();
8364 QualType CondTy = Cond.get()->getType();
8366 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8367 return QualType();
8369 // If either operand is a vector then find the vector type of the
8370 // result as specified in OpenCL v1.1 s6.3.i.
8371 if (LHS.get()->getType()->isVectorType() ||
8372 RHS.get()->getType()->isVectorType()) {
8373 bool IsBoolVecLang =
8374 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8375 QualType VecResTy =
8376 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8377 /*isCompAssign*/ false,
8378 /*AllowBothBool*/ true,
8379 /*AllowBoolConversions*/ false,
8380 /*AllowBooleanOperation*/ IsBoolVecLang,
8381 /*ReportInvalid*/ true);
8382 if (VecResTy.isNull())
8383 return QualType();
8384 // The result type must match the condition type as specified in
8385 // OpenCL v1.1 s6.11.6.
8386 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8387 return QualType();
8388 return VecResTy;
8391 // Both operands are scalar.
8392 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8395 /// Return true if the Expr is block type
8396 static bool checkBlockType(Sema &S, const Expr *E) {
8397 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8398 QualType Ty = CE->getCallee()->getType();
8399 if (Ty->isBlockPointerType()) {
8400 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8401 return true;
8404 return false;
8407 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8408 /// In that case, LHS = cond.
8409 /// C99 6.5.15
8410 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8411 ExprResult &RHS, ExprValueKind &VK,
8412 ExprObjectKind &OK,
8413 SourceLocation QuestionLoc) {
8415 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8416 if (!LHSResult.isUsable()) return QualType();
8417 LHS = LHSResult;
8419 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8420 if (!RHSResult.isUsable()) return QualType();
8421 RHS = RHSResult;
8423 // C++ is sufficiently different to merit its own checker.
8424 if (getLangOpts().CPlusPlus)
8425 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8427 VK = VK_PRValue;
8428 OK = OK_Ordinary;
8430 if (Context.isDependenceAllowed() &&
8431 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8432 RHS.get()->isTypeDependent())) {
8433 assert(!getLangOpts().CPlusPlus);
8434 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8435 RHS.get()->containsErrors()) &&
8436 "should only occur in error-recovery path.");
8437 return Context.DependentTy;
8440 // The OpenCL operator with a vector condition is sufficiently
8441 // different to merit its own checker.
8442 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8443 Cond.get()->getType()->isExtVectorType())
8444 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8446 // First, check the condition.
8447 Cond = UsualUnaryConversions(Cond.get());
8448 if (Cond.isInvalid())
8449 return QualType();
8450 if (checkCondition(*this, Cond.get(), QuestionLoc))
8451 return QualType();
8453 // Handle vectors.
8454 if (LHS.get()->getType()->isVectorType() ||
8455 RHS.get()->getType()->isVectorType())
8456 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8457 /*AllowBothBool*/ true,
8458 /*AllowBoolConversions*/ false,
8459 /*AllowBooleanOperation*/ false,
8460 /*ReportInvalid*/ true);
8462 QualType ResTy =
8463 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8464 if (LHS.isInvalid() || RHS.isInvalid())
8465 return QualType();
8467 // WebAssembly tables are not allowed as conditional LHS or RHS.
8468 QualType LHSTy = LHS.get()->getType();
8469 QualType RHSTy = RHS.get()->getType();
8470 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8471 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
8472 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8473 return QualType();
8476 // Diagnose attempts to convert between __ibm128, __float128 and long double
8477 // where such conversions currently can't be handled.
8478 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8479 Diag(QuestionLoc,
8480 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8481 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8482 return QualType();
8485 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8486 // selection operator (?:).
8487 if (getLangOpts().OpenCL &&
8488 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8489 return QualType();
8492 // If both operands have arithmetic type, do the usual arithmetic conversions
8493 // to find a common type: C99 6.5.15p3,5.
8494 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8495 // Disallow invalid arithmetic conversions, such as those between bit-
8496 // precise integers types of different sizes, or between a bit-precise
8497 // integer and another type.
8498 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8499 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8500 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8501 << RHS.get()->getSourceRange();
8502 return QualType();
8505 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8506 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8508 return ResTy;
8511 // If both operands are the same structure or union type, the result is that
8512 // type.
8513 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8514 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8515 if (LHSRT->getDecl() == RHSRT->getDecl())
8516 // "If both the operands have structure or union type, the result has
8517 // that type." This implies that CV qualifiers are dropped.
8518 return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8519 RHSTy.getUnqualifiedType());
8520 // FIXME: Type of conditional expression must be complete in C mode.
8523 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8524 // The following || allows only one side to be void (a GCC-ism).
8525 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8526 QualType ResTy;
8527 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8528 ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8529 } else if (RHSTy->isVoidType()) {
8530 ResTy = RHSTy;
8531 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8532 << RHS.get()->getSourceRange();
8533 } else {
8534 ResTy = LHSTy;
8535 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8536 << LHS.get()->getSourceRange();
8538 LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8539 RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8540 return ResTy;
8543 // C23 6.5.15p7:
8544 // ... if both the second and third operands have nullptr_t type, the
8545 // result also has that type.
8546 if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8547 return ResTy;
8549 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8550 // the type of the other operand."
8551 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8552 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8554 // All objective-c pointer type analysis is done here.
8555 QualType compositeType =
8556 ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8557 if (LHS.isInvalid() || RHS.isInvalid())
8558 return QualType();
8559 if (!compositeType.isNull())
8560 return compositeType;
8563 // Handle block pointer types.
8564 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8565 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8566 QuestionLoc);
8568 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8569 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8570 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8571 QuestionLoc);
8573 // GCC compatibility: soften pointer/integer mismatch. Note that
8574 // null pointers have been filtered out by this point.
8575 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8576 /*IsIntFirstExpr=*/true))
8577 return RHSTy;
8578 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8579 /*IsIntFirstExpr=*/false))
8580 return LHSTy;
8582 // Emit a better diagnostic if one of the expressions is a null pointer
8583 // constant and the other is not a pointer type. In this case, the user most
8584 // likely forgot to take the address of the other expression.
8585 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8586 return QualType();
8588 // Finally, if the LHS and RHS types are canonically the same type, we can
8589 // use the common sugared type.
8590 if (Context.hasSameType(LHSTy, RHSTy))
8591 return Context.getCommonSugaredType(LHSTy, RHSTy);
8593 // Otherwise, the operands are not compatible.
8594 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8595 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8596 << RHS.get()->getSourceRange();
8597 return QualType();
8600 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8601 /// ParenRange in parentheses.
8602 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8603 const PartialDiagnostic &Note,
8604 SourceRange ParenRange) {
8605 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8606 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8607 EndLoc.isValid()) {
8608 Self.Diag(Loc, Note)
8609 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8610 << FixItHint::CreateInsertion(EndLoc, ")");
8611 } else {
8612 // We can't display the parentheses, so just show the bare note.
8613 Self.Diag(Loc, Note) << ParenRange;
8617 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8618 return BinaryOperator::isAdditiveOp(Opc) ||
8619 BinaryOperator::isMultiplicativeOp(Opc) ||
8620 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8621 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8622 // not any of the logical operators. Bitwise-xor is commonly used as a
8623 // logical-xor because there is no logical-xor operator. The logical
8624 // operators, including uses of xor, have a high false positive rate for
8625 // precedence warnings.
8628 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8629 /// expression, either using a built-in or overloaded operator,
8630 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8631 /// expression.
8632 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8633 const Expr **RHSExprs) {
8634 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8635 E = E->IgnoreImpCasts();
8636 E = E->IgnoreConversionOperatorSingleStep();
8637 E = E->IgnoreImpCasts();
8638 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8639 E = MTE->getSubExpr();
8640 E = E->IgnoreImpCasts();
8643 // Built-in binary operator.
8644 if (const auto *OP = dyn_cast<BinaryOperator>(E);
8645 OP && IsArithmeticOp(OP->getOpcode())) {
8646 *Opcode = OP->getOpcode();
8647 *RHSExprs = OP->getRHS();
8648 return true;
8651 // Overloaded operator.
8652 if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8653 if (Call->getNumArgs() != 2)
8654 return false;
8656 // Make sure this is really a binary operator that is safe to pass into
8657 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8658 OverloadedOperatorKind OO = Call->getOperator();
8659 if (OO < OO_Plus || OO > OO_Arrow ||
8660 OO == OO_PlusPlus || OO == OO_MinusMinus)
8661 return false;
8663 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8664 if (IsArithmeticOp(OpKind)) {
8665 *Opcode = OpKind;
8666 *RHSExprs = Call->getArg(1);
8667 return true;
8671 return false;
8674 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8675 /// or is a logical expression such as (x==y) which has int type, but is
8676 /// commonly interpreted as boolean.
8677 static bool ExprLooksBoolean(const Expr *E) {
8678 E = E->IgnoreParenImpCasts();
8680 if (E->getType()->isBooleanType())
8681 return true;
8682 if (const auto *OP = dyn_cast<BinaryOperator>(E))
8683 return OP->isComparisonOp() || OP->isLogicalOp();
8684 if (const auto *OP = dyn_cast<UnaryOperator>(E))
8685 return OP->getOpcode() == UO_LNot;
8686 if (E->getType()->isPointerType())
8687 return true;
8688 // FIXME: What about overloaded operator calls returning "unspecified boolean
8689 // type"s (commonly pointer-to-members)?
8691 return false;
8694 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8695 /// and binary operator are mixed in a way that suggests the programmer assumed
8696 /// the conditional operator has higher precedence, for example:
8697 /// "int x = a + someBinaryCondition ? 1 : 2".
8698 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8699 Expr *Condition, const Expr *LHSExpr,
8700 const Expr *RHSExpr) {
8701 BinaryOperatorKind CondOpcode;
8702 const Expr *CondRHS;
8704 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8705 return;
8706 if (!ExprLooksBoolean(CondRHS))
8707 return;
8709 // The condition is an arithmetic binary expression, with a right-
8710 // hand side that looks boolean, so warn.
8712 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8713 ? diag::warn_precedence_bitwise_conditional
8714 : diag::warn_precedence_conditional;
8716 Self.Diag(OpLoc, DiagID)
8717 << Condition->getSourceRange()
8718 << BinaryOperator::getOpcodeStr(CondOpcode);
8720 SuggestParentheses(
8721 Self, OpLoc,
8722 Self.PDiag(diag::note_precedence_silence)
8723 << BinaryOperator::getOpcodeStr(CondOpcode),
8724 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8726 SuggestParentheses(Self, OpLoc,
8727 Self.PDiag(diag::note_precedence_conditional_first),
8728 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8731 /// Compute the nullability of a conditional expression.
8732 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8733 QualType LHSTy, QualType RHSTy,
8734 ASTContext &Ctx) {
8735 if (!ResTy->isAnyPointerType())
8736 return ResTy;
8738 auto GetNullability = [](QualType Ty) {
8739 std::optional<NullabilityKind> Kind = Ty->getNullability();
8740 if (Kind) {
8741 // For our purposes, treat _Nullable_result as _Nullable.
8742 if (*Kind == NullabilityKind::NullableResult)
8743 return NullabilityKind::Nullable;
8744 return *Kind;
8746 return NullabilityKind::Unspecified;
8749 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8750 NullabilityKind MergedKind;
8752 // Compute nullability of a binary conditional expression.
8753 if (IsBin) {
8754 if (LHSKind == NullabilityKind::NonNull)
8755 MergedKind = NullabilityKind::NonNull;
8756 else
8757 MergedKind = RHSKind;
8758 // Compute nullability of a normal conditional expression.
8759 } else {
8760 if (LHSKind == NullabilityKind::Nullable ||
8761 RHSKind == NullabilityKind::Nullable)
8762 MergedKind = NullabilityKind::Nullable;
8763 else if (LHSKind == NullabilityKind::NonNull)
8764 MergedKind = RHSKind;
8765 else if (RHSKind == NullabilityKind::NonNull)
8766 MergedKind = LHSKind;
8767 else
8768 MergedKind = NullabilityKind::Unspecified;
8771 // Return if ResTy already has the correct nullability.
8772 if (GetNullability(ResTy) == MergedKind)
8773 return ResTy;
8775 // Strip all nullability from ResTy.
8776 while (ResTy->getNullability())
8777 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8779 // Create a new AttributedType with the new nullability kind.
8780 return Ctx.getAttributedType(MergedKind, ResTy, ResTy);
8783 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8784 SourceLocation ColonLoc,
8785 Expr *CondExpr, Expr *LHSExpr,
8786 Expr *RHSExpr) {
8787 if (!Context.isDependenceAllowed()) {
8788 // C cannot handle TypoExpr nodes in the condition because it
8789 // doesn't handle dependent types properly, so make sure any TypoExprs have
8790 // been dealt with before checking the operands.
8791 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8792 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8793 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8795 if (!CondResult.isUsable())
8796 return ExprError();
8798 if (LHSExpr) {
8799 if (!LHSResult.isUsable())
8800 return ExprError();
8803 if (!RHSResult.isUsable())
8804 return ExprError();
8806 CondExpr = CondResult.get();
8807 LHSExpr = LHSResult.get();
8808 RHSExpr = RHSResult.get();
8811 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8812 // was the condition.
8813 OpaqueValueExpr *opaqueValue = nullptr;
8814 Expr *commonExpr = nullptr;
8815 if (!LHSExpr) {
8816 commonExpr = CondExpr;
8817 // Lower out placeholder types first. This is important so that we don't
8818 // try to capture a placeholder. This happens in few cases in C++; such
8819 // as Objective-C++'s dictionary subscripting syntax.
8820 if (commonExpr->hasPlaceholderType()) {
8821 ExprResult result = CheckPlaceholderExpr(commonExpr);
8822 if (!result.isUsable()) return ExprError();
8823 commonExpr = result.get();
8825 // We usually want to apply unary conversions *before* saving, except
8826 // in the special case of a C++ l-value conditional.
8827 if (!(getLangOpts().CPlusPlus
8828 && !commonExpr->isTypeDependent()
8829 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8830 && commonExpr->isGLValue()
8831 && commonExpr->isOrdinaryOrBitFieldObject()
8832 && RHSExpr->isOrdinaryOrBitFieldObject()
8833 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8834 ExprResult commonRes = UsualUnaryConversions(commonExpr);
8835 if (commonRes.isInvalid())
8836 return ExprError();
8837 commonExpr = commonRes.get();
8840 // If the common expression is a class or array prvalue, materialize it
8841 // so that we can safely refer to it multiple times.
8842 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8843 commonExpr->getType()->isArrayType())) {
8844 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8845 if (MatExpr.isInvalid())
8846 return ExprError();
8847 commonExpr = MatExpr.get();
8850 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8851 commonExpr->getType(),
8852 commonExpr->getValueKind(),
8853 commonExpr->getObjectKind(),
8854 commonExpr);
8855 LHSExpr = CondExpr = opaqueValue;
8858 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8859 ExprValueKind VK = VK_PRValue;
8860 ExprObjectKind OK = OK_Ordinary;
8861 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8862 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8863 VK, OK, QuestionLoc);
8864 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8865 RHS.isInvalid())
8866 return ExprError();
8868 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8869 RHS.get());
8871 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8873 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8874 Context);
8876 if (!commonExpr)
8877 return new (Context)
8878 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8879 RHS.get(), result, VK, OK);
8881 return new (Context) BinaryConditionalOperator(
8882 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8883 ColonLoc, result, VK, OK);
8886 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8887 unsigned FromAttributes = 0, ToAttributes = 0;
8888 if (const auto *FromFn =
8889 dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
8890 FromAttributes =
8891 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8892 if (const auto *ToFn =
8893 dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
8894 ToAttributes =
8895 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8897 return FromAttributes != ToAttributes;
8900 // Check if we have a conversion between incompatible cmse function pointer
8901 // types, that is, a conversion between a function pointer with the
8902 // cmse_nonsecure_call attribute and one without.
8903 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8904 QualType ToType) {
8905 if (const auto *ToFn =
8906 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8907 if (const auto *FromFn =
8908 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8909 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8910 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8912 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8915 return false;
8918 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8919 // being closely modeled after the C99 spec:-). The odd characteristic of this
8920 // routine is it effectively iqnores the qualifiers on the top level pointee.
8921 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8922 // FIXME: add a couple examples in this comment.
8923 static Sema::AssignConvertType
8924 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
8925 SourceLocation Loc) {
8926 assert(LHSType.isCanonical() && "LHS not canonicalized!");
8927 assert(RHSType.isCanonical() && "RHS not canonicalized!");
8929 // get the "pointed to" type (ignoring qualifiers at the top level)
8930 const Type *lhptee, *rhptee;
8931 Qualifiers lhq, rhq;
8932 std::tie(lhptee, lhq) =
8933 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8934 std::tie(rhptee, rhq) =
8935 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8937 Sema::AssignConvertType ConvTy = Sema::Compatible;
8939 // C99 6.5.16.1p1: This following citation is common to constraints
8940 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8941 // qualifiers of the type *pointed to* by the right;
8943 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8944 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8945 lhq.compatiblyIncludesObjCLifetime(rhq)) {
8946 // Ignore lifetime for further calculation.
8947 lhq.removeObjCLifetime();
8948 rhq.removeObjCLifetime();
8951 if (!lhq.compatiblyIncludes(rhq, S.getASTContext())) {
8952 // Treat address-space mismatches as fatal.
8953 if (!lhq.isAddressSpaceSupersetOf(rhq, S.getASTContext()))
8954 return Sema::IncompatiblePointerDiscardsQualifiers;
8956 // It's okay to add or remove GC or lifetime qualifiers when converting to
8957 // and from void*.
8958 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime().compatiblyIncludes(
8959 rhq.withoutObjCGCAttr().withoutObjCLifetime(),
8960 S.getASTContext()) &&
8961 (lhptee->isVoidType() || rhptee->isVoidType()))
8962 ; // keep old
8964 // Treat lifetime mismatches as fatal.
8965 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8966 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8968 // For GCC/MS compatibility, other qualifier mismatches are treated
8969 // as still compatible in C.
8970 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8973 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8974 // incomplete type and the other is a pointer to a qualified or unqualified
8975 // version of void...
8976 if (lhptee->isVoidType()) {
8977 if (rhptee->isIncompleteOrObjectType())
8978 return ConvTy;
8980 // As an extension, we allow cast to/from void* to function pointer.
8981 assert(rhptee->isFunctionType());
8982 return Sema::FunctionVoidPointer;
8985 if (rhptee->isVoidType()) {
8986 if (lhptee->isIncompleteOrObjectType())
8987 return ConvTy;
8989 // As an extension, we allow cast to/from void* to function pointer.
8990 assert(lhptee->isFunctionType());
8991 return Sema::FunctionVoidPointer;
8994 if (!S.Diags.isIgnored(
8995 diag::warn_typecheck_convert_incompatible_function_pointer_strict,
8996 Loc) &&
8997 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
8998 !S.IsFunctionConversion(RHSType, LHSType, RHSType))
8999 return Sema::IncompatibleFunctionPointerStrict;
9001 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9002 // unqualified versions of compatible types, ...
9003 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9004 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9005 // Check if the pointee types are compatible ignoring the sign.
9006 // We explicitly check for char so that we catch "char" vs
9007 // "unsigned char" on systems where "char" is unsigned.
9008 if (lhptee->isCharType())
9009 ltrans = S.Context.UnsignedCharTy;
9010 else if (lhptee->hasSignedIntegerRepresentation())
9011 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9013 if (rhptee->isCharType())
9014 rtrans = S.Context.UnsignedCharTy;
9015 else if (rhptee->hasSignedIntegerRepresentation())
9016 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9018 if (ltrans == rtrans) {
9019 // Types are compatible ignoring the sign. Qualifier incompatibility
9020 // takes priority over sign incompatibility because the sign
9021 // warning can be disabled.
9022 if (ConvTy != Sema::Compatible)
9023 return ConvTy;
9025 return Sema::IncompatiblePointerSign;
9028 // If we are a multi-level pointer, it's possible that our issue is simply
9029 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9030 // the eventual target type is the same and the pointers have the same
9031 // level of indirection, this must be the issue.
9032 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9033 do {
9034 std::tie(lhptee, lhq) =
9035 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9036 std::tie(rhptee, rhq) =
9037 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9039 // Inconsistent address spaces at this point is invalid, even if the
9040 // address spaces would be compatible.
9041 // FIXME: This doesn't catch address space mismatches for pointers of
9042 // different nesting levels, like:
9043 // __local int *** a;
9044 // int ** b = a;
9045 // It's not clear how to actually determine when such pointers are
9046 // invalidly incompatible.
9047 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9048 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9050 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9052 if (lhptee == rhptee)
9053 return Sema::IncompatibleNestedPointerQualifiers;
9056 // General pointer incompatibility takes priority over qualifiers.
9057 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9058 return Sema::IncompatibleFunctionPointer;
9059 return Sema::IncompatiblePointer;
9061 if (!S.getLangOpts().CPlusPlus &&
9062 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9063 return Sema::IncompatibleFunctionPointer;
9064 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9065 return Sema::IncompatibleFunctionPointer;
9066 if (S.IsInvalidSMECallConversion(rtrans, ltrans))
9067 return Sema::IncompatibleFunctionPointer;
9068 return ConvTy;
9071 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9072 /// block pointer types are compatible or whether a block and normal pointer
9073 /// are compatible. It is more restrict than comparing two function pointer
9074 // types.
9075 static Sema::AssignConvertType
9076 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9077 QualType RHSType) {
9078 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9079 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9081 QualType lhptee, rhptee;
9083 // get the "pointed to" type (ignoring qualifiers at the top level)
9084 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9085 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9087 // In C++, the types have to match exactly.
9088 if (S.getLangOpts().CPlusPlus)
9089 return Sema::IncompatibleBlockPointer;
9091 Sema::AssignConvertType ConvTy = Sema::Compatible;
9093 // For blocks we enforce that qualifiers are identical.
9094 Qualifiers LQuals = lhptee.getLocalQualifiers();
9095 Qualifiers RQuals = rhptee.getLocalQualifiers();
9096 if (S.getLangOpts().OpenCL) {
9097 LQuals.removeAddressSpace();
9098 RQuals.removeAddressSpace();
9100 if (LQuals != RQuals)
9101 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9103 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9104 // assignment.
9105 // The current behavior is similar to C++ lambdas. A block might be
9106 // assigned to a variable iff its return type and parameters are compatible
9107 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9108 // an assignment. Presumably it should behave in way that a function pointer
9109 // assignment does in C, so for each parameter and return type:
9110 // * CVR and address space of LHS should be a superset of CVR and address
9111 // space of RHS.
9112 // * unqualified types should be compatible.
9113 if (S.getLangOpts().OpenCL) {
9114 if (!S.Context.typesAreBlockPointerCompatible(
9115 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9116 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9117 return Sema::IncompatibleBlockPointer;
9118 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9119 return Sema::IncompatibleBlockPointer;
9121 return ConvTy;
9124 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9125 /// for assignment compatibility.
9126 static Sema::AssignConvertType
9127 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9128 QualType RHSType) {
9129 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9130 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9132 if (LHSType->isObjCBuiltinType()) {
9133 // Class is not compatible with ObjC object pointers.
9134 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9135 !RHSType->isObjCQualifiedClassType())
9136 return Sema::IncompatiblePointer;
9137 return Sema::Compatible;
9139 if (RHSType->isObjCBuiltinType()) {
9140 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9141 !LHSType->isObjCQualifiedClassType())
9142 return Sema::IncompatiblePointer;
9143 return Sema::Compatible;
9145 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9146 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9148 if (!lhptee.isAtLeastAsQualifiedAs(rhptee, S.getASTContext()) &&
9149 // make an exception for id<P>
9150 !LHSType->isObjCQualifiedIdType())
9151 return Sema::CompatiblePointerDiscardsQualifiers;
9153 if (S.Context.typesAreCompatible(LHSType, RHSType))
9154 return Sema::Compatible;
9155 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9156 return Sema::IncompatibleObjCQualifiedId;
9157 return Sema::IncompatiblePointer;
9160 Sema::AssignConvertType
9161 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9162 QualType LHSType, QualType RHSType) {
9163 // Fake up an opaque expression. We don't actually care about what
9164 // cast operations are required, so if CheckAssignmentConstraints
9165 // adds casts to this they'll be wasted, but fortunately that doesn't
9166 // usually happen on valid code.
9167 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9168 ExprResult RHSPtr = &RHSExpr;
9169 CastKind K;
9171 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9174 /// This helper function returns true if QT is a vector type that has element
9175 /// type ElementType.
9176 static bool isVector(QualType QT, QualType ElementType) {
9177 if (const VectorType *VT = QT->getAs<VectorType>())
9178 return VT->getElementType().getCanonicalType() == ElementType;
9179 return false;
9182 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9183 /// has code to accommodate several GCC extensions when type checking
9184 /// pointers. Here are some objectionable examples that GCC considers warnings:
9186 /// int a, *pint;
9187 /// short *pshort;
9188 /// struct foo *pfoo;
9190 /// pint = pshort; // warning: assignment from incompatible pointer type
9191 /// a = pint; // warning: assignment makes integer from pointer without a cast
9192 /// pint = a; // warning: assignment makes pointer from integer without a cast
9193 /// pint = pfoo; // warning: assignment from incompatible pointer type
9195 /// As a result, the code for dealing with pointers is more complex than the
9196 /// C99 spec dictates.
9198 /// Sets 'Kind' for any result kind except Incompatible.
9199 Sema::AssignConvertType
9200 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9201 CastKind &Kind, bool ConvertRHS) {
9202 QualType RHSType = RHS.get()->getType();
9203 QualType OrigLHSType = LHSType;
9205 // Get canonical types. We're not formatting these types, just comparing
9206 // them.
9207 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9208 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9210 // Common case: no conversion required.
9211 if (LHSType == RHSType) {
9212 Kind = CK_NoOp;
9213 return Compatible;
9216 // If the LHS has an __auto_type, there are no additional type constraints
9217 // to be worried about.
9218 if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9219 if (AT->isGNUAutoType()) {
9220 Kind = CK_NoOp;
9221 return Compatible;
9225 // If we have an atomic type, try a non-atomic assignment, then just add an
9226 // atomic qualification step.
9227 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9228 Sema::AssignConvertType result =
9229 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9230 if (result != Compatible)
9231 return result;
9232 if (Kind != CK_NoOp && ConvertRHS)
9233 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9234 Kind = CK_NonAtomicToAtomic;
9235 return Compatible;
9238 // If the left-hand side is a reference type, then we are in a
9239 // (rare!) case where we've allowed the use of references in C,
9240 // e.g., as a parameter type in a built-in function. In this case,
9241 // just make sure that the type referenced is compatible with the
9242 // right-hand side type. The caller is responsible for adjusting
9243 // LHSType so that the resulting expression does not have reference
9244 // type.
9245 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9246 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9247 Kind = CK_LValueBitCast;
9248 return Compatible;
9250 return Incompatible;
9253 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9254 // to the same ExtVector type.
9255 if (LHSType->isExtVectorType()) {
9256 if (RHSType->isExtVectorType())
9257 return Incompatible;
9258 if (RHSType->isArithmeticType()) {
9259 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9260 if (ConvertRHS)
9261 RHS = prepareVectorSplat(LHSType, RHS.get());
9262 Kind = CK_VectorSplat;
9263 return Compatible;
9267 // Conversions to or from vector type.
9268 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9269 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9270 // Allow assignments of an AltiVec vector type to an equivalent GCC
9271 // vector type and vice versa
9272 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9273 Kind = CK_BitCast;
9274 return Compatible;
9277 // If we are allowing lax vector conversions, and LHS and RHS are both
9278 // vectors, the total size only needs to be the same. This is a bitcast;
9279 // no bits are changed but the result type is different.
9280 if (isLaxVectorConversion(RHSType, LHSType)) {
9281 // The default for lax vector conversions with Altivec vectors will
9282 // change, so if we are converting between vector types where
9283 // at least one is an Altivec vector, emit a warning.
9284 if (Context.getTargetInfo().getTriple().isPPC() &&
9285 anyAltivecTypes(RHSType, LHSType) &&
9286 !Context.areCompatibleVectorTypes(RHSType, LHSType))
9287 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9288 << RHSType << LHSType;
9289 Kind = CK_BitCast;
9290 return IncompatibleVectors;
9294 // When the RHS comes from another lax conversion (e.g. binops between
9295 // scalars and vectors) the result is canonicalized as a vector. When the
9296 // LHS is also a vector, the lax is allowed by the condition above. Handle
9297 // the case where LHS is a scalar.
9298 if (LHSType->isScalarType()) {
9299 const VectorType *VecType = RHSType->getAs<VectorType>();
9300 if (VecType && VecType->getNumElements() == 1 &&
9301 isLaxVectorConversion(RHSType, LHSType)) {
9302 if (Context.getTargetInfo().getTriple().isPPC() &&
9303 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9304 VecType->getVectorKind() == VectorKind::AltiVecBool ||
9305 VecType->getVectorKind() == VectorKind::AltiVecPixel))
9306 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9307 << RHSType << LHSType;
9308 ExprResult *VecExpr = &RHS;
9309 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9310 Kind = CK_BitCast;
9311 return Compatible;
9315 // Allow assignments between fixed-length and sizeless SVE vectors.
9316 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9317 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9318 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9319 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9320 Kind = CK_BitCast;
9321 return Compatible;
9324 // Allow assignments between fixed-length and sizeless RVV vectors.
9325 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9326 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9327 if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
9328 Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
9329 Kind = CK_BitCast;
9330 return Compatible;
9334 return Incompatible;
9337 // Diagnose attempts to convert between __ibm128, __float128 and long double
9338 // where such conversions currently can't be handled.
9339 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9340 return Incompatible;
9342 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9343 // discards the imaginary part.
9344 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9345 !LHSType->getAs<ComplexType>())
9346 return Incompatible;
9348 // Arithmetic conversions.
9349 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9350 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9351 if (ConvertRHS)
9352 Kind = PrepareScalarCast(RHS, LHSType);
9353 return Compatible;
9356 // Conversions to normal pointers.
9357 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9358 // U* -> T*
9359 if (isa<PointerType>(RHSType)) {
9360 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9361 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9362 if (AddrSpaceL != AddrSpaceR)
9363 Kind = CK_AddressSpaceConversion;
9364 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9365 Kind = CK_NoOp;
9366 else
9367 Kind = CK_BitCast;
9368 return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9369 RHS.get()->getBeginLoc());
9372 // int -> T*
9373 if (RHSType->isIntegerType()) {
9374 Kind = CK_IntegralToPointer; // FIXME: null?
9375 return IntToPointer;
9378 // C pointers are not compatible with ObjC object pointers,
9379 // with two exceptions:
9380 if (isa<ObjCObjectPointerType>(RHSType)) {
9381 // - conversions to void*
9382 if (LHSPointer->getPointeeType()->isVoidType()) {
9383 Kind = CK_BitCast;
9384 return Compatible;
9387 // - conversions from 'Class' to the redefinition type
9388 if (RHSType->isObjCClassType() &&
9389 Context.hasSameType(LHSType,
9390 Context.getObjCClassRedefinitionType())) {
9391 Kind = CK_BitCast;
9392 return Compatible;
9395 Kind = CK_BitCast;
9396 return IncompatiblePointer;
9399 // U^ -> void*
9400 if (RHSType->getAs<BlockPointerType>()) {
9401 if (LHSPointer->getPointeeType()->isVoidType()) {
9402 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9403 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9404 ->getPointeeType()
9405 .getAddressSpace();
9406 Kind =
9407 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9408 return Compatible;
9412 return Incompatible;
9415 // Conversions to block pointers.
9416 if (isa<BlockPointerType>(LHSType)) {
9417 // U^ -> T^
9418 if (RHSType->isBlockPointerType()) {
9419 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9420 ->getPointeeType()
9421 .getAddressSpace();
9422 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9423 ->getPointeeType()
9424 .getAddressSpace();
9425 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9426 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9429 // int or null -> T^
9430 if (RHSType->isIntegerType()) {
9431 Kind = CK_IntegralToPointer; // FIXME: null
9432 return IntToBlockPointer;
9435 // id -> T^
9436 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9437 Kind = CK_AnyPointerToBlockPointerCast;
9438 return Compatible;
9441 // void* -> T^
9442 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9443 if (RHSPT->getPointeeType()->isVoidType()) {
9444 Kind = CK_AnyPointerToBlockPointerCast;
9445 return Compatible;
9448 return Incompatible;
9451 // Conversions to Objective-C pointers.
9452 if (isa<ObjCObjectPointerType>(LHSType)) {
9453 // A* -> B*
9454 if (RHSType->isObjCObjectPointerType()) {
9455 Kind = CK_BitCast;
9456 Sema::AssignConvertType result =
9457 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9458 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9459 result == Compatible &&
9460 !ObjC().CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9461 result = IncompatibleObjCWeakRef;
9462 return result;
9465 // int or null -> A*
9466 if (RHSType->isIntegerType()) {
9467 Kind = CK_IntegralToPointer; // FIXME: null
9468 return IntToPointer;
9471 // In general, C pointers are not compatible with ObjC object pointers,
9472 // with two exceptions:
9473 if (isa<PointerType>(RHSType)) {
9474 Kind = CK_CPointerToObjCPointerCast;
9476 // - conversions from 'void*'
9477 if (RHSType->isVoidPointerType()) {
9478 return Compatible;
9481 // - conversions to 'Class' from its redefinition type
9482 if (LHSType->isObjCClassType() &&
9483 Context.hasSameType(RHSType,
9484 Context.getObjCClassRedefinitionType())) {
9485 return Compatible;
9488 return IncompatiblePointer;
9491 // Only under strict condition T^ is compatible with an Objective-C pointer.
9492 if (RHSType->isBlockPointerType() &&
9493 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9494 if (ConvertRHS)
9495 maybeExtendBlockObject(RHS);
9496 Kind = CK_BlockPointerToObjCPointerCast;
9497 return Compatible;
9500 return Incompatible;
9503 // Conversion to nullptr_t (C23 only)
9504 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9505 RHS.get()->isNullPointerConstant(Context,
9506 Expr::NPC_ValueDependentIsNull)) {
9507 // null -> nullptr_t
9508 Kind = CK_NullToPointer;
9509 return Compatible;
9512 // Conversions from pointers that are not covered by the above.
9513 if (isa<PointerType>(RHSType)) {
9514 // T* -> _Bool
9515 if (LHSType == Context.BoolTy) {
9516 Kind = CK_PointerToBoolean;
9517 return Compatible;
9520 // T* -> int
9521 if (LHSType->isIntegerType()) {
9522 Kind = CK_PointerToIntegral;
9523 return PointerToInt;
9526 return Incompatible;
9529 // Conversions from Objective-C pointers that are not covered by the above.
9530 if (isa<ObjCObjectPointerType>(RHSType)) {
9531 // T* -> _Bool
9532 if (LHSType == Context.BoolTy) {
9533 Kind = CK_PointerToBoolean;
9534 return Compatible;
9537 // T* -> int
9538 if (LHSType->isIntegerType()) {
9539 Kind = CK_PointerToIntegral;
9540 return PointerToInt;
9543 return Incompatible;
9546 // struct A -> struct B
9547 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9548 if (Context.typesAreCompatible(LHSType, RHSType)) {
9549 Kind = CK_NoOp;
9550 return Compatible;
9554 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9555 Kind = CK_IntToOCLSampler;
9556 return Compatible;
9559 return Incompatible;
9562 /// Constructs a transparent union from an expression that is
9563 /// used to initialize the transparent union.
9564 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9565 ExprResult &EResult, QualType UnionType,
9566 FieldDecl *Field) {
9567 // Build an initializer list that designates the appropriate member
9568 // of the transparent union.
9569 Expr *E = EResult.get();
9570 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9571 E, SourceLocation());
9572 Initializer->setType(UnionType);
9573 Initializer->setInitializedFieldInUnion(Field);
9575 // Build a compound literal constructing a value of the transparent
9576 // union type from this initializer list.
9577 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9578 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9579 VK_PRValue, Initializer, false);
9582 Sema::AssignConvertType
9583 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9584 ExprResult &RHS) {
9585 QualType RHSType = RHS.get()->getType();
9587 // If the ArgType is a Union type, we want to handle a potential
9588 // transparent_union GCC extension.
9589 const RecordType *UT = ArgType->getAsUnionType();
9590 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9591 return Incompatible;
9593 // The field to initialize within the transparent union.
9594 RecordDecl *UD = UT->getDecl();
9595 FieldDecl *InitField = nullptr;
9596 // It's compatible if the expression matches any of the fields.
9597 for (auto *it : UD->fields()) {
9598 if (it->getType()->isPointerType()) {
9599 // If the transparent union contains a pointer type, we allow:
9600 // 1) void pointer
9601 // 2) null pointer constant
9602 if (RHSType->isPointerType())
9603 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9604 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9605 InitField = it;
9606 break;
9609 if (RHS.get()->isNullPointerConstant(Context,
9610 Expr::NPC_ValueDependentIsNull)) {
9611 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9612 CK_NullToPointer);
9613 InitField = it;
9614 break;
9618 CastKind Kind;
9619 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9620 == Compatible) {
9621 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9622 InitField = it;
9623 break;
9627 if (!InitField)
9628 return Incompatible;
9630 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9631 return Compatible;
9634 Sema::AssignConvertType
9635 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9636 bool Diagnose,
9637 bool DiagnoseCFAudited,
9638 bool ConvertRHS) {
9639 // We need to be able to tell the caller whether we diagnosed a problem, if
9640 // they ask us to issue diagnostics.
9641 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9643 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9644 // we can't avoid *all* modifications at the moment, so we need some somewhere
9645 // to put the updated value.
9646 ExprResult LocalRHS = CallerRHS;
9647 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9649 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9650 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9651 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9652 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9653 Diag(RHS.get()->getExprLoc(),
9654 diag::warn_noderef_to_dereferenceable_pointer)
9655 << RHS.get()->getSourceRange();
9660 if (getLangOpts().CPlusPlus) {
9661 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9662 // C++ 5.17p3: If the left operand is not of class type, the
9663 // expression is implicitly converted (C++ 4) to the
9664 // cv-unqualified type of the left operand.
9665 QualType RHSType = RHS.get()->getType();
9666 if (Diagnose) {
9667 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9668 AssignmentAction::Assigning);
9669 } else {
9670 ImplicitConversionSequence ICS =
9671 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9672 /*SuppressUserConversions=*/false,
9673 AllowedExplicit::None,
9674 /*InOverloadResolution=*/false,
9675 /*CStyle=*/false,
9676 /*AllowObjCWritebackConversion=*/false);
9677 if (ICS.isFailure())
9678 return Incompatible;
9679 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9680 ICS, AssignmentAction::Assigning);
9682 if (RHS.isInvalid())
9683 return Incompatible;
9684 Sema::AssignConvertType result = Compatible;
9685 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9686 !ObjC().CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9687 result = IncompatibleObjCWeakRef;
9688 return result;
9691 // FIXME: Currently, we fall through and treat C++ classes like C
9692 // structures.
9693 // FIXME: We also fall through for atomics; not sure what should
9694 // happen there, though.
9695 } else if (RHS.get()->getType() == Context.OverloadTy) {
9696 // As a set of extensions to C, we support overloading on functions. These
9697 // functions need to be resolved here.
9698 DeclAccessPair DAP;
9699 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9700 RHS.get(), LHSType, /*Complain=*/false, DAP))
9701 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9702 else
9703 return Incompatible;
9706 // This check seems unnatural, however it is necessary to ensure the proper
9707 // conversion of functions/arrays. If the conversion were done for all
9708 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9709 // expressions that suppress this implicit conversion (&, sizeof). This needs
9710 // to happen before we check for null pointer conversions because C does not
9711 // undergo the same implicit conversions as C++ does above (by the calls to
9712 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9713 // lvalue to rvalue cast before checking for null pointer constraints. This
9714 // addresses code like: nullptr_t val; int *ptr; ptr = val;
9716 // Suppress this for references: C++ 8.5.3p5.
9717 if (!LHSType->isReferenceType()) {
9718 // FIXME: We potentially allocate here even if ConvertRHS is false.
9719 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9720 if (RHS.isInvalid())
9721 return Incompatible;
9724 // The constraints are expressed in terms of the atomic, qualified, or
9725 // unqualified type of the LHS.
9726 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9728 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9729 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9730 if ((LHSTypeAfterConversion->isPointerType() ||
9731 LHSTypeAfterConversion->isObjCObjectPointerType() ||
9732 LHSTypeAfterConversion->isBlockPointerType()) &&
9733 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9734 RHS.get()->isNullPointerConstant(Context,
9735 Expr::NPC_ValueDependentIsNull))) {
9736 if (Diagnose || ConvertRHS) {
9737 CastKind Kind;
9738 CXXCastPath Path;
9739 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9740 /*IgnoreBaseAccess=*/false, Diagnose);
9741 if (ConvertRHS)
9742 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9744 return Compatible;
9746 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9747 // unqualified bool, and the right operand is a pointer or its type is
9748 // nullptr_t.
9749 if (getLangOpts().C23 && LHSType->isBooleanType() &&
9750 RHS.get()->getType()->isNullPtrType()) {
9751 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9752 // only handles nullptr -> _Bool due to needing an extra conversion
9753 // step.
9754 // We model this by converting from nullptr -> void * and then let the
9755 // conversion from void * -> _Bool happen naturally.
9756 if (Diagnose || ConvertRHS) {
9757 CastKind Kind;
9758 CXXCastPath Path;
9759 CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
9760 /*IgnoreBaseAccess=*/false, Diagnose);
9761 if (ConvertRHS)
9762 RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
9763 &Path);
9767 // OpenCL queue_t type assignment.
9768 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9769 Context, Expr::NPC_ValueDependentIsNull)) {
9770 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9771 return Compatible;
9774 CastKind Kind;
9775 Sema::AssignConvertType result =
9776 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9778 // C99 6.5.16.1p2: The value of the right operand is converted to the
9779 // type of the assignment expression.
9780 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9781 // so that we can use references in built-in functions even in C.
9782 // The getNonReferenceType() call makes sure that the resulting expression
9783 // does not have reference type.
9784 if (result != Incompatible && RHS.get()->getType() != LHSType) {
9785 QualType Ty = LHSType.getNonLValueExprType(Context);
9786 Expr *E = RHS.get();
9788 // Check for various Objective-C errors. If we are not reporting
9789 // diagnostics and just checking for errors, e.g., during overload
9790 // resolution, return Incompatible to indicate the failure.
9791 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9792 ObjC().CheckObjCConversion(SourceRange(), Ty, E,
9793 CheckedConversionKind::Implicit, Diagnose,
9794 DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9795 if (!Diagnose)
9796 return Incompatible;
9798 if (getLangOpts().ObjC &&
9799 (ObjC().CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9800 E->getType(), E, Diagnose) ||
9801 ObjC().CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9802 if (!Diagnose)
9803 return Incompatible;
9804 // Replace the expression with a corrected version and continue so we
9805 // can find further errors.
9806 RHS = E;
9807 return Compatible;
9810 if (ConvertRHS)
9811 RHS = ImpCastExprToType(E, Ty, Kind);
9814 return result;
9817 namespace {
9818 /// The original operand to an operator, prior to the application of the usual
9819 /// arithmetic conversions and converting the arguments of a builtin operator
9820 /// candidate.
9821 struct OriginalOperand {
9822 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9823 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9824 Op = MTE->getSubExpr();
9825 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9826 Op = BTE->getSubExpr();
9827 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9828 Orig = ICE->getSubExprAsWritten();
9829 Conversion = ICE->getConversionFunction();
9833 QualType getType() const { return Orig->getType(); }
9835 Expr *Orig;
9836 NamedDecl *Conversion;
9840 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9841 ExprResult &RHS) {
9842 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9844 Diag(Loc, diag::err_typecheck_invalid_operands)
9845 << OrigLHS.getType() << OrigRHS.getType()
9846 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9848 // If a user-defined conversion was applied to either of the operands prior
9849 // to applying the built-in operator rules, tell the user about it.
9850 if (OrigLHS.Conversion) {
9851 Diag(OrigLHS.Conversion->getLocation(),
9852 diag::note_typecheck_invalid_operands_converted)
9853 << 0 << LHS.get()->getType();
9855 if (OrigRHS.Conversion) {
9856 Diag(OrigRHS.Conversion->getLocation(),
9857 diag::note_typecheck_invalid_operands_converted)
9858 << 1 << RHS.get()->getType();
9861 return QualType();
9864 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9865 ExprResult &RHS) {
9866 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9867 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9869 bool LHSNatVec = LHSType->isVectorType();
9870 bool RHSNatVec = RHSType->isVectorType();
9872 if (!(LHSNatVec && RHSNatVec)) {
9873 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9874 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9875 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9876 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9877 << Vector->getSourceRange();
9878 return QualType();
9881 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9882 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9883 << RHS.get()->getSourceRange();
9885 return QualType();
9888 /// Try to convert a value of non-vector type to a vector type by converting
9889 /// the type to the element type of the vector and then performing a splat.
9890 /// If the language is OpenCL, we only use conversions that promote scalar
9891 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9892 /// for float->int.
9894 /// OpenCL V2.0 6.2.6.p2:
9895 /// An error shall occur if any scalar operand type has greater rank
9896 /// than the type of the vector element.
9898 /// \param scalar - if non-null, actually perform the conversions
9899 /// \return true if the operation fails (but without diagnosing the failure)
9900 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9901 QualType scalarTy,
9902 QualType vectorEltTy,
9903 QualType vectorTy,
9904 unsigned &DiagID) {
9905 // The conversion to apply to the scalar before splatting it,
9906 // if necessary.
9907 CastKind scalarCast = CK_NoOp;
9909 if (vectorEltTy->isBooleanType() && scalarTy->isIntegralType(S.Context)) {
9910 scalarCast = CK_IntegralToBoolean;
9911 } else if (vectorEltTy->isIntegralType(S.Context)) {
9912 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9913 (scalarTy->isIntegerType() &&
9914 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9915 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9916 return true;
9918 if (!scalarTy->isIntegralType(S.Context))
9919 return true;
9920 scalarCast = CK_IntegralCast;
9921 } else if (vectorEltTy->isRealFloatingType()) {
9922 if (scalarTy->isRealFloatingType()) {
9923 if (S.getLangOpts().OpenCL &&
9924 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9925 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9926 return true;
9928 scalarCast = CK_FloatingCast;
9930 else if (scalarTy->isIntegralType(S.Context))
9931 scalarCast = CK_IntegralToFloating;
9932 else
9933 return true;
9934 } else {
9935 return true;
9938 // Adjust scalar if desired.
9939 if (scalar) {
9940 if (scalarCast != CK_NoOp)
9941 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9942 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9944 return false;
9947 /// Convert vector E to a vector with the same number of elements but different
9948 /// element type.
9949 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9950 const auto *VecTy = E->getType()->getAs<VectorType>();
9951 assert(VecTy && "Expression E must be a vector");
9952 QualType NewVecTy =
9953 VecTy->isExtVectorType()
9954 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
9955 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
9956 VecTy->getVectorKind());
9958 // Look through the implicit cast. Return the subexpression if its type is
9959 // NewVecTy.
9960 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9961 if (ICE->getSubExpr()->getType() == NewVecTy)
9962 return ICE->getSubExpr();
9964 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9965 return S.ImpCastExprToType(E, NewVecTy, Cast);
9968 /// Test if a (constant) integer Int can be casted to another integer type
9969 /// IntTy without losing precision.
9970 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9971 QualType OtherIntTy) {
9972 if (Int->get()->containsErrors())
9973 return false;
9975 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9977 // Reject cases where the value of the Int is unknown as that would
9978 // possibly cause truncation, but accept cases where the scalar can be
9979 // demoted without loss of precision.
9980 Expr::EvalResult EVResult;
9981 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9982 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9983 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9984 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9986 if (CstInt) {
9987 // If the scalar is constant and is of a higher order and has more active
9988 // bits that the vector element type, reject it.
9989 llvm::APSInt Result = EVResult.Val.getInt();
9990 unsigned NumBits = IntSigned
9991 ? (Result.isNegative() ? Result.getSignificantBits()
9992 : Result.getActiveBits())
9993 : Result.getActiveBits();
9994 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9995 return true;
9997 // If the signedness of the scalar type and the vector element type
9998 // differs and the number of bits is greater than that of the vector
9999 // element reject it.
10000 return (IntSigned != OtherIntSigned &&
10001 NumBits > S.Context.getIntWidth(OtherIntTy));
10004 // Reject cases where the value of the scalar is not constant and it's
10005 // order is greater than that of the vector element type.
10006 return (Order < 0);
10009 /// Test if a (constant) integer Int can be casted to floating point type
10010 /// FloatTy without losing precision.
10011 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10012 QualType FloatTy) {
10013 if (Int->get()->containsErrors())
10014 return false;
10016 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10018 // Determine if the integer constant can be expressed as a floating point
10019 // number of the appropriate type.
10020 Expr::EvalResult EVResult;
10021 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10023 uint64_t Bits = 0;
10024 if (CstInt) {
10025 // Reject constants that would be truncated if they were converted to
10026 // the floating point type. Test by simple to/from conversion.
10027 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10028 // could be avoided if there was a convertFromAPInt method
10029 // which could signal back if implicit truncation occurred.
10030 llvm::APSInt Result = EVResult.Val.getInt();
10031 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10032 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10033 llvm::APFloat::rmTowardZero);
10034 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10035 !IntTy->hasSignedIntegerRepresentation());
10036 bool Ignored = false;
10037 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10038 &Ignored);
10039 if (Result != ConvertBack)
10040 return true;
10041 } else {
10042 // Reject types that cannot be fully encoded into the mantissa of
10043 // the float.
10044 Bits = S.Context.getTypeSize(IntTy);
10045 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10046 S.Context.getFloatTypeSemantics(FloatTy));
10047 if (Bits > FloatPrec)
10048 return true;
10051 return false;
10054 /// Attempt to convert and splat Scalar into a vector whose types matches
10055 /// Vector following GCC conversion rules. The rule is that implicit
10056 /// conversion can occur when Scalar can be casted to match Vector's element
10057 /// type without causing truncation of Scalar.
10058 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10059 ExprResult *Vector) {
10060 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10061 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10062 QualType VectorEltTy;
10064 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10065 assert(!isa<ExtVectorType>(VT) &&
10066 "ExtVectorTypes should not be handled here!");
10067 VectorEltTy = VT->getElementType();
10068 } else if (VectorTy->isSveVLSBuiltinType()) {
10069 VectorEltTy =
10070 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10071 } else {
10072 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10075 // Reject cases where the vector element type or the scalar element type are
10076 // not integral or floating point types.
10077 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10078 return true;
10080 // The conversion to apply to the scalar before splatting it,
10081 // if necessary.
10082 CastKind ScalarCast = CK_NoOp;
10084 // Accept cases where the vector elements are integers and the scalar is
10085 // an integer.
10086 // FIXME: Notionally if the scalar was a floating point value with a precise
10087 // integral representation, we could cast it to an appropriate integer
10088 // type and then perform the rest of the checks here. GCC will perform
10089 // this conversion in some cases as determined by the input language.
10090 // We should accept it on a language independent basis.
10091 if (VectorEltTy->isIntegralType(S.Context) &&
10092 ScalarTy->isIntegralType(S.Context) &&
10093 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10095 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10096 return true;
10098 ScalarCast = CK_IntegralCast;
10099 } else if (VectorEltTy->isIntegralType(S.Context) &&
10100 ScalarTy->isRealFloatingType()) {
10101 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10102 ScalarCast = CK_FloatingToIntegral;
10103 else
10104 return true;
10105 } else if (VectorEltTy->isRealFloatingType()) {
10106 if (ScalarTy->isRealFloatingType()) {
10108 // Reject cases where the scalar type is not a constant and has a higher
10109 // Order than the vector element type.
10110 llvm::APFloat Result(0.0);
10112 // Determine whether this is a constant scalar. In the event that the
10113 // value is dependent (and thus cannot be evaluated by the constant
10114 // evaluator), skip the evaluation. This will then diagnose once the
10115 // expression is instantiated.
10116 bool CstScalar = Scalar->get()->isValueDependent() ||
10117 Scalar->get()->EvaluateAsFloat(Result, S.Context);
10118 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10119 if (!CstScalar && Order < 0)
10120 return true;
10122 // If the scalar cannot be safely casted to the vector element type,
10123 // reject it.
10124 if (CstScalar) {
10125 bool Truncated = false;
10126 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10127 llvm::APFloat::rmNearestTiesToEven, &Truncated);
10128 if (Truncated)
10129 return true;
10132 ScalarCast = CK_FloatingCast;
10133 } else if (ScalarTy->isIntegralType(S.Context)) {
10134 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10135 return true;
10137 ScalarCast = CK_IntegralToFloating;
10138 } else
10139 return true;
10140 } else if (ScalarTy->isEnumeralType())
10141 return true;
10143 // Adjust scalar if desired.
10144 if (ScalarCast != CK_NoOp)
10145 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10146 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10147 return false;
10150 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10151 SourceLocation Loc, bool IsCompAssign,
10152 bool AllowBothBool,
10153 bool AllowBoolConversions,
10154 bool AllowBoolOperation,
10155 bool ReportInvalid) {
10156 if (!IsCompAssign) {
10157 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10158 if (LHS.isInvalid())
10159 return QualType();
10161 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10162 if (RHS.isInvalid())
10163 return QualType();
10165 // For conversion purposes, we ignore any qualifiers.
10166 // For example, "const float" and "float" are equivalent.
10167 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10168 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10170 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10171 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10172 assert(LHSVecType || RHSVecType);
10174 if (getLangOpts().HLSL)
10175 return HLSL().handleVectorBinOpConversion(LHS, RHS, LHSType, RHSType,
10176 IsCompAssign);
10178 // AltiVec-style "vector bool op vector bool" combinations are allowed
10179 // for some operators but not others.
10180 if (!AllowBothBool && LHSVecType &&
10181 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10182 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10183 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10185 // This operation may not be performed on boolean vectors.
10186 if (!AllowBoolOperation &&
10187 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10188 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10190 // If the vector types are identical, return.
10191 if (Context.hasSameType(LHSType, RHSType))
10192 return Context.getCommonSugaredType(LHSType, RHSType);
10194 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10195 if (LHSVecType && RHSVecType &&
10196 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10197 if (isa<ExtVectorType>(LHSVecType)) {
10198 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10199 return LHSType;
10202 if (!IsCompAssign)
10203 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10204 return RHSType;
10207 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10208 // can be mixed, with the result being the non-bool type. The non-bool
10209 // operand must have integer element type.
10210 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10211 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10212 (Context.getTypeSize(LHSVecType->getElementType()) ==
10213 Context.getTypeSize(RHSVecType->getElementType()))) {
10214 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10215 LHSVecType->getElementType()->isIntegerType() &&
10216 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10217 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10218 return LHSType;
10220 if (!IsCompAssign &&
10221 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10222 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10223 RHSVecType->getElementType()->isIntegerType()) {
10224 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10225 return RHSType;
10229 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10230 // invalid since the ambiguity can affect the ABI.
10231 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10232 unsigned &SVEorRVV) {
10233 const VectorType *VecType = SecondType->getAs<VectorType>();
10234 SVEorRVV = 0;
10235 if (FirstType->isSizelessBuiltinType() && VecType) {
10236 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10237 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10238 return true;
10239 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10240 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10241 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_1 ||
10242 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_2 ||
10243 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask_4) {
10244 SVEorRVV = 1;
10245 return true;
10249 return false;
10252 unsigned SVEorRVV;
10253 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10254 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10255 Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
10256 << SVEorRVV << LHSType << RHSType;
10257 return QualType();
10260 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10261 // invalid since the ambiguity can affect the ABI.
10262 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10263 unsigned &SVEorRVV) {
10264 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10265 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10267 SVEorRVV = 0;
10268 if (FirstVecType && SecondVecType) {
10269 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10270 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10271 SecondVecType->getVectorKind() ==
10272 VectorKind::SveFixedLengthPredicate)
10273 return true;
10274 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10275 SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask ||
10276 SecondVecType->getVectorKind() ==
10277 VectorKind::RVVFixedLengthMask_1 ||
10278 SecondVecType->getVectorKind() ==
10279 VectorKind::RVVFixedLengthMask_2 ||
10280 SecondVecType->getVectorKind() ==
10281 VectorKind::RVVFixedLengthMask_4) {
10282 SVEorRVV = 1;
10283 return true;
10286 return false;
10289 if (SecondVecType &&
10290 SecondVecType->getVectorKind() == VectorKind::Generic) {
10291 if (FirstType->isSVESizelessBuiltinType())
10292 return true;
10293 if (FirstType->isRVVSizelessBuiltinType()) {
10294 SVEorRVV = 1;
10295 return true;
10299 return false;
10302 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10303 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10304 Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
10305 << SVEorRVV << LHSType << RHSType;
10306 return QualType();
10309 // If there's a vector type and a scalar, try to convert the scalar to
10310 // the vector element type and splat.
10311 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10312 if (!RHSVecType) {
10313 if (isa<ExtVectorType>(LHSVecType)) {
10314 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10315 LHSVecType->getElementType(), LHSType,
10316 DiagID))
10317 return LHSType;
10318 } else {
10319 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10320 return LHSType;
10323 if (!LHSVecType) {
10324 if (isa<ExtVectorType>(RHSVecType)) {
10325 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10326 LHSType, RHSVecType->getElementType(),
10327 RHSType, DiagID))
10328 return RHSType;
10329 } else {
10330 if (LHS.get()->isLValue() ||
10331 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10332 return RHSType;
10336 // FIXME: The code below also handles conversion between vectors and
10337 // non-scalars, we should break this down into fine grained specific checks
10338 // and emit proper diagnostics.
10339 QualType VecType = LHSVecType ? LHSType : RHSType;
10340 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10341 QualType OtherType = LHSVecType ? RHSType : LHSType;
10342 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10343 if (isLaxVectorConversion(OtherType, VecType)) {
10344 if (Context.getTargetInfo().getTriple().isPPC() &&
10345 anyAltivecTypes(RHSType, LHSType) &&
10346 !Context.areCompatibleVectorTypes(RHSType, LHSType))
10347 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10348 // If we're allowing lax vector conversions, only the total (data) size
10349 // needs to be the same. For non compound assignment, if one of the types is
10350 // scalar, the result is always the vector type.
10351 if (!IsCompAssign) {
10352 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10353 return VecType;
10354 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10355 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10356 // type. Note that this is already done by non-compound assignments in
10357 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10358 // <1 x T> -> T. The result is also a vector type.
10359 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10360 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10361 ExprResult *RHSExpr = &RHS;
10362 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10363 return VecType;
10367 // Okay, the expression is invalid.
10369 // If there's a non-vector, non-real operand, diagnose that.
10370 if ((!RHSVecType && !RHSType->isRealType()) ||
10371 (!LHSVecType && !LHSType->isRealType())) {
10372 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10373 << LHSType << RHSType
10374 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10375 return QualType();
10378 // OpenCL V1.1 6.2.6.p1:
10379 // If the operands are of more than one vector type, then an error shall
10380 // occur. Implicit conversions between vector types are not permitted, per
10381 // section 6.2.1.
10382 if (getLangOpts().OpenCL &&
10383 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10384 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10385 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10386 << RHSType;
10387 return QualType();
10391 // If there is a vector type that is not a ExtVector and a scalar, we reach
10392 // this point if scalar could not be converted to the vector's element type
10393 // without truncation.
10394 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10395 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10396 QualType Scalar = LHSVecType ? RHSType : LHSType;
10397 QualType Vector = LHSVecType ? LHSType : RHSType;
10398 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10399 Diag(Loc,
10400 diag::err_typecheck_vector_not_convertable_implict_truncation)
10401 << ScalarOrVector << Scalar << Vector;
10403 return QualType();
10406 // Otherwise, use the generic diagnostic.
10407 Diag(Loc, DiagID)
10408 << LHSType << RHSType
10409 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10410 return QualType();
10413 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10414 SourceLocation Loc,
10415 bool IsCompAssign,
10416 ArithConvKind OperationKind) {
10417 if (!IsCompAssign) {
10418 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10419 if (LHS.isInvalid())
10420 return QualType();
10422 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10423 if (RHS.isInvalid())
10424 return QualType();
10426 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10427 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10429 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10430 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10432 unsigned DiagID = diag::err_typecheck_invalid_operands;
10433 if ((OperationKind == ACK_Arithmetic) &&
10434 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10435 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10436 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10437 << RHS.get()->getSourceRange();
10438 return QualType();
10441 if (Context.hasSameType(LHSType, RHSType))
10442 return LHSType;
10444 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10445 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10446 return LHSType;
10448 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10449 if (LHS.get()->isLValue() ||
10450 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10451 return RHSType;
10454 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10455 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10456 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10457 << LHSType << RHSType << LHS.get()->getSourceRange()
10458 << RHS.get()->getSourceRange();
10459 return QualType();
10462 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10463 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10464 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10465 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10466 << LHSType << RHSType << LHS.get()->getSourceRange()
10467 << RHS.get()->getSourceRange();
10468 return QualType();
10471 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10472 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10473 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10474 bool ScalarOrVector =
10475 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10477 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10478 << ScalarOrVector << Scalar << Vector;
10480 return QualType();
10483 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10484 << RHS.get()->getSourceRange();
10485 return QualType();
10488 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10489 // expression. These are mainly cases where the null pointer is used as an
10490 // integer instead of a pointer.
10491 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10492 SourceLocation Loc, bool IsCompare) {
10493 // The canonical way to check for a GNU null is with isNullPointerConstant,
10494 // but we use a bit of a hack here for speed; this is a relatively
10495 // hot path, and isNullPointerConstant is slow.
10496 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10497 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10499 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10501 // Avoid analyzing cases where the result will either be invalid (and
10502 // diagnosed as such) or entirely valid and not something to warn about.
10503 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10504 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10505 return;
10507 // Comparison operations would not make sense with a null pointer no matter
10508 // what the other expression is.
10509 if (!IsCompare) {
10510 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10511 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10512 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10513 return;
10516 // The rest of the operations only make sense with a null pointer
10517 // if the other expression is a pointer.
10518 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10519 NonNullType->canDecayToPointerType())
10520 return;
10522 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10523 << LHSNull /* LHS is NULL */ << NonNullType
10524 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10527 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10528 SourceLocation Loc) {
10529 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10530 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10531 if (!LUE || !RUE)
10532 return;
10533 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10534 RUE->getKind() != UETT_SizeOf)
10535 return;
10537 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10538 QualType LHSTy = LHSArg->getType();
10539 QualType RHSTy;
10541 if (RUE->isArgumentType())
10542 RHSTy = RUE->getArgumentType().getNonReferenceType();
10543 else
10544 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10546 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10547 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10548 return;
10550 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10551 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10552 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10553 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10554 << LHSArgDecl;
10556 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10557 QualType ArrayElemTy = ArrayTy->getElementType();
10558 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10559 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10560 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10561 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10562 return;
10563 S.Diag(Loc, diag::warn_division_sizeof_array)
10564 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10565 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10566 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10567 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10568 << LHSArgDecl;
10571 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10575 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10576 ExprResult &RHS,
10577 SourceLocation Loc, bool IsDiv) {
10578 // Check for division/remainder by zero.
10579 Expr::EvalResult RHSValue;
10580 if (!RHS.get()->isValueDependent() &&
10581 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10582 RHSValue.Val.getInt() == 0)
10583 S.DiagRuntimeBehavior(Loc, RHS.get(),
10584 S.PDiag(diag::warn_remainder_division_by_zero)
10585 << IsDiv << RHS.get()->getSourceRange());
10588 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10589 SourceLocation Loc,
10590 bool IsCompAssign, bool IsDiv) {
10591 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10593 QualType LHSTy = LHS.get()->getType();
10594 QualType RHSTy = RHS.get()->getType();
10595 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10596 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10597 /*AllowBothBool*/ getLangOpts().AltiVec,
10598 /*AllowBoolConversions*/ false,
10599 /*AllowBooleanOperation*/ false,
10600 /*ReportInvalid*/ true);
10601 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10602 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10603 ACK_Arithmetic);
10604 if (!IsDiv &&
10605 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10606 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10607 // For division, only matrix-by-scalar is supported. Other combinations with
10608 // matrix types are invalid.
10609 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10610 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10612 QualType compType = UsualArithmeticConversions(
10613 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10614 if (LHS.isInvalid() || RHS.isInvalid())
10615 return QualType();
10618 if (compType.isNull() || !compType->isArithmeticType())
10619 return InvalidOperands(Loc, LHS, RHS);
10620 if (IsDiv) {
10621 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10622 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10624 return compType;
10627 QualType Sema::CheckRemainderOperands(
10628 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10629 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10631 if (LHS.get()->getType()->isVectorType() ||
10632 RHS.get()->getType()->isVectorType()) {
10633 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10634 RHS.get()->getType()->hasIntegerRepresentation())
10635 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10636 /*AllowBothBool*/ getLangOpts().AltiVec,
10637 /*AllowBoolConversions*/ false,
10638 /*AllowBooleanOperation*/ false,
10639 /*ReportInvalid*/ true);
10640 return InvalidOperands(Loc, LHS, RHS);
10643 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10644 RHS.get()->getType()->isSveVLSBuiltinType()) {
10645 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10646 RHS.get()->getType()->hasIntegerRepresentation())
10647 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10648 ACK_Arithmetic);
10650 return InvalidOperands(Loc, LHS, RHS);
10653 QualType compType = UsualArithmeticConversions(
10654 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10655 if (LHS.isInvalid() || RHS.isInvalid())
10656 return QualType();
10658 if (compType.isNull() || !compType->isIntegerType())
10659 return InvalidOperands(Loc, LHS, RHS);
10660 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10661 return compType;
10664 /// Diagnose invalid arithmetic on two void pointers.
10665 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10666 Expr *LHSExpr, Expr *RHSExpr) {
10667 S.Diag(Loc, S.getLangOpts().CPlusPlus
10668 ? diag::err_typecheck_pointer_arith_void_type
10669 : diag::ext_gnu_void_ptr)
10670 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10671 << RHSExpr->getSourceRange();
10674 /// Diagnose invalid arithmetic on a void pointer.
10675 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10676 Expr *Pointer) {
10677 S.Diag(Loc, S.getLangOpts().CPlusPlus
10678 ? diag::err_typecheck_pointer_arith_void_type
10679 : diag::ext_gnu_void_ptr)
10680 << 0 /* one pointer */ << Pointer->getSourceRange();
10683 /// Diagnose invalid arithmetic on a null pointer.
10685 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10686 /// idiom, which we recognize as a GNU extension.
10688 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10689 Expr *Pointer, bool IsGNUIdiom) {
10690 if (IsGNUIdiom)
10691 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10692 << Pointer->getSourceRange();
10693 else
10694 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10695 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10698 /// Diagnose invalid subraction on a null pointer.
10700 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10701 Expr *Pointer, bool BothNull) {
10702 // Null - null is valid in C++ [expr.add]p7
10703 if (BothNull && S.getLangOpts().CPlusPlus)
10704 return;
10706 // Is this s a macro from a system header?
10707 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10708 return;
10710 S.DiagRuntimeBehavior(Loc, Pointer,
10711 S.PDiag(diag::warn_pointer_sub_null_ptr)
10712 << S.getLangOpts().CPlusPlus
10713 << Pointer->getSourceRange());
10716 /// Diagnose invalid arithmetic on two function pointers.
10717 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10718 Expr *LHS, Expr *RHS) {
10719 assert(LHS->getType()->isAnyPointerType());
10720 assert(RHS->getType()->isAnyPointerType());
10721 S.Diag(Loc, S.getLangOpts().CPlusPlus
10722 ? diag::err_typecheck_pointer_arith_function_type
10723 : diag::ext_gnu_ptr_func_arith)
10724 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10725 // We only show the second type if it differs from the first.
10726 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10727 RHS->getType())
10728 << RHS->getType()->getPointeeType()
10729 << LHS->getSourceRange() << RHS->getSourceRange();
10732 /// Diagnose invalid arithmetic on a function pointer.
10733 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10734 Expr *Pointer) {
10735 assert(Pointer->getType()->isAnyPointerType());
10736 S.Diag(Loc, S.getLangOpts().CPlusPlus
10737 ? diag::err_typecheck_pointer_arith_function_type
10738 : diag::ext_gnu_ptr_func_arith)
10739 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10740 << 0 /* one pointer, so only one type */
10741 << Pointer->getSourceRange();
10744 /// Emit error if Operand is incomplete pointer type
10746 /// \returns True if pointer has incomplete type
10747 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10748 Expr *Operand) {
10749 QualType ResType = Operand->getType();
10750 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10751 ResType = ResAtomicType->getValueType();
10753 assert(ResType->isAnyPointerType());
10754 QualType PointeeTy = ResType->getPointeeType();
10755 return S.RequireCompleteSizedType(
10756 Loc, PointeeTy,
10757 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10758 Operand->getSourceRange());
10761 /// Check the validity of an arithmetic pointer operand.
10763 /// If the operand has pointer type, this code will check for pointer types
10764 /// which are invalid in arithmetic operations. These will be diagnosed
10765 /// appropriately, including whether or not the use is supported as an
10766 /// extension.
10768 /// \returns True when the operand is valid to use (even if as an extension).
10769 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10770 Expr *Operand) {
10771 QualType ResType = Operand->getType();
10772 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10773 ResType = ResAtomicType->getValueType();
10775 if (!ResType->isAnyPointerType()) return true;
10777 QualType PointeeTy = ResType->getPointeeType();
10778 if (PointeeTy->isVoidType()) {
10779 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10780 return !S.getLangOpts().CPlusPlus;
10782 if (PointeeTy->isFunctionType()) {
10783 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10784 return !S.getLangOpts().CPlusPlus;
10787 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10789 return true;
10792 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10793 /// operands.
10795 /// This routine will diagnose any invalid arithmetic on pointer operands much
10796 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10797 /// for emitting a single diagnostic even for operations where both LHS and RHS
10798 /// are (potentially problematic) pointers.
10800 /// \returns True when the operand is valid to use (even if as an extension).
10801 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10802 Expr *LHSExpr, Expr *RHSExpr) {
10803 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10804 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10805 if (!isLHSPointer && !isRHSPointer) return true;
10807 QualType LHSPointeeTy, RHSPointeeTy;
10808 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10809 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10811 // if both are pointers check if operation is valid wrt address spaces
10812 if (isLHSPointer && isRHSPointer) {
10813 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy,
10814 S.getASTContext())) {
10815 S.Diag(Loc,
10816 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10817 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10818 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10819 return false;
10823 // Check for arithmetic on pointers to incomplete types.
10824 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10825 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10826 if (isLHSVoidPtr || isRHSVoidPtr) {
10827 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10828 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10829 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10831 return !S.getLangOpts().CPlusPlus;
10834 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10835 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10836 if (isLHSFuncPtr || isRHSFuncPtr) {
10837 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10838 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10839 RHSExpr);
10840 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10842 return !S.getLangOpts().CPlusPlus;
10845 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10846 return false;
10847 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10848 return false;
10850 return true;
10853 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10854 /// literal.
10855 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10856 Expr *LHSExpr, Expr *RHSExpr) {
10857 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10858 Expr* IndexExpr = RHSExpr;
10859 if (!StrExpr) {
10860 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10861 IndexExpr = LHSExpr;
10864 bool IsStringPlusInt = StrExpr &&
10865 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10866 if (!IsStringPlusInt || IndexExpr->isValueDependent())
10867 return;
10869 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10870 Self.Diag(OpLoc, diag::warn_string_plus_int)
10871 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10873 // Only print a fixit for "str" + int, not for int + "str".
10874 if (IndexExpr == RHSExpr) {
10875 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10876 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10877 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10878 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10879 << FixItHint::CreateInsertion(EndLoc, "]");
10880 } else
10881 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10884 /// Emit a warning when adding a char literal to a string.
10885 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10886 Expr *LHSExpr, Expr *RHSExpr) {
10887 const Expr *StringRefExpr = LHSExpr;
10888 const CharacterLiteral *CharExpr =
10889 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10891 if (!CharExpr) {
10892 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10893 StringRefExpr = RHSExpr;
10896 if (!CharExpr || !StringRefExpr)
10897 return;
10899 const QualType StringType = StringRefExpr->getType();
10901 // Return if not a PointerType.
10902 if (!StringType->isAnyPointerType())
10903 return;
10905 // Return if not a CharacterType.
10906 if (!StringType->getPointeeType()->isAnyCharacterType())
10907 return;
10909 ASTContext &Ctx = Self.getASTContext();
10910 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10912 const QualType CharType = CharExpr->getType();
10913 if (!CharType->isAnyCharacterType() &&
10914 CharType->isIntegerType() &&
10915 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10916 Self.Diag(OpLoc, diag::warn_string_plus_char)
10917 << DiagRange << Ctx.CharTy;
10918 } else {
10919 Self.Diag(OpLoc, diag::warn_string_plus_char)
10920 << DiagRange << CharExpr->getType();
10923 // Only print a fixit for str + char, not for char + str.
10924 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10925 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10926 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10927 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10928 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10929 << FixItHint::CreateInsertion(EndLoc, "]");
10930 } else {
10931 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10935 /// Emit error when two pointers are incompatible.
10936 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10937 Expr *LHSExpr, Expr *RHSExpr) {
10938 assert(LHSExpr->getType()->isAnyPointerType());
10939 assert(RHSExpr->getType()->isAnyPointerType());
10940 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10941 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10942 << RHSExpr->getSourceRange();
10945 // C99 6.5.6
10946 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10947 SourceLocation Loc, BinaryOperatorKind Opc,
10948 QualType* CompLHSTy) {
10949 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10951 if (LHS.get()->getType()->isVectorType() ||
10952 RHS.get()->getType()->isVectorType()) {
10953 QualType compType =
10954 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10955 /*AllowBothBool*/ getLangOpts().AltiVec,
10956 /*AllowBoolConversions*/ getLangOpts().ZVector,
10957 /*AllowBooleanOperation*/ false,
10958 /*ReportInvalid*/ true);
10959 if (CompLHSTy) *CompLHSTy = compType;
10960 return compType;
10963 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10964 RHS.get()->getType()->isSveVLSBuiltinType()) {
10965 QualType compType =
10966 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10967 if (CompLHSTy)
10968 *CompLHSTy = compType;
10969 return compType;
10972 if (LHS.get()->getType()->isConstantMatrixType() ||
10973 RHS.get()->getType()->isConstantMatrixType()) {
10974 QualType compType =
10975 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10976 if (CompLHSTy)
10977 *CompLHSTy = compType;
10978 return compType;
10981 QualType compType = UsualArithmeticConversions(
10982 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10983 if (LHS.isInvalid() || RHS.isInvalid())
10984 return QualType();
10986 // Diagnose "string literal" '+' int and string '+' "char literal".
10987 if (Opc == BO_Add) {
10988 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10989 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10992 // handle the common case first (both operands are arithmetic).
10993 if (!compType.isNull() && compType->isArithmeticType()) {
10994 if (CompLHSTy) *CompLHSTy = compType;
10995 return compType;
10998 // Type-checking. Ultimately the pointer's going to be in PExp;
10999 // note that we bias towards the LHS being the pointer.
11000 Expr *PExp = LHS.get(), *IExp = RHS.get();
11002 bool isObjCPointer;
11003 if (PExp->getType()->isPointerType()) {
11004 isObjCPointer = false;
11005 } else if (PExp->getType()->isObjCObjectPointerType()) {
11006 isObjCPointer = true;
11007 } else {
11008 std::swap(PExp, IExp);
11009 if (PExp->getType()->isPointerType()) {
11010 isObjCPointer = false;
11011 } else if (PExp->getType()->isObjCObjectPointerType()) {
11012 isObjCPointer = true;
11013 } else {
11014 return InvalidOperands(Loc, LHS, RHS);
11017 assert(PExp->getType()->isAnyPointerType());
11019 if (!IExp->getType()->isIntegerType())
11020 return InvalidOperands(Loc, LHS, RHS);
11022 // Adding to a null pointer results in undefined behavior.
11023 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11024 Context, Expr::NPC_ValueDependentIsNotNull)) {
11025 // In C++ adding zero to a null pointer is defined.
11026 Expr::EvalResult KnownVal;
11027 if (!getLangOpts().CPlusPlus ||
11028 (!IExp->isValueDependent() &&
11029 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11030 KnownVal.Val.getInt() != 0))) {
11031 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11032 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11033 Context, BO_Add, PExp, IExp);
11034 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11038 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11039 return QualType();
11041 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11042 return QualType();
11044 // Arithmetic on label addresses is normally allowed, except when we add
11045 // a ptrauth signature to the addresses.
11046 if (isa<AddrLabelExpr>(PExp) && getLangOpts().PointerAuthIndirectGotos) {
11047 Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11048 << /*addition*/ 1;
11049 return QualType();
11052 // Check array bounds for pointer arithemtic
11053 CheckArrayAccess(PExp, IExp);
11055 if (CompLHSTy) {
11056 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11057 if (LHSTy.isNull()) {
11058 LHSTy = LHS.get()->getType();
11059 if (Context.isPromotableIntegerType(LHSTy))
11060 LHSTy = Context.getPromotedIntegerType(LHSTy);
11062 *CompLHSTy = LHSTy;
11065 return PExp->getType();
11068 // C99 6.5.6
11069 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11070 SourceLocation Loc,
11071 QualType* CompLHSTy) {
11072 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11074 if (LHS.get()->getType()->isVectorType() ||
11075 RHS.get()->getType()->isVectorType()) {
11076 QualType compType =
11077 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11078 /*AllowBothBool*/ getLangOpts().AltiVec,
11079 /*AllowBoolConversions*/ getLangOpts().ZVector,
11080 /*AllowBooleanOperation*/ false,
11081 /*ReportInvalid*/ true);
11082 if (CompLHSTy) *CompLHSTy = compType;
11083 return compType;
11086 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11087 RHS.get()->getType()->isSveVLSBuiltinType()) {
11088 QualType compType =
11089 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11090 if (CompLHSTy)
11091 *CompLHSTy = compType;
11092 return compType;
11095 if (LHS.get()->getType()->isConstantMatrixType() ||
11096 RHS.get()->getType()->isConstantMatrixType()) {
11097 QualType compType =
11098 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11099 if (CompLHSTy)
11100 *CompLHSTy = compType;
11101 return compType;
11104 QualType compType = UsualArithmeticConversions(
11105 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11106 if (LHS.isInvalid() || RHS.isInvalid())
11107 return QualType();
11109 // Enforce type constraints: C99 6.5.6p3.
11111 // Handle the common case first (both operands are arithmetic).
11112 if (!compType.isNull() && compType->isArithmeticType()) {
11113 if (CompLHSTy) *CompLHSTy = compType;
11114 return compType;
11117 // Either ptr - int or ptr - ptr.
11118 if (LHS.get()->getType()->isAnyPointerType()) {
11119 QualType lpointee = LHS.get()->getType()->getPointeeType();
11121 // Diagnose bad cases where we step over interface counts.
11122 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11123 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11124 return QualType();
11126 // Arithmetic on label addresses is normally allowed, except when we add
11127 // a ptrauth signature to the addresses.
11128 if (isa<AddrLabelExpr>(LHS.get()) &&
11129 getLangOpts().PointerAuthIndirectGotos) {
11130 Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11131 << /*subtraction*/ 0;
11132 return QualType();
11135 // The result type of a pointer-int computation is the pointer type.
11136 if (RHS.get()->getType()->isIntegerType()) {
11137 // Subtracting from a null pointer should produce a warning.
11138 // The last argument to the diagnose call says this doesn't match the
11139 // GNU int-to-pointer idiom.
11140 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11141 Expr::NPC_ValueDependentIsNotNull)) {
11142 // In C++ adding zero to a null pointer is defined.
11143 Expr::EvalResult KnownVal;
11144 if (!getLangOpts().CPlusPlus ||
11145 (!RHS.get()->isValueDependent() &&
11146 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11147 KnownVal.Val.getInt() != 0))) {
11148 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11152 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11153 return QualType();
11155 // Check array bounds for pointer arithemtic
11156 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11157 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11159 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11160 return LHS.get()->getType();
11163 // Handle pointer-pointer subtractions.
11164 if (const PointerType *RHSPTy
11165 = RHS.get()->getType()->getAs<PointerType>()) {
11166 QualType rpointee = RHSPTy->getPointeeType();
11168 if (getLangOpts().CPlusPlus) {
11169 // Pointee types must be the same: C++ [expr.add]
11170 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11171 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11173 } else {
11174 // Pointee types must be compatible C99 6.5.6p3
11175 if (!Context.typesAreCompatible(
11176 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11177 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11178 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11179 return QualType();
11183 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11184 LHS.get(), RHS.get()))
11185 return QualType();
11187 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11188 Context, Expr::NPC_ValueDependentIsNotNull);
11189 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11190 Context, Expr::NPC_ValueDependentIsNotNull);
11192 // Subtracting nullptr or from nullptr is suspect
11193 if (LHSIsNullPtr)
11194 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11195 if (RHSIsNullPtr)
11196 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11198 // The pointee type may have zero size. As an extension, a structure or
11199 // union may have zero size or an array may have zero length. In this
11200 // case subtraction does not make sense.
11201 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11202 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11203 if (ElementSize.isZero()) {
11204 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11205 << rpointee.getUnqualifiedType()
11206 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11210 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11211 return Context.getPointerDiffType();
11215 return InvalidOperands(Loc, LHS, RHS);
11218 static bool isScopedEnumerationType(QualType T) {
11219 if (const EnumType *ET = T->getAs<EnumType>())
11220 return ET->getDecl()->isScoped();
11221 return false;
11224 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11225 SourceLocation Loc, BinaryOperatorKind Opc,
11226 QualType LHSType) {
11227 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11228 // so skip remaining warnings as we don't want to modify values within Sema.
11229 if (S.getLangOpts().OpenCL)
11230 return;
11232 // Check right/shifter operand
11233 Expr::EvalResult RHSResult;
11234 if (RHS.get()->isValueDependent() ||
11235 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11236 return;
11237 llvm::APSInt Right = RHSResult.Val.getInt();
11239 if (Right.isNegative()) {
11240 S.DiagRuntimeBehavior(Loc, RHS.get(),
11241 S.PDiag(diag::warn_shift_negative)
11242 << RHS.get()->getSourceRange());
11243 return;
11246 QualType LHSExprType = LHS.get()->getType();
11247 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11248 if (LHSExprType->isBitIntType())
11249 LeftSize = S.Context.getIntWidth(LHSExprType);
11250 else if (LHSExprType->isFixedPointType()) {
11251 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11252 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11254 if (Right.uge(LeftSize)) {
11255 S.DiagRuntimeBehavior(Loc, RHS.get(),
11256 S.PDiag(diag::warn_shift_gt_typewidth)
11257 << RHS.get()->getSourceRange());
11258 return;
11261 // FIXME: We probably need to handle fixed point types specially here.
11262 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11263 return;
11265 // When left shifting an ICE which is signed, we can check for overflow which
11266 // according to C++ standards prior to C++2a has undefined behavior
11267 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11268 // more than the maximum value representable in the result type, so never
11269 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11270 // expression is still probably a bug.)
11271 Expr::EvalResult LHSResult;
11272 if (LHS.get()->isValueDependent() ||
11273 LHSType->hasUnsignedIntegerRepresentation() ||
11274 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11275 return;
11276 llvm::APSInt Left = LHSResult.Val.getInt();
11278 // Don't warn if signed overflow is defined, then all the rest of the
11279 // diagnostics will not be triggered because the behavior is defined.
11280 // Also don't warn in C++20 mode (and newer), as signed left shifts
11281 // always wrap and never overflow.
11282 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11283 return;
11285 // If LHS does not have a non-negative value then, the
11286 // behavior is undefined before C++2a. Warn about it.
11287 if (Left.isNegative()) {
11288 S.DiagRuntimeBehavior(Loc, LHS.get(),
11289 S.PDiag(diag::warn_shift_lhs_negative)
11290 << LHS.get()->getSourceRange());
11291 return;
11294 llvm::APInt ResultBits =
11295 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11296 if (ResultBits.ule(LeftSize))
11297 return;
11298 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11299 Result = Result.shl(Right);
11301 // Print the bit representation of the signed integer as an unsigned
11302 // hexadecimal number.
11303 SmallString<40> HexResult;
11304 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11306 // If we are only missing a sign bit, this is less likely to result in actual
11307 // bugs -- if the result is cast back to an unsigned type, it will have the
11308 // expected value. Thus we place this behind a different warning that can be
11309 // turned off separately if needed.
11310 if (ResultBits - 1 == LeftSize) {
11311 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11312 << HexResult << LHSType
11313 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11314 return;
11317 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11318 << HexResult.str() << Result.getSignificantBits() << LHSType
11319 << Left.getBitWidth() << LHS.get()->getSourceRange()
11320 << RHS.get()->getSourceRange();
11323 /// Return the resulting type when a vector is shifted
11324 /// by a scalar or vector shift amount.
11325 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11326 SourceLocation Loc, bool IsCompAssign) {
11327 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11328 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11329 !LHS.get()->getType()->isVectorType()) {
11330 S.Diag(Loc, diag::err_shift_rhs_only_vector)
11331 << RHS.get()->getType() << LHS.get()->getType()
11332 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11333 return QualType();
11336 if (!IsCompAssign) {
11337 LHS = S.UsualUnaryConversions(LHS.get());
11338 if (LHS.isInvalid()) return QualType();
11341 RHS = S.UsualUnaryConversions(RHS.get());
11342 if (RHS.isInvalid()) return QualType();
11344 QualType LHSType = LHS.get()->getType();
11345 // Note that LHS might be a scalar because the routine calls not only in
11346 // OpenCL case.
11347 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11348 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11350 // Note that RHS might not be a vector.
11351 QualType RHSType = RHS.get()->getType();
11352 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11353 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11355 // Do not allow shifts for boolean vectors.
11356 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11357 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11358 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11359 << LHS.get()->getType() << RHS.get()->getType()
11360 << LHS.get()->getSourceRange();
11361 return QualType();
11364 // The operands need to be integers.
11365 if (!LHSEleType->isIntegerType()) {
11366 S.Diag(Loc, diag::err_typecheck_expect_int)
11367 << LHS.get()->getType() << LHS.get()->getSourceRange();
11368 return QualType();
11371 if (!RHSEleType->isIntegerType()) {
11372 S.Diag(Loc, diag::err_typecheck_expect_int)
11373 << RHS.get()->getType() << RHS.get()->getSourceRange();
11374 return QualType();
11377 if (!LHSVecTy) {
11378 assert(RHSVecTy);
11379 if (IsCompAssign)
11380 return RHSType;
11381 if (LHSEleType != RHSEleType) {
11382 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11383 LHSEleType = RHSEleType;
11385 QualType VecTy =
11386 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11387 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11388 LHSType = VecTy;
11389 } else if (RHSVecTy) {
11390 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11391 // are applied component-wise. So if RHS is a vector, then ensure
11392 // that the number of elements is the same as LHS...
11393 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11394 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11395 << LHS.get()->getType() << RHS.get()->getType()
11396 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11397 return QualType();
11399 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11400 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11401 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11402 if (LHSBT != RHSBT &&
11403 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11404 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11405 << LHS.get()->getType() << RHS.get()->getType()
11406 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11409 } else {
11410 // ...else expand RHS to match the number of elements in LHS.
11411 QualType VecTy =
11412 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11413 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11416 return LHSType;
11419 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11420 ExprResult &RHS, SourceLocation Loc,
11421 bool IsCompAssign) {
11422 if (!IsCompAssign) {
11423 LHS = S.UsualUnaryConversions(LHS.get());
11424 if (LHS.isInvalid())
11425 return QualType();
11428 RHS = S.UsualUnaryConversions(RHS.get());
11429 if (RHS.isInvalid())
11430 return QualType();
11432 QualType LHSType = LHS.get()->getType();
11433 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11434 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11435 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11436 : LHSType;
11438 // Note that RHS might not be a vector
11439 QualType RHSType = RHS.get()->getType();
11440 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11441 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11442 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11443 : RHSType;
11445 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11446 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11447 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11448 << LHSType << RHSType << LHS.get()->getSourceRange();
11449 return QualType();
11452 if (!LHSEleType->isIntegerType()) {
11453 S.Diag(Loc, diag::err_typecheck_expect_int)
11454 << LHS.get()->getType() << LHS.get()->getSourceRange();
11455 return QualType();
11458 if (!RHSEleType->isIntegerType()) {
11459 S.Diag(Loc, diag::err_typecheck_expect_int)
11460 << RHS.get()->getType() << RHS.get()->getSourceRange();
11461 return QualType();
11464 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11465 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11466 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11467 S.Diag(Loc, diag::err_typecheck_invalid_operands)
11468 << LHSType << RHSType << LHS.get()->getSourceRange()
11469 << RHS.get()->getSourceRange();
11470 return QualType();
11473 if (!LHSType->isSveVLSBuiltinType()) {
11474 assert(RHSType->isSveVLSBuiltinType());
11475 if (IsCompAssign)
11476 return RHSType;
11477 if (LHSEleType != RHSEleType) {
11478 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11479 LHSEleType = RHSEleType;
11481 const llvm::ElementCount VecSize =
11482 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11483 QualType VecTy =
11484 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11485 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11486 LHSType = VecTy;
11487 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11488 if (S.Context.getTypeSize(RHSBuiltinTy) !=
11489 S.Context.getTypeSize(LHSBuiltinTy)) {
11490 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11491 << LHSType << RHSType << LHS.get()->getSourceRange()
11492 << RHS.get()->getSourceRange();
11493 return QualType();
11495 } else {
11496 const llvm::ElementCount VecSize =
11497 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11498 if (LHSEleType != RHSEleType) {
11499 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11500 RHSEleType = LHSEleType;
11502 QualType VecTy =
11503 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11504 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11507 return LHSType;
11510 // C99 6.5.7
11511 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11512 SourceLocation Loc, BinaryOperatorKind Opc,
11513 bool IsCompAssign) {
11514 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11516 // Vector shifts promote their scalar inputs to vector type.
11517 if (LHS.get()->getType()->isVectorType() ||
11518 RHS.get()->getType()->isVectorType()) {
11519 if (LangOpts.ZVector) {
11520 // The shift operators for the z vector extensions work basically
11521 // like general shifts, except that neither the LHS nor the RHS is
11522 // allowed to be a "vector bool".
11523 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11524 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11525 return InvalidOperands(Loc, LHS, RHS);
11526 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11527 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11528 return InvalidOperands(Loc, LHS, RHS);
11530 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11533 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11534 RHS.get()->getType()->isSveVLSBuiltinType())
11535 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11537 // Shifts don't perform usual arithmetic conversions, they just do integer
11538 // promotions on each operand. C99 6.5.7p3
11540 // For the LHS, do usual unary conversions, but then reset them away
11541 // if this is a compound assignment.
11542 ExprResult OldLHS = LHS;
11543 LHS = UsualUnaryConversions(LHS.get());
11544 if (LHS.isInvalid())
11545 return QualType();
11546 QualType LHSType = LHS.get()->getType();
11547 if (IsCompAssign) LHS = OldLHS;
11549 // The RHS is simpler.
11550 RHS = UsualUnaryConversions(RHS.get());
11551 if (RHS.isInvalid())
11552 return QualType();
11553 QualType RHSType = RHS.get()->getType();
11555 // C99 6.5.7p2: Each of the operands shall have integer type.
11556 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11557 if ((!LHSType->isFixedPointOrIntegerType() &&
11558 !LHSType->hasIntegerRepresentation()) ||
11559 !RHSType->hasIntegerRepresentation())
11560 return InvalidOperands(Loc, LHS, RHS);
11562 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11563 // hasIntegerRepresentation() above instead of this.
11564 if (isScopedEnumerationType(LHSType) ||
11565 isScopedEnumerationType(RHSType)) {
11566 return InvalidOperands(Loc, LHS, RHS);
11568 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11570 // "The type of the result is that of the promoted left operand."
11571 return LHSType;
11574 /// Diagnose bad pointer comparisons.
11575 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11576 ExprResult &LHS, ExprResult &RHS,
11577 bool IsError) {
11578 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11579 : diag::ext_typecheck_comparison_of_distinct_pointers)
11580 << LHS.get()->getType() << RHS.get()->getType()
11581 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11584 /// Returns false if the pointers are converted to a composite type,
11585 /// true otherwise.
11586 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11587 ExprResult &LHS, ExprResult &RHS) {
11588 // C++ [expr.rel]p2:
11589 // [...] Pointer conversions (4.10) and qualification
11590 // conversions (4.4) are performed on pointer operands (or on
11591 // a pointer operand and a null pointer constant) to bring
11592 // them to their composite pointer type. [...]
11594 // C++ [expr.eq]p1 uses the same notion for (in)equality
11595 // comparisons of pointers.
11597 QualType LHSType = LHS.get()->getType();
11598 QualType RHSType = RHS.get()->getType();
11599 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11600 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11602 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11603 if (T.isNull()) {
11604 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11605 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11606 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11607 else
11608 S.InvalidOperands(Loc, LHS, RHS);
11609 return true;
11612 return false;
11615 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11616 ExprResult &LHS,
11617 ExprResult &RHS,
11618 bool IsError) {
11619 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11620 : diag::ext_typecheck_comparison_of_fptr_to_void)
11621 << LHS.get()->getType() << RHS.get()->getType()
11622 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11625 static bool isObjCObjectLiteral(ExprResult &E) {
11626 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11627 case Stmt::ObjCArrayLiteralClass:
11628 case Stmt::ObjCDictionaryLiteralClass:
11629 case Stmt::ObjCStringLiteralClass:
11630 case Stmt::ObjCBoxedExprClass:
11631 return true;
11632 default:
11633 // Note that ObjCBoolLiteral is NOT an object literal!
11634 return false;
11638 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11639 const ObjCObjectPointerType *Type =
11640 LHS->getType()->getAs<ObjCObjectPointerType>();
11642 // If this is not actually an Objective-C object, bail out.
11643 if (!Type)
11644 return false;
11646 // Get the LHS object's interface type.
11647 QualType InterfaceType = Type->getPointeeType();
11649 // If the RHS isn't an Objective-C object, bail out.
11650 if (!RHS->getType()->isObjCObjectPointerType())
11651 return false;
11653 // Try to find the -isEqual: method.
11654 Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11655 ObjCMethodDecl *Method =
11656 S.ObjC().LookupMethodInObjectType(IsEqualSel, InterfaceType,
11657 /*IsInstance=*/true);
11658 if (!Method) {
11659 if (Type->isObjCIdType()) {
11660 // For 'id', just check the global pool.
11661 Method =
11662 S.ObjC().LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11663 /*receiverId=*/true);
11664 } else {
11665 // Check protocols.
11666 Method = S.ObjC().LookupMethodInQualifiedType(IsEqualSel, Type,
11667 /*IsInstance=*/true);
11671 if (!Method)
11672 return false;
11674 QualType T = Method->parameters()[0]->getType();
11675 if (!T->isObjCObjectPointerType())
11676 return false;
11678 QualType R = Method->getReturnType();
11679 if (!R->isScalarType())
11680 return false;
11682 return true;
11685 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11686 ExprResult &LHS, ExprResult &RHS,
11687 BinaryOperator::Opcode Opc){
11688 Expr *Literal;
11689 Expr *Other;
11690 if (isObjCObjectLiteral(LHS)) {
11691 Literal = LHS.get();
11692 Other = RHS.get();
11693 } else {
11694 Literal = RHS.get();
11695 Other = LHS.get();
11698 // Don't warn on comparisons against nil.
11699 Other = Other->IgnoreParenCasts();
11700 if (Other->isNullPointerConstant(S.getASTContext(),
11701 Expr::NPC_ValueDependentIsNotNull))
11702 return;
11704 // This should be kept in sync with warn_objc_literal_comparison.
11705 // LK_String should always be after the other literals, since it has its own
11706 // warning flag.
11707 SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(Literal);
11708 assert(LiteralKind != SemaObjC::LK_Block);
11709 if (LiteralKind == SemaObjC::LK_None) {
11710 llvm_unreachable("Unknown Objective-C object literal kind");
11713 if (LiteralKind == SemaObjC::LK_String)
11714 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11715 << Literal->getSourceRange();
11716 else
11717 S.Diag(Loc, diag::warn_objc_literal_comparison)
11718 << LiteralKind << Literal->getSourceRange();
11720 if (BinaryOperator::isEqualityOp(Opc) &&
11721 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11722 SourceLocation Start = LHS.get()->getBeginLoc();
11723 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11724 CharSourceRange OpRange =
11725 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11727 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11728 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11729 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11730 << FixItHint::CreateInsertion(End, "]");
11734 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11735 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11736 ExprResult &RHS, SourceLocation Loc,
11737 BinaryOperatorKind Opc) {
11738 // Check that left hand side is !something.
11739 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11740 if (!UO || UO->getOpcode() != UO_LNot) return;
11742 // Only check if the right hand side is non-bool arithmetic type.
11743 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11745 // Make sure that the something in !something is not bool.
11746 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11747 if (SubExpr->isKnownToHaveBooleanValue()) return;
11749 // Emit warning.
11750 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11751 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11752 << Loc << IsBitwiseOp;
11754 // First note suggest !(x < y)
11755 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11756 SourceLocation FirstClose = RHS.get()->getEndLoc();
11757 FirstClose = S.getLocForEndOfToken(FirstClose);
11758 if (FirstClose.isInvalid())
11759 FirstOpen = SourceLocation();
11760 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11761 << IsBitwiseOp
11762 << FixItHint::CreateInsertion(FirstOpen, "(")
11763 << FixItHint::CreateInsertion(FirstClose, ")");
11765 // Second note suggests (!x) < y
11766 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11767 SourceLocation SecondClose = LHS.get()->getEndLoc();
11768 SecondClose = S.getLocForEndOfToken(SecondClose);
11769 if (SecondClose.isInvalid())
11770 SecondOpen = SourceLocation();
11771 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11772 << FixItHint::CreateInsertion(SecondOpen, "(")
11773 << FixItHint::CreateInsertion(SecondClose, ")");
11776 // Returns true if E refers to a non-weak array.
11777 static bool checkForArray(const Expr *E) {
11778 const ValueDecl *D = nullptr;
11779 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11780 D = DR->getDecl();
11781 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11782 if (Mem->isImplicitAccess())
11783 D = Mem->getMemberDecl();
11785 if (!D)
11786 return false;
11787 return D->getType()->isArrayType() && !D->isWeak();
11790 /// Diagnose some forms of syntactically-obvious tautological comparison.
11791 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11792 Expr *LHS, Expr *RHS,
11793 BinaryOperatorKind Opc) {
11794 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11795 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11797 QualType LHSType = LHS->getType();
11798 QualType RHSType = RHS->getType();
11799 if (LHSType->hasFloatingRepresentation() ||
11800 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11801 S.inTemplateInstantiation())
11802 return;
11804 // WebAssembly Tables cannot be compared, therefore shouldn't emit
11805 // Tautological diagnostics.
11806 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
11807 return;
11809 // Comparisons between two array types are ill-formed for operator<=>, so
11810 // we shouldn't emit any additional warnings about it.
11811 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11812 return;
11814 // For non-floating point types, check for self-comparisons of the form
11815 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
11816 // often indicate logic errors in the program.
11818 // NOTE: Don't warn about comparison expressions resulting from macro
11819 // expansion. Also don't warn about comparisons which are only self
11820 // comparisons within a template instantiation. The warnings should catch
11821 // obvious cases in the definition of the template anyways. The idea is to
11822 // warn when the typed comparison operator will always evaluate to the same
11823 // result.
11825 // Used for indexing into %select in warn_comparison_always
11826 enum {
11827 AlwaysConstant,
11828 AlwaysTrue,
11829 AlwaysFalse,
11830 AlwaysEqual, // std::strong_ordering::equal from operator<=>
11833 // C++2a [depr.array.comp]:
11834 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11835 // operands of array type are deprecated.
11836 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11837 RHSStripped->getType()->isArrayType()) {
11838 S.Diag(Loc, diag::warn_depr_array_comparison)
11839 << LHS->getSourceRange() << RHS->getSourceRange()
11840 << LHSStripped->getType() << RHSStripped->getType();
11841 // Carry on to produce the tautological comparison warning, if this
11842 // expression is potentially-evaluated, we can resolve the array to a
11843 // non-weak declaration, and so on.
11846 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11847 if (Expr::isSameComparisonOperand(LHS, RHS)) {
11848 unsigned Result;
11849 switch (Opc) {
11850 case BO_EQ:
11851 case BO_LE:
11852 case BO_GE:
11853 Result = AlwaysTrue;
11854 break;
11855 case BO_NE:
11856 case BO_LT:
11857 case BO_GT:
11858 Result = AlwaysFalse;
11859 break;
11860 case BO_Cmp:
11861 Result = AlwaysEqual;
11862 break;
11863 default:
11864 Result = AlwaysConstant;
11865 break;
11867 S.DiagRuntimeBehavior(Loc, nullptr,
11868 S.PDiag(diag::warn_comparison_always)
11869 << 0 /*self-comparison*/
11870 << Result);
11871 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11872 // What is it always going to evaluate to?
11873 unsigned Result;
11874 switch (Opc) {
11875 case BO_EQ: // e.g. array1 == array2
11876 Result = AlwaysFalse;
11877 break;
11878 case BO_NE: // e.g. array1 != array2
11879 Result = AlwaysTrue;
11880 break;
11881 default: // e.g. array1 <= array2
11882 // The best we can say is 'a constant'
11883 Result = AlwaysConstant;
11884 break;
11886 S.DiagRuntimeBehavior(Loc, nullptr,
11887 S.PDiag(diag::warn_comparison_always)
11888 << 1 /*array comparison*/
11889 << Result);
11893 if (isa<CastExpr>(LHSStripped))
11894 LHSStripped = LHSStripped->IgnoreParenCasts();
11895 if (isa<CastExpr>(RHSStripped))
11896 RHSStripped = RHSStripped->IgnoreParenCasts();
11898 // Warn about comparisons against a string constant (unless the other
11899 // operand is null); the user probably wants string comparison function.
11900 Expr *LiteralString = nullptr;
11901 Expr *LiteralStringStripped = nullptr;
11902 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11903 !RHSStripped->isNullPointerConstant(S.Context,
11904 Expr::NPC_ValueDependentIsNull)) {
11905 LiteralString = LHS;
11906 LiteralStringStripped = LHSStripped;
11907 } else if ((isa<StringLiteral>(RHSStripped) ||
11908 isa<ObjCEncodeExpr>(RHSStripped)) &&
11909 !LHSStripped->isNullPointerConstant(S.Context,
11910 Expr::NPC_ValueDependentIsNull)) {
11911 LiteralString = RHS;
11912 LiteralStringStripped = RHSStripped;
11915 if (LiteralString) {
11916 S.DiagRuntimeBehavior(Loc, nullptr,
11917 S.PDiag(diag::warn_stringcompare)
11918 << isa<ObjCEncodeExpr>(LiteralStringStripped)
11919 << LiteralString->getSourceRange());
11923 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11924 switch (CK) {
11925 default: {
11926 #ifndef NDEBUG
11927 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11928 << "\n";
11929 #endif
11930 llvm_unreachable("unhandled cast kind");
11932 case CK_UserDefinedConversion:
11933 return ICK_Identity;
11934 case CK_LValueToRValue:
11935 return ICK_Lvalue_To_Rvalue;
11936 case CK_ArrayToPointerDecay:
11937 return ICK_Array_To_Pointer;
11938 case CK_FunctionToPointerDecay:
11939 return ICK_Function_To_Pointer;
11940 case CK_IntegralCast:
11941 return ICK_Integral_Conversion;
11942 case CK_FloatingCast:
11943 return ICK_Floating_Conversion;
11944 case CK_IntegralToFloating:
11945 case CK_FloatingToIntegral:
11946 return ICK_Floating_Integral;
11947 case CK_IntegralComplexCast:
11948 case CK_FloatingComplexCast:
11949 case CK_FloatingComplexToIntegralComplex:
11950 case CK_IntegralComplexToFloatingComplex:
11951 return ICK_Complex_Conversion;
11952 case CK_FloatingComplexToReal:
11953 case CK_FloatingRealToComplex:
11954 case CK_IntegralComplexToReal:
11955 case CK_IntegralRealToComplex:
11956 return ICK_Complex_Real;
11957 case CK_HLSLArrayRValue:
11958 return ICK_HLSL_Array_RValue;
11962 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11963 QualType FromType,
11964 SourceLocation Loc) {
11965 // Check for a narrowing implicit conversion.
11966 StandardConversionSequence SCS;
11967 SCS.setAsIdentityConversion();
11968 SCS.setToType(0, FromType);
11969 SCS.setToType(1, ToType);
11970 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11971 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11973 APValue PreNarrowingValue;
11974 QualType PreNarrowingType;
11975 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11976 PreNarrowingType,
11977 /*IgnoreFloatToIntegralConversion*/ true)) {
11978 case NK_Dependent_Narrowing:
11979 // Implicit conversion to a narrower type, but the expression is
11980 // value-dependent so we can't tell whether it's actually narrowing.
11981 case NK_Not_Narrowing:
11982 return false;
11984 case NK_Constant_Narrowing:
11985 // Implicit conversion to a narrower type, and the value is not a constant
11986 // expression.
11987 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11988 << /*Constant*/ 1
11989 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11990 return true;
11992 case NK_Variable_Narrowing:
11993 // Implicit conversion to a narrower type, and the value is not a constant
11994 // expression.
11995 case NK_Type_Narrowing:
11996 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11997 << /*Constant*/ 0 << FromType << ToType;
11998 // TODO: It's not a constant expression, but what if the user intended it
11999 // to be? Can we produce notes to help them figure out why it isn't?
12000 return true;
12002 llvm_unreachable("unhandled case in switch");
12005 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12006 ExprResult &LHS,
12007 ExprResult &RHS,
12008 SourceLocation Loc) {
12009 QualType LHSType = LHS.get()->getType();
12010 QualType RHSType = RHS.get()->getType();
12011 // Dig out the original argument type and expression before implicit casts
12012 // were applied. These are the types/expressions we need to check the
12013 // [expr.spaceship] requirements against.
12014 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12015 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12016 QualType LHSStrippedType = LHSStripped.get()->getType();
12017 QualType RHSStrippedType = RHSStripped.get()->getType();
12019 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12020 // other is not, the program is ill-formed.
12021 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12022 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12023 return QualType();
12026 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12027 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12028 RHSStrippedType->isEnumeralType();
12029 if (NumEnumArgs == 1) {
12030 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12031 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12032 if (OtherTy->hasFloatingRepresentation()) {
12033 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12034 return QualType();
12037 if (NumEnumArgs == 2) {
12038 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12039 // type E, the operator yields the result of converting the operands
12040 // to the underlying type of E and applying <=> to the converted operands.
12041 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12042 S.InvalidOperands(Loc, LHS, RHS);
12043 return QualType();
12045 QualType IntType =
12046 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12047 assert(IntType->isArithmeticType());
12049 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12050 // promote the boolean type, and all other promotable integer types, to
12051 // avoid this.
12052 if (S.Context.isPromotableIntegerType(IntType))
12053 IntType = S.Context.getPromotedIntegerType(IntType);
12055 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12056 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12057 LHSType = RHSType = IntType;
12060 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12061 // usual arithmetic conversions are applied to the operands.
12062 QualType Type =
12063 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12064 if (LHS.isInvalid() || RHS.isInvalid())
12065 return QualType();
12066 if (Type.isNull())
12067 return S.InvalidOperands(Loc, LHS, RHS);
12069 std::optional<ComparisonCategoryType> CCT =
12070 getComparisonCategoryForBuiltinCmp(Type);
12071 if (!CCT)
12072 return S.InvalidOperands(Loc, LHS, RHS);
12074 bool HasNarrowing = checkThreeWayNarrowingConversion(
12075 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12076 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12077 RHS.get()->getBeginLoc());
12078 if (HasNarrowing)
12079 return QualType();
12081 assert(!Type.isNull() && "composite type for <=> has not been set");
12083 return S.CheckComparisonCategoryType(
12084 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12087 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12088 ExprResult &RHS,
12089 SourceLocation Loc,
12090 BinaryOperatorKind Opc) {
12091 if (Opc == BO_Cmp)
12092 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12094 // C99 6.5.8p3 / C99 6.5.9p4
12095 QualType Type =
12096 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12097 if (LHS.isInvalid() || RHS.isInvalid())
12098 return QualType();
12099 if (Type.isNull())
12100 return S.InvalidOperands(Loc, LHS, RHS);
12101 assert(Type->isArithmeticType() || Type->isEnumeralType());
12103 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12104 return S.InvalidOperands(Loc, LHS, RHS);
12106 // Check for comparisons of floating point operands using != and ==.
12107 if (Type->hasFloatingRepresentation())
12108 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12110 // The result of comparisons is 'bool' in C++, 'int' in C.
12111 return S.Context.getLogicalOperationType();
12114 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12115 if (!NullE.get()->getType()->isAnyPointerType())
12116 return;
12117 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12118 if (!E.get()->getType()->isAnyPointerType() &&
12119 E.get()->isNullPointerConstant(Context,
12120 Expr::NPC_ValueDependentIsNotNull) ==
12121 Expr::NPCK_ZeroExpression) {
12122 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12123 if (CL->getValue() == 0)
12124 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12125 << NullValue
12126 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12127 NullValue ? "NULL" : "(void *)0");
12128 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12129 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12130 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12131 if (T == Context.CharTy)
12132 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12133 << NullValue
12134 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12135 NullValue ? "NULL" : "(void *)0");
12140 // C99 6.5.8, C++ [expr.rel]
12141 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12142 SourceLocation Loc,
12143 BinaryOperatorKind Opc) {
12144 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12145 bool IsThreeWay = Opc == BO_Cmp;
12146 bool IsOrdered = IsRelational || IsThreeWay;
12147 auto IsAnyPointerType = [](ExprResult E) {
12148 QualType Ty = E.get()->getType();
12149 return Ty->isPointerType() || Ty->isMemberPointerType();
12152 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12153 // type, array-to-pointer, ..., conversions are performed on both operands to
12154 // bring them to their composite type.
12155 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12156 // any type-related checks.
12157 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12158 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12159 if (LHS.isInvalid())
12160 return QualType();
12161 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12162 if (RHS.isInvalid())
12163 return QualType();
12164 } else {
12165 LHS = DefaultLvalueConversion(LHS.get());
12166 if (LHS.isInvalid())
12167 return QualType();
12168 RHS = DefaultLvalueConversion(RHS.get());
12169 if (RHS.isInvalid())
12170 return QualType();
12173 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12174 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12175 CheckPtrComparisonWithNullChar(LHS, RHS);
12176 CheckPtrComparisonWithNullChar(RHS, LHS);
12179 // Handle vector comparisons separately.
12180 if (LHS.get()->getType()->isVectorType() ||
12181 RHS.get()->getType()->isVectorType())
12182 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12184 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12185 RHS.get()->getType()->isSveVLSBuiltinType())
12186 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12188 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12189 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12191 QualType LHSType = LHS.get()->getType();
12192 QualType RHSType = RHS.get()->getType();
12193 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12194 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12195 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12197 if ((LHSType->isPointerType() &&
12198 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12199 (RHSType->isPointerType() &&
12200 RHSType->getPointeeType().isWebAssemblyReferenceType()))
12201 return InvalidOperands(Loc, LHS, RHS);
12203 const Expr::NullPointerConstantKind LHSNullKind =
12204 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12205 const Expr::NullPointerConstantKind RHSNullKind =
12206 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12207 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12208 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12210 auto computeResultTy = [&]() {
12211 if (Opc != BO_Cmp)
12212 return Context.getLogicalOperationType();
12213 assert(getLangOpts().CPlusPlus);
12214 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12216 QualType CompositeTy = LHS.get()->getType();
12217 assert(!CompositeTy->isReferenceType());
12219 std::optional<ComparisonCategoryType> CCT =
12220 getComparisonCategoryForBuiltinCmp(CompositeTy);
12221 if (!CCT)
12222 return InvalidOperands(Loc, LHS, RHS);
12224 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12225 // P0946R0: Comparisons between a null pointer constant and an object
12226 // pointer result in std::strong_equality, which is ill-formed under
12227 // P1959R0.
12228 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12229 << (LHSIsNull ? LHS.get()->getSourceRange()
12230 : RHS.get()->getSourceRange());
12231 return QualType();
12234 return CheckComparisonCategoryType(
12235 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12238 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12239 bool IsEquality = Opc == BO_EQ;
12240 if (RHSIsNull)
12241 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12242 RHS.get()->getSourceRange());
12243 else
12244 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12245 LHS.get()->getSourceRange());
12248 if (IsOrdered && LHSType->isFunctionPointerType() &&
12249 RHSType->isFunctionPointerType()) {
12250 // Valid unless a relational comparison of function pointers
12251 bool IsError = Opc == BO_Cmp;
12252 auto DiagID =
12253 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12254 : getLangOpts().CPlusPlus
12255 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12256 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12257 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12258 << RHS.get()->getSourceRange();
12259 if (IsError)
12260 return QualType();
12263 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12264 (RHSType->isIntegerType() && !RHSIsNull)) {
12265 // Skip normal pointer conversion checks in this case; we have better
12266 // diagnostics for this below.
12267 } else if (getLangOpts().CPlusPlus) {
12268 // Equality comparison of a function pointer to a void pointer is invalid,
12269 // but we allow it as an extension.
12270 // FIXME: If we really want to allow this, should it be part of composite
12271 // pointer type computation so it works in conditionals too?
12272 if (!IsOrdered &&
12273 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12274 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12275 // This is a gcc extension compatibility comparison.
12276 // In a SFINAE context, we treat this as a hard error to maintain
12277 // conformance with the C++ standard.
12278 diagnoseFunctionPointerToVoidComparison(
12279 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12281 if (isSFINAEContext())
12282 return QualType();
12284 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12285 return computeResultTy();
12288 // C++ [expr.eq]p2:
12289 // If at least one operand is a pointer [...] bring them to their
12290 // composite pointer type.
12291 // C++ [expr.spaceship]p6
12292 // If at least one of the operands is of pointer type, [...] bring them
12293 // to their composite pointer type.
12294 // C++ [expr.rel]p2:
12295 // If both operands are pointers, [...] bring them to their composite
12296 // pointer type.
12297 // For <=>, the only valid non-pointer types are arrays and functions, and
12298 // we already decayed those, so this is really the same as the relational
12299 // comparison rule.
12300 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12301 (IsOrdered ? 2 : 1) &&
12302 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12303 RHSType->isObjCObjectPointerType()))) {
12304 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12305 return QualType();
12306 return computeResultTy();
12308 } else if (LHSType->isPointerType() &&
12309 RHSType->isPointerType()) { // C99 6.5.8p2
12310 // All of the following pointer-related warnings are GCC extensions, except
12311 // when handling null pointer constants.
12312 QualType LCanPointeeTy =
12313 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12314 QualType RCanPointeeTy =
12315 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12317 // C99 6.5.9p2 and C99 6.5.8p2
12318 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12319 RCanPointeeTy.getUnqualifiedType())) {
12320 if (IsRelational) {
12321 // Pointers both need to point to complete or incomplete types
12322 if ((LCanPointeeTy->isIncompleteType() !=
12323 RCanPointeeTy->isIncompleteType()) &&
12324 !getLangOpts().C11) {
12325 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12326 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12327 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12328 << RCanPointeeTy->isIncompleteType();
12331 } else if (!IsRelational &&
12332 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12333 // Valid unless comparison between non-null pointer and function pointer
12334 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12335 && !LHSIsNull && !RHSIsNull)
12336 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12337 /*isError*/false);
12338 } else {
12339 // Invalid
12340 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12342 if (LCanPointeeTy != RCanPointeeTy) {
12343 // Treat NULL constant as a special case in OpenCL.
12344 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12345 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy,
12346 getASTContext())) {
12347 Diag(Loc,
12348 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12349 << LHSType << RHSType << 0 /* comparison */
12350 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12353 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12354 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12355 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12356 : CK_BitCast;
12357 if (LHSIsNull && !RHSIsNull)
12358 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12359 else
12360 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12362 return computeResultTy();
12366 // C++ [expr.eq]p4:
12367 // Two operands of type std::nullptr_t or one operand of type
12368 // std::nullptr_t and the other a null pointer constant compare
12369 // equal.
12370 // C23 6.5.9p5:
12371 // If both operands have type nullptr_t or one operand has type nullptr_t
12372 // and the other is a null pointer constant, they compare equal if the
12373 // former is a null pointer.
12374 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12375 if (LHSType->isNullPtrType()) {
12376 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12377 return computeResultTy();
12379 if (RHSType->isNullPtrType()) {
12380 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12381 return computeResultTy();
12385 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12386 // C23 6.5.9p6:
12387 // Otherwise, at least one operand is a pointer. If one is a pointer and
12388 // the other is a null pointer constant or has type nullptr_t, they
12389 // compare equal
12390 if (LHSIsNull && RHSType->isPointerType()) {
12391 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12392 return computeResultTy();
12394 if (RHSIsNull && LHSType->isPointerType()) {
12395 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12396 return computeResultTy();
12400 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12401 // These aren't covered by the composite pointer type rules.
12402 if (!IsOrdered && RHSType->isNullPtrType() &&
12403 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12404 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12405 return computeResultTy();
12407 if (!IsOrdered && LHSType->isNullPtrType() &&
12408 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12409 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12410 return computeResultTy();
12413 if (getLangOpts().CPlusPlus) {
12414 if (IsRelational &&
12415 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12416 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12417 // HACK: Relational comparison of nullptr_t against a pointer type is
12418 // invalid per DR583, but we allow it within std::less<> and friends,
12419 // since otherwise common uses of it break.
12420 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12421 // friends to have std::nullptr_t overload candidates.
12422 DeclContext *DC = CurContext;
12423 if (isa<FunctionDecl>(DC))
12424 DC = DC->getParent();
12425 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12426 if (CTSD->isInStdNamespace() &&
12427 llvm::StringSwitch<bool>(CTSD->getName())
12428 .Cases("less", "less_equal", "greater", "greater_equal", true)
12429 .Default(false)) {
12430 if (RHSType->isNullPtrType())
12431 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12432 else
12433 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12434 return computeResultTy();
12439 // C++ [expr.eq]p2:
12440 // If at least one operand is a pointer to member, [...] bring them to
12441 // their composite pointer type.
12442 if (!IsOrdered &&
12443 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12444 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12445 return QualType();
12446 else
12447 return computeResultTy();
12451 // Handle block pointer types.
12452 if (!IsOrdered && LHSType->isBlockPointerType() &&
12453 RHSType->isBlockPointerType()) {
12454 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12455 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12457 if (!LHSIsNull && !RHSIsNull &&
12458 !Context.typesAreCompatible(lpointee, rpointee)) {
12459 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12460 << LHSType << RHSType << LHS.get()->getSourceRange()
12461 << RHS.get()->getSourceRange();
12463 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12464 return computeResultTy();
12467 // Allow block pointers to be compared with null pointer constants.
12468 if (!IsOrdered
12469 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12470 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12471 if (!LHSIsNull && !RHSIsNull) {
12472 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12473 ->getPointeeType()->isVoidType())
12474 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12475 ->getPointeeType()->isVoidType())))
12476 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12477 << LHSType << RHSType << LHS.get()->getSourceRange()
12478 << RHS.get()->getSourceRange();
12480 if (LHSIsNull && !RHSIsNull)
12481 LHS = ImpCastExprToType(LHS.get(), RHSType,
12482 RHSType->isPointerType() ? CK_BitCast
12483 : CK_AnyPointerToBlockPointerCast);
12484 else
12485 RHS = ImpCastExprToType(RHS.get(), LHSType,
12486 LHSType->isPointerType() ? CK_BitCast
12487 : CK_AnyPointerToBlockPointerCast);
12488 return computeResultTy();
12491 if (LHSType->isObjCObjectPointerType() ||
12492 RHSType->isObjCObjectPointerType()) {
12493 const PointerType *LPT = LHSType->getAs<PointerType>();
12494 const PointerType *RPT = RHSType->getAs<PointerType>();
12495 if (LPT || RPT) {
12496 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12497 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12499 if (!LPtrToVoid && !RPtrToVoid &&
12500 !Context.typesAreCompatible(LHSType, RHSType)) {
12501 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12502 /*isError*/false);
12504 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12505 // the RHS, but we have test coverage for this behavior.
12506 // FIXME: Consider using convertPointersToCompositeType in C++.
12507 if (LHSIsNull && !RHSIsNull) {
12508 Expr *E = LHS.get();
12509 if (getLangOpts().ObjCAutoRefCount)
12510 ObjC().CheckObjCConversion(SourceRange(), RHSType, E,
12511 CheckedConversionKind::Implicit);
12512 LHS = ImpCastExprToType(E, RHSType,
12513 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12515 else {
12516 Expr *E = RHS.get();
12517 if (getLangOpts().ObjCAutoRefCount)
12518 ObjC().CheckObjCConversion(SourceRange(), LHSType, E,
12519 CheckedConversionKind::Implicit,
12520 /*Diagnose=*/true,
12521 /*DiagnoseCFAudited=*/false, Opc);
12522 RHS = ImpCastExprToType(E, LHSType,
12523 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12525 return computeResultTy();
12527 if (LHSType->isObjCObjectPointerType() &&
12528 RHSType->isObjCObjectPointerType()) {
12529 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12530 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12531 /*isError*/false);
12532 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12533 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12535 if (LHSIsNull && !RHSIsNull)
12536 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12537 else
12538 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12539 return computeResultTy();
12542 if (!IsOrdered && LHSType->isBlockPointerType() &&
12543 RHSType->isBlockCompatibleObjCPointerType(Context)) {
12544 LHS = ImpCastExprToType(LHS.get(), RHSType,
12545 CK_BlockPointerToObjCPointerCast);
12546 return computeResultTy();
12547 } else if (!IsOrdered &&
12548 LHSType->isBlockCompatibleObjCPointerType(Context) &&
12549 RHSType->isBlockPointerType()) {
12550 RHS = ImpCastExprToType(RHS.get(), LHSType,
12551 CK_BlockPointerToObjCPointerCast);
12552 return computeResultTy();
12555 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12556 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12557 unsigned DiagID = 0;
12558 bool isError = false;
12559 if (LangOpts.DebuggerSupport) {
12560 // Under a debugger, allow the comparison of pointers to integers,
12561 // since users tend to want to compare addresses.
12562 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12563 (RHSIsNull && RHSType->isIntegerType())) {
12564 if (IsOrdered) {
12565 isError = getLangOpts().CPlusPlus;
12566 DiagID =
12567 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12568 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12570 } else if (getLangOpts().CPlusPlus) {
12571 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12572 isError = true;
12573 } else if (IsOrdered)
12574 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12575 else
12576 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12578 if (DiagID) {
12579 Diag(Loc, DiagID)
12580 << LHSType << RHSType << LHS.get()->getSourceRange()
12581 << RHS.get()->getSourceRange();
12582 if (isError)
12583 return QualType();
12586 if (LHSType->isIntegerType())
12587 LHS = ImpCastExprToType(LHS.get(), RHSType,
12588 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12589 else
12590 RHS = ImpCastExprToType(RHS.get(), LHSType,
12591 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12592 return computeResultTy();
12595 // Handle block pointers.
12596 if (!IsOrdered && RHSIsNull
12597 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12598 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12599 return computeResultTy();
12601 if (!IsOrdered && LHSIsNull
12602 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12603 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12604 return computeResultTy();
12607 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12608 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12609 return computeResultTy();
12612 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12613 return computeResultTy();
12616 if (LHSIsNull && RHSType->isQueueT()) {
12617 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12618 return computeResultTy();
12621 if (LHSType->isQueueT() && RHSIsNull) {
12622 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12623 return computeResultTy();
12627 return InvalidOperands(Loc, LHS, RHS);
12630 QualType Sema::GetSignedVectorType(QualType V) {
12631 const VectorType *VTy = V->castAs<VectorType>();
12632 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12634 if (isa<ExtVectorType>(VTy)) {
12635 if (VTy->isExtVectorBoolType())
12636 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12637 if (TypeSize == Context.getTypeSize(Context.CharTy))
12638 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12639 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12640 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12641 if (TypeSize == Context.getTypeSize(Context.IntTy))
12642 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12643 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12644 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12645 if (TypeSize == Context.getTypeSize(Context.LongTy))
12646 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12647 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12648 "Unhandled vector element size in vector compare");
12649 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12652 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12653 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12654 VectorKind::Generic);
12655 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12656 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12657 VectorKind::Generic);
12658 if (TypeSize == Context.getTypeSize(Context.LongTy))
12659 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12660 VectorKind::Generic);
12661 if (TypeSize == Context.getTypeSize(Context.IntTy))
12662 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12663 VectorKind::Generic);
12664 if (TypeSize == Context.getTypeSize(Context.ShortTy))
12665 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12666 VectorKind::Generic);
12667 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12668 "Unhandled vector element size in vector compare");
12669 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12670 VectorKind::Generic);
12673 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12674 const BuiltinType *VTy = V->castAs<BuiltinType>();
12675 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12677 const QualType ETy = V->getSveEltType(Context);
12678 const auto TypeSize = Context.getTypeSize(ETy);
12680 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12681 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12682 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12685 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12686 SourceLocation Loc,
12687 BinaryOperatorKind Opc) {
12688 if (Opc == BO_Cmp) {
12689 Diag(Loc, diag::err_three_way_vector_comparison);
12690 return QualType();
12693 // Check to make sure we're operating on vectors of the same type and width,
12694 // Allowing one side to be a scalar of element type.
12695 QualType vType =
12696 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12697 /*AllowBothBool*/ true,
12698 /*AllowBoolConversions*/ getLangOpts().ZVector,
12699 /*AllowBooleanOperation*/ true,
12700 /*ReportInvalid*/ true);
12701 if (vType.isNull())
12702 return vType;
12704 QualType LHSType = LHS.get()->getType();
12706 // Determine the return type of a vector compare. By default clang will return
12707 // a scalar for all vector compares except vector bool and vector pixel.
12708 // With the gcc compiler we will always return a vector type and with the xl
12709 // compiler we will always return a scalar type. This switch allows choosing
12710 // which behavior is prefered.
12711 if (getLangOpts().AltiVec) {
12712 switch (getLangOpts().getAltivecSrcCompat()) {
12713 case LangOptions::AltivecSrcCompatKind::Mixed:
12714 // If AltiVec, the comparison results in a numeric type, i.e.
12715 // bool for C++, int for C
12716 if (vType->castAs<VectorType>()->getVectorKind() ==
12717 VectorKind::AltiVecVector)
12718 return Context.getLogicalOperationType();
12719 else
12720 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12721 break;
12722 case LangOptions::AltivecSrcCompatKind::GCC:
12723 // For GCC we always return the vector type.
12724 break;
12725 case LangOptions::AltivecSrcCompatKind::XL:
12726 return Context.getLogicalOperationType();
12727 break;
12731 // For non-floating point types, check for self-comparisons of the form
12732 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12733 // often indicate logic errors in the program.
12734 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12736 // Check for comparisons of floating point operands using != and ==.
12737 if (LHSType->hasFloatingRepresentation()) {
12738 assert(RHS.get()->getType()->hasFloatingRepresentation());
12739 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12742 // Return a signed type for the vector.
12743 return GetSignedVectorType(vType);
12746 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12747 ExprResult &RHS,
12748 SourceLocation Loc,
12749 BinaryOperatorKind Opc) {
12750 if (Opc == BO_Cmp) {
12751 Diag(Loc, diag::err_three_way_vector_comparison);
12752 return QualType();
12755 // Check to make sure we're operating on vectors of the same type and width,
12756 // Allowing one side to be a scalar of element type.
12757 QualType vType = CheckSizelessVectorOperands(
12758 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12760 if (vType.isNull())
12761 return vType;
12763 QualType LHSType = LHS.get()->getType();
12765 // For non-floating point types, check for self-comparisons of the form
12766 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12767 // often indicate logic errors in the program.
12768 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12770 // Check for comparisons of floating point operands using != and ==.
12771 if (LHSType->hasFloatingRepresentation()) {
12772 assert(RHS.get()->getType()->hasFloatingRepresentation());
12773 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12776 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12777 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12779 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12780 RHSBuiltinTy->isSVEBool())
12781 return LHSType;
12783 // Return a signed type for the vector.
12784 return GetSignedSizelessVectorType(vType);
12787 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12788 const ExprResult &XorRHS,
12789 const SourceLocation Loc) {
12790 // Do not diagnose macros.
12791 if (Loc.isMacroID())
12792 return;
12794 // Do not diagnose if both LHS and RHS are macros.
12795 if (XorLHS.get()->getExprLoc().isMacroID() &&
12796 XorRHS.get()->getExprLoc().isMacroID())
12797 return;
12799 bool Negative = false;
12800 bool ExplicitPlus = false;
12801 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12802 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12804 if (!LHSInt)
12805 return;
12806 if (!RHSInt) {
12807 // Check negative literals.
12808 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12809 UnaryOperatorKind Opc = UO->getOpcode();
12810 if (Opc != UO_Minus && Opc != UO_Plus)
12811 return;
12812 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12813 if (!RHSInt)
12814 return;
12815 Negative = (Opc == UO_Minus);
12816 ExplicitPlus = !Negative;
12817 } else {
12818 return;
12822 const llvm::APInt &LeftSideValue = LHSInt->getValue();
12823 llvm::APInt RightSideValue = RHSInt->getValue();
12824 if (LeftSideValue != 2 && LeftSideValue != 10)
12825 return;
12827 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12828 return;
12830 CharSourceRange ExprRange = CharSourceRange::getCharRange(
12831 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12832 llvm::StringRef ExprStr =
12833 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12835 CharSourceRange XorRange =
12836 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12837 llvm::StringRef XorStr =
12838 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12839 // Do not diagnose if xor keyword/macro is used.
12840 if (XorStr == "xor")
12841 return;
12843 std::string LHSStr = std::string(Lexer::getSourceText(
12844 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12845 S.getSourceManager(), S.getLangOpts()));
12846 std::string RHSStr = std::string(Lexer::getSourceText(
12847 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12848 S.getSourceManager(), S.getLangOpts()));
12850 if (Negative) {
12851 RightSideValue = -RightSideValue;
12852 RHSStr = "-" + RHSStr;
12853 } else if (ExplicitPlus) {
12854 RHSStr = "+" + RHSStr;
12857 StringRef LHSStrRef = LHSStr;
12858 StringRef RHSStrRef = RHSStr;
12859 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12860 // literals.
12861 if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
12862 RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
12863 LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
12864 RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
12865 (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
12866 (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
12867 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
12868 return;
12870 bool SuggestXor =
12871 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12872 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12873 int64_t RightSideIntValue = RightSideValue.getSExtValue();
12874 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12875 std::string SuggestedExpr = "1 << " + RHSStr;
12876 bool Overflow = false;
12877 llvm::APInt One = (LeftSideValue - 1);
12878 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12879 if (Overflow) {
12880 if (RightSideIntValue < 64)
12881 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12882 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12883 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12884 else if (RightSideIntValue == 64)
12885 S.Diag(Loc, diag::warn_xor_used_as_pow)
12886 << ExprStr << toString(XorValue, 10, true);
12887 else
12888 return;
12889 } else {
12890 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12891 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12892 << toString(PowValue, 10, true)
12893 << FixItHint::CreateReplacement(
12894 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12897 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12898 << ("0x2 ^ " + RHSStr) << SuggestXor;
12899 } else if (LeftSideValue == 10) {
12900 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12901 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12902 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12903 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12904 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12905 << ("0xA ^ " + RHSStr) << SuggestXor;
12909 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12910 SourceLocation Loc,
12911 BinaryOperatorKind Opc) {
12912 // Ensure that either both operands are of the same vector type, or
12913 // one operand is of a vector type and the other is of its element type.
12914 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12915 /*AllowBothBool*/ true,
12916 /*AllowBoolConversions*/ false,
12917 /*AllowBooleanOperation*/ false,
12918 /*ReportInvalid*/ false);
12919 if (vType.isNull())
12920 return InvalidOperands(Loc, LHS, RHS);
12921 if (getLangOpts().OpenCL &&
12922 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12923 vType->hasFloatingRepresentation())
12924 return InvalidOperands(Loc, LHS, RHS);
12925 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12926 // usage of the logical operators && and || with vectors in C. This
12927 // check could be notionally dropped.
12928 if (!getLangOpts().CPlusPlus &&
12929 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12930 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12931 // Beginning with HLSL 2021, HLSL disallows logical operators on vector
12932 // operands and instead requires the use of the `and`, `or`, `any`, `all`, and
12933 // `select` functions.
12934 if (getLangOpts().HLSL &&
12935 getLangOpts().getHLSLVersion() >= LangOptionsBase::HLSL_2021) {
12936 (void)InvalidOperands(Loc, LHS, RHS);
12937 HLSL().emitLogicalOperatorFixIt(LHS.get(), RHS.get(), Opc);
12938 return QualType();
12941 return GetSignedVectorType(LHS.get()->getType());
12944 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12945 SourceLocation Loc,
12946 bool IsCompAssign) {
12947 if (!IsCompAssign) {
12948 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12949 if (LHS.isInvalid())
12950 return QualType();
12952 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12953 if (RHS.isInvalid())
12954 return QualType();
12956 // For conversion purposes, we ignore any qualifiers.
12957 // For example, "const float" and "float" are equivalent.
12958 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12959 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12961 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12962 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12963 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12965 if (Context.hasSameType(LHSType, RHSType))
12966 return Context.getCommonSugaredType(LHSType, RHSType);
12968 // Type conversion may change LHS/RHS. Keep copies to the original results, in
12969 // case we have to return InvalidOperands.
12970 ExprResult OriginalLHS = LHS;
12971 ExprResult OriginalRHS = RHS;
12972 if (LHSMatType && !RHSMatType) {
12973 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12974 if (!RHS.isInvalid())
12975 return LHSType;
12977 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12980 if (!LHSMatType && RHSMatType) {
12981 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12982 if (!LHS.isInvalid())
12983 return RHSType;
12984 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12987 return InvalidOperands(Loc, LHS, RHS);
12990 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12991 SourceLocation Loc,
12992 bool IsCompAssign) {
12993 if (!IsCompAssign) {
12994 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12995 if (LHS.isInvalid())
12996 return QualType();
12998 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12999 if (RHS.isInvalid())
13000 return QualType();
13002 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13003 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13004 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13006 if (LHSMatType && RHSMatType) {
13007 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13008 return InvalidOperands(Loc, LHS, RHS);
13010 if (Context.hasSameType(LHSMatType, RHSMatType))
13011 return Context.getCommonSugaredType(
13012 LHS.get()->getType().getUnqualifiedType(),
13013 RHS.get()->getType().getUnqualifiedType());
13015 QualType LHSELTy = LHSMatType->getElementType(),
13016 RHSELTy = RHSMatType->getElementType();
13017 if (!Context.hasSameType(LHSELTy, RHSELTy))
13018 return InvalidOperands(Loc, LHS, RHS);
13020 return Context.getConstantMatrixType(
13021 Context.getCommonSugaredType(LHSELTy, RHSELTy),
13022 LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13024 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13027 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13028 switch (Opc) {
13029 default:
13030 return false;
13031 case BO_And:
13032 case BO_AndAssign:
13033 case BO_Or:
13034 case BO_OrAssign:
13035 case BO_Xor:
13036 case BO_XorAssign:
13037 return true;
13041 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13042 SourceLocation Loc,
13043 BinaryOperatorKind Opc) {
13044 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13046 bool IsCompAssign =
13047 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13049 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13051 if (LHS.get()->getType()->isVectorType() ||
13052 RHS.get()->getType()->isVectorType()) {
13053 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13054 RHS.get()->getType()->hasIntegerRepresentation())
13055 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13056 /*AllowBothBool*/ true,
13057 /*AllowBoolConversions*/ getLangOpts().ZVector,
13058 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13059 /*ReportInvalid*/ true);
13060 return InvalidOperands(Loc, LHS, RHS);
13063 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13064 RHS.get()->getType()->isSveVLSBuiltinType()) {
13065 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13066 RHS.get()->getType()->hasIntegerRepresentation())
13067 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13068 ACK_BitwiseOp);
13069 return InvalidOperands(Loc, LHS, RHS);
13072 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13073 RHS.get()->getType()->isSveVLSBuiltinType()) {
13074 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13075 RHS.get()->getType()->hasIntegerRepresentation())
13076 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13077 ACK_BitwiseOp);
13078 return InvalidOperands(Loc, LHS, RHS);
13081 if (Opc == BO_And)
13082 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13084 if (LHS.get()->getType()->hasFloatingRepresentation() ||
13085 RHS.get()->getType()->hasFloatingRepresentation())
13086 return InvalidOperands(Loc, LHS, RHS);
13088 ExprResult LHSResult = LHS, RHSResult = RHS;
13089 QualType compType = UsualArithmeticConversions(
13090 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13091 if (LHSResult.isInvalid() || RHSResult.isInvalid())
13092 return QualType();
13093 LHS = LHSResult.get();
13094 RHS = RHSResult.get();
13096 if (Opc == BO_Xor)
13097 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13099 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13100 return compType;
13101 return InvalidOperands(Loc, LHS, RHS);
13104 // C99 6.5.[13,14]
13105 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13106 SourceLocation Loc,
13107 BinaryOperatorKind Opc) {
13108 // Check vector operands differently.
13109 if (LHS.get()->getType()->isVectorType() ||
13110 RHS.get()->getType()->isVectorType())
13111 return CheckVectorLogicalOperands(LHS, RHS, Loc, Opc);
13113 bool EnumConstantInBoolContext = false;
13114 for (const ExprResult &HS : {LHS, RHS}) {
13115 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13116 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13117 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13118 EnumConstantInBoolContext = true;
13122 if (EnumConstantInBoolContext)
13123 Diag(Loc, diag::warn_enum_constant_in_bool_context);
13125 // WebAssembly tables can't be used with logical operators.
13126 QualType LHSTy = LHS.get()->getType();
13127 QualType RHSTy = RHS.get()->getType();
13128 const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
13129 const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
13130 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13131 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13132 return InvalidOperands(Loc, LHS, RHS);
13135 // Diagnose cases where the user write a logical and/or but probably meant a
13136 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13137 // is a constant.
13138 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13139 !LHS.get()->getType()->isBooleanType() &&
13140 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13141 // Don't warn in macros or template instantiations.
13142 !Loc.isMacroID() && !inTemplateInstantiation()) {
13143 // If the RHS can be constant folded, and if it constant folds to something
13144 // that isn't 0 or 1 (which indicate a potential logical operation that
13145 // happened to fold to true/false) then warn.
13146 // Parens on the RHS are ignored.
13147 Expr::EvalResult EVResult;
13148 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13149 llvm::APSInt Result = EVResult.Val.getInt();
13150 if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13151 !RHS.get()->getExprLoc().isMacroID()) ||
13152 (Result != 0 && Result != 1)) {
13153 Diag(Loc, diag::warn_logical_instead_of_bitwise)
13154 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13155 // Suggest replacing the logical operator with the bitwise version
13156 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13157 << (Opc == BO_LAnd ? "&" : "|")
13158 << FixItHint::CreateReplacement(
13159 SourceRange(Loc, getLocForEndOfToken(Loc)),
13160 Opc == BO_LAnd ? "&" : "|");
13161 if (Opc == BO_LAnd)
13162 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13163 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13164 << FixItHint::CreateRemoval(
13165 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13166 RHS.get()->getEndLoc()));
13171 if (!Context.getLangOpts().CPlusPlus) {
13172 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13173 // not operate on the built-in scalar and vector float types.
13174 if (Context.getLangOpts().OpenCL &&
13175 Context.getLangOpts().OpenCLVersion < 120) {
13176 if (LHS.get()->getType()->isFloatingType() ||
13177 RHS.get()->getType()->isFloatingType())
13178 return InvalidOperands(Loc, LHS, RHS);
13181 LHS = UsualUnaryConversions(LHS.get());
13182 if (LHS.isInvalid())
13183 return QualType();
13185 RHS = UsualUnaryConversions(RHS.get());
13186 if (RHS.isInvalid())
13187 return QualType();
13189 if (!LHS.get()->getType()->isScalarType() ||
13190 !RHS.get()->getType()->isScalarType())
13191 return InvalidOperands(Loc, LHS, RHS);
13193 return Context.IntTy;
13196 // The following is safe because we only use this method for
13197 // non-overloadable operands.
13199 // C++ [expr.log.and]p1
13200 // C++ [expr.log.or]p1
13201 // The operands are both contextually converted to type bool.
13202 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13203 if (LHSRes.isInvalid())
13204 return InvalidOperands(Loc, LHS, RHS);
13205 LHS = LHSRes;
13207 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13208 if (RHSRes.isInvalid())
13209 return InvalidOperands(Loc, LHS, RHS);
13210 RHS = RHSRes;
13212 // C++ [expr.log.and]p2
13213 // C++ [expr.log.or]p2
13214 // The result is a bool.
13215 return Context.BoolTy;
13218 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13219 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13220 if (!ME) return false;
13221 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13222 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13223 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13224 if (!Base) return false;
13225 return Base->getMethodDecl() != nullptr;
13228 /// Is the given expression (which must be 'const') a reference to a
13229 /// variable which was originally non-const, but which has become
13230 /// 'const' due to being captured within a block?
13231 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13232 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13233 assert(E->isLValue() && E->getType().isConstQualified());
13234 E = E->IgnoreParens();
13236 // Must be a reference to a declaration from an enclosing scope.
13237 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13238 if (!DRE) return NCCK_None;
13239 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13241 // The declaration must be a variable which is not declared 'const'.
13242 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13243 if (!var) return NCCK_None;
13244 if (var->getType().isConstQualified()) return NCCK_None;
13245 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13247 // Decide whether the first capture was for a block or a lambda.
13248 DeclContext *DC = S.CurContext, *Prev = nullptr;
13249 // Decide whether the first capture was for a block or a lambda.
13250 while (DC) {
13251 // For init-capture, it is possible that the variable belongs to the
13252 // template pattern of the current context.
13253 if (auto *FD = dyn_cast<FunctionDecl>(DC))
13254 if (var->isInitCapture() &&
13255 FD->getTemplateInstantiationPattern() == var->getDeclContext())
13256 break;
13257 if (DC == var->getDeclContext())
13258 break;
13259 Prev = DC;
13260 DC = DC->getParent();
13262 // Unless we have an init-capture, we've gone one step too far.
13263 if (!var->isInitCapture())
13264 DC = Prev;
13265 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13268 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13269 Ty = Ty.getNonReferenceType();
13270 if (IsDereference && Ty->isPointerType())
13271 Ty = Ty->getPointeeType();
13272 return !Ty.isConstQualified();
13275 // Update err_typecheck_assign_const and note_typecheck_assign_const
13276 // when this enum is changed.
13277 enum {
13278 ConstFunction,
13279 ConstVariable,
13280 ConstMember,
13281 ConstMethod,
13282 NestedConstMember,
13283 ConstUnknown, // Keep as last element
13286 /// Emit the "read-only variable not assignable" error and print notes to give
13287 /// more information about why the variable is not assignable, such as pointing
13288 /// to the declaration of a const variable, showing that a method is const, or
13289 /// that the function is returning a const reference.
13290 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13291 SourceLocation Loc) {
13292 SourceRange ExprRange = E->getSourceRange();
13294 // Only emit one error on the first const found. All other consts will emit
13295 // a note to the error.
13296 bool DiagnosticEmitted = false;
13298 // Track if the current expression is the result of a dereference, and if the
13299 // next checked expression is the result of a dereference.
13300 bool IsDereference = false;
13301 bool NextIsDereference = false;
13303 // Loop to process MemberExpr chains.
13304 while (true) {
13305 IsDereference = NextIsDereference;
13307 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13308 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13309 NextIsDereference = ME->isArrow();
13310 const ValueDecl *VD = ME->getMemberDecl();
13311 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13312 // Mutable fields can be modified even if the class is const.
13313 if (Field->isMutable()) {
13314 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13315 break;
13318 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13319 if (!DiagnosticEmitted) {
13320 S.Diag(Loc, diag::err_typecheck_assign_const)
13321 << ExprRange << ConstMember << false /*static*/ << Field
13322 << Field->getType();
13323 DiagnosticEmitted = true;
13325 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13326 << ConstMember << false /*static*/ << Field << Field->getType()
13327 << Field->getSourceRange();
13329 E = ME->getBase();
13330 continue;
13331 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13332 if (VDecl->getType().isConstQualified()) {
13333 if (!DiagnosticEmitted) {
13334 S.Diag(Loc, diag::err_typecheck_assign_const)
13335 << ExprRange << ConstMember << true /*static*/ << VDecl
13336 << VDecl->getType();
13337 DiagnosticEmitted = true;
13339 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13340 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13341 << VDecl->getSourceRange();
13343 // Static fields do not inherit constness from parents.
13344 break;
13346 break; // End MemberExpr
13347 } else if (const ArraySubscriptExpr *ASE =
13348 dyn_cast<ArraySubscriptExpr>(E)) {
13349 E = ASE->getBase()->IgnoreParenImpCasts();
13350 continue;
13351 } else if (const ExtVectorElementExpr *EVE =
13352 dyn_cast<ExtVectorElementExpr>(E)) {
13353 E = EVE->getBase()->IgnoreParenImpCasts();
13354 continue;
13356 break;
13359 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13360 // Function calls
13361 const FunctionDecl *FD = CE->getDirectCallee();
13362 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13363 if (!DiagnosticEmitted) {
13364 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13365 << ConstFunction << FD;
13366 DiagnosticEmitted = true;
13368 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13369 diag::note_typecheck_assign_const)
13370 << ConstFunction << FD << FD->getReturnType()
13371 << FD->getReturnTypeSourceRange();
13373 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13374 // Point to variable declaration.
13375 if (const ValueDecl *VD = DRE->getDecl()) {
13376 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13377 if (!DiagnosticEmitted) {
13378 S.Diag(Loc, diag::err_typecheck_assign_const)
13379 << ExprRange << ConstVariable << VD << VD->getType();
13380 DiagnosticEmitted = true;
13382 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13383 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13386 } else if (isa<CXXThisExpr>(E)) {
13387 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13388 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13389 if (MD->isConst()) {
13390 if (!DiagnosticEmitted) {
13391 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13392 << ConstMethod << MD;
13393 DiagnosticEmitted = true;
13395 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13396 << ConstMethod << MD << MD->getSourceRange();
13402 if (DiagnosticEmitted)
13403 return;
13405 // Can't determine a more specific message, so display the generic error.
13406 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13409 enum OriginalExprKind {
13410 OEK_Variable,
13411 OEK_Member,
13412 OEK_LValue
13415 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13416 const RecordType *Ty,
13417 SourceLocation Loc, SourceRange Range,
13418 OriginalExprKind OEK,
13419 bool &DiagnosticEmitted) {
13420 std::vector<const RecordType *> RecordTypeList;
13421 RecordTypeList.push_back(Ty);
13422 unsigned NextToCheckIndex = 0;
13423 // We walk the record hierarchy breadth-first to ensure that we print
13424 // diagnostics in field nesting order.
13425 while (RecordTypeList.size() > NextToCheckIndex) {
13426 bool IsNested = NextToCheckIndex > 0;
13427 for (const FieldDecl *Field :
13428 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13429 // First, check every field for constness.
13430 QualType FieldTy = Field->getType();
13431 if (FieldTy.isConstQualified()) {
13432 if (!DiagnosticEmitted) {
13433 S.Diag(Loc, diag::err_typecheck_assign_const)
13434 << Range << NestedConstMember << OEK << VD
13435 << IsNested << Field;
13436 DiagnosticEmitted = true;
13438 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13439 << NestedConstMember << IsNested << Field
13440 << FieldTy << Field->getSourceRange();
13443 // Then we append it to the list to check next in order.
13444 FieldTy = FieldTy.getCanonicalType();
13445 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13446 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13447 RecordTypeList.push_back(FieldRecTy);
13450 ++NextToCheckIndex;
13454 /// Emit an error for the case where a record we are trying to assign to has a
13455 /// const-qualified field somewhere in its hierarchy.
13456 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13457 SourceLocation Loc) {
13458 QualType Ty = E->getType();
13459 assert(Ty->isRecordType() && "lvalue was not record?");
13460 SourceRange Range = E->getSourceRange();
13461 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13462 bool DiagEmitted = false;
13464 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13465 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13466 Range, OEK_Member, DiagEmitted);
13467 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13468 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13469 Range, OEK_Variable, DiagEmitted);
13470 else
13471 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13472 Range, OEK_LValue, DiagEmitted);
13473 if (!DiagEmitted)
13474 DiagnoseConstAssignment(S, E, Loc);
13477 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13478 /// emit an error and return true. If so, return false.
13479 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13480 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13482 S.CheckShadowingDeclModification(E, Loc);
13484 SourceLocation OrigLoc = Loc;
13485 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13486 &Loc);
13487 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13488 IsLV = Expr::MLV_InvalidMessageExpression;
13489 if (IsLV == Expr::MLV_Valid)
13490 return false;
13492 unsigned DiagID = 0;
13493 bool NeedType = false;
13494 switch (IsLV) { // C99 6.5.16p2
13495 case Expr::MLV_ConstQualified:
13496 // Use a specialized diagnostic when we're assigning to an object
13497 // from an enclosing function or block.
13498 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13499 if (NCCK == NCCK_Block)
13500 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13501 else
13502 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13503 break;
13506 // In ARC, use some specialized diagnostics for occasions where we
13507 // infer 'const'. These are always pseudo-strong variables.
13508 if (S.getLangOpts().ObjCAutoRefCount) {
13509 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13510 if (declRef && isa<VarDecl>(declRef->getDecl())) {
13511 VarDecl *var = cast<VarDecl>(declRef->getDecl());
13513 // Use the normal diagnostic if it's pseudo-__strong but the
13514 // user actually wrote 'const'.
13515 if (var->isARCPseudoStrong() &&
13516 (!var->getTypeSourceInfo() ||
13517 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13518 // There are three pseudo-strong cases:
13519 // - self
13520 ObjCMethodDecl *method = S.getCurMethodDecl();
13521 if (method && var == method->getSelfDecl()) {
13522 DiagID = method->isClassMethod()
13523 ? diag::err_typecheck_arc_assign_self_class_method
13524 : diag::err_typecheck_arc_assign_self;
13526 // - Objective-C externally_retained attribute.
13527 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13528 isa<ParmVarDecl>(var)) {
13529 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13531 // - fast enumeration variables
13532 } else {
13533 DiagID = diag::err_typecheck_arr_assign_enumeration;
13536 SourceRange Assign;
13537 if (Loc != OrigLoc)
13538 Assign = SourceRange(OrigLoc, OrigLoc);
13539 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13540 // We need to preserve the AST regardless, so migration tool
13541 // can do its job.
13542 return false;
13547 // If none of the special cases above are triggered, then this is a
13548 // simple const assignment.
13549 if (DiagID == 0) {
13550 DiagnoseConstAssignment(S, E, Loc);
13551 return true;
13554 break;
13555 case Expr::MLV_ConstAddrSpace:
13556 DiagnoseConstAssignment(S, E, Loc);
13557 return true;
13558 case Expr::MLV_ConstQualifiedField:
13559 DiagnoseRecursiveConstFields(S, E, Loc);
13560 return true;
13561 case Expr::MLV_ArrayType:
13562 case Expr::MLV_ArrayTemporary:
13563 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13564 NeedType = true;
13565 break;
13566 case Expr::MLV_NotObjectType:
13567 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13568 NeedType = true;
13569 break;
13570 case Expr::MLV_LValueCast:
13571 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13572 break;
13573 case Expr::MLV_Valid:
13574 llvm_unreachable("did not take early return for MLV_Valid");
13575 case Expr::MLV_InvalidExpression:
13576 case Expr::MLV_MemberFunction:
13577 case Expr::MLV_ClassTemporary:
13578 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13579 break;
13580 case Expr::MLV_IncompleteType:
13581 case Expr::MLV_IncompleteVoidType:
13582 return S.RequireCompleteType(Loc, E->getType(),
13583 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13584 case Expr::MLV_DuplicateVectorComponents:
13585 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13586 break;
13587 case Expr::MLV_NoSetterProperty:
13588 llvm_unreachable("readonly properties should be processed differently");
13589 case Expr::MLV_InvalidMessageExpression:
13590 DiagID = diag::err_readonly_message_assignment;
13591 break;
13592 case Expr::MLV_SubObjCPropertySetting:
13593 DiagID = diag::err_no_subobject_property_setting;
13594 break;
13597 SourceRange Assign;
13598 if (Loc != OrigLoc)
13599 Assign = SourceRange(OrigLoc, OrigLoc);
13600 if (NeedType)
13601 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13602 else
13603 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13604 return true;
13607 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13608 SourceLocation Loc,
13609 Sema &Sema) {
13610 if (Sema.inTemplateInstantiation())
13611 return;
13612 if (Sema.isUnevaluatedContext())
13613 return;
13614 if (Loc.isInvalid() || Loc.isMacroID())
13615 return;
13616 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13617 return;
13619 // C / C++ fields
13620 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13621 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13622 if (ML && MR) {
13623 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13624 return;
13625 const ValueDecl *LHSDecl =
13626 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13627 const ValueDecl *RHSDecl =
13628 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13629 if (LHSDecl != RHSDecl)
13630 return;
13631 if (LHSDecl->getType().isVolatileQualified())
13632 return;
13633 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13634 if (RefTy->getPointeeType().isVolatileQualified())
13635 return;
13637 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13640 // Objective-C instance variables
13641 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13642 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13643 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13644 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13645 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13646 if (RL && RR && RL->getDecl() == RR->getDecl())
13647 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13651 // C99 6.5.16.1
13652 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13653 SourceLocation Loc,
13654 QualType CompoundType,
13655 BinaryOperatorKind Opc) {
13656 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13658 // Verify that LHS is a modifiable lvalue, and emit error if not.
13659 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13660 return QualType();
13662 QualType LHSType = LHSExpr->getType();
13663 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13664 CompoundType;
13665 // OpenCL v1.2 s6.1.1.1 p2:
13666 // The half data type can only be used to declare a pointer to a buffer that
13667 // contains half values
13668 if (getLangOpts().OpenCL &&
13669 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13670 LHSType->isHalfType()) {
13671 Diag(Loc, diag::err_opencl_half_load_store) << 1
13672 << LHSType.getUnqualifiedType();
13673 return QualType();
13676 // WebAssembly tables can't be used on RHS of an assignment expression.
13677 if (RHSType->isWebAssemblyTableType()) {
13678 Diag(Loc, diag::err_wasm_table_art) << 0;
13679 return QualType();
13682 AssignConvertType ConvTy;
13683 if (CompoundType.isNull()) {
13684 Expr *RHSCheck = RHS.get();
13686 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13688 QualType LHSTy(LHSType);
13689 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13690 if (RHS.isInvalid())
13691 return QualType();
13692 // Special case of NSObject attributes on c-style pointer types.
13693 if (ConvTy == IncompatiblePointer &&
13694 ((Context.isObjCNSObjectType(LHSType) &&
13695 RHSType->isObjCObjectPointerType()) ||
13696 (Context.isObjCNSObjectType(RHSType) &&
13697 LHSType->isObjCObjectPointerType())))
13698 ConvTy = Compatible;
13700 if (ConvTy == Compatible &&
13701 LHSType->isObjCObjectType())
13702 Diag(Loc, diag::err_objc_object_assignment)
13703 << LHSType;
13705 // If the RHS is a unary plus or minus, check to see if they = and + are
13706 // right next to each other. If so, the user may have typo'd "x =+ 4"
13707 // instead of "x += 4".
13708 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13709 RHSCheck = ICE->getSubExpr();
13710 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13711 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13712 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13713 // Only if the two operators are exactly adjacent.
13714 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13715 // And there is a space or other character before the subexpr of the
13716 // unary +/-. We don't want to warn on "x=-1".
13717 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13718 UO->getSubExpr()->getBeginLoc().isFileID()) {
13719 Diag(Loc, diag::warn_not_compound_assign)
13720 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13721 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13725 if (ConvTy == Compatible) {
13726 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13727 // Warn about retain cycles where a block captures the LHS, but
13728 // not if the LHS is a simple variable into which the block is
13729 // being stored...unless that variable can be captured by reference!
13730 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13731 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13732 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13733 ObjC().checkRetainCycles(LHSExpr, RHS.get());
13736 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13737 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13738 // It is safe to assign a weak reference into a strong variable.
13739 // Although this code can still have problems:
13740 // id x = self.weakProp;
13741 // id y = self.weakProp;
13742 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13743 // paths through the function. This should be revisited if
13744 // -Wrepeated-use-of-weak is made flow-sensitive.
13745 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13746 // variable, which will be valid for the current autorelease scope.
13747 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13748 RHS.get()->getBeginLoc()))
13749 getCurFunction()->markSafeWeakUse(RHS.get());
13751 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13752 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13755 } else {
13756 // Compound assignment "x += y"
13757 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13760 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType, RHS.get(),
13761 AssignmentAction::Assigning))
13762 return QualType();
13764 CheckForNullPointerDereference(*this, LHSExpr);
13766 AssignedEntity AE{LHSExpr};
13767 checkAssignmentLifetime(*this, AE, RHS.get());
13769 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13770 if (CompoundType.isNull()) {
13771 // C++2a [expr.ass]p5:
13772 // A simple-assignment whose left operand is of a volatile-qualified
13773 // type is deprecated unless the assignment is either a discarded-value
13774 // expression or an unevaluated operand
13775 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13779 // C11 6.5.16p3: The type of an assignment expression is the type of the
13780 // left operand would have after lvalue conversion.
13781 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13782 // qualified type, the value has the unqualified version of the type of the
13783 // lvalue; additionally, if the lvalue has atomic type, the value has the
13784 // non-atomic version of the type of the lvalue.
13785 // C++ 5.17p1: the type of the assignment expression is that of its left
13786 // operand.
13787 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13790 // Scenarios to ignore if expression E is:
13791 // 1. an explicit cast expression into void
13792 // 2. a function call expression that returns void
13793 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13794 E = E->IgnoreParens();
13796 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13797 if (CE->getCastKind() == CK_ToVoid) {
13798 return true;
13801 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13802 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13803 CE->getSubExpr()->getType()->isDependentType()) {
13804 return true;
13808 if (const auto *CE = dyn_cast<CallExpr>(E))
13809 return CE->getCallReturnType(Context)->isVoidType();
13810 return false;
13813 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13814 // No warnings in macros
13815 if (Loc.isMacroID())
13816 return;
13818 // Don't warn in template instantiations.
13819 if (inTemplateInstantiation())
13820 return;
13822 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13823 // instead, skip more than needed, then call back into here with the
13824 // CommaVisitor in SemaStmt.cpp.
13825 // The listed locations are the initialization and increment portions
13826 // of a for loop. The additional checks are on the condition of
13827 // if statements, do/while loops, and for loops.
13828 // Differences in scope flags for C89 mode requires the extra logic.
13829 const unsigned ForIncrementFlags =
13830 getLangOpts().C99 || getLangOpts().CPlusPlus
13831 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13832 : Scope::ContinueScope | Scope::BreakScope;
13833 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13834 const unsigned ScopeFlags = getCurScope()->getFlags();
13835 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13836 (ScopeFlags & ForInitFlags) == ForInitFlags)
13837 return;
13839 // If there are multiple comma operators used together, get the RHS of the
13840 // of the comma operator as the LHS.
13841 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13842 if (BO->getOpcode() != BO_Comma)
13843 break;
13844 LHS = BO->getRHS();
13847 // Only allow some expressions on LHS to not warn.
13848 if (IgnoreCommaOperand(LHS, Context))
13849 return;
13851 Diag(Loc, diag::warn_comma_operator);
13852 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13853 << LHS->getSourceRange()
13854 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13855 LangOpts.CPlusPlus ? "static_cast<void>("
13856 : "(void)(")
13857 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13858 ")");
13861 // C99 6.5.17
13862 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13863 SourceLocation Loc) {
13864 LHS = S.CheckPlaceholderExpr(LHS.get());
13865 RHS = S.CheckPlaceholderExpr(RHS.get());
13866 if (LHS.isInvalid() || RHS.isInvalid())
13867 return QualType();
13869 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13870 // operands, but not unary promotions.
13871 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13873 // So we treat the LHS as a ignored value, and in C++ we allow the
13874 // containing site to determine what should be done with the RHS.
13875 LHS = S.IgnoredValueConversions(LHS.get());
13876 if (LHS.isInvalid())
13877 return QualType();
13879 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13881 if (!S.getLangOpts().CPlusPlus) {
13882 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13883 if (RHS.isInvalid())
13884 return QualType();
13885 if (!RHS.get()->getType()->isVoidType())
13886 S.RequireCompleteType(Loc, RHS.get()->getType(),
13887 diag::err_incomplete_type);
13890 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13891 S.DiagnoseCommaOperator(LHS.get(), Loc);
13893 return RHS.get()->getType();
13896 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13897 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13898 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13899 ExprValueKind &VK,
13900 ExprObjectKind &OK,
13901 SourceLocation OpLoc, bool IsInc,
13902 bool IsPrefix) {
13903 QualType ResType = Op->getType();
13904 // Atomic types can be used for increment / decrement where the non-atomic
13905 // versions can, so ignore the _Atomic() specifier for the purpose of
13906 // checking.
13907 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13908 ResType = ResAtomicType->getValueType();
13910 assert(!ResType.isNull() && "no type for increment/decrement expression");
13912 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13913 // Decrement of bool is not allowed.
13914 if (!IsInc) {
13915 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13916 return QualType();
13918 // Increment of bool sets it to true, but is deprecated.
13919 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13920 : diag::warn_increment_bool)
13921 << Op->getSourceRange();
13922 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13923 // Error on enum increments and decrements in C++ mode
13924 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13925 return QualType();
13926 } else if (ResType->isRealType()) {
13927 // OK!
13928 } else if (ResType->isPointerType()) {
13929 // C99 6.5.2.4p2, 6.5.6p2
13930 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13931 return QualType();
13932 } else if (ResType->isObjCObjectPointerType()) {
13933 // On modern runtimes, ObjC pointer arithmetic is forbidden.
13934 // Otherwise, we just need a complete type.
13935 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13936 checkArithmeticOnObjCPointer(S, OpLoc, Op))
13937 return QualType();
13938 } else if (ResType->isAnyComplexType()) {
13939 // C99 does not support ++/-- on complex types, we allow as an extension.
13940 S.Diag(OpLoc, S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
13941 : diag::ext_c2y_increment_complex)
13942 << IsInc << Op->getSourceRange();
13943 } else if (ResType->isPlaceholderType()) {
13944 ExprResult PR = S.CheckPlaceholderExpr(Op);
13945 if (PR.isInvalid()) return QualType();
13946 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13947 IsInc, IsPrefix);
13948 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13949 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13950 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13951 (ResType->castAs<VectorType>()->getVectorKind() !=
13952 VectorKind::AltiVecBool)) {
13953 // The z vector extensions allow ++ and -- for non-bool vectors.
13954 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
13955 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13956 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13957 } else {
13958 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13959 << ResType << int(IsInc) << Op->getSourceRange();
13960 return QualType();
13962 // At this point, we know we have a real, complex or pointer type.
13963 // Now make sure the operand is a modifiable lvalue.
13964 if (CheckForModifiableLvalue(Op, OpLoc, S))
13965 return QualType();
13966 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13967 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13968 // An operand with volatile-qualified type is deprecated
13969 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13970 << IsInc << ResType;
13972 // In C++, a prefix increment is the same type as the operand. Otherwise
13973 // (in C or with postfix), the increment is the unqualified type of the
13974 // operand.
13975 if (IsPrefix && S.getLangOpts().CPlusPlus) {
13976 VK = VK_LValue;
13977 OK = Op->getObjectKind();
13978 return ResType;
13979 } else {
13980 VK = VK_PRValue;
13981 return ResType.getUnqualifiedType();
13985 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13986 /// This routine allows us to typecheck complex/recursive expressions
13987 /// where the declaration is needed for type checking. We only need to
13988 /// handle cases when the expression references a function designator
13989 /// or is an lvalue. Here are some examples:
13990 /// - &(x) => x
13991 /// - &*****f => f for f a function designator.
13992 /// - &s.xx => s
13993 /// - &s.zz[1].yy -> s, if zz is an array
13994 /// - *(x + 1) -> x, if x is an array
13995 /// - &"123"[2] -> 0
13996 /// - & __real__ x -> x
13998 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13999 /// members.
14000 static ValueDecl *getPrimaryDecl(Expr *E) {
14001 switch (E->getStmtClass()) {
14002 case Stmt::DeclRefExprClass:
14003 return cast<DeclRefExpr>(E)->getDecl();
14004 case Stmt::MemberExprClass:
14005 // If this is an arrow operator, the address is an offset from
14006 // the base's value, so the object the base refers to is
14007 // irrelevant.
14008 if (cast<MemberExpr>(E)->isArrow())
14009 return nullptr;
14010 // Otherwise, the expression refers to a part of the base
14011 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14012 case Stmt::ArraySubscriptExprClass: {
14013 // FIXME: This code shouldn't be necessary! We should catch the implicit
14014 // promotion of register arrays earlier.
14015 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14016 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14017 if (ICE->getSubExpr()->getType()->isArrayType())
14018 return getPrimaryDecl(ICE->getSubExpr());
14020 return nullptr;
14022 case Stmt::UnaryOperatorClass: {
14023 UnaryOperator *UO = cast<UnaryOperator>(E);
14025 switch(UO->getOpcode()) {
14026 case UO_Real:
14027 case UO_Imag:
14028 case UO_Extension:
14029 return getPrimaryDecl(UO->getSubExpr());
14030 default:
14031 return nullptr;
14034 case Stmt::ParenExprClass:
14035 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14036 case Stmt::ImplicitCastExprClass:
14037 // If the result of an implicit cast is an l-value, we care about
14038 // the sub-expression; otherwise, the result here doesn't matter.
14039 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14040 case Stmt::CXXUuidofExprClass:
14041 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14042 default:
14043 return nullptr;
14047 namespace {
14048 enum {
14049 AO_Bit_Field = 0,
14050 AO_Vector_Element = 1,
14051 AO_Property_Expansion = 2,
14052 AO_Register_Variable = 3,
14053 AO_Matrix_Element = 4,
14054 AO_No_Error = 5
14057 /// Diagnose invalid operand for address of operations.
14059 /// \param Type The type of operand which cannot have its address taken.
14060 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14061 Expr *E, unsigned Type) {
14062 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14065 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14066 const Expr *Op,
14067 const CXXMethodDecl *MD) {
14068 const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14070 if (Op != DRE)
14071 return Diag(OpLoc, diag::err_parens_pointer_member_function)
14072 << Op->getSourceRange();
14074 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14075 if (isa<CXXDestructorDecl>(MD))
14076 return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
14077 << DRE->getSourceRange();
14079 if (DRE->getQualifier())
14080 return false;
14082 if (MD->getParent()->getName().empty())
14083 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14084 << DRE->getSourceRange();
14086 SmallString<32> Str;
14087 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14088 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14089 << DRE->getSourceRange()
14090 << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
14093 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14094 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14095 if (PTy->getKind() == BuiltinType::Overload) {
14096 Expr *E = OrigOp.get()->IgnoreParens();
14097 if (!isa<OverloadExpr>(E)) {
14098 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14099 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14100 << OrigOp.get()->getSourceRange();
14101 return QualType();
14104 OverloadExpr *Ovl = cast<OverloadExpr>(E);
14105 if (isa<UnresolvedMemberExpr>(Ovl))
14106 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14107 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14108 << OrigOp.get()->getSourceRange();
14109 return QualType();
14112 return Context.OverloadTy;
14115 if (PTy->getKind() == BuiltinType::UnknownAny)
14116 return Context.UnknownAnyTy;
14118 if (PTy->getKind() == BuiltinType::BoundMember) {
14119 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14120 << OrigOp.get()->getSourceRange();
14121 return QualType();
14124 OrigOp = CheckPlaceholderExpr(OrigOp.get());
14125 if (OrigOp.isInvalid()) return QualType();
14128 if (OrigOp.get()->isTypeDependent())
14129 return Context.DependentTy;
14131 assert(!OrigOp.get()->hasPlaceholderType());
14133 // Make sure to ignore parentheses in subsequent checks
14134 Expr *op = OrigOp.get()->IgnoreParens();
14136 // In OpenCL captures for blocks called as lambda functions
14137 // are located in the private address space. Blocks used in
14138 // enqueue_kernel can be located in a different address space
14139 // depending on a vendor implementation. Thus preventing
14140 // taking an address of the capture to avoid invalid AS casts.
14141 if (LangOpts.OpenCL) {
14142 auto* VarRef = dyn_cast<DeclRefExpr>(op);
14143 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14144 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14145 return QualType();
14149 if (getLangOpts().C99) {
14150 // Implement C99-only parts of addressof rules.
14151 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14152 if (uOp->getOpcode() == UO_Deref)
14153 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14154 // (assuming the deref expression is valid).
14155 return uOp->getSubExpr()->getType();
14157 // Technically, there should be a check for array subscript
14158 // expressions here, but the result of one is always an lvalue anyway.
14160 ValueDecl *dcl = getPrimaryDecl(op);
14162 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14163 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14164 op->getBeginLoc()))
14165 return QualType();
14167 Expr::LValueClassification lval = op->ClassifyLValue(Context);
14168 unsigned AddressOfError = AO_No_Error;
14170 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14171 bool sfinae = (bool)isSFINAEContext();
14172 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14173 : diag::ext_typecheck_addrof_temporary)
14174 << op->getType() << op->getSourceRange();
14175 if (sfinae)
14176 return QualType();
14177 // Materialize the temporary as an lvalue so that we can take its address.
14178 OrigOp = op =
14179 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14180 } else if (isa<ObjCSelectorExpr>(op)) {
14181 return Context.getPointerType(op->getType());
14182 } else if (lval == Expr::LV_MemberFunction) {
14183 // If it's an instance method, make a member pointer.
14184 // The expression must have exactly the form &A::foo.
14186 // If the underlying expression isn't a decl ref, give up.
14187 if (!isa<DeclRefExpr>(op)) {
14188 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14189 << OrigOp.get()->getSourceRange();
14190 return QualType();
14192 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14193 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14195 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14197 QualType MPTy = Context.getMemberPointerType(
14198 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14200 if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14201 !isUnevaluatedContext() && !MPTy->isDependentType()) {
14202 // When pointer authentication is enabled, argument and return types of
14203 // vitual member functions must be complete. This is because vitrual
14204 // member function pointers are implemented using virtual dispatch
14205 // thunks and the thunks cannot be emitted if the argument or return
14206 // types are incomplete.
14207 auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14208 SourceLocation DeclRefLoc,
14209 SourceLocation RetArgTypeLoc) {
14210 if (RequireCompleteType(DeclRefLoc, T, diag::err_incomplete_type)) {
14211 Diag(DeclRefLoc,
14212 diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14213 Diag(RetArgTypeLoc,
14214 diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14215 << T;
14216 return true;
14218 return false;
14220 QualType RetTy = MD->getReturnType();
14221 bool IsIncomplete =
14222 !RetTy->isVoidType() &&
14223 ReturnOrParamTypeIsIncomplete(
14224 RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14225 for (auto *PVD : MD->parameters())
14226 IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14227 PVD->getBeginLoc());
14228 if (IsIncomplete)
14229 return QualType();
14232 // Under the MS ABI, lock down the inheritance model now.
14233 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14234 (void)isCompleteType(OpLoc, MPTy);
14235 return MPTy;
14236 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14237 // C99 6.5.3.2p1
14238 // The operand must be either an l-value or a function designator
14239 if (!op->getType()->isFunctionType()) {
14240 // Use a special diagnostic for loads from property references.
14241 if (isa<PseudoObjectExpr>(op)) {
14242 AddressOfError = AO_Property_Expansion;
14243 } else {
14244 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14245 << op->getType() << op->getSourceRange();
14246 return QualType();
14248 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
14249 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
14250 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14253 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14254 // The operand cannot be a bit-field
14255 AddressOfError = AO_Bit_Field;
14256 } else if (op->getObjectKind() == OK_VectorComponent) {
14257 // The operand cannot be an element of a vector
14258 AddressOfError = AO_Vector_Element;
14259 } else if (op->getObjectKind() == OK_MatrixComponent) {
14260 // The operand cannot be an element of a matrix.
14261 AddressOfError = AO_Matrix_Element;
14262 } else if (dcl) { // C99 6.5.3.2p1
14263 // We have an lvalue with a decl. Make sure the decl is not declared
14264 // with the register storage-class specifier.
14265 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14266 // in C++ it is not error to take address of a register
14267 // variable (c++03 7.1.1P3)
14268 if (vd->getStorageClass() == SC_Register &&
14269 !getLangOpts().CPlusPlus) {
14270 AddressOfError = AO_Register_Variable;
14272 } else if (isa<MSPropertyDecl>(dcl)) {
14273 AddressOfError = AO_Property_Expansion;
14274 } else if (isa<FunctionTemplateDecl>(dcl)) {
14275 return Context.OverloadTy;
14276 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14277 // Okay: we can take the address of a field.
14278 // Could be a pointer to member, though, if there is an explicit
14279 // scope qualifier for the class.
14281 // [C++26] [expr.prim.id.general]
14282 // If an id-expression E denotes a non-static non-type member
14283 // of some class C [...] and if E is a qualified-id, E is
14284 // not the un-parenthesized operand of the unary & operator [...]
14285 // the id-expression is transformed into a class member access expression.
14286 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
14287 !isa<ParenExpr>(OrigOp.get())) {
14288 DeclContext *Ctx = dcl->getDeclContext();
14289 if (Ctx && Ctx->isRecord()) {
14290 if (dcl->getType()->isReferenceType()) {
14291 Diag(OpLoc,
14292 diag::err_cannot_form_pointer_to_member_of_reference_type)
14293 << dcl->getDeclName() << dcl->getType();
14294 return QualType();
14297 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14298 Ctx = Ctx->getParent();
14300 QualType MPTy = Context.getMemberPointerType(
14301 op->getType(),
14302 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14303 // Under the MS ABI, lock down the inheritance model now.
14304 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14305 (void)isCompleteType(OpLoc, MPTy);
14306 return MPTy;
14309 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14310 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14311 llvm_unreachable("Unknown/unexpected decl type");
14314 if (AddressOfError != AO_No_Error) {
14315 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14316 return QualType();
14319 if (lval == Expr::LV_IncompleteVoidType) {
14320 // Taking the address of a void variable is technically illegal, but we
14321 // allow it in cases which are otherwise valid.
14322 // Example: "extern void x; void* y = &x;".
14323 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14326 // If the operand has type "type", the result has type "pointer to type".
14327 if (op->getType()->isObjCObjectType())
14328 return Context.getObjCObjectPointerType(op->getType());
14330 // Cannot take the address of WebAssembly references or tables.
14331 if (Context.getTargetInfo().getTriple().isWasm()) {
14332 QualType OpTy = op->getType();
14333 if (OpTy.isWebAssemblyReferenceType()) {
14334 Diag(OpLoc, diag::err_wasm_ca_reference)
14335 << 1 << OrigOp.get()->getSourceRange();
14336 return QualType();
14338 if (OpTy->isWebAssemblyTableType()) {
14339 Diag(OpLoc, diag::err_wasm_table_pr)
14340 << 1 << OrigOp.get()->getSourceRange();
14341 return QualType();
14345 CheckAddressOfPackedMember(op);
14347 return Context.getPointerType(op->getType());
14350 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14351 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14352 if (!DRE)
14353 return;
14354 const Decl *D = DRE->getDecl();
14355 if (!D)
14356 return;
14357 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14358 if (!Param)
14359 return;
14360 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14361 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14362 return;
14363 if (FunctionScopeInfo *FD = S.getCurFunction())
14364 FD->ModifiedNonNullParams.insert(Param);
14367 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14368 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14369 SourceLocation OpLoc,
14370 bool IsAfterAmp = false) {
14371 ExprResult ConvResult = S.UsualUnaryConversions(Op);
14372 if (ConvResult.isInvalid())
14373 return QualType();
14374 Op = ConvResult.get();
14375 QualType OpTy = Op->getType();
14376 QualType Result;
14378 if (isa<CXXReinterpretCastExpr>(Op)) {
14379 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14380 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14381 Op->getSourceRange());
14384 if (const PointerType *PT = OpTy->getAs<PointerType>())
14386 Result = PT->getPointeeType();
14388 else if (const ObjCObjectPointerType *OPT =
14389 OpTy->getAs<ObjCObjectPointerType>())
14390 Result = OPT->getPointeeType();
14391 else {
14392 ExprResult PR = S.CheckPlaceholderExpr(Op);
14393 if (PR.isInvalid()) return QualType();
14394 if (PR.get() != Op)
14395 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14398 if (Result.isNull()) {
14399 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14400 << OpTy << Op->getSourceRange();
14401 return QualType();
14404 if (Result->isVoidType()) {
14405 // C++ [expr.unary.op]p1:
14406 // [...] the expression to which [the unary * operator] is applied shall
14407 // be a pointer to an object type, or a pointer to a function type
14408 LangOptions LO = S.getLangOpts();
14409 if (LO.CPlusPlus)
14410 S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
14411 << OpTy << Op->getSourceRange();
14412 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14413 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14414 << OpTy << Op->getSourceRange();
14417 // Dereferences are usually l-values...
14418 VK = VK_LValue;
14420 // ...except that certain expressions are never l-values in C.
14421 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14422 VK = VK_PRValue;
14424 return Result;
14427 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14428 BinaryOperatorKind Opc;
14429 switch (Kind) {
14430 default: llvm_unreachable("Unknown binop!");
14431 case tok::periodstar: Opc = BO_PtrMemD; break;
14432 case tok::arrowstar: Opc = BO_PtrMemI; break;
14433 case tok::star: Opc = BO_Mul; break;
14434 case tok::slash: Opc = BO_Div; break;
14435 case tok::percent: Opc = BO_Rem; break;
14436 case tok::plus: Opc = BO_Add; break;
14437 case tok::minus: Opc = BO_Sub; break;
14438 case tok::lessless: Opc = BO_Shl; break;
14439 case tok::greatergreater: Opc = BO_Shr; break;
14440 case tok::lessequal: Opc = BO_LE; break;
14441 case tok::less: Opc = BO_LT; break;
14442 case tok::greaterequal: Opc = BO_GE; break;
14443 case tok::greater: Opc = BO_GT; break;
14444 case tok::exclaimequal: Opc = BO_NE; break;
14445 case tok::equalequal: Opc = BO_EQ; break;
14446 case tok::spaceship: Opc = BO_Cmp; break;
14447 case tok::amp: Opc = BO_And; break;
14448 case tok::caret: Opc = BO_Xor; break;
14449 case tok::pipe: Opc = BO_Or; break;
14450 case tok::ampamp: Opc = BO_LAnd; break;
14451 case tok::pipepipe: Opc = BO_LOr; break;
14452 case tok::equal: Opc = BO_Assign; break;
14453 case tok::starequal: Opc = BO_MulAssign; break;
14454 case tok::slashequal: Opc = BO_DivAssign; break;
14455 case tok::percentequal: Opc = BO_RemAssign; break;
14456 case tok::plusequal: Opc = BO_AddAssign; break;
14457 case tok::minusequal: Opc = BO_SubAssign; break;
14458 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14459 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14460 case tok::ampequal: Opc = BO_AndAssign; break;
14461 case tok::caretequal: Opc = BO_XorAssign; break;
14462 case tok::pipeequal: Opc = BO_OrAssign; break;
14463 case tok::comma: Opc = BO_Comma; break;
14465 return Opc;
14468 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14469 tok::TokenKind Kind) {
14470 UnaryOperatorKind Opc;
14471 switch (Kind) {
14472 default: llvm_unreachable("Unknown unary op!");
14473 case tok::plusplus: Opc = UO_PreInc; break;
14474 case tok::minusminus: Opc = UO_PreDec; break;
14475 case tok::amp: Opc = UO_AddrOf; break;
14476 case tok::star: Opc = UO_Deref; break;
14477 case tok::plus: Opc = UO_Plus; break;
14478 case tok::minus: Opc = UO_Minus; break;
14479 case tok::tilde: Opc = UO_Not; break;
14480 case tok::exclaim: Opc = UO_LNot; break;
14481 case tok::kw___real: Opc = UO_Real; break;
14482 case tok::kw___imag: Opc = UO_Imag; break;
14483 case tok::kw___extension__: Opc = UO_Extension; break;
14485 return Opc;
14488 const FieldDecl *
14489 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14490 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14491 // common for setters.
14492 // struct A {
14493 // int X;
14494 // -void setX(int X) { X = X; }
14495 // +void setX(int X) { this->X = X; }
14496 // };
14498 // Only consider parameters for self assignment fixes.
14499 if (!isa<ParmVarDecl>(SelfAssigned))
14500 return nullptr;
14501 const auto *Method =
14502 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14503 if (!Method)
14504 return nullptr;
14506 const CXXRecordDecl *Parent = Method->getParent();
14507 // In theory this is fixable if the lambda explicitly captures this, but
14508 // that's added complexity that's rarely going to be used.
14509 if (Parent->isLambda())
14510 return nullptr;
14512 // FIXME: Use an actual Lookup operation instead of just traversing fields
14513 // in order to get base class fields.
14514 auto Field =
14515 llvm::find_if(Parent->fields(),
14516 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14517 return F->getDeclName() == Name;
14519 return (Field != Parent->field_end()) ? *Field : nullptr;
14522 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14523 /// This warning suppressed in the event of macro expansions.
14524 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14525 SourceLocation OpLoc, bool IsBuiltin) {
14526 if (S.inTemplateInstantiation())
14527 return;
14528 if (S.isUnevaluatedContext())
14529 return;
14530 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14531 return;
14532 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14533 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14534 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14535 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14536 if (!LHSDeclRef || !RHSDeclRef ||
14537 LHSDeclRef->getLocation().isMacroID() ||
14538 RHSDeclRef->getLocation().isMacroID())
14539 return;
14540 const ValueDecl *LHSDecl =
14541 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14542 const ValueDecl *RHSDecl =
14543 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14544 if (LHSDecl != RHSDecl)
14545 return;
14546 if (LHSDecl->getType().isVolatileQualified())
14547 return;
14548 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14549 if (RefTy->getPointeeType().isVolatileQualified())
14550 return;
14552 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14553 : diag::warn_self_assignment_overloaded)
14554 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14555 << RHSExpr->getSourceRange();
14556 if (const FieldDecl *SelfAssignField =
14557 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14558 Diag << 1 << SelfAssignField
14559 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14560 else
14561 Diag << 0;
14564 /// Check if a bitwise-& is performed on an Objective-C pointer. This
14565 /// is usually indicative of introspection within the Objective-C pointer.
14566 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14567 SourceLocation OpLoc) {
14568 if (!S.getLangOpts().ObjC)
14569 return;
14571 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14572 const Expr *LHS = L.get();
14573 const Expr *RHS = R.get();
14575 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14576 ObjCPointerExpr = LHS;
14577 OtherExpr = RHS;
14579 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14580 ObjCPointerExpr = RHS;
14581 OtherExpr = LHS;
14584 // This warning is deliberately made very specific to reduce false
14585 // positives with logic that uses '&' for hashing. This logic mainly
14586 // looks for code trying to introspect into tagged pointers, which
14587 // code should generally never do.
14588 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14589 unsigned Diag = diag::warn_objc_pointer_masking;
14590 // Determine if we are introspecting the result of performSelectorXXX.
14591 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14592 // Special case messages to -performSelector and friends, which
14593 // can return non-pointer values boxed in a pointer value.
14594 // Some clients may wish to silence warnings in this subcase.
14595 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14596 Selector S = ME->getSelector();
14597 StringRef SelArg0 = S.getNameForSlot(0);
14598 if (SelArg0.starts_with("performSelector"))
14599 Diag = diag::warn_objc_pointer_masking_performSelector;
14602 S.Diag(OpLoc, Diag)
14603 << ObjCPointerExpr->getSourceRange();
14607 static NamedDecl *getDeclFromExpr(Expr *E) {
14608 if (!E)
14609 return nullptr;
14610 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14611 return DRE->getDecl();
14612 if (auto *ME = dyn_cast<MemberExpr>(E))
14613 return ME->getMemberDecl();
14614 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14615 return IRE->getDecl();
14616 return nullptr;
14619 // This helper function promotes a binary operator's operands (which are of a
14620 // half vector type) to a vector of floats and then truncates the result to
14621 // a vector of either half or short.
14622 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14623 BinaryOperatorKind Opc, QualType ResultTy,
14624 ExprValueKind VK, ExprObjectKind OK,
14625 bool IsCompAssign, SourceLocation OpLoc,
14626 FPOptionsOverride FPFeatures) {
14627 auto &Context = S.getASTContext();
14628 assert((isVector(ResultTy, Context.HalfTy) ||
14629 isVector(ResultTy, Context.ShortTy)) &&
14630 "Result must be a vector of half or short");
14631 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14632 isVector(RHS.get()->getType(), Context.HalfTy) &&
14633 "both operands expected to be a half vector");
14635 RHS = convertVector(RHS.get(), Context.FloatTy, S);
14636 QualType BinOpResTy = RHS.get()->getType();
14638 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14639 // change BinOpResTy to a vector of ints.
14640 if (isVector(ResultTy, Context.ShortTy))
14641 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14643 if (IsCompAssign)
14644 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14645 ResultTy, VK, OK, OpLoc, FPFeatures,
14646 BinOpResTy, BinOpResTy);
14648 LHS = convertVector(LHS.get(), Context.FloatTy, S);
14649 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14650 BinOpResTy, VK, OK, OpLoc, FPFeatures);
14651 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14654 static std::pair<ExprResult, ExprResult>
14655 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14656 Expr *RHSExpr) {
14657 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14658 if (!S.Context.isDependenceAllowed()) {
14659 // C cannot handle TypoExpr nodes on either side of a binop because it
14660 // doesn't handle dependent types properly, so make sure any TypoExprs have
14661 // been dealt with before checking the operands.
14662 LHS = S.CorrectDelayedTyposInExpr(LHS);
14663 RHS = S.CorrectDelayedTyposInExpr(
14664 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14665 [Opc, LHS](Expr *E) {
14666 if (Opc != BO_Assign)
14667 return ExprResult(E);
14668 // Avoid correcting the RHS to the same Expr as the LHS.
14669 Decl *D = getDeclFromExpr(E);
14670 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14673 return std::make_pair(LHS, RHS);
14676 /// Returns true if conversion between vectors of halfs and vectors of floats
14677 /// is needed.
14678 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14679 Expr *E0, Expr *E1 = nullptr) {
14680 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14681 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14682 return false;
14684 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14685 QualType Ty = E->IgnoreImplicit()->getType();
14687 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14688 // to vectors of floats. Although the element type of the vectors is __fp16,
14689 // the vectors shouldn't be treated as storage-only types. See the
14690 // discussion here: https://reviews.llvm.org/rG825235c140e7
14691 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14692 if (VT->getVectorKind() == VectorKind::Neon)
14693 return false;
14694 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14696 return false;
14699 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14702 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14703 BinaryOperatorKind Opc,
14704 Expr *LHSExpr, Expr *RHSExpr) {
14705 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14706 // The syntax only allows initializer lists on the RHS of assignment,
14707 // so we don't need to worry about accepting invalid code for
14708 // non-assignment operators.
14709 // C++11 5.17p9:
14710 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14711 // of x = {} is x = T().
14712 InitializationKind Kind = InitializationKind::CreateDirectList(
14713 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14714 InitializedEntity Entity =
14715 InitializedEntity::InitializeTemporary(LHSExpr->getType());
14716 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14717 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14718 if (Init.isInvalid())
14719 return Init;
14720 RHSExpr = Init.get();
14723 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14724 QualType ResultTy; // Result type of the binary operator.
14725 // The following two variables are used for compound assignment operators
14726 QualType CompLHSTy; // Type of LHS after promotions for computation
14727 QualType CompResultTy; // Type of computation result
14728 ExprValueKind VK = VK_PRValue;
14729 ExprObjectKind OK = OK_Ordinary;
14730 bool ConvertHalfVec = false;
14732 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14733 if (!LHS.isUsable() || !RHS.isUsable())
14734 return ExprError();
14736 if (getLangOpts().OpenCL) {
14737 QualType LHSTy = LHSExpr->getType();
14738 QualType RHSTy = RHSExpr->getType();
14739 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14740 // the ATOMIC_VAR_INIT macro.
14741 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14742 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14743 if (BO_Assign == Opc)
14744 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14745 else
14746 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14747 return ExprError();
14750 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14751 // only with a builtin functions and therefore should be disallowed here.
14752 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14753 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14754 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14755 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14756 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14757 return ExprError();
14761 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14762 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14764 switch (Opc) {
14765 case BO_Assign:
14766 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14767 if (getLangOpts().CPlusPlus &&
14768 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14769 VK = LHS.get()->getValueKind();
14770 OK = LHS.get()->getObjectKind();
14772 if (!ResultTy.isNull()) {
14773 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14774 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14776 // Avoid copying a block to the heap if the block is assigned to a local
14777 // auto variable that is declared in the same scope as the block. This
14778 // optimization is unsafe if the local variable is declared in an outer
14779 // scope. For example:
14781 // BlockTy b;
14782 // {
14783 // b = ^{...};
14784 // }
14785 // // It is unsafe to invoke the block here if it wasn't copied to the
14786 // // heap.
14787 // b();
14789 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14790 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14791 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14792 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14793 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14795 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14796 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14797 NTCUC_Assignment, NTCUK_Copy);
14799 RecordModifiableNonNullParam(*this, LHS.get());
14800 break;
14801 case BO_PtrMemD:
14802 case BO_PtrMemI:
14803 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14804 Opc == BO_PtrMemI);
14805 break;
14806 case BO_Mul:
14807 case BO_Div:
14808 ConvertHalfVec = true;
14809 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14810 Opc == BO_Div);
14811 break;
14812 case BO_Rem:
14813 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14814 break;
14815 case BO_Add:
14816 ConvertHalfVec = true;
14817 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14818 break;
14819 case BO_Sub:
14820 ConvertHalfVec = true;
14821 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14822 break;
14823 case BO_Shl:
14824 case BO_Shr:
14825 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14826 break;
14827 case BO_LE:
14828 case BO_LT:
14829 case BO_GE:
14830 case BO_GT:
14831 ConvertHalfVec = true;
14832 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14834 if (const auto *BI = dyn_cast<BinaryOperator>(LHSExpr);
14835 BI && BI->isComparisonOp())
14836 Diag(OpLoc, diag::warn_consecutive_comparison);
14838 break;
14839 case BO_EQ:
14840 case BO_NE:
14841 ConvertHalfVec = true;
14842 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14843 break;
14844 case BO_Cmp:
14845 ConvertHalfVec = true;
14846 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14847 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14848 break;
14849 case BO_And:
14850 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14851 [[fallthrough]];
14852 case BO_Xor:
14853 case BO_Or:
14854 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14855 break;
14856 case BO_LAnd:
14857 case BO_LOr:
14858 ConvertHalfVec = true;
14859 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14860 break;
14861 case BO_MulAssign:
14862 case BO_DivAssign:
14863 ConvertHalfVec = true;
14864 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14865 Opc == BO_DivAssign);
14866 CompLHSTy = CompResultTy;
14867 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14868 ResultTy =
14869 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14870 break;
14871 case BO_RemAssign:
14872 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14873 CompLHSTy = CompResultTy;
14874 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14875 ResultTy =
14876 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14877 break;
14878 case BO_AddAssign:
14879 ConvertHalfVec = true;
14880 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14881 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14882 ResultTy =
14883 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14884 break;
14885 case BO_SubAssign:
14886 ConvertHalfVec = true;
14887 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14888 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14889 ResultTy =
14890 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14891 break;
14892 case BO_ShlAssign:
14893 case BO_ShrAssign:
14894 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14895 CompLHSTy = CompResultTy;
14896 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14897 ResultTy =
14898 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14899 break;
14900 case BO_AndAssign:
14901 case BO_OrAssign: // fallthrough
14902 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14903 [[fallthrough]];
14904 case BO_XorAssign:
14905 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14906 CompLHSTy = CompResultTy;
14907 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14908 ResultTy =
14909 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14910 break;
14911 case BO_Comma:
14912 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14913 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14914 VK = RHS.get()->getValueKind();
14915 OK = RHS.get()->getObjectKind();
14917 break;
14919 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14920 return ExprError();
14922 // Some of the binary operations require promoting operands of half vector to
14923 // float vectors and truncating the result back to half vector. For now, we do
14924 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14925 // arm64).
14926 assert(
14927 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14928 isVector(LHS.get()->getType(), Context.HalfTy)) &&
14929 "both sides are half vectors or neither sides are");
14930 ConvertHalfVec =
14931 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14933 // Check for array bounds violations for both sides of the BinaryOperator
14934 CheckArrayAccess(LHS.get());
14935 CheckArrayAccess(RHS.get());
14937 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14938 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14939 &Context.Idents.get("object_setClass"),
14940 SourceLocation(), LookupOrdinaryName);
14941 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14942 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14943 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14944 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14945 "object_setClass(")
14946 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14947 ",")
14948 << FixItHint::CreateInsertion(RHSLocEnd, ")");
14950 else
14951 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14953 else if (const ObjCIvarRefExpr *OIRE =
14954 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14955 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14957 // Opc is not a compound assignment if CompResultTy is null.
14958 if (CompResultTy.isNull()) {
14959 if (ConvertHalfVec)
14960 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14961 OpLoc, CurFPFeatureOverrides());
14962 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14963 VK, OK, OpLoc, CurFPFeatureOverrides());
14966 // Handle compound assignments.
14967 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14968 OK_ObjCProperty) {
14969 VK = VK_LValue;
14970 OK = LHS.get()->getObjectKind();
14973 // The LHS is not converted to the result type for fixed-point compound
14974 // assignment as the common type is computed on demand. Reset the CompLHSTy
14975 // to the LHS type we would have gotten after unary conversions.
14976 if (CompResultTy->isFixedPointType())
14977 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14979 if (ConvertHalfVec)
14980 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14981 OpLoc, CurFPFeatureOverrides());
14983 return CompoundAssignOperator::Create(
14984 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14985 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14988 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14989 /// operators are mixed in a way that suggests that the programmer forgot that
14990 /// comparison operators have higher precedence. The most typical example of
14991 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14992 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14993 SourceLocation OpLoc, Expr *LHSExpr,
14994 Expr *RHSExpr) {
14995 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14996 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14998 // Check that one of the sides is a comparison operator and the other isn't.
14999 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15000 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15001 if (isLeftComp == isRightComp)
15002 return;
15004 // Bitwise operations are sometimes used as eager logical ops.
15005 // Don't diagnose this.
15006 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15007 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15008 if (isLeftBitwise || isRightBitwise)
15009 return;
15011 SourceRange DiagRange = isLeftComp
15012 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15013 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15014 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15015 SourceRange ParensRange =
15016 isLeftComp
15017 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15018 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15020 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15021 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15022 SuggestParentheses(Self, OpLoc,
15023 Self.PDiag(diag::note_precedence_silence) << OpStr,
15024 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15025 SuggestParentheses(Self, OpLoc,
15026 Self.PDiag(diag::note_precedence_bitwise_first)
15027 << BinaryOperator::getOpcodeStr(Opc),
15028 ParensRange);
15031 /// It accepts a '&&' expr that is inside a '||' one.
15032 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15033 /// in parentheses.
15034 static void
15035 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15036 BinaryOperator *Bop) {
15037 assert(Bop->getOpcode() == BO_LAnd);
15038 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15039 << Bop->getSourceRange() << OpLoc;
15040 SuggestParentheses(Self, Bop->getOperatorLoc(),
15041 Self.PDiag(diag::note_precedence_silence)
15042 << Bop->getOpcodeStr(),
15043 Bop->getSourceRange());
15046 /// Look for '&&' in the left hand of a '||' expr.
15047 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15048 Expr *LHSExpr, Expr *RHSExpr) {
15049 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15050 if (Bop->getOpcode() == BO_LAnd) {
15051 // If it's "string_literal && a || b" don't warn since the precedence
15052 // doesn't matter.
15053 if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15054 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15055 } else if (Bop->getOpcode() == BO_LOr) {
15056 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15057 // If it's "a || b && string_literal || c" we didn't warn earlier for
15058 // "a || b && string_literal", but warn now.
15059 if (RBop->getOpcode() == BO_LAnd &&
15060 isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15061 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15067 /// Look for '&&' in the right hand of a '||' expr.
15068 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15069 Expr *LHSExpr, Expr *RHSExpr) {
15070 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15071 if (Bop->getOpcode() == BO_LAnd) {
15072 // If it's "a || b && string_literal" don't warn since the precedence
15073 // doesn't matter.
15074 if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15075 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15080 /// Look for bitwise op in the left or right hand of a bitwise op with
15081 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15082 /// the '&' expression in parentheses.
15083 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15084 SourceLocation OpLoc, Expr *SubExpr) {
15085 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15086 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15087 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15088 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15089 << Bop->getSourceRange() << OpLoc;
15090 SuggestParentheses(S, Bop->getOperatorLoc(),
15091 S.PDiag(diag::note_precedence_silence)
15092 << Bop->getOpcodeStr(),
15093 Bop->getSourceRange());
15098 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15099 Expr *SubExpr, StringRef Shift) {
15100 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15101 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15102 StringRef Op = Bop->getOpcodeStr();
15103 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15104 << Bop->getSourceRange() << OpLoc << Shift << Op;
15105 SuggestParentheses(S, Bop->getOperatorLoc(),
15106 S.PDiag(diag::note_precedence_silence) << Op,
15107 Bop->getSourceRange());
15112 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15113 Expr *LHSExpr, Expr *RHSExpr) {
15114 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15115 if (!OCE)
15116 return;
15118 FunctionDecl *FD = OCE->getDirectCallee();
15119 if (!FD || !FD->isOverloadedOperator())
15120 return;
15122 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15123 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15124 return;
15126 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15127 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15128 << (Kind == OO_LessLess);
15129 SuggestParentheses(S, OCE->getOperatorLoc(),
15130 S.PDiag(diag::note_precedence_silence)
15131 << (Kind == OO_LessLess ? "<<" : ">>"),
15132 OCE->getSourceRange());
15133 SuggestParentheses(
15134 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15135 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15138 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15139 /// precedence.
15140 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15141 SourceLocation OpLoc, Expr *LHSExpr,
15142 Expr *RHSExpr){
15143 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15144 if (BinaryOperator::isBitwiseOp(Opc))
15145 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15147 // Diagnose "arg1 & arg2 | arg3"
15148 if ((Opc == BO_Or || Opc == BO_Xor) &&
15149 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15150 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15151 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15154 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15155 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15156 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15157 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15158 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15161 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15162 || Opc == BO_Shr) {
15163 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15164 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15165 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15168 // Warn on overloaded shift operators and comparisons, such as:
15169 // cout << 5 == 4;
15170 if (BinaryOperator::isComparisonOp(Opc))
15171 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15174 static void DetectPrecisionLossInComplexDivision(Sema &S, SourceLocation OpLoc,
15175 Expr *Operand) {
15176 if (auto *CT = Operand->getType()->getAs<ComplexType>()) {
15177 QualType ElementType = CT->getElementType();
15178 bool IsComplexRangePromoted = S.getLangOpts().getComplexRange() ==
15179 LangOptions::ComplexRangeKind::CX_Promoted;
15180 if (ElementType->isFloatingType() && IsComplexRangePromoted) {
15181 ASTContext &Ctx = S.getASTContext();
15182 QualType HigherElementType = Ctx.GetHigherPrecisionFPType(ElementType);
15183 const llvm::fltSemantics &ElementTypeSemantics =
15184 Ctx.getFloatTypeSemantics(ElementType);
15185 const llvm::fltSemantics &HigherElementTypeSemantics =
15186 Ctx.getFloatTypeSemantics(HigherElementType);
15187 if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 >
15188 llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) {
15189 // Retain the location of the first use of higher precision type.
15190 if (!S.LocationOfExcessPrecisionNotSatisfied.isValid())
15191 S.LocationOfExcessPrecisionNotSatisfied = OpLoc;
15192 for (auto &[Type, Num] : S.ExcessPrecisionNotSatisfied) {
15193 if (Type == HigherElementType) {
15194 Num++;
15195 return;
15198 S.ExcessPrecisionNotSatisfied.push_back(std::make_pair(
15199 HigherElementType, S.ExcessPrecisionNotSatisfied.size()));
15205 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15206 tok::TokenKind Kind,
15207 Expr *LHSExpr, Expr *RHSExpr) {
15208 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15209 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15210 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15212 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15213 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15215 // Emit warnings if the requested higher precision type equal to the current
15216 // type precision.
15217 if (Kind == tok::TokenKind::slash)
15218 DetectPrecisionLossInComplexDivision(*this, TokLoc, LHSExpr);
15220 BuiltinCountedByRefKind K =
15221 BinaryOperator::isAssignmentOp(Opc) ? AssignmentKind : BinaryExprKind;
15223 CheckInvalidBuiltinCountedByRef(LHSExpr, K);
15224 CheckInvalidBuiltinCountedByRef(RHSExpr, K);
15226 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15229 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15230 UnresolvedSetImpl &Functions) {
15231 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15232 if (OverOp != OO_None && OverOp != OO_Equal)
15233 LookupOverloadedOperatorName(OverOp, S, Functions);
15235 // In C++20 onwards, we may have a second operator to look up.
15236 if (getLangOpts().CPlusPlus20) {
15237 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15238 LookupOverloadedOperatorName(ExtraOp, S, Functions);
15242 /// Build an overloaded binary operator expression in the given scope.
15243 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15244 BinaryOperatorKind Opc,
15245 Expr *LHS, Expr *RHS) {
15246 switch (Opc) {
15247 case BO_Assign:
15248 // In the non-overloaded case, we warn about self-assignment (x = x) for
15249 // both simple assignment and certain compound assignments where algebra
15250 // tells us the operation yields a constant result. When the operator is
15251 // overloaded, we can't do the latter because we don't want to assume that
15252 // those algebraic identities still apply; for example, a path-building
15253 // library might use operator/= to append paths. But it's still reasonable
15254 // to assume that simple assignment is just moving/copying values around
15255 // and so self-assignment is likely a bug.
15256 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15257 [[fallthrough]];
15258 case BO_DivAssign:
15259 case BO_RemAssign:
15260 case BO_SubAssign:
15261 case BO_AndAssign:
15262 case BO_OrAssign:
15263 case BO_XorAssign:
15264 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15265 break;
15266 default:
15267 break;
15270 // Find all of the overloaded operators visible from this point.
15271 UnresolvedSet<16> Functions;
15272 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15274 // Build the (potentially-overloaded, potentially-dependent)
15275 // binary operation.
15276 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15279 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15280 BinaryOperatorKind Opc,
15281 Expr *LHSExpr, Expr *RHSExpr) {
15282 ExprResult LHS, RHS;
15283 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15284 if (!LHS.isUsable() || !RHS.isUsable())
15285 return ExprError();
15286 LHSExpr = LHS.get();
15287 RHSExpr = RHS.get();
15289 // We want to end up calling one of SemaPseudoObject::checkAssignment
15290 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15291 // both expressions are overloadable or either is type-dependent),
15292 // or CreateBuiltinBinOp (in any other case). We also want to get
15293 // any placeholder types out of the way.
15295 // Handle pseudo-objects in the LHS.
15296 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15297 // Assignments with a pseudo-object l-value need special analysis.
15298 if (pty->getKind() == BuiltinType::PseudoObject &&
15299 BinaryOperator::isAssignmentOp(Opc))
15300 return PseudoObject().checkAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15302 // Don't resolve overloads if the other type is overloadable.
15303 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15304 // We can't actually test that if we still have a placeholder,
15305 // though. Fortunately, none of the exceptions we see in that
15306 // code below are valid when the LHS is an overload set. Note
15307 // that an overload set can be dependently-typed, but it never
15308 // instantiates to having an overloadable type.
15309 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15310 if (resolvedRHS.isInvalid()) return ExprError();
15311 RHSExpr = resolvedRHS.get();
15313 if (RHSExpr->isTypeDependent() ||
15314 RHSExpr->getType()->isOverloadableType())
15315 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15318 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15319 // template, diagnose the missing 'template' keyword instead of diagnosing
15320 // an invalid use of a bound member function.
15322 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15323 // to C++1z [over.over]/1.4, but we already checked for that case above.
15324 if (Opc == BO_LT && inTemplateInstantiation() &&
15325 (pty->getKind() == BuiltinType::BoundMember ||
15326 pty->getKind() == BuiltinType::Overload)) {
15327 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15328 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15329 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15330 return isa<FunctionTemplateDecl>(ND);
15331 })) {
15332 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15333 : OE->getNameLoc(),
15334 diag::err_template_kw_missing)
15335 << OE->getName().getAsString() << "";
15336 return ExprError();
15340 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15341 if (LHS.isInvalid()) return ExprError();
15342 LHSExpr = LHS.get();
15345 // Handle pseudo-objects in the RHS.
15346 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15347 // An overload in the RHS can potentially be resolved by the type
15348 // being assigned to.
15349 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15350 if (getLangOpts().CPlusPlus &&
15351 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15352 LHSExpr->getType()->isOverloadableType()))
15353 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15355 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15358 // Don't resolve overloads if the other type is overloadable.
15359 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15360 LHSExpr->getType()->isOverloadableType())
15361 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15363 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15364 if (!resolvedRHS.isUsable()) return ExprError();
15365 RHSExpr = resolvedRHS.get();
15368 if (getLangOpts().CPlusPlus) {
15369 // Otherwise, build an overloaded op if either expression is type-dependent
15370 // or has an overloadable type.
15371 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15372 LHSExpr->getType()->isOverloadableType() ||
15373 RHSExpr->getType()->isOverloadableType())
15374 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15377 if (getLangOpts().RecoveryAST &&
15378 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15379 assert(!getLangOpts().CPlusPlus);
15380 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15381 "Should only occur in error-recovery path.");
15382 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15383 // C [6.15.16] p3:
15384 // An assignment expression has the value of the left operand after the
15385 // assignment, but is not an lvalue.
15386 return CompoundAssignOperator::Create(
15387 Context, LHSExpr, RHSExpr, Opc,
15388 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15389 OpLoc, CurFPFeatureOverrides());
15390 QualType ResultType;
15391 switch (Opc) {
15392 case BO_Assign:
15393 ResultType = LHSExpr->getType().getUnqualifiedType();
15394 break;
15395 case BO_LT:
15396 case BO_GT:
15397 case BO_LE:
15398 case BO_GE:
15399 case BO_EQ:
15400 case BO_NE:
15401 case BO_LAnd:
15402 case BO_LOr:
15403 // These operators have a fixed result type regardless of operands.
15404 ResultType = Context.IntTy;
15405 break;
15406 case BO_Comma:
15407 ResultType = RHSExpr->getType();
15408 break;
15409 default:
15410 ResultType = Context.DependentTy;
15411 break;
15413 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15414 VK_PRValue, OK_Ordinary, OpLoc,
15415 CurFPFeatureOverrides());
15418 // Build a built-in binary operation.
15419 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15422 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15423 if (T.isNull() || T->isDependentType())
15424 return false;
15426 if (!Ctx.isPromotableIntegerType(T))
15427 return true;
15429 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15432 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15433 UnaryOperatorKind Opc, Expr *InputExpr,
15434 bool IsAfterAmp) {
15435 ExprResult Input = InputExpr;
15436 ExprValueKind VK = VK_PRValue;
15437 ExprObjectKind OK = OK_Ordinary;
15438 QualType resultType;
15439 bool CanOverflow = false;
15441 bool ConvertHalfVec = false;
15442 if (getLangOpts().OpenCL) {
15443 QualType Ty = InputExpr->getType();
15444 // The only legal unary operation for atomics is '&'.
15445 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15446 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15447 // only with a builtin functions and therefore should be disallowed here.
15448 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15449 || Ty->isBlockPointerType())) {
15450 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15451 << InputExpr->getType()
15452 << Input.get()->getSourceRange());
15456 if (getLangOpts().HLSL && OpLoc.isValid()) {
15457 if (Opc == UO_AddrOf)
15458 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15459 if (Opc == UO_Deref)
15460 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15463 if (InputExpr->isTypeDependent() &&
15464 InputExpr->getType()->isSpecificBuiltinType(BuiltinType::Dependent)) {
15465 resultType = Context.DependentTy;
15466 } else {
15467 switch (Opc) {
15468 case UO_PreInc:
15469 case UO_PreDec:
15470 case UO_PostInc:
15471 case UO_PostDec:
15472 resultType =
15473 CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, OpLoc,
15474 Opc == UO_PreInc || Opc == UO_PostInc,
15475 Opc == UO_PreInc || Opc == UO_PreDec);
15476 CanOverflow = isOverflowingIntegerType(Context, resultType);
15477 break;
15478 case UO_AddrOf:
15479 resultType = CheckAddressOfOperand(Input, OpLoc);
15480 CheckAddressOfNoDeref(InputExpr);
15481 RecordModifiableNonNullParam(*this, InputExpr);
15482 break;
15483 case UO_Deref: {
15484 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15485 if (Input.isInvalid())
15486 return ExprError();
15487 resultType =
15488 CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15489 break;
15491 case UO_Plus:
15492 case UO_Minus:
15493 CanOverflow = Opc == UO_Minus &&
15494 isOverflowingIntegerType(Context, Input.get()->getType());
15495 Input = UsualUnaryConversions(Input.get());
15496 if (Input.isInvalid())
15497 return ExprError();
15498 // Unary plus and minus require promoting an operand of half vector to a
15499 // float vector and truncating the result back to a half vector. For now,
15500 // we do this only when HalfArgsAndReturns is set (that is, when the
15501 // target is arm or arm64).
15502 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15504 // If the operand is a half vector, promote it to a float vector.
15505 if (ConvertHalfVec)
15506 Input = convertVector(Input.get(), Context.FloatTy, *this);
15507 resultType = Input.get()->getType();
15508 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15509 break;
15510 else if (resultType->isVectorType() &&
15511 // The z vector extensions don't allow + or - with bool vectors.
15512 (!Context.getLangOpts().ZVector ||
15513 resultType->castAs<VectorType>()->getVectorKind() !=
15514 VectorKind::AltiVecBool))
15515 break;
15516 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15517 break;
15518 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15519 Opc == UO_Plus && resultType->isPointerType())
15520 break;
15522 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15523 << resultType << Input.get()->getSourceRange());
15525 case UO_Not: // bitwise complement
15526 Input = UsualUnaryConversions(Input.get());
15527 if (Input.isInvalid())
15528 return ExprError();
15529 resultType = Input.get()->getType();
15530 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15531 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15532 // C99 does not support '~' for complex conjugation.
15533 Diag(OpLoc, diag::ext_integer_complement_complex)
15534 << resultType << Input.get()->getSourceRange();
15535 else if (resultType->hasIntegerRepresentation())
15536 break;
15537 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15538 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15539 // on vector float types.
15540 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15541 if (!T->isIntegerType())
15542 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15543 << resultType << Input.get()->getSourceRange());
15544 } else {
15545 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15546 << resultType << Input.get()->getSourceRange());
15548 break;
15550 case UO_LNot: // logical negation
15551 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15552 Input = DefaultFunctionArrayLvalueConversion(Input.get());
15553 if (Input.isInvalid())
15554 return ExprError();
15555 resultType = Input.get()->getType();
15557 // Though we still have to promote half FP to float...
15558 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15559 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast)
15560 .get();
15561 resultType = Context.FloatTy;
15564 // WebAsembly tables can't be used in unary expressions.
15565 if (resultType->isPointerType() &&
15566 resultType->getPointeeType().isWebAssemblyReferenceType()) {
15567 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15568 << resultType << Input.get()->getSourceRange());
15571 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15572 // C99 6.5.3.3p1: ok, fallthrough;
15573 if (Context.getLangOpts().CPlusPlus) {
15574 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15575 // operand contextually converted to bool.
15576 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15577 ScalarTypeToBooleanCastKind(resultType));
15578 } else if (Context.getLangOpts().OpenCL &&
15579 Context.getLangOpts().OpenCLVersion < 120) {
15580 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15581 // operate on scalar float types.
15582 if (!resultType->isIntegerType() && !resultType->isPointerType())
15583 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15584 << resultType << Input.get()->getSourceRange());
15586 } else if (resultType->isExtVectorType()) {
15587 if (Context.getLangOpts().OpenCL &&
15588 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15589 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15590 // operate on vector float types.
15591 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15592 if (!T->isIntegerType())
15593 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15594 << resultType << Input.get()->getSourceRange());
15596 // Vector logical not returns the signed variant of the operand type.
15597 resultType = GetSignedVectorType(resultType);
15598 break;
15599 } else if (Context.getLangOpts().CPlusPlus &&
15600 resultType->isVectorType()) {
15601 const VectorType *VTy = resultType->castAs<VectorType>();
15602 if (VTy->getVectorKind() != VectorKind::Generic)
15603 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15604 << resultType << Input.get()->getSourceRange());
15606 // Vector logical not returns the signed variant of the operand type.
15607 resultType = GetSignedVectorType(resultType);
15608 break;
15609 } else {
15610 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15611 << resultType << Input.get()->getSourceRange());
15614 // LNot always has type int. C99 6.5.3.3p5.
15615 // In C++, it's bool. C++ 5.3.1p8
15616 resultType = Context.getLogicalOperationType();
15617 break;
15618 case UO_Real:
15619 case UO_Imag:
15620 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15621 // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15622 // ordinary complex l-values to ordinary l-values and all other values to
15623 // r-values.
15624 if (Input.isInvalid())
15625 return ExprError();
15626 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15627 if (Input.get()->isGLValue() &&
15628 Input.get()->getObjectKind() == OK_Ordinary)
15629 VK = Input.get()->getValueKind();
15630 } else if (!getLangOpts().CPlusPlus) {
15631 // In C, a volatile scalar is read by __imag. In C++, it is not.
15632 Input = DefaultLvalueConversion(Input.get());
15634 break;
15635 case UO_Extension:
15636 resultType = Input.get()->getType();
15637 VK = Input.get()->getValueKind();
15638 OK = Input.get()->getObjectKind();
15639 break;
15640 case UO_Coawait:
15641 // It's unnecessary to represent the pass-through operator co_await in the
15642 // AST; just return the input expression instead.
15643 assert(!Input.get()->getType()->isDependentType() &&
15644 "the co_await expression must be non-dependant before "
15645 "building operator co_await");
15646 return Input;
15649 if (resultType.isNull() || Input.isInvalid())
15650 return ExprError();
15652 // Check for array bounds violations in the operand of the UnaryOperator,
15653 // except for the '*' and '&' operators that have to be handled specially
15654 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15655 // that are explicitly defined as valid by the standard).
15656 if (Opc != UO_AddrOf && Opc != UO_Deref)
15657 CheckArrayAccess(Input.get());
15659 auto *UO =
15660 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15661 OpLoc, CanOverflow, CurFPFeatureOverrides());
15663 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15664 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15665 !isUnevaluatedContext())
15666 ExprEvalContexts.back().PossibleDerefs.insert(UO);
15668 // Convert the result back to a half vector.
15669 if (ConvertHalfVec)
15670 return convertVector(UO, Context.HalfTy, *this);
15671 return UO;
15674 bool Sema::isQualifiedMemberAccess(Expr *E) {
15675 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15676 if (!DRE->getQualifier())
15677 return false;
15679 ValueDecl *VD = DRE->getDecl();
15680 if (!VD->isCXXClassMember())
15681 return false;
15683 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15684 return true;
15685 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15686 return Method->isImplicitObjectMemberFunction();
15688 return false;
15691 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15692 if (!ULE->getQualifier())
15693 return false;
15695 for (NamedDecl *D : ULE->decls()) {
15696 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15697 if (Method->isImplicitObjectMemberFunction())
15698 return true;
15699 } else {
15700 // Overload set does not contain methods.
15701 break;
15705 return false;
15708 return false;
15711 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15712 UnaryOperatorKind Opc, Expr *Input,
15713 bool IsAfterAmp) {
15714 // First things first: handle placeholders so that the
15715 // overloaded-operator check considers the right type.
15716 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15717 // Increment and decrement of pseudo-object references.
15718 if (pty->getKind() == BuiltinType::PseudoObject &&
15719 UnaryOperator::isIncrementDecrementOp(Opc))
15720 return PseudoObject().checkIncDec(S, OpLoc, Opc, Input);
15722 // extension is always a builtin operator.
15723 if (Opc == UO_Extension)
15724 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15726 // & gets special logic for several kinds of placeholder.
15727 // The builtin code knows what to do.
15728 if (Opc == UO_AddrOf &&
15729 (pty->getKind() == BuiltinType::Overload ||
15730 pty->getKind() == BuiltinType::UnknownAny ||
15731 pty->getKind() == BuiltinType::BoundMember))
15732 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15734 // Anything else needs to be handled now.
15735 ExprResult Result = CheckPlaceholderExpr(Input);
15736 if (Result.isInvalid()) return ExprError();
15737 Input = Result.get();
15740 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15741 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15742 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15743 // Find all of the overloaded operators visible from this point.
15744 UnresolvedSet<16> Functions;
15745 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15746 if (S && OverOp != OO_None)
15747 LookupOverloadedOperatorName(OverOp, S, Functions);
15749 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15752 return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
15755 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15756 Expr *Input, bool IsAfterAmp) {
15757 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
15758 IsAfterAmp);
15761 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15762 LabelDecl *TheDecl) {
15763 TheDecl->markUsed(Context);
15764 // Create the AST node. The address of a label always has type 'void*'.
15765 auto *Res = new (Context) AddrLabelExpr(
15766 OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
15768 if (getCurFunction())
15769 getCurFunction()->AddrLabels.push_back(Res);
15771 return Res;
15774 void Sema::ActOnStartStmtExpr() {
15775 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15776 // Make sure we diagnose jumping into a statement expression.
15777 setFunctionHasBranchProtectedScope();
15780 void Sema::ActOnStmtExprError() {
15781 // Note that function is also called by TreeTransform when leaving a
15782 // StmtExpr scope without rebuilding anything.
15784 DiscardCleanupsInEvaluationContext();
15785 PopExpressionEvaluationContext();
15788 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15789 SourceLocation RPLoc) {
15790 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15793 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15794 SourceLocation RPLoc, unsigned TemplateDepth) {
15795 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15796 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15798 if (hasAnyUnrecoverableErrorsInThisFunction())
15799 DiscardCleanupsInEvaluationContext();
15800 assert(!Cleanup.exprNeedsCleanups() &&
15801 "cleanups within StmtExpr not correctly bound!");
15802 PopExpressionEvaluationContext();
15804 // FIXME: there are a variety of strange constraints to enforce here, for
15805 // example, it is not possible to goto into a stmt expression apparently.
15806 // More semantic analysis is needed.
15808 // If there are sub-stmts in the compound stmt, take the type of the last one
15809 // as the type of the stmtexpr.
15810 QualType Ty = Context.VoidTy;
15811 bool StmtExprMayBindToTemp = false;
15812 if (!Compound->body_empty()) {
15813 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15814 if (const auto *LastStmt =
15815 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15816 if (const Expr *Value = LastStmt->getExprStmt()) {
15817 StmtExprMayBindToTemp = true;
15818 Ty = Value->getType();
15823 // FIXME: Check that expression type is complete/non-abstract; statement
15824 // expressions are not lvalues.
15825 Expr *ResStmtExpr =
15826 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15827 if (StmtExprMayBindToTemp)
15828 return MaybeBindToTemporary(ResStmtExpr);
15829 return ResStmtExpr;
15832 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15833 if (ER.isInvalid())
15834 return ExprError();
15836 // Do function/array conversion on the last expression, but not
15837 // lvalue-to-rvalue. However, initialize an unqualified type.
15838 ER = DefaultFunctionArrayConversion(ER.get());
15839 if (ER.isInvalid())
15840 return ExprError();
15841 Expr *E = ER.get();
15843 if (E->isTypeDependent())
15844 return E;
15846 // In ARC, if the final expression ends in a consume, splice
15847 // the consume out and bind it later. In the alternate case
15848 // (when dealing with a retainable type), the result
15849 // initialization will create a produce. In both cases the
15850 // result will be +1, and we'll need to balance that out with
15851 // a bind.
15852 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15853 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15854 return Cast->getSubExpr();
15856 // FIXME: Provide a better location for the initialization.
15857 return PerformCopyInitialization(
15858 InitializedEntity::InitializeStmtExprResult(
15859 E->getBeginLoc(), E->getType().getUnqualifiedType()),
15860 SourceLocation(), E);
15863 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15864 TypeSourceInfo *TInfo,
15865 ArrayRef<OffsetOfComponent> Components,
15866 SourceLocation RParenLoc) {
15867 QualType ArgTy = TInfo->getType();
15868 bool Dependent = ArgTy->isDependentType();
15869 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15871 // We must have at least one component that refers to the type, and the first
15872 // one is known to be a field designator. Verify that the ArgTy represents
15873 // a struct/union/class.
15874 if (!Dependent && !ArgTy->isRecordType())
15875 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15876 << ArgTy << TypeRange);
15878 // Type must be complete per C99 7.17p3 because a declaring a variable
15879 // with an incomplete type would be ill-formed.
15880 if (!Dependent
15881 && RequireCompleteType(BuiltinLoc, ArgTy,
15882 diag::err_offsetof_incomplete_type, TypeRange))
15883 return ExprError();
15885 bool DidWarnAboutNonPOD = false;
15886 QualType CurrentType = ArgTy;
15887 SmallVector<OffsetOfNode, 4> Comps;
15888 SmallVector<Expr*, 4> Exprs;
15889 for (const OffsetOfComponent &OC : Components) {
15890 if (OC.isBrackets) {
15891 // Offset of an array sub-field. TODO: Should we allow vector elements?
15892 if (!CurrentType->isDependentType()) {
15893 const ArrayType *AT = Context.getAsArrayType(CurrentType);
15894 if(!AT)
15895 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15896 << CurrentType);
15897 CurrentType = AT->getElementType();
15898 } else
15899 CurrentType = Context.DependentTy;
15901 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15902 if (IdxRval.isInvalid())
15903 return ExprError();
15904 Expr *Idx = IdxRval.get();
15906 // The expression must be an integral expression.
15907 // FIXME: An integral constant expression?
15908 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15909 !Idx->getType()->isIntegerType())
15910 return ExprError(
15911 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15912 << Idx->getSourceRange());
15914 // Record this array index.
15915 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15916 Exprs.push_back(Idx);
15917 continue;
15920 // Offset of a field.
15921 if (CurrentType->isDependentType()) {
15922 // We have the offset of a field, but we can't look into the dependent
15923 // type. Just record the identifier of the field.
15924 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15925 CurrentType = Context.DependentTy;
15926 continue;
15929 // We need to have a complete type to look into.
15930 if (RequireCompleteType(OC.LocStart, CurrentType,
15931 diag::err_offsetof_incomplete_type))
15932 return ExprError();
15934 // Look for the designated field.
15935 const RecordType *RC = CurrentType->getAs<RecordType>();
15936 if (!RC)
15937 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15938 << CurrentType);
15939 RecordDecl *RD = RC->getDecl();
15941 // C++ [lib.support.types]p5:
15942 // The macro offsetof accepts a restricted set of type arguments in this
15943 // International Standard. type shall be a POD structure or a POD union
15944 // (clause 9).
15945 // C++11 [support.types]p4:
15946 // If type is not a standard-layout class (Clause 9), the results are
15947 // undefined.
15948 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15949 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15950 unsigned DiagID =
15951 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15952 : diag::ext_offsetof_non_pod_type;
15954 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
15955 Diag(BuiltinLoc, DiagID)
15956 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
15957 DidWarnAboutNonPOD = true;
15961 // Look for the field.
15962 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15963 LookupQualifiedName(R, RD);
15964 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15965 IndirectFieldDecl *IndirectMemberDecl = nullptr;
15966 if (!MemberDecl) {
15967 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15968 MemberDecl = IndirectMemberDecl->getAnonField();
15971 if (!MemberDecl) {
15972 // Lookup could be ambiguous when looking up a placeholder variable
15973 // __builtin_offsetof(S, _).
15974 // In that case we would already have emitted a diagnostic
15975 if (!R.isAmbiguous())
15976 Diag(BuiltinLoc, diag::err_no_member)
15977 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
15978 return ExprError();
15981 // C99 7.17p3:
15982 // (If the specified member is a bit-field, the behavior is undefined.)
15984 // We diagnose this as an error.
15985 if (MemberDecl->isBitField()) {
15986 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15987 << MemberDecl->getDeclName()
15988 << SourceRange(BuiltinLoc, RParenLoc);
15989 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15990 return ExprError();
15993 RecordDecl *Parent = MemberDecl->getParent();
15994 if (IndirectMemberDecl)
15995 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15997 // If the member was found in a base class, introduce OffsetOfNodes for
15998 // the base class indirections.
15999 CXXBasePaths Paths;
16000 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16001 Paths)) {
16002 if (Paths.getDetectedVirtual()) {
16003 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16004 << MemberDecl->getDeclName()
16005 << SourceRange(BuiltinLoc, RParenLoc);
16006 return ExprError();
16009 CXXBasePath &Path = Paths.front();
16010 for (const CXXBasePathElement &B : Path)
16011 Comps.push_back(OffsetOfNode(B.Base));
16014 if (IndirectMemberDecl) {
16015 for (auto *FI : IndirectMemberDecl->chain()) {
16016 assert(isa<FieldDecl>(FI));
16017 Comps.push_back(OffsetOfNode(OC.LocStart,
16018 cast<FieldDecl>(FI), OC.LocEnd));
16020 } else
16021 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16023 CurrentType = MemberDecl->getType().getNonReferenceType();
16026 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16027 Comps, Exprs, RParenLoc);
16030 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16031 SourceLocation BuiltinLoc,
16032 SourceLocation TypeLoc,
16033 ParsedType ParsedArgTy,
16034 ArrayRef<OffsetOfComponent> Components,
16035 SourceLocation RParenLoc) {
16037 TypeSourceInfo *ArgTInfo;
16038 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16039 if (ArgTy.isNull())
16040 return ExprError();
16042 if (!ArgTInfo)
16043 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16045 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16049 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16050 Expr *CondExpr,
16051 Expr *LHSExpr, Expr *RHSExpr,
16052 SourceLocation RPLoc) {
16053 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16055 ExprValueKind VK = VK_PRValue;
16056 ExprObjectKind OK = OK_Ordinary;
16057 QualType resType;
16058 bool CondIsTrue = false;
16059 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16060 resType = Context.DependentTy;
16061 } else {
16062 // The conditional expression is required to be a constant expression.
16063 llvm::APSInt condEval(32);
16064 ExprResult CondICE = VerifyIntegerConstantExpression(
16065 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16066 if (CondICE.isInvalid())
16067 return ExprError();
16068 CondExpr = CondICE.get();
16069 CondIsTrue = condEval.getZExtValue();
16071 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16072 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16074 resType = ActiveExpr->getType();
16075 VK = ActiveExpr->getValueKind();
16076 OK = ActiveExpr->getObjectKind();
16079 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16080 resType, VK, OK, RPLoc, CondIsTrue);
16083 //===----------------------------------------------------------------------===//
16084 // Clang Extensions.
16085 //===----------------------------------------------------------------------===//
16087 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16088 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16090 if (LangOpts.CPlusPlus) {
16091 MangleNumberingContext *MCtx;
16092 Decl *ManglingContextDecl;
16093 std::tie(MCtx, ManglingContextDecl) =
16094 getCurrentMangleNumberContext(Block->getDeclContext());
16095 if (MCtx) {
16096 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16097 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16101 PushBlockScope(CurScope, Block);
16102 CurContext->addDecl(Block);
16103 if (CurScope)
16104 PushDeclContext(CurScope, Block);
16105 else
16106 CurContext = Block;
16108 getCurBlock()->HasImplicitReturnType = true;
16110 // Enter a new evaluation context to insulate the block from any
16111 // cleanups from the enclosing full-expression.
16112 PushExpressionEvaluationContext(
16113 ExpressionEvaluationContext::PotentiallyEvaluated);
16116 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16117 Scope *CurScope) {
16118 assert(ParamInfo.getIdentifier() == nullptr &&
16119 "block-id should have no identifier!");
16120 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16121 BlockScopeInfo *CurBlock = getCurBlock();
16123 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
16124 QualType T = Sig->getType();
16125 DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block);
16127 // GetTypeForDeclarator always produces a function type for a block
16128 // literal signature. Furthermore, it is always a FunctionProtoType
16129 // unless the function was written with a typedef.
16130 assert(T->isFunctionType() &&
16131 "GetTypeForDeclarator made a non-function block signature");
16133 // Look for an explicit signature in that function type.
16134 FunctionProtoTypeLoc ExplicitSignature;
16136 if ((ExplicitSignature = Sig->getTypeLoc()
16137 .getAsAdjusted<FunctionProtoTypeLoc>())) {
16139 // Check whether that explicit signature was synthesized by
16140 // GetTypeForDeclarator. If so, don't save that as part of the
16141 // written signature.
16142 if (ExplicitSignature.getLocalRangeBegin() ==
16143 ExplicitSignature.getLocalRangeEnd()) {
16144 // This would be much cheaper if we stored TypeLocs instead of
16145 // TypeSourceInfos.
16146 TypeLoc Result = ExplicitSignature.getReturnLoc();
16147 unsigned Size = Result.getFullDataSize();
16148 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16149 Sig->getTypeLoc().initializeFullCopy(Result, Size);
16151 ExplicitSignature = FunctionProtoTypeLoc();
16155 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16156 CurBlock->FunctionType = T;
16158 const auto *Fn = T->castAs<FunctionType>();
16159 QualType RetTy = Fn->getReturnType();
16160 bool isVariadic =
16161 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16163 CurBlock->TheDecl->setIsVariadic(isVariadic);
16165 // Context.DependentTy is used as a placeholder for a missing block
16166 // return type. TODO: what should we do with declarators like:
16167 // ^ * { ... }
16168 // If the answer is "apply template argument deduction"....
16169 if (RetTy != Context.DependentTy) {
16170 CurBlock->ReturnType = RetTy;
16171 CurBlock->TheDecl->setBlockMissingReturnType(false);
16172 CurBlock->HasImplicitReturnType = false;
16175 // Push block parameters from the declarator if we had them.
16176 SmallVector<ParmVarDecl*, 8> Params;
16177 if (ExplicitSignature) {
16178 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16179 ParmVarDecl *Param = ExplicitSignature.getParam(I);
16180 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16181 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16182 // Diagnose this as an extension in C17 and earlier.
16183 if (!getLangOpts().C23)
16184 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
16186 Params.push_back(Param);
16189 // Fake up parameter variables if we have a typedef, like
16190 // ^ fntype { ... }
16191 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16192 for (const auto &I : Fn->param_types()) {
16193 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16194 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16195 Params.push_back(Param);
16199 // Set the parameters on the block decl.
16200 if (!Params.empty()) {
16201 CurBlock->TheDecl->setParams(Params);
16202 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16203 /*CheckParameterNames=*/false);
16206 // Finally we can process decl attributes.
16207 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16209 // Put the parameter variables in scope.
16210 for (auto *AI : CurBlock->TheDecl->parameters()) {
16211 AI->setOwningFunction(CurBlock->TheDecl);
16213 // If this has an identifier, add it to the scope stack.
16214 if (AI->getIdentifier()) {
16215 CheckShadow(CurBlock->TheScope, AI);
16217 PushOnScopeChains(AI, CurBlock->TheScope);
16220 if (AI->isInvalidDecl())
16221 CurBlock->TheDecl->setInvalidDecl();
16225 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16226 // Leave the expression-evaluation context.
16227 DiscardCleanupsInEvaluationContext();
16228 PopExpressionEvaluationContext();
16230 // Pop off CurBlock, handle nested blocks.
16231 PopDeclContext();
16232 PopFunctionScopeInfo();
16235 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16236 Stmt *Body, Scope *CurScope) {
16237 // If blocks are disabled, emit an error.
16238 if (!LangOpts.Blocks)
16239 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16241 // Leave the expression-evaluation context.
16242 if (hasAnyUnrecoverableErrorsInThisFunction())
16243 DiscardCleanupsInEvaluationContext();
16244 assert(!Cleanup.exprNeedsCleanups() &&
16245 "cleanups within block not correctly bound!");
16246 PopExpressionEvaluationContext();
16248 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16249 BlockDecl *BD = BSI->TheDecl;
16251 maybeAddDeclWithEffects(BD);
16253 if (BSI->HasImplicitReturnType)
16254 deduceClosureReturnType(*BSI);
16256 QualType RetTy = Context.VoidTy;
16257 if (!BSI->ReturnType.isNull())
16258 RetTy = BSI->ReturnType;
16260 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16261 QualType BlockTy;
16263 // If the user wrote a function type in some form, try to use that.
16264 if (!BSI->FunctionType.isNull()) {
16265 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16267 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16268 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16270 // Turn protoless block types into nullary block types.
16271 if (isa<FunctionNoProtoType>(FTy)) {
16272 FunctionProtoType::ExtProtoInfo EPI;
16273 EPI.ExtInfo = Ext;
16274 BlockTy = Context.getFunctionType(RetTy, {}, EPI);
16276 // Otherwise, if we don't need to change anything about the function type,
16277 // preserve its sugar structure.
16278 } else if (FTy->getReturnType() == RetTy &&
16279 (!NoReturn || FTy->getNoReturnAttr())) {
16280 BlockTy = BSI->FunctionType;
16282 // Otherwise, make the minimal modifications to the function type.
16283 } else {
16284 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16285 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16286 EPI.TypeQuals = Qualifiers();
16287 EPI.ExtInfo = Ext;
16288 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16291 // If we don't have a function type, just build one from nothing.
16292 } else {
16293 FunctionProtoType::ExtProtoInfo EPI;
16294 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16295 BlockTy = Context.getFunctionType(RetTy, {}, EPI);
16298 DiagnoseUnusedParameters(BD->parameters());
16299 BlockTy = Context.getBlockPointerType(BlockTy);
16301 // If needed, diagnose invalid gotos and switches in the block.
16302 if (getCurFunction()->NeedsScopeChecking() &&
16303 !PP.isCodeCompletionEnabled())
16304 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16306 BD->setBody(cast<CompoundStmt>(Body));
16308 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16309 DiagnoseUnguardedAvailabilityViolations(BD);
16311 // Try to apply the named return value optimization. We have to check again
16312 // if we can do this, though, because blocks keep return statements around
16313 // to deduce an implicit return type.
16314 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16315 !BD->isDependentContext())
16316 computeNRVO(Body, BSI);
16318 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16319 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16320 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16321 NTCUK_Destruct|NTCUK_Copy);
16323 PopDeclContext();
16325 // Set the captured variables on the block.
16326 SmallVector<BlockDecl::Capture, 4> Captures;
16327 for (Capture &Cap : BSI->Captures) {
16328 if (Cap.isInvalid() || Cap.isThisCapture())
16329 continue;
16330 // Cap.getVariable() is always a VarDecl because
16331 // blocks cannot capture structured bindings or other ValueDecl kinds.
16332 auto *Var = cast<VarDecl>(Cap.getVariable());
16333 Expr *CopyExpr = nullptr;
16334 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16335 if (const RecordType *Record =
16336 Cap.getCaptureType()->getAs<RecordType>()) {
16337 // The capture logic needs the destructor, so make sure we mark it.
16338 // Usually this is unnecessary because most local variables have
16339 // their destructors marked at declaration time, but parameters are
16340 // an exception because it's technically only the call site that
16341 // actually requires the destructor.
16342 if (isa<ParmVarDecl>(Var))
16343 FinalizeVarWithDestructor(Var, Record);
16345 // Enter a separate potentially-evaluated context while building block
16346 // initializers to isolate their cleanups from those of the block
16347 // itself.
16348 // FIXME: Is this appropriate even when the block itself occurs in an
16349 // unevaluated operand?
16350 EnterExpressionEvaluationContext EvalContext(
16351 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16353 SourceLocation Loc = Cap.getLocation();
16355 ExprResult Result = BuildDeclarationNameExpr(
16356 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16358 // According to the blocks spec, the capture of a variable from
16359 // the stack requires a const copy constructor. This is not true
16360 // of the copy/move done to move a __block variable to the heap.
16361 if (!Result.isInvalid() &&
16362 !Result.get()->getType().isConstQualified()) {
16363 Result = ImpCastExprToType(Result.get(),
16364 Result.get()->getType().withConst(),
16365 CK_NoOp, VK_LValue);
16368 if (!Result.isInvalid()) {
16369 Result = PerformCopyInitialization(
16370 InitializedEntity::InitializeBlock(Var->getLocation(),
16371 Cap.getCaptureType()),
16372 Loc, Result.get());
16375 // Build a full-expression copy expression if initialization
16376 // succeeded and used a non-trivial constructor. Recover from
16377 // errors by pretending that the copy isn't necessary.
16378 if (!Result.isInvalid() &&
16379 !cast<CXXConstructExpr>(Result.get())->getConstructor()
16380 ->isTrivial()) {
16381 Result = MaybeCreateExprWithCleanups(Result);
16382 CopyExpr = Result.get();
16387 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16388 CopyExpr);
16389 Captures.push_back(NewCap);
16391 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16393 // Pop the block scope now but keep it alive to the end of this function.
16394 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16395 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16397 BlockExpr *Result = new (Context)
16398 BlockExpr(BD, BlockTy, BSI->ContainsUnexpandedParameterPack);
16400 // If the block isn't obviously global, i.e. it captures anything at
16401 // all, then we need to do a few things in the surrounding context:
16402 if (Result->getBlockDecl()->hasCaptures()) {
16403 // First, this expression has a new cleanup object.
16404 ExprCleanupObjects.push_back(Result->getBlockDecl());
16405 Cleanup.setExprNeedsCleanups(true);
16407 // It also gets a branch-protected scope if any of the captured
16408 // variables needs destruction.
16409 for (const auto &CI : Result->getBlockDecl()->captures()) {
16410 const VarDecl *var = CI.getVariable();
16411 if (var->getType().isDestructedType() != QualType::DK_none) {
16412 setFunctionHasBranchProtectedScope();
16413 break;
16418 if (getCurFunction())
16419 getCurFunction()->addBlock(BD);
16421 // This can happen if the block's return type is deduced, but
16422 // the return expression is invalid.
16423 if (BD->isInvalidDecl())
16424 return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
16425 {Result}, Result->getType());
16426 return Result;
16429 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16430 SourceLocation RPLoc) {
16431 TypeSourceInfo *TInfo;
16432 GetTypeFromParser(Ty, &TInfo);
16433 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16436 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16437 Expr *E, TypeSourceInfo *TInfo,
16438 SourceLocation RPLoc) {
16439 Expr *OrigExpr = E;
16440 bool IsMS = false;
16442 // CUDA device code does not support varargs.
16443 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16444 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16445 CUDAFunctionTarget T = CUDA().IdentifyTarget(F);
16446 if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16447 T == CUDAFunctionTarget::HostDevice)
16448 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16452 // NVPTX does not support va_arg expression.
16453 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16454 Context.getTargetInfo().getTriple().isNVPTX())
16455 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16457 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16458 // as Microsoft ABI on an actual Microsoft platform, where
16459 // __builtin_ms_va_list and __builtin_va_list are the same.)
16460 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16461 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16462 QualType MSVaListType = Context.getBuiltinMSVaListType();
16463 if (Context.hasSameType(MSVaListType, E->getType())) {
16464 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16465 return ExprError();
16466 IsMS = true;
16470 // Get the va_list type
16471 QualType VaListType = Context.getBuiltinVaListType();
16472 if (!IsMS) {
16473 if (VaListType->isArrayType()) {
16474 // Deal with implicit array decay; for example, on x86-64,
16475 // va_list is an array, but it's supposed to decay to
16476 // a pointer for va_arg.
16477 VaListType = Context.getArrayDecayedType(VaListType);
16478 // Make sure the input expression also decays appropriately.
16479 ExprResult Result = UsualUnaryConversions(E);
16480 if (Result.isInvalid())
16481 return ExprError();
16482 E = Result.get();
16483 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16484 // If va_list is a record type and we are compiling in C++ mode,
16485 // check the argument using reference binding.
16486 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16487 Context, Context.getLValueReferenceType(VaListType), false);
16488 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16489 if (Init.isInvalid())
16490 return ExprError();
16491 E = Init.getAs<Expr>();
16492 } else {
16493 // Otherwise, the va_list argument must be an l-value because
16494 // it is modified by va_arg.
16495 if (!E->isTypeDependent() &&
16496 CheckForModifiableLvalue(E, BuiltinLoc, *this))
16497 return ExprError();
16501 if (!IsMS && !E->isTypeDependent() &&
16502 !Context.hasSameType(VaListType, E->getType()))
16503 return ExprError(
16504 Diag(E->getBeginLoc(),
16505 diag::err_first_argument_to_va_arg_not_of_type_va_list)
16506 << OrigExpr->getType() << E->getSourceRange());
16508 if (!TInfo->getType()->isDependentType()) {
16509 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16510 diag::err_second_parameter_to_va_arg_incomplete,
16511 TInfo->getTypeLoc()))
16512 return ExprError();
16514 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16515 TInfo->getType(),
16516 diag::err_second_parameter_to_va_arg_abstract,
16517 TInfo->getTypeLoc()))
16518 return ExprError();
16520 if (!TInfo->getType().isPODType(Context)) {
16521 Diag(TInfo->getTypeLoc().getBeginLoc(),
16522 TInfo->getType()->isObjCLifetimeType()
16523 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16524 : diag::warn_second_parameter_to_va_arg_not_pod)
16525 << TInfo->getType()
16526 << TInfo->getTypeLoc().getSourceRange();
16529 // Check for va_arg where arguments of the given type will be promoted
16530 // (i.e. this va_arg is guaranteed to have undefined behavior).
16531 QualType PromoteType;
16532 if (Context.isPromotableIntegerType(TInfo->getType())) {
16533 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16534 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16535 // and C23 7.16.1.1p2 says, in part:
16536 // If type is not compatible with the type of the actual next argument
16537 // (as promoted according to the default argument promotions), the
16538 // behavior is undefined, except for the following cases:
16539 // - both types are pointers to qualified or unqualified versions of
16540 // compatible types;
16541 // - one type is compatible with a signed integer type, the other
16542 // type is compatible with the corresponding unsigned integer type,
16543 // and the value is representable in both types;
16544 // - one type is pointer to qualified or unqualified void and the
16545 // other is a pointer to a qualified or unqualified character type;
16546 // - or, the type of the next argument is nullptr_t and type is a
16547 // pointer type that has the same representation and alignment
16548 // requirements as a pointer to a character type.
16549 // Given that type compatibility is the primary requirement (ignoring
16550 // qualifications), you would think we could call typesAreCompatible()
16551 // directly to test this. However, in C++, that checks for *same type*,
16552 // which causes false positives when passing an enumeration type to
16553 // va_arg. Instead, get the underlying type of the enumeration and pass
16554 // that.
16555 QualType UnderlyingType = TInfo->getType();
16556 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16557 UnderlyingType = ET->getDecl()->getIntegerType();
16558 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16559 /*CompareUnqualified*/ true))
16560 PromoteType = QualType();
16562 // If the types are still not compatible, we need to test whether the
16563 // promoted type and the underlying type are the same except for
16564 // signedness. Ask the AST for the correctly corresponding type and see
16565 // if that's compatible.
16566 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16567 PromoteType->isUnsignedIntegerType() !=
16568 UnderlyingType->isUnsignedIntegerType()) {
16569 UnderlyingType =
16570 UnderlyingType->isUnsignedIntegerType()
16571 ? Context.getCorrespondingSignedType(UnderlyingType)
16572 : Context.getCorrespondingUnsignedType(UnderlyingType);
16573 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16574 /*CompareUnqualified*/ true))
16575 PromoteType = QualType();
16578 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16579 PromoteType = Context.DoubleTy;
16580 if (!PromoteType.isNull())
16581 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16582 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16583 << TInfo->getType()
16584 << PromoteType
16585 << TInfo->getTypeLoc().getSourceRange());
16588 QualType T = TInfo->getType().getNonLValueExprType(Context);
16589 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16592 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16593 // The type of __null will be int or long, depending on the size of
16594 // pointers on the target.
16595 QualType Ty;
16596 unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16597 if (pw == Context.getTargetInfo().getIntWidth())
16598 Ty = Context.IntTy;
16599 else if (pw == Context.getTargetInfo().getLongWidth())
16600 Ty = Context.LongTy;
16601 else if (pw == Context.getTargetInfo().getLongLongWidth())
16602 Ty = Context.LongLongTy;
16603 else {
16604 llvm_unreachable("I don't know size of pointer!");
16607 return new (Context) GNUNullExpr(Ty, TokenLoc);
16610 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16611 CXXRecordDecl *ImplDecl = nullptr;
16613 // Fetch the std::source_location::__impl decl.
16614 if (NamespaceDecl *Std = S.getStdNamespace()) {
16615 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16616 Loc, Sema::LookupOrdinaryName);
16617 if (S.LookupQualifiedName(ResultSL, Std)) {
16618 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16619 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16620 Loc, Sema::LookupOrdinaryName);
16621 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16622 S.LookupQualifiedName(ResultImpl, SLDecl)) {
16623 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16629 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16630 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16631 return nullptr;
16634 // Verify that __impl is a trivial struct type, with no base classes, and with
16635 // only the four expected fields.
16636 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16637 ImplDecl->getNumBases() != 0) {
16638 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16639 return nullptr;
16642 unsigned Count = 0;
16643 for (FieldDecl *F : ImplDecl->fields()) {
16644 StringRef Name = F->getName();
16646 if (Name == "_M_file_name") {
16647 if (F->getType() !=
16648 S.Context.getPointerType(S.Context.CharTy.withConst()))
16649 break;
16650 Count++;
16651 } else if (Name == "_M_function_name") {
16652 if (F->getType() !=
16653 S.Context.getPointerType(S.Context.CharTy.withConst()))
16654 break;
16655 Count++;
16656 } else if (Name == "_M_line") {
16657 if (!F->getType()->isIntegerType())
16658 break;
16659 Count++;
16660 } else if (Name == "_M_column") {
16661 if (!F->getType()->isIntegerType())
16662 break;
16663 Count++;
16664 } else {
16665 Count = 100; // invalid
16666 break;
16669 if (Count != 4) {
16670 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16671 return nullptr;
16674 return ImplDecl;
16677 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16678 SourceLocation BuiltinLoc,
16679 SourceLocation RPLoc) {
16680 QualType ResultTy;
16681 switch (Kind) {
16682 case SourceLocIdentKind::File:
16683 case SourceLocIdentKind::FileName:
16684 case SourceLocIdentKind::Function:
16685 case SourceLocIdentKind::FuncSig: {
16686 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16687 ResultTy =
16688 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16689 break;
16691 case SourceLocIdentKind::Line:
16692 case SourceLocIdentKind::Column:
16693 ResultTy = Context.UnsignedIntTy;
16694 break;
16695 case SourceLocIdentKind::SourceLocStruct:
16696 if (!StdSourceLocationImplDecl) {
16697 StdSourceLocationImplDecl =
16698 LookupStdSourceLocationImpl(*this, BuiltinLoc);
16699 if (!StdSourceLocationImplDecl)
16700 return ExprError();
16702 ResultTy = Context.getPointerType(
16703 Context.getRecordType(StdSourceLocationImplDecl).withConst());
16704 break;
16707 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16710 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16711 SourceLocation BuiltinLoc,
16712 SourceLocation RPLoc,
16713 DeclContext *ParentContext) {
16714 return new (Context)
16715 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16718 ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16719 StringLiteral *BinaryData) {
16720 EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16721 Data->BinaryData = BinaryData;
16722 return new (Context)
16723 EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16724 Data->getDataElementCount());
16727 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16728 const Expr *SrcExpr) {
16729 if (!DstType->isFunctionPointerType() ||
16730 !SrcExpr->getType()->isFunctionType())
16731 return false;
16733 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16734 if (!DRE)
16735 return false;
16737 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16738 if (!FD)
16739 return false;
16741 return !S.checkAddressOfFunctionIsAvailable(FD,
16742 /*Complain=*/true,
16743 SrcExpr->getBeginLoc());
16746 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16747 SourceLocation Loc,
16748 QualType DstType, QualType SrcType,
16749 Expr *SrcExpr, AssignmentAction Action,
16750 bool *Complained) {
16751 if (Complained)
16752 *Complained = false;
16754 // Decode the result (notice that AST's are still created for extensions).
16755 bool CheckInferredResultType = false;
16756 bool isInvalid = false;
16757 unsigned DiagKind = 0;
16758 ConversionFixItGenerator ConvHints;
16759 bool MayHaveConvFixit = false;
16760 bool MayHaveFunctionDiff = false;
16761 const ObjCInterfaceDecl *IFace = nullptr;
16762 const ObjCProtocolDecl *PDecl = nullptr;
16764 switch (ConvTy) {
16765 case Compatible:
16766 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16767 return false;
16769 case PointerToInt:
16770 if (getLangOpts().CPlusPlus) {
16771 DiagKind = diag::err_typecheck_convert_pointer_int;
16772 isInvalid = true;
16773 } else {
16774 DiagKind = diag::ext_typecheck_convert_pointer_int;
16776 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16777 MayHaveConvFixit = true;
16778 break;
16779 case IntToPointer:
16780 if (getLangOpts().CPlusPlus) {
16781 DiagKind = diag::err_typecheck_convert_int_pointer;
16782 isInvalid = true;
16783 } else {
16784 DiagKind = diag::ext_typecheck_convert_int_pointer;
16786 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16787 MayHaveConvFixit = true;
16788 break;
16789 case IncompatibleFunctionPointerStrict:
16790 DiagKind =
16791 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
16792 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16793 MayHaveConvFixit = true;
16794 break;
16795 case IncompatibleFunctionPointer:
16796 if (getLangOpts().CPlusPlus) {
16797 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16798 isInvalid = true;
16799 } else {
16800 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16802 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16803 MayHaveConvFixit = true;
16804 break;
16805 case IncompatiblePointer:
16806 if (Action == AssignmentAction::Passing_CFAudited) {
16807 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16808 } else if (getLangOpts().CPlusPlus) {
16809 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16810 isInvalid = true;
16811 } else {
16812 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16814 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16815 SrcType->isObjCObjectPointerType();
16816 if (CheckInferredResultType) {
16817 SrcType = SrcType.getUnqualifiedType();
16818 DstType = DstType.getUnqualifiedType();
16819 } else {
16820 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16822 MayHaveConvFixit = true;
16823 break;
16824 case IncompatiblePointerSign:
16825 if (getLangOpts().CPlusPlus) {
16826 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16827 isInvalid = true;
16828 } else {
16829 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16831 break;
16832 case FunctionVoidPointer:
16833 if (getLangOpts().CPlusPlus) {
16834 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16835 isInvalid = true;
16836 } else {
16837 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16839 break;
16840 case IncompatiblePointerDiscardsQualifiers: {
16841 // Perform array-to-pointer decay if necessary.
16842 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16844 isInvalid = true;
16846 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16847 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16848 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16849 DiagKind = diag::err_typecheck_incompatible_address_space;
16850 break;
16851 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16852 DiagKind = diag::err_typecheck_incompatible_ownership;
16853 break;
16856 llvm_unreachable("unknown error case for discarding qualifiers!");
16857 // fallthrough
16859 case CompatiblePointerDiscardsQualifiers:
16860 // If the qualifiers lost were because we were applying the
16861 // (deprecated) C++ conversion from a string literal to a char*
16862 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16863 // Ideally, this check would be performed in
16864 // checkPointerTypesForAssignment. However, that would require a
16865 // bit of refactoring (so that the second argument is an
16866 // expression, rather than a type), which should be done as part
16867 // of a larger effort to fix checkPointerTypesForAssignment for
16868 // C++ semantics.
16869 if (getLangOpts().CPlusPlus &&
16870 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16871 return false;
16872 if (getLangOpts().CPlusPlus) {
16873 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16874 isInvalid = true;
16875 } else {
16876 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16879 break;
16880 case IncompatibleNestedPointerQualifiers:
16881 if (getLangOpts().CPlusPlus) {
16882 isInvalid = true;
16883 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16884 } else {
16885 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16887 break;
16888 case IncompatibleNestedPointerAddressSpaceMismatch:
16889 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16890 isInvalid = true;
16891 break;
16892 case IntToBlockPointer:
16893 DiagKind = diag::err_int_to_block_pointer;
16894 isInvalid = true;
16895 break;
16896 case IncompatibleBlockPointer:
16897 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16898 isInvalid = true;
16899 break;
16900 case IncompatibleObjCQualifiedId: {
16901 if (SrcType->isObjCQualifiedIdType()) {
16902 const ObjCObjectPointerType *srcOPT =
16903 SrcType->castAs<ObjCObjectPointerType>();
16904 for (auto *srcProto : srcOPT->quals()) {
16905 PDecl = srcProto;
16906 break;
16908 if (const ObjCInterfaceType *IFaceT =
16909 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16910 IFace = IFaceT->getDecl();
16912 else if (DstType->isObjCQualifiedIdType()) {
16913 const ObjCObjectPointerType *dstOPT =
16914 DstType->castAs<ObjCObjectPointerType>();
16915 for (auto *dstProto : dstOPT->quals()) {
16916 PDecl = dstProto;
16917 break;
16919 if (const ObjCInterfaceType *IFaceT =
16920 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16921 IFace = IFaceT->getDecl();
16923 if (getLangOpts().CPlusPlus) {
16924 DiagKind = diag::err_incompatible_qualified_id;
16925 isInvalid = true;
16926 } else {
16927 DiagKind = diag::warn_incompatible_qualified_id;
16929 break;
16931 case IncompatibleVectors:
16932 if (getLangOpts().CPlusPlus) {
16933 DiagKind = diag::err_incompatible_vectors;
16934 isInvalid = true;
16935 } else {
16936 DiagKind = diag::warn_incompatible_vectors;
16938 break;
16939 case IncompatibleObjCWeakRef:
16940 DiagKind = diag::err_arc_weak_unavailable_assign;
16941 isInvalid = true;
16942 break;
16943 case Incompatible:
16944 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16945 if (Complained)
16946 *Complained = true;
16947 return true;
16950 DiagKind = diag::err_typecheck_convert_incompatible;
16951 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16952 MayHaveConvFixit = true;
16953 isInvalid = true;
16954 MayHaveFunctionDiff = true;
16955 break;
16958 QualType FirstType, SecondType;
16959 switch (Action) {
16960 case AssignmentAction::Assigning:
16961 case AssignmentAction::Initializing:
16962 // The destination type comes first.
16963 FirstType = DstType;
16964 SecondType = SrcType;
16965 break;
16967 case AssignmentAction::Returning:
16968 case AssignmentAction::Passing:
16969 case AssignmentAction::Passing_CFAudited:
16970 case AssignmentAction::Converting:
16971 case AssignmentAction::Sending:
16972 case AssignmentAction::Casting:
16973 // The source type comes first.
16974 FirstType = SrcType;
16975 SecondType = DstType;
16976 break;
16979 PartialDiagnostic FDiag = PDiag(DiagKind);
16980 AssignmentAction ActionForDiag = Action;
16981 if (Action == AssignmentAction::Passing_CFAudited)
16982 ActionForDiag = AssignmentAction::Passing;
16984 FDiag << FirstType << SecondType << ActionForDiag
16985 << SrcExpr->getSourceRange();
16987 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16988 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16989 auto isPlainChar = [](const clang::Type *Type) {
16990 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16991 Type->isSpecificBuiltinType(BuiltinType::Char_U);
16993 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16994 isPlainChar(SecondType->getPointeeOrArrayElementType()));
16997 // If we can fix the conversion, suggest the FixIts.
16998 if (!ConvHints.isNull()) {
16999 for (FixItHint &H : ConvHints.Hints)
17000 FDiag << H;
17003 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17005 if (MayHaveFunctionDiff)
17006 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17008 Diag(Loc, FDiag);
17009 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17010 DiagKind == diag::err_incompatible_qualified_id) &&
17011 PDecl && IFace && !IFace->hasDefinition())
17012 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17013 << IFace << PDecl;
17015 if (SecondType == Context.OverloadTy)
17016 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17017 FirstType, /*TakingAddress=*/true);
17019 if (CheckInferredResultType)
17020 ObjC().EmitRelatedResultTypeNote(SrcExpr);
17022 if (Action == AssignmentAction::Returning && ConvTy == IncompatiblePointer)
17023 ObjC().EmitRelatedResultTypeNoteForReturn(DstType);
17025 if (Complained)
17026 *Complained = true;
17027 return isInvalid;
17030 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17031 llvm::APSInt *Result,
17032 AllowFoldKind CanFold) {
17033 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17034 public:
17035 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17036 QualType T) override {
17037 return S.Diag(Loc, diag::err_ice_not_integral)
17038 << T << S.LangOpts.CPlusPlus;
17040 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17041 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17043 } Diagnoser;
17045 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17048 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17049 llvm::APSInt *Result,
17050 unsigned DiagID,
17051 AllowFoldKind CanFold) {
17052 class IDDiagnoser : public VerifyICEDiagnoser {
17053 unsigned DiagID;
17055 public:
17056 IDDiagnoser(unsigned DiagID)
17057 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17059 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17060 return S.Diag(Loc, DiagID);
17062 } Diagnoser(DiagID);
17064 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17067 Sema::SemaDiagnosticBuilder
17068 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17069 QualType T) {
17070 return diagnoseNotICE(S, Loc);
17073 Sema::SemaDiagnosticBuilder
17074 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17075 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17078 ExprResult
17079 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17080 VerifyICEDiagnoser &Diagnoser,
17081 AllowFoldKind CanFold) {
17082 SourceLocation DiagLoc = E->getBeginLoc();
17084 if (getLangOpts().CPlusPlus11) {
17085 // C++11 [expr.const]p5:
17086 // If an expression of literal class type is used in a context where an
17087 // integral constant expression is required, then that class type shall
17088 // have a single non-explicit conversion function to an integral or
17089 // unscoped enumeration type
17090 ExprResult Converted;
17091 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17092 VerifyICEDiagnoser &BaseDiagnoser;
17093 public:
17094 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17095 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17096 BaseDiagnoser.Suppress, true),
17097 BaseDiagnoser(BaseDiagnoser) {}
17099 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17100 QualType T) override {
17101 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17104 SemaDiagnosticBuilder diagnoseIncomplete(
17105 Sema &S, SourceLocation Loc, QualType T) override {
17106 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17109 SemaDiagnosticBuilder diagnoseExplicitConv(
17110 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17111 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17114 SemaDiagnosticBuilder noteExplicitConv(
17115 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17116 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17117 << ConvTy->isEnumeralType() << ConvTy;
17120 SemaDiagnosticBuilder diagnoseAmbiguous(
17121 Sema &S, SourceLocation Loc, QualType T) override {
17122 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17125 SemaDiagnosticBuilder noteAmbiguous(
17126 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17127 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17128 << ConvTy->isEnumeralType() << ConvTy;
17131 SemaDiagnosticBuilder diagnoseConversion(
17132 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17133 llvm_unreachable("conversion functions are permitted");
17135 } ConvertDiagnoser(Diagnoser);
17137 Converted = PerformContextualImplicitConversion(DiagLoc, E,
17138 ConvertDiagnoser);
17139 if (Converted.isInvalid())
17140 return Converted;
17141 E = Converted.get();
17142 // The 'explicit' case causes us to get a RecoveryExpr. Give up here so we
17143 // don't try to evaluate it later. We also don't want to return the
17144 // RecoveryExpr here, as it results in this call succeeding, thus callers of
17145 // this function will attempt to use 'Value'.
17146 if (isa<RecoveryExpr>(E))
17147 return ExprError();
17148 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17149 return ExprError();
17150 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17151 // An ICE must be of integral or unscoped enumeration type.
17152 if (!Diagnoser.Suppress)
17153 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17154 << E->getSourceRange();
17155 return ExprError();
17158 ExprResult RValueExpr = DefaultLvalueConversion(E);
17159 if (RValueExpr.isInvalid())
17160 return ExprError();
17162 E = RValueExpr.get();
17164 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17165 // in the non-ICE case.
17166 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17167 SmallVector<PartialDiagnosticAt, 8> Notes;
17168 if (Result)
17169 *Result = E->EvaluateKnownConstIntCheckOverflow(Context, &Notes);
17170 if (!isa<ConstantExpr>(E))
17171 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17172 : ConstantExpr::Create(Context, E);
17174 if (Notes.empty())
17175 return E;
17177 // If our only note is the usual "invalid subexpression" note, just point
17178 // the caret at its location rather than producing an essentially
17179 // redundant note.
17180 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17181 diag::note_invalid_subexpr_in_const_expr) {
17182 DiagLoc = Notes[0].first;
17183 Notes.clear();
17186 if (getLangOpts().CPlusPlus) {
17187 if (!Diagnoser.Suppress) {
17188 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17189 for (const PartialDiagnosticAt &Note : Notes)
17190 Diag(Note.first, Note.second);
17192 return ExprError();
17195 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17196 for (const PartialDiagnosticAt &Note : Notes)
17197 Diag(Note.first, Note.second);
17199 return E;
17202 Expr::EvalResult EvalResult;
17203 SmallVector<PartialDiagnosticAt, 8> Notes;
17204 EvalResult.Diag = &Notes;
17206 // Try to evaluate the expression, and produce diagnostics explaining why it's
17207 // not a constant expression as a side-effect.
17208 bool Folded =
17209 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17210 EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17211 (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17213 if (!isa<ConstantExpr>(E))
17214 E = ConstantExpr::Create(Context, E, EvalResult.Val);
17216 // In C++11, we can rely on diagnostics being produced for any expression
17217 // which is not a constant expression. If no diagnostics were produced, then
17218 // this is a constant expression.
17219 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17220 if (Result)
17221 *Result = EvalResult.Val.getInt();
17222 return E;
17225 // If our only note is the usual "invalid subexpression" note, just point
17226 // the caret at its location rather than producing an essentially
17227 // redundant note.
17228 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17229 diag::note_invalid_subexpr_in_const_expr) {
17230 DiagLoc = Notes[0].first;
17231 Notes.clear();
17234 if (!Folded || !CanFold) {
17235 if (!Diagnoser.Suppress) {
17236 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17237 for (const PartialDiagnosticAt &Note : Notes)
17238 Diag(Note.first, Note.second);
17241 return ExprError();
17244 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17245 for (const PartialDiagnosticAt &Note : Notes)
17246 Diag(Note.first, Note.second);
17248 if (Result)
17249 *Result = EvalResult.Val.getInt();
17250 return E;
17253 namespace {
17254 // Handle the case where we conclude a expression which we speculatively
17255 // considered to be unevaluated is actually evaluated.
17256 class TransformToPE : public TreeTransform<TransformToPE> {
17257 typedef TreeTransform<TransformToPE> BaseTransform;
17259 public:
17260 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17262 // Make sure we redo semantic analysis
17263 bool AlwaysRebuild() { return true; }
17264 bool ReplacingOriginal() { return true; }
17266 // We need to special-case DeclRefExprs referring to FieldDecls which
17267 // are not part of a member pointer formation; normal TreeTransforming
17268 // doesn't catch this case because of the way we represent them in the AST.
17269 // FIXME: This is a bit ugly; is it really the best way to handle this
17270 // case?
17272 // Error on DeclRefExprs referring to FieldDecls.
17273 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17274 if (isa<FieldDecl>(E->getDecl()) &&
17275 !SemaRef.isUnevaluatedContext())
17276 return SemaRef.Diag(E->getLocation(),
17277 diag::err_invalid_non_static_member_use)
17278 << E->getDecl() << E->getSourceRange();
17280 return BaseTransform::TransformDeclRefExpr(E);
17283 // Exception: filter out member pointer formation
17284 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17285 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17286 return E;
17288 return BaseTransform::TransformUnaryOperator(E);
17291 // The body of a lambda-expression is in a separate expression evaluation
17292 // context so never needs to be transformed.
17293 // FIXME: Ideally we wouldn't transform the closure type either, and would
17294 // just recreate the capture expressions and lambda expression.
17295 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17296 return SkipLambdaBody(E, Body);
17301 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17302 assert(isUnevaluatedContext() &&
17303 "Should only transform unevaluated expressions");
17304 ExprEvalContexts.back().Context =
17305 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17306 if (isUnevaluatedContext())
17307 return E;
17308 return TransformToPE(*this).TransformExpr(E);
17311 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17312 assert(isUnevaluatedContext() &&
17313 "Should only transform unevaluated expressions");
17314 ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17315 if (isUnevaluatedContext())
17316 return TInfo;
17317 return TransformToPE(*this).TransformType(TInfo);
17320 void
17321 Sema::PushExpressionEvaluationContext(
17322 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17323 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17324 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17325 LambdaContextDecl, ExprContext);
17327 // Discarded statements and immediate contexts nested in other
17328 // discarded statements or immediate context are themselves
17329 // a discarded statement or an immediate context, respectively.
17330 ExprEvalContexts.back().InDiscardedStatement =
17331 parentEvaluationContext().isDiscardedStatementContext();
17333 // C++23 [expr.const]/p15
17334 // An expression or conversion is in an immediate function context if [...]
17335 // it is a subexpression of a manifestly constant-evaluated expression or
17336 // conversion.
17337 const auto &Prev = parentEvaluationContext();
17338 ExprEvalContexts.back().InImmediateFunctionContext =
17339 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17341 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17342 Prev.InImmediateEscalatingFunctionContext;
17344 Cleanup.reset();
17345 if (!MaybeODRUseExprs.empty())
17346 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17349 void
17350 Sema::PushExpressionEvaluationContext(
17351 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17352 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17353 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17354 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17357 namespace {
17359 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17360 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17361 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17362 if (E->getOpcode() == UO_Deref)
17363 return CheckPossibleDeref(S, E->getSubExpr());
17364 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17365 return CheckPossibleDeref(S, E->getBase());
17366 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17367 return CheckPossibleDeref(S, E->getBase());
17368 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17369 QualType Inner;
17370 QualType Ty = E->getType();
17371 if (const auto *Ptr = Ty->getAs<PointerType>())
17372 Inner = Ptr->getPointeeType();
17373 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17374 Inner = Arr->getElementType();
17375 else
17376 return nullptr;
17378 if (Inner->hasAttr(attr::NoDeref))
17379 return E;
17381 return nullptr;
17384 } // namespace
17386 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17387 for (const Expr *E : Rec.PossibleDerefs) {
17388 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17389 if (DeclRef) {
17390 const ValueDecl *Decl = DeclRef->getDecl();
17391 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17392 << Decl->getName() << E->getSourceRange();
17393 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17394 } else {
17395 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17396 << E->getSourceRange();
17399 Rec.PossibleDerefs.clear();
17402 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17403 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17404 return;
17406 // Note: ignoring parens here is not justified by the standard rules, but
17407 // ignoring parentheses seems like a more reasonable approach, and this only
17408 // drives a deprecation warning so doesn't affect conformance.
17409 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17410 if (BO->getOpcode() == BO_Assign) {
17411 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17412 llvm::erase(LHSs, BO->getLHS());
17417 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17418 assert(getLangOpts().CPlusPlus20 &&
17419 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17420 "Cannot mark an immediate escalating expression outside of an "
17421 "immediate escalating context");
17422 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
17423 Call && Call->getCallee()) {
17424 if (auto *DeclRef =
17425 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17426 DeclRef->setIsImmediateEscalating(true);
17427 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
17428 Ctr->setIsImmediateEscalating(true);
17429 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
17430 DeclRef->setIsImmediateEscalating(true);
17431 } else {
17432 assert(false && "expected an immediately escalating expression");
17434 if (FunctionScopeInfo *FI = getCurFunction())
17435 FI->FoundImmediateEscalatingExpression = true;
17438 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17439 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17440 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17441 isCheckingDefaultArgumentOrInitializer() ||
17442 RebuildingImmediateInvocation || isImmediateFunctionContext())
17443 return E;
17445 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17446 /// It's OK if this fails; we'll also remove this in
17447 /// HandleImmediateInvocations, but catching it here allows us to avoid
17448 /// walking the AST looking for it in simple cases.
17449 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17450 if (auto *DeclRef =
17451 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17452 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17454 // C++23 [expr.const]/p16
17455 // An expression or conversion is immediate-escalating if it is not initially
17456 // in an immediate function context and it is [...] an immediate invocation
17457 // that is not a constant expression and is not a subexpression of an
17458 // immediate invocation.
17459 APValue Cached;
17460 auto CheckConstantExpressionAndKeepResult = [&]() {
17461 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17462 Expr::EvalResult Eval;
17463 Eval.Diag = &Notes;
17464 bool Res = E.get()->EvaluateAsConstantExpr(
17465 Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
17466 if (Res && Notes.empty()) {
17467 Cached = std::move(Eval.Val);
17468 return true;
17470 return false;
17473 if (!E.get()->isValueDependent() &&
17474 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17475 !CheckConstantExpressionAndKeepResult()) {
17476 MarkExpressionAsImmediateEscalating(E.get());
17477 return E;
17480 if (Cleanup.exprNeedsCleanups()) {
17481 // Since an immediate invocation is a full expression itself - it requires
17482 // an additional ExprWithCleanups node, but it can participate to a bigger
17483 // full expression which actually requires cleanups to be run after so
17484 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17485 // may discard cleanups for outer expression too early.
17487 // Note that ExprWithCleanups created here must always have empty cleanup
17488 // objects:
17489 // - compound literals do not create cleanup objects in C++ and immediate
17490 // invocations are C++-only.
17491 // - blocks are not allowed inside constant expressions and compiler will
17492 // issue an error if they appear there.
17494 // Hence, in correct code any cleanup objects created inside current
17495 // evaluation context must be outside the immediate invocation.
17496 E = ExprWithCleanups::Create(getASTContext(), E.get(),
17497 Cleanup.cleanupsHaveSideEffects(), {});
17500 ConstantExpr *Res = ConstantExpr::Create(
17501 getASTContext(), E.get(),
17502 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17503 getASTContext()),
17504 /*IsImmediateInvocation*/ true);
17505 if (Cached.hasValue())
17506 Res->MoveIntoResult(Cached, getASTContext());
17507 /// Value-dependent constant expressions should not be immediately
17508 /// evaluated until they are instantiated.
17509 if (!Res->isValueDependent())
17510 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17511 return Res;
17514 static void EvaluateAndDiagnoseImmediateInvocation(
17515 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17516 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17517 Expr::EvalResult Eval;
17518 Eval.Diag = &Notes;
17519 ConstantExpr *CE = Candidate.getPointer();
17520 bool Result = CE->EvaluateAsConstantExpr(
17521 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17522 if (!Result || !Notes.empty()) {
17523 SemaRef.FailedImmediateInvocations.insert(CE);
17524 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17525 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17526 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17527 FunctionDecl *FD = nullptr;
17528 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17529 FD = cast<FunctionDecl>(Call->getCalleeDecl());
17530 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17531 FD = Call->getConstructor();
17532 else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
17533 FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
17535 assert(FD && FD->isImmediateFunction() &&
17536 "could not find an immediate function in this expression");
17537 if (FD->isInvalidDecl())
17538 return;
17539 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
17540 << FD << FD->isConsteval();
17541 if (auto Context =
17542 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17543 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17544 << Context->Decl;
17545 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17547 if (!FD->isConsteval())
17548 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17549 for (auto &Note : Notes)
17550 SemaRef.Diag(Note.first, Note.second);
17551 return;
17553 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17556 static void RemoveNestedImmediateInvocation(
17557 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17558 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17559 struct ComplexRemove : TreeTransform<ComplexRemove> {
17560 using Base = TreeTransform<ComplexRemove>;
17561 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17562 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17563 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17564 CurrentII;
17565 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17566 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17567 SmallVector<Sema::ImmediateInvocationCandidate,
17568 4>::reverse_iterator Current)
17569 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17570 void RemoveImmediateInvocation(ConstantExpr* E) {
17571 auto It = std::find_if(CurrentII, IISet.rend(),
17572 [E](Sema::ImmediateInvocationCandidate Elem) {
17573 return Elem.getPointer() == E;
17575 // It is possible that some subexpression of the current immediate
17576 // invocation was handled from another expression evaluation context. Do
17577 // not handle the current immediate invocation if some of its
17578 // subexpressions failed before.
17579 if (It == IISet.rend()) {
17580 if (SemaRef.FailedImmediateInvocations.contains(E))
17581 CurrentII->setInt(1);
17582 } else {
17583 It->setInt(1); // Mark as deleted
17586 ExprResult TransformConstantExpr(ConstantExpr *E) {
17587 if (!E->isImmediateInvocation())
17588 return Base::TransformConstantExpr(E);
17589 RemoveImmediateInvocation(E);
17590 return Base::TransformExpr(E->getSubExpr());
17592 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17593 /// we need to remove its DeclRefExpr from the DRSet.
17594 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17595 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17596 return Base::TransformCXXOperatorCallExpr(E);
17598 /// Base::TransformUserDefinedLiteral doesn't preserve the
17599 /// UserDefinedLiteral node.
17600 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17601 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17602 /// here.
17603 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17604 if (!Init)
17605 return Init;
17607 // We cannot use IgnoreImpCasts because we need to preserve
17608 // full expressions.
17609 while (true) {
17610 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Init))
17611 Init = ICE->getSubExpr();
17612 else if (auto *ICE = dyn_cast<MaterializeTemporaryExpr>(Init))
17613 Init = ICE->getSubExpr();
17614 else
17615 break;
17617 /// ConstantExprs are the first layer of implicit node to be removed so if
17618 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17619 if (auto *CE = dyn_cast<ConstantExpr>(Init);
17620 CE && CE->isImmediateInvocation())
17621 RemoveImmediateInvocation(CE);
17622 return Base::TransformInitializer(Init, NotCopyInit);
17624 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17625 DRSet.erase(E);
17626 return E;
17628 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17629 // Do not rebuild lambdas to avoid creating a new type.
17630 // Lambdas have already been processed inside their eval contexts.
17631 return E;
17633 bool AlwaysRebuild() { return false; }
17634 bool ReplacingOriginal() { return true; }
17635 bool AllowSkippingCXXConstructExpr() {
17636 bool Res = AllowSkippingFirstCXXConstructExpr;
17637 AllowSkippingFirstCXXConstructExpr = true;
17638 return Res;
17640 bool AllowSkippingFirstCXXConstructExpr = true;
17641 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17642 Rec.ImmediateInvocationCandidates, It);
17644 /// CXXConstructExpr with a single argument are getting skipped by
17645 /// TreeTransform in some situtation because they could be implicit. This
17646 /// can only occur for the top-level CXXConstructExpr because it is used
17647 /// nowhere in the expression being transformed therefore will not be rebuilt.
17648 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17649 /// skipping the first CXXConstructExpr.
17650 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17651 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17653 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17654 // The result may not be usable in case of previous compilation errors.
17655 // In this case evaluation of the expression may result in crash so just
17656 // don't do anything further with the result.
17657 if (Res.isUsable()) {
17658 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17659 It->getPointer()->setSubExpr(Res.get());
17663 static void
17664 HandleImmediateInvocations(Sema &SemaRef,
17665 Sema::ExpressionEvaluationContextRecord &Rec) {
17666 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17667 Rec.ReferenceToConsteval.size() == 0) ||
17668 Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17669 return;
17671 /// When we have more than 1 ImmediateInvocationCandidates or previously
17672 /// failed immediate invocations, we need to check for nested
17673 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17674 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17675 /// invocation.
17676 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17677 !SemaRef.FailedImmediateInvocations.empty()) {
17679 /// Prevent sema calls during the tree transform from adding pointers that
17680 /// are already in the sets.
17681 llvm::SaveAndRestore DisableIITracking(
17682 SemaRef.RebuildingImmediateInvocation, true);
17684 /// Prevent diagnostic during tree transfrom as they are duplicates
17685 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17687 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17688 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17689 if (!It->getInt())
17690 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17691 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17692 Rec.ReferenceToConsteval.size()) {
17693 struct SimpleRemove : DynamicRecursiveASTVisitor {
17694 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17695 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17696 bool VisitDeclRefExpr(DeclRefExpr *E) override {
17697 DRSet.erase(E);
17698 return DRSet.size();
17700 } Visitor(Rec.ReferenceToConsteval);
17701 Visitor.TraverseStmt(
17702 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17704 for (auto CE : Rec.ImmediateInvocationCandidates)
17705 if (!CE.getInt())
17706 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17707 for (auto *DR : Rec.ReferenceToConsteval) {
17708 // If the expression is immediate escalating, it is not an error;
17709 // The outer context itself becomes immediate and further errors,
17710 // if any, will be handled by DiagnoseImmediateEscalatingReason.
17711 if (DR->isImmediateEscalating())
17712 continue;
17713 auto *FD = cast<FunctionDecl>(DR->getDecl());
17714 const NamedDecl *ND = FD;
17715 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
17716 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17717 ND = MD->getParent();
17719 // C++23 [expr.const]/p16
17720 // An expression or conversion is immediate-escalating if it is not
17721 // initially in an immediate function context and it is [...] a
17722 // potentially-evaluated id-expression that denotes an immediate function
17723 // that is not a subexpression of an immediate invocation.
17724 bool ImmediateEscalating = false;
17725 bool IsPotentiallyEvaluated =
17726 Rec.Context ==
17727 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17728 Rec.Context ==
17729 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17730 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17731 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17733 if (!Rec.InImmediateEscalatingFunctionContext ||
17734 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
17735 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17736 << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
17737 if (!FD->getBuiltinID())
17738 SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
17739 if (auto Context =
17740 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17741 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17742 << Context->Decl;
17743 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17745 if (FD->isImmediateEscalating() && !FD->isConsteval())
17746 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17748 } else {
17749 SemaRef.MarkExpressionAsImmediateEscalating(DR);
17754 void Sema::PopExpressionEvaluationContext() {
17755 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17756 unsigned NumTypos = Rec.NumTypos;
17758 if (!Rec.Lambdas.empty()) {
17759 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17760 if (!getLangOpts().CPlusPlus20 &&
17761 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17762 Rec.isUnevaluated() ||
17763 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17764 unsigned D;
17765 if (Rec.isUnevaluated()) {
17766 // C++11 [expr.prim.lambda]p2:
17767 // A lambda-expression shall not appear in an unevaluated operand
17768 // (Clause 5).
17769 D = diag::err_lambda_unevaluated_operand;
17770 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17771 // C++1y [expr.const]p2:
17772 // A conditional-expression e is a core constant expression unless the
17773 // evaluation of e, following the rules of the abstract machine, would
17774 // evaluate [...] a lambda-expression.
17775 D = diag::err_lambda_in_constant_expression;
17776 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17777 // C++17 [expr.prim.lamda]p2:
17778 // A lambda-expression shall not appear [...] in a template-argument.
17779 D = diag::err_lambda_in_invalid_context;
17780 } else
17781 llvm_unreachable("Couldn't infer lambda error message.");
17783 for (const auto *L : Rec.Lambdas)
17784 Diag(L->getBeginLoc(), D);
17788 // Append the collected materialized temporaries into previous context before
17789 // exit if the previous also is a lifetime extending context.
17790 if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
17791 parentEvaluationContext().InLifetimeExtendingContext &&
17792 !Rec.ForRangeLifetimeExtendTemps.empty()) {
17793 parentEvaluationContext().ForRangeLifetimeExtendTemps.append(
17794 Rec.ForRangeLifetimeExtendTemps);
17797 WarnOnPendingNoDerefs(Rec);
17798 HandleImmediateInvocations(*this, Rec);
17800 // Warn on any volatile-qualified simple-assignments that are not discarded-
17801 // value expressions nor unevaluated operands (those cases get removed from
17802 // this list by CheckUnusedVolatileAssignment).
17803 for (auto *BO : Rec.VolatileAssignmentLHSs)
17804 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17805 << BO->getType();
17807 // When are coming out of an unevaluated context, clear out any
17808 // temporaries that we may have created as part of the evaluation of
17809 // the expression in that context: they aren't relevant because they
17810 // will never be constructed.
17811 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17812 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17813 ExprCleanupObjects.end());
17814 Cleanup = Rec.ParentCleanup;
17815 CleanupVarDeclMarking();
17816 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17817 // Otherwise, merge the contexts together.
17818 } else {
17819 Cleanup.mergeFrom(Rec.ParentCleanup);
17820 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17821 Rec.SavedMaybeODRUseExprs.end());
17824 // Pop the current expression evaluation context off the stack.
17825 ExprEvalContexts.pop_back();
17827 // The global expression evaluation context record is never popped.
17828 ExprEvalContexts.back().NumTypos += NumTypos;
17831 void Sema::DiscardCleanupsInEvaluationContext() {
17832 ExprCleanupObjects.erase(
17833 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17834 ExprCleanupObjects.end());
17835 Cleanup.reset();
17836 MaybeODRUseExprs.clear();
17839 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17840 ExprResult Result = CheckPlaceholderExpr(E);
17841 if (Result.isInvalid())
17842 return ExprError();
17843 E = Result.get();
17844 if (!E->getType()->isVariablyModifiedType())
17845 return E;
17846 return TransformToPotentiallyEvaluated(E);
17849 /// Are we in a context that is potentially constant evaluated per C++20
17850 /// [expr.const]p12?
17851 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17852 /// C++2a [expr.const]p12:
17853 // An expression or conversion is potentially constant evaluated if it is
17854 switch (SemaRef.ExprEvalContexts.back().Context) {
17855 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17856 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17858 // -- a manifestly constant-evaluated expression,
17859 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17860 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17861 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17862 // -- a potentially-evaluated expression,
17863 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17864 // -- an immediate subexpression of a braced-init-list,
17866 // -- [FIXME] an expression of the form & cast-expression that occurs
17867 // within a templated entity
17868 // -- a subexpression of one of the above that is not a subexpression of
17869 // a nested unevaluated operand.
17870 return true;
17872 case Sema::ExpressionEvaluationContext::Unevaluated:
17873 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17874 // Expressions in this context are never evaluated.
17875 return false;
17877 llvm_unreachable("Invalid context");
17880 /// Return true if this function has a calling convention that requires mangling
17881 /// in the size of the parameter pack.
17882 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17883 // These manglings don't do anything on non-Windows or non-x86 platforms, so
17884 // we don't need parameter type sizes.
17885 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17886 if (!TT.isOSWindows() || !TT.isX86())
17887 return false;
17889 // If this is C++ and this isn't an extern "C" function, parameters do not
17890 // need to be complete. In this case, C++ mangling will apply, which doesn't
17891 // use the size of the parameters.
17892 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17893 return false;
17895 // Stdcall, fastcall, and vectorcall need this special treatment.
17896 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17897 switch (CC) {
17898 case CC_X86StdCall:
17899 case CC_X86FastCall:
17900 case CC_X86VectorCall:
17901 return true;
17902 default:
17903 break;
17905 return false;
17908 /// Require that all of the parameter types of function be complete. Normally,
17909 /// parameter types are only required to be complete when a function is called
17910 /// or defined, but to mangle functions with certain calling conventions, the
17911 /// mangler needs to know the size of the parameter list. In this situation,
17912 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17913 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17914 /// result in a linker error. Clang doesn't implement this behavior, and instead
17915 /// attempts to error at compile time.
17916 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17917 SourceLocation Loc) {
17918 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17919 FunctionDecl *FD;
17920 ParmVarDecl *Param;
17922 public:
17923 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17924 : FD(FD), Param(Param) {}
17926 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17927 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17928 StringRef CCName;
17929 switch (CC) {
17930 case CC_X86StdCall:
17931 CCName = "stdcall";
17932 break;
17933 case CC_X86FastCall:
17934 CCName = "fastcall";
17935 break;
17936 case CC_X86VectorCall:
17937 CCName = "vectorcall";
17938 break;
17939 default:
17940 llvm_unreachable("CC does not need mangling");
17943 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17944 << Param->getDeclName() << FD->getDeclName() << CCName;
17948 for (ParmVarDecl *Param : FD->parameters()) {
17949 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17950 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17954 namespace {
17955 enum class OdrUseContext {
17956 /// Declarations in this context are not odr-used.
17957 None,
17958 /// Declarations in this context are formally odr-used, but this is a
17959 /// dependent context.
17960 Dependent,
17961 /// Declarations in this context are odr-used but not actually used (yet).
17962 FormallyOdrUsed,
17963 /// Declarations in this context are used.
17964 Used
17968 /// Are we within a context in which references to resolved functions or to
17969 /// variables result in odr-use?
17970 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17971 OdrUseContext Result;
17973 switch (SemaRef.ExprEvalContexts.back().Context) {
17974 case Sema::ExpressionEvaluationContext::Unevaluated:
17975 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17976 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17977 return OdrUseContext::None;
17979 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17980 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17981 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17982 Result = OdrUseContext::Used;
17983 break;
17985 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17986 Result = OdrUseContext::FormallyOdrUsed;
17987 break;
17989 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17990 // A default argument formally results in odr-use, but doesn't actually
17991 // result in a use in any real sense until it itself is used.
17992 Result = OdrUseContext::FormallyOdrUsed;
17993 break;
17996 if (SemaRef.CurContext->isDependentContext())
17997 return OdrUseContext::Dependent;
17999 return Result;
18002 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18003 if (!Func->isConstexpr())
18004 return false;
18006 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18007 return true;
18008 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18009 return CCD && CCD->getInheritedConstructor();
18012 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18013 bool MightBeOdrUse) {
18014 assert(Func && "No function?");
18016 Func->setReferenced();
18018 // Recursive functions aren't really used until they're used from some other
18019 // context.
18020 bool IsRecursiveCall = CurContext == Func;
18022 // C++11 [basic.def.odr]p3:
18023 // A function whose name appears as a potentially-evaluated expression is
18024 // odr-used if it is the unique lookup result or the selected member of a
18025 // set of overloaded functions [...].
18027 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18028 // can just check that here.
18029 OdrUseContext OdrUse =
18030 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18031 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18032 OdrUse = OdrUseContext::FormallyOdrUsed;
18034 // Trivial default constructors and destructors are never actually used.
18035 // FIXME: What about other special members?
18036 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18037 OdrUse == OdrUseContext::Used) {
18038 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18039 if (Constructor->isDefaultConstructor())
18040 OdrUse = OdrUseContext::FormallyOdrUsed;
18041 if (isa<CXXDestructorDecl>(Func))
18042 OdrUse = OdrUseContext::FormallyOdrUsed;
18045 // C++20 [expr.const]p12:
18046 // A function [...] is needed for constant evaluation if it is [...] a
18047 // constexpr function that is named by an expression that is potentially
18048 // constant evaluated
18049 bool NeededForConstantEvaluation =
18050 isPotentiallyConstantEvaluatedContext(*this) &&
18051 isImplicitlyDefinableConstexprFunction(Func);
18053 // Determine whether we require a function definition to exist, per
18054 // C++11 [temp.inst]p3:
18055 // Unless a function template specialization has been explicitly
18056 // instantiated or explicitly specialized, the function template
18057 // specialization is implicitly instantiated when the specialization is
18058 // referenced in a context that requires a function definition to exist.
18059 // C++20 [temp.inst]p7:
18060 // The existence of a definition of a [...] function is considered to
18061 // affect the semantics of the program if the [...] function is needed for
18062 // constant evaluation by an expression
18063 // C++20 [basic.def.odr]p10:
18064 // Every program shall contain exactly one definition of every non-inline
18065 // function or variable that is odr-used in that program outside of a
18066 // discarded statement
18067 // C++20 [special]p1:
18068 // The implementation will implicitly define [defaulted special members]
18069 // if they are odr-used or needed for constant evaluation.
18071 // Note that we skip the implicit instantiation of templates that are only
18072 // used in unused default arguments or by recursive calls to themselves.
18073 // This is formally non-conforming, but seems reasonable in practice.
18074 bool NeedDefinition =
18075 !IsRecursiveCall &&
18076 (OdrUse == OdrUseContext::Used ||
18077 (NeededForConstantEvaluation && !Func->isPureVirtual()));
18079 // C++14 [temp.expl.spec]p6:
18080 // If a template [...] is explicitly specialized then that specialization
18081 // shall be declared before the first use of that specialization that would
18082 // cause an implicit instantiation to take place, in every translation unit
18083 // in which such a use occurs
18084 if (NeedDefinition &&
18085 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18086 Func->getMemberSpecializationInfo()))
18087 checkSpecializationReachability(Loc, Func);
18089 if (getLangOpts().CUDA)
18090 CUDA().CheckCall(Loc, Func);
18092 // If we need a definition, try to create one.
18093 if (NeedDefinition && !Func->getBody()) {
18094 runWithSufficientStackSpace(Loc, [&] {
18095 if (CXXConstructorDecl *Constructor =
18096 dyn_cast<CXXConstructorDecl>(Func)) {
18097 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18098 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18099 if (Constructor->isDefaultConstructor()) {
18100 if (Constructor->isTrivial() &&
18101 !Constructor->hasAttr<DLLExportAttr>())
18102 return;
18103 DefineImplicitDefaultConstructor(Loc, Constructor);
18104 } else if (Constructor->isCopyConstructor()) {
18105 DefineImplicitCopyConstructor(Loc, Constructor);
18106 } else if (Constructor->isMoveConstructor()) {
18107 DefineImplicitMoveConstructor(Loc, Constructor);
18109 } else if (Constructor->getInheritedConstructor()) {
18110 DefineInheritingConstructor(Loc, Constructor);
18112 } else if (CXXDestructorDecl *Destructor =
18113 dyn_cast<CXXDestructorDecl>(Func)) {
18114 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18115 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18116 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18117 return;
18118 DefineImplicitDestructor(Loc, Destructor);
18120 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18121 MarkVTableUsed(Loc, Destructor->getParent());
18122 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18123 if (MethodDecl->isOverloadedOperator() &&
18124 MethodDecl->getOverloadedOperator() == OO_Equal) {
18125 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18126 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18127 if (MethodDecl->isCopyAssignmentOperator())
18128 DefineImplicitCopyAssignment(Loc, MethodDecl);
18129 else if (MethodDecl->isMoveAssignmentOperator())
18130 DefineImplicitMoveAssignment(Loc, MethodDecl);
18132 } else if (isa<CXXConversionDecl>(MethodDecl) &&
18133 MethodDecl->getParent()->isLambda()) {
18134 CXXConversionDecl *Conversion =
18135 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18136 if (Conversion->isLambdaToBlockPointerConversion())
18137 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18138 else
18139 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18140 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18141 MarkVTableUsed(Loc, MethodDecl->getParent());
18144 if (Func->isDefaulted() && !Func->isDeleted()) {
18145 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18146 if (DCK != DefaultedComparisonKind::None)
18147 DefineDefaultedComparison(Loc, Func, DCK);
18150 // Implicit instantiation of function templates and member functions of
18151 // class templates.
18152 if (Func->isImplicitlyInstantiable()) {
18153 TemplateSpecializationKind TSK =
18154 Func->getTemplateSpecializationKindForInstantiation();
18155 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18156 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18157 if (FirstInstantiation) {
18158 PointOfInstantiation = Loc;
18159 if (auto *MSI = Func->getMemberSpecializationInfo())
18160 MSI->setPointOfInstantiation(Loc);
18161 // FIXME: Notify listener.
18162 else
18163 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18164 } else if (TSK != TSK_ImplicitInstantiation) {
18165 // Use the point of use as the point of instantiation, instead of the
18166 // point of explicit instantiation (which we track as the actual point
18167 // of instantiation). This gives better backtraces in diagnostics.
18168 PointOfInstantiation = Loc;
18171 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18172 Func->isConstexpr()) {
18173 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18174 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18175 CodeSynthesisContexts.size())
18176 PendingLocalImplicitInstantiations.push_back(
18177 std::make_pair(Func, PointOfInstantiation));
18178 else if (Func->isConstexpr())
18179 // Do not defer instantiations of constexpr functions, to avoid the
18180 // expression evaluator needing to call back into Sema if it sees a
18181 // call to such a function.
18182 InstantiateFunctionDefinition(PointOfInstantiation, Func);
18183 else {
18184 Func->setInstantiationIsPending(true);
18185 PendingInstantiations.push_back(
18186 std::make_pair(Func, PointOfInstantiation));
18187 if (llvm::isTimeTraceVerbose()) {
18188 llvm::timeTraceAddInstantEvent("DeferInstantiation", [&] {
18189 std::string Name;
18190 llvm::raw_string_ostream OS(Name);
18191 Func->getNameForDiagnostic(OS, getPrintingPolicy(),
18192 /*Qualified=*/true);
18193 return Name;
18196 // Notify the consumer that a function was implicitly instantiated.
18197 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18200 } else {
18201 // Walk redefinitions, as some of them may be instantiable.
18202 for (auto *i : Func->redecls()) {
18203 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18204 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18210 // If a constructor was defined in the context of a default parameter
18211 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18212 // context), its initializers may not be referenced yet.
18213 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18214 EnterExpressionEvaluationContext EvalContext(
18215 *this,
18216 Constructor->isImmediateFunction()
18217 ? ExpressionEvaluationContext::ImmediateFunctionContext
18218 : ExpressionEvaluationContext::PotentiallyEvaluated,
18219 Constructor);
18220 for (CXXCtorInitializer *Init : Constructor->inits()) {
18221 if (Init->isInClassMemberInitializer())
18222 runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
18223 MarkDeclarationsReferencedInExpr(Init->getInit());
18228 // C++14 [except.spec]p17:
18229 // An exception-specification is considered to be needed when:
18230 // - the function is odr-used or, if it appears in an unevaluated operand,
18231 // would be odr-used if the expression were potentially-evaluated;
18233 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18234 // function is a pure virtual function we're calling, and in that case the
18235 // function was selected by overload resolution and we need to resolve its
18236 // exception specification for a different reason.
18237 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18238 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18239 ResolveExceptionSpec(Loc, FPT);
18241 // A callee could be called by a host function then by a device function.
18242 // If we only try recording once, we will miss recording the use on device
18243 // side. Therefore keep trying until it is recorded.
18244 if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18245 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
18246 CUDA().RecordImplicitHostDeviceFuncUsedByDevice(Func);
18248 // If this is the first "real" use, act on that.
18249 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18250 // Keep track of used but undefined functions.
18251 if (!Func->isDefined()) {
18252 if (mightHaveNonExternalLinkage(Func))
18253 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18254 else if (Func->getMostRecentDecl()->isInlined() &&
18255 !LangOpts.GNUInline &&
18256 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18257 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18258 else if (isExternalWithNoLinkageType(Func))
18259 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18262 // Some x86 Windows calling conventions mangle the size of the parameter
18263 // pack into the name. Computing the size of the parameters requires the
18264 // parameter types to be complete. Check that now.
18265 if (funcHasParameterSizeMangling(*this, Func))
18266 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18268 // In the MS C++ ABI, the compiler emits destructor variants where they are
18269 // used. If the destructor is used here but defined elsewhere, mark the
18270 // virtual base destructors referenced. If those virtual base destructors
18271 // are inline, this will ensure they are defined when emitting the complete
18272 // destructor variant. This checking may be redundant if the destructor is
18273 // provided later in this TU.
18274 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18275 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18276 CXXRecordDecl *Parent = Dtor->getParent();
18277 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18278 CheckCompleteDestructorVariant(Loc, Dtor);
18282 Func->markUsed(Context);
18286 /// Directly mark a variable odr-used. Given a choice, prefer to use
18287 /// MarkVariableReferenced since it does additional checks and then
18288 /// calls MarkVarDeclODRUsed.
18289 /// If the variable must be captured:
18290 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18291 /// - else capture it in the DeclContext that maps to the
18292 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18293 static void
18294 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18295 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18296 // Keep track of used but undefined variables.
18297 // FIXME: We shouldn't suppress this warning for static data members.
18298 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18299 assert(Var && "expected a capturable variable");
18301 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18302 (!Var->isExternallyVisible() || Var->isInline() ||
18303 SemaRef.isExternalWithNoLinkageType(Var)) &&
18304 !(Var->isStaticDataMember() && Var->hasInit())) {
18305 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18306 if (old.isInvalid())
18307 old = Loc;
18309 QualType CaptureType, DeclRefType;
18310 if (SemaRef.LangOpts.OpenMP)
18311 SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18312 SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18313 /*EllipsisLoc*/ SourceLocation(),
18314 /*BuildAndDiagnose*/ true, CaptureType,
18315 DeclRefType, FunctionScopeIndexToStopAt);
18317 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18318 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18319 auto VarTarget = SemaRef.CUDA().IdentifyTarget(Var);
18320 auto UserTarget = SemaRef.CUDA().IdentifyTarget(FD);
18321 if (VarTarget == SemaCUDA::CVT_Host &&
18322 (UserTarget == CUDAFunctionTarget::Device ||
18323 UserTarget == CUDAFunctionTarget::HostDevice ||
18324 UserTarget == CUDAFunctionTarget::Global)) {
18325 // Diagnose ODR-use of host global variables in device functions.
18326 // Reference of device global variables in host functions is allowed
18327 // through shadow variables therefore it is not diagnosed.
18328 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18329 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18330 << /*host*/ 2 << /*variable*/ 1 << Var
18331 << llvm::to_underlying(UserTarget);
18332 SemaRef.targetDiag(Var->getLocation(),
18333 Var->getType().isConstQualified()
18334 ? diag::note_cuda_const_var_unpromoted
18335 : diag::note_cuda_host_var);
18337 } else if (VarTarget == SemaCUDA::CVT_Device &&
18338 !Var->hasAttr<CUDASharedAttr>() &&
18339 (UserTarget == CUDAFunctionTarget::Host ||
18340 UserTarget == CUDAFunctionTarget::HostDevice)) {
18341 // Record a CUDA/HIP device side variable if it is ODR-used
18342 // by host code. This is done conservatively, when the variable is
18343 // referenced in any of the following contexts:
18344 // - a non-function context
18345 // - a host function
18346 // - a host device function
18347 // This makes the ODR-use of the device side variable by host code to
18348 // be visible in the device compilation for the compiler to be able to
18349 // emit template variables instantiated by host code only and to
18350 // externalize the static device side variable ODR-used by host code.
18351 if (!Var->hasExternalStorage())
18352 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18353 else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18354 (!FD || (!FD->getDescribedFunctionTemplate() &&
18355 SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18356 GVA_StrongExternal)))
18357 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18361 V->markUsed(SemaRef.Context);
18364 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18365 SourceLocation Loc,
18366 unsigned CapturingScopeIndex) {
18367 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18370 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18371 ValueDecl *var) {
18372 DeclContext *VarDC = var->getDeclContext();
18374 // If the parameter still belongs to the translation unit, then
18375 // we're actually just using one parameter in the declaration of
18376 // the next.
18377 if (isa<ParmVarDecl>(var) &&
18378 isa<TranslationUnitDecl>(VarDC))
18379 return;
18381 // For C code, don't diagnose about capture if we're not actually in code
18382 // right now; it's impossible to write a non-constant expression outside of
18383 // function context, so we'll get other (more useful) diagnostics later.
18385 // For C++, things get a bit more nasty... it would be nice to suppress this
18386 // diagnostic for certain cases like using a local variable in an array bound
18387 // for a member of a local class, but the correct predicate is not obvious.
18388 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18389 return;
18391 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18392 unsigned ContextKind = 3; // unknown
18393 if (isa<CXXMethodDecl>(VarDC) &&
18394 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18395 ContextKind = 2;
18396 } else if (isa<FunctionDecl>(VarDC)) {
18397 ContextKind = 0;
18398 } else if (isa<BlockDecl>(VarDC)) {
18399 ContextKind = 1;
18402 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18403 << var << ValueKind << ContextKind << VarDC;
18404 S.Diag(var->getLocation(), diag::note_entity_declared_at)
18405 << var;
18407 // FIXME: Add additional diagnostic info about class etc. which prevents
18408 // capture.
18411 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18412 ValueDecl *Var,
18413 bool &SubCapturesAreNested,
18414 QualType &CaptureType,
18415 QualType &DeclRefType) {
18416 // Check whether we've already captured it.
18417 if (CSI->CaptureMap.count(Var)) {
18418 // If we found a capture, any subcaptures are nested.
18419 SubCapturesAreNested = true;
18421 // Retrieve the capture type for this variable.
18422 CaptureType = CSI->getCapture(Var).getCaptureType();
18424 // Compute the type of an expression that refers to this variable.
18425 DeclRefType = CaptureType.getNonReferenceType();
18427 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18428 // are mutable in the sense that user can change their value - they are
18429 // private instances of the captured declarations.
18430 const Capture &Cap = CSI->getCapture(Var);
18431 if (Cap.isCopyCapture() &&
18432 !(isa<LambdaScopeInfo>(CSI) &&
18433 !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
18434 !(isa<CapturedRegionScopeInfo>(CSI) &&
18435 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18436 DeclRefType.addConst();
18437 return true;
18439 return false;
18442 // Only block literals, captured statements, and lambda expressions can
18443 // capture; other scopes don't work.
18444 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18445 ValueDecl *Var,
18446 SourceLocation Loc,
18447 const bool Diagnose,
18448 Sema &S) {
18449 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18450 return getLambdaAwareParentOfDeclContext(DC);
18452 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18453 if (Underlying) {
18454 if (Underlying->hasLocalStorage() && Diagnose)
18455 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18457 return nullptr;
18460 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18461 // certain types of variables (unnamed, variably modified types etc.)
18462 // so check for eligibility.
18463 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18464 SourceLocation Loc, const bool Diagnose,
18465 Sema &S) {
18467 assert((isa<VarDecl, BindingDecl>(Var)) &&
18468 "Only variables and structured bindings can be captured");
18470 bool IsBlock = isa<BlockScopeInfo>(CSI);
18471 bool IsLambda = isa<LambdaScopeInfo>(CSI);
18473 // Lambdas are not allowed to capture unnamed variables
18474 // (e.g. anonymous unions).
18475 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18476 // assuming that's the intent.
18477 if (IsLambda && !Var->getDeclName()) {
18478 if (Diagnose) {
18479 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18480 S.Diag(Var->getLocation(), diag::note_declared_at);
18482 return false;
18485 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18486 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18487 if (Diagnose) {
18488 S.Diag(Loc, diag::err_ref_vm_type);
18489 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18491 return false;
18493 // Prohibit structs with flexible array members too.
18494 // We cannot capture what is in the tail end of the struct.
18495 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18496 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18497 if (Diagnose) {
18498 if (IsBlock)
18499 S.Diag(Loc, diag::err_ref_flexarray_type);
18500 else
18501 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18502 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18504 return false;
18507 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18508 // Lambdas and captured statements are not allowed to capture __block
18509 // variables; they don't support the expected semantics.
18510 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18511 if (Diagnose) {
18512 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18513 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18515 return false;
18517 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18518 if (S.getLangOpts().OpenCL && IsBlock &&
18519 Var->getType()->isBlockPointerType()) {
18520 if (Diagnose)
18521 S.Diag(Loc, diag::err_opencl_block_ref_block);
18522 return false;
18525 if (isa<BindingDecl>(Var)) {
18526 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18527 if (Diagnose)
18528 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18529 return false;
18530 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18531 S.Diag(Loc, S.LangOpts.CPlusPlus20
18532 ? diag::warn_cxx17_compat_capture_binding
18533 : diag::ext_capture_binding)
18534 << Var;
18535 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18539 return true;
18542 // Returns true if the capture by block was successful.
18543 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18544 SourceLocation Loc, const bool BuildAndDiagnose,
18545 QualType &CaptureType, QualType &DeclRefType,
18546 const bool Nested, Sema &S, bool Invalid) {
18547 bool ByRef = false;
18549 // Blocks are not allowed to capture arrays, excepting OpenCL.
18550 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18551 // (decayed to pointers).
18552 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18553 if (BuildAndDiagnose) {
18554 S.Diag(Loc, diag::err_ref_array_type);
18555 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18556 Invalid = true;
18557 } else {
18558 return false;
18562 // Forbid the block-capture of autoreleasing variables.
18563 if (!Invalid &&
18564 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18565 if (BuildAndDiagnose) {
18566 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18567 << /*block*/ 0;
18568 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18569 Invalid = true;
18570 } else {
18571 return false;
18575 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18576 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18577 QualType PointeeTy = PT->getPointeeType();
18579 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18580 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18581 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18582 if (BuildAndDiagnose) {
18583 SourceLocation VarLoc = Var->getLocation();
18584 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18585 S.Diag(VarLoc, diag::note_declare_parameter_strong);
18590 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18591 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18592 (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(Var))) {
18593 // Block capture by reference does not change the capture or
18594 // declaration reference types.
18595 ByRef = true;
18596 } else {
18597 // Block capture by copy introduces 'const'.
18598 CaptureType = CaptureType.getNonReferenceType().withConst();
18599 DeclRefType = CaptureType;
18602 // Actually capture the variable.
18603 if (BuildAndDiagnose)
18604 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18605 CaptureType, Invalid);
18607 return !Invalid;
18610 /// Capture the given variable in the captured region.
18611 static bool captureInCapturedRegion(
18612 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18613 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18614 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18615 bool IsTopScope, Sema &S, bool Invalid) {
18616 // By default, capture variables by reference.
18617 bool ByRef = true;
18618 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18619 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18620 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18621 // Using an LValue reference type is consistent with Lambdas (see below).
18622 if (S.OpenMP().isOpenMPCapturedDecl(Var)) {
18623 bool HasConst = DeclRefType.isConstQualified();
18624 DeclRefType = DeclRefType.getUnqualifiedType();
18625 // Don't lose diagnostics about assignments to const.
18626 if (HasConst)
18627 DeclRefType.addConst();
18629 // Do not capture firstprivates in tasks.
18630 if (S.OpenMP().isOpenMPPrivateDecl(Var, RSI->OpenMPLevel,
18631 RSI->OpenMPCaptureLevel) != OMPC_unknown)
18632 return true;
18633 ByRef = S.OpenMP().isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18634 RSI->OpenMPCaptureLevel);
18637 if (ByRef)
18638 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18639 else
18640 CaptureType = DeclRefType;
18642 // Actually capture the variable.
18643 if (BuildAndDiagnose)
18644 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18645 Loc, SourceLocation(), CaptureType, Invalid);
18647 return !Invalid;
18650 /// Capture the given variable in the lambda.
18651 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18652 SourceLocation Loc, const bool BuildAndDiagnose,
18653 QualType &CaptureType, QualType &DeclRefType,
18654 const bool RefersToCapturedVariable,
18655 const Sema::TryCaptureKind Kind,
18656 SourceLocation EllipsisLoc, const bool IsTopScope,
18657 Sema &S, bool Invalid) {
18658 // Determine whether we are capturing by reference or by value.
18659 bool ByRef = false;
18660 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18661 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18662 } else {
18663 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18666 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18667 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18668 S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
18669 Invalid = true;
18672 // Compute the type of the field that will capture this variable.
18673 if (ByRef) {
18674 // C++11 [expr.prim.lambda]p15:
18675 // An entity is captured by reference if it is implicitly or
18676 // explicitly captured but not captured by copy. It is
18677 // unspecified whether additional unnamed non-static data
18678 // members are declared in the closure type for entities
18679 // captured by reference.
18681 // FIXME: It is not clear whether we want to build an lvalue reference
18682 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18683 // to do the former, while EDG does the latter. Core issue 1249 will
18684 // clarify, but for now we follow GCC because it's a more permissive and
18685 // easily defensible position.
18686 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18687 } else {
18688 // C++11 [expr.prim.lambda]p14:
18689 // For each entity captured by copy, an unnamed non-static
18690 // data member is declared in the closure type. The
18691 // declaration order of these members is unspecified. The type
18692 // of such a data member is the type of the corresponding
18693 // captured entity if the entity is not a reference to an
18694 // object, or the referenced type otherwise. [Note: If the
18695 // captured entity is a reference to a function, the
18696 // corresponding data member is also a reference to a
18697 // function. - end note ]
18698 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18699 if (!RefType->getPointeeType()->isFunctionType())
18700 CaptureType = RefType->getPointeeType();
18703 // Forbid the lambda copy-capture of autoreleasing variables.
18704 if (!Invalid &&
18705 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18706 if (BuildAndDiagnose) {
18707 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18708 S.Diag(Var->getLocation(), diag::note_previous_decl)
18709 << Var->getDeclName();
18710 Invalid = true;
18711 } else {
18712 return false;
18716 // Make sure that by-copy captures are of a complete and non-abstract type.
18717 if (!Invalid && BuildAndDiagnose) {
18718 if (!CaptureType->isDependentType() &&
18719 S.RequireCompleteSizedType(
18720 Loc, CaptureType,
18721 diag::err_capture_of_incomplete_or_sizeless_type,
18722 Var->getDeclName()))
18723 Invalid = true;
18724 else if (S.RequireNonAbstractType(Loc, CaptureType,
18725 diag::err_capture_of_abstract_type))
18726 Invalid = true;
18730 // Compute the type of a reference to this captured variable.
18731 if (ByRef)
18732 DeclRefType = CaptureType.getNonReferenceType();
18733 else {
18734 // C++ [expr.prim.lambda]p5:
18735 // The closure type for a lambda-expression has a public inline
18736 // function call operator [...]. This function call operator is
18737 // declared const (9.3.1) if and only if the lambda-expression's
18738 // parameter-declaration-clause is not followed by mutable.
18739 DeclRefType = CaptureType.getNonReferenceType();
18740 bool Const = LSI->lambdaCaptureShouldBeConst();
18741 if (Const && !CaptureType->isReferenceType())
18742 DeclRefType.addConst();
18745 // Add the capture.
18746 if (BuildAndDiagnose)
18747 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18748 Loc, EllipsisLoc, CaptureType, Invalid);
18750 return !Invalid;
18753 static bool canCaptureVariableByCopy(ValueDecl *Var,
18754 const ASTContext &Context) {
18755 // Offer a Copy fix even if the type is dependent.
18756 if (Var->getType()->isDependentType())
18757 return true;
18758 QualType T = Var->getType().getNonReferenceType();
18759 if (T.isTriviallyCopyableType(Context))
18760 return true;
18761 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18763 if (!(RD = RD->getDefinition()))
18764 return false;
18765 if (RD->hasSimpleCopyConstructor())
18766 return true;
18767 if (RD->hasUserDeclaredCopyConstructor())
18768 for (CXXConstructorDecl *Ctor : RD->ctors())
18769 if (Ctor->isCopyConstructor())
18770 return !Ctor->isDeleted();
18772 return false;
18775 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18776 /// default capture. Fixes may be omitted if they aren't allowed by the
18777 /// standard, for example we can't emit a default copy capture fix-it if we
18778 /// already explicitly copy capture capture another variable.
18779 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18780 ValueDecl *Var) {
18781 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18782 // Don't offer Capture by copy of default capture by copy fixes if Var is
18783 // known not to be copy constructible.
18784 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18786 SmallString<32> FixBuffer;
18787 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18788 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18789 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18790 if (ShouldOfferCopyFix) {
18791 // Offer fixes to insert an explicit capture for the variable.
18792 // [] -> [VarName]
18793 // [OtherCapture] -> [OtherCapture, VarName]
18794 FixBuffer.assign({Separator, Var->getName()});
18795 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18796 << Var << /*value*/ 0
18797 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18799 // As above but capture by reference.
18800 FixBuffer.assign({Separator, "&", Var->getName()});
18801 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18802 << Var << /*reference*/ 1
18803 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18806 // Only try to offer default capture if there are no captures excluding this
18807 // and init captures.
18808 // [this]: OK.
18809 // [X = Y]: OK.
18810 // [&A, &B]: Don't offer.
18811 // [A, B]: Don't offer.
18812 if (llvm::any_of(LSI->Captures, [](Capture &C) {
18813 return !C.isThisCapture() && !C.isInitCapture();
18815 return;
18817 // The default capture specifiers, '=' or '&', must appear first in the
18818 // capture body.
18819 SourceLocation DefaultInsertLoc =
18820 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18822 if (ShouldOfferCopyFix) {
18823 bool CanDefaultCopyCapture = true;
18824 // [=, *this] OK since c++17
18825 // [=, this] OK since c++20
18826 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18827 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18828 ? LSI->getCXXThisCapture().isCopyCapture()
18829 : false;
18830 // We can't use default capture by copy if any captures already specified
18831 // capture by copy.
18832 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18833 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18834 })) {
18835 FixBuffer.assign({"=", Separator});
18836 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18837 << /*value*/ 0
18838 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18842 // We can't use default capture by reference if any captures already specified
18843 // capture by reference.
18844 if (llvm::none_of(LSI->Captures, [](Capture &C) {
18845 return !C.isInitCapture() && C.isReferenceCapture() &&
18846 !C.isThisCapture();
18847 })) {
18848 FixBuffer.assign({"&", Separator});
18849 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18850 << /*reference*/ 1
18851 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18855 bool Sema::tryCaptureVariable(
18856 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18857 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18858 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18859 // An init-capture is notionally from the context surrounding its
18860 // declaration, but its parent DC is the lambda class.
18861 DeclContext *VarDC = Var->getDeclContext();
18862 DeclContext *DC = CurContext;
18864 // Skip past RequiresExprBodys because they don't constitute function scopes.
18865 while (DC->isRequiresExprBody())
18866 DC = DC->getParent();
18868 // tryCaptureVariable is called every time a DeclRef is formed,
18869 // it can therefore have non-negigible impact on performances.
18870 // For local variables and when there is no capturing scope,
18871 // we can bailout early.
18872 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
18873 return true;
18875 // Exception: Function parameters are not tied to the function's DeclContext
18876 // until we enter the function definition. Capturing them anyway would result
18877 // in an out-of-bounds error while traversing DC and its parents.
18878 if (isa<ParmVarDecl>(Var) && !VarDC->isFunctionOrMethod())
18879 return true;
18881 const auto *VD = dyn_cast<VarDecl>(Var);
18882 if (VD) {
18883 if (VD->isInitCapture())
18884 VarDC = VarDC->getParent();
18885 } else {
18886 VD = Var->getPotentiallyDecomposedVarDecl();
18888 assert(VD && "Cannot capture a null variable");
18890 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18891 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18892 // We need to sync up the Declaration Context with the
18893 // FunctionScopeIndexToStopAt
18894 if (FunctionScopeIndexToStopAt) {
18895 assert(!FunctionScopes.empty() && "No function scopes to stop at?");
18896 unsigned FSIndex = FunctionScopes.size() - 1;
18897 // When we're parsing the lambda parameter list, the current DeclContext is
18898 // NOT the lambda but its parent. So move away the current LSI before
18899 // aligning DC and FunctionScopeIndexToStopAt.
18900 if (auto *LSI = dyn_cast<LambdaScopeInfo>(FunctionScopes[FSIndex]);
18901 FSIndex && LSI && !LSI->AfterParameterList)
18902 --FSIndex;
18903 assert(MaxFunctionScopesIndex <= FSIndex &&
18904 "FunctionScopeIndexToStopAt should be no greater than FSIndex into "
18905 "FunctionScopes.");
18906 while (FSIndex != MaxFunctionScopesIndex) {
18907 DC = getLambdaAwareParentOfDeclContext(DC);
18908 --FSIndex;
18912 // Capture global variables if it is required to use private copy of this
18913 // variable.
18914 bool IsGlobal = !VD->hasLocalStorage();
18915 if (IsGlobal && !(LangOpts.OpenMP &&
18916 OpenMP().isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18917 MaxFunctionScopesIndex)))
18918 return true;
18920 if (isa<VarDecl>(Var))
18921 Var = cast<VarDecl>(Var->getCanonicalDecl());
18923 // Walk up the stack to determine whether we can capture the variable,
18924 // performing the "simple" checks that don't depend on type. We stop when
18925 // we've either hit the declared scope of the variable or find an existing
18926 // capture of that variable. We start from the innermost capturing-entity
18927 // (the DC) and ensure that all intervening capturing-entities
18928 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18929 // declcontext can either capture the variable or have already captured
18930 // the variable.
18931 CaptureType = Var->getType();
18932 DeclRefType = CaptureType.getNonReferenceType();
18933 bool Nested = false;
18934 bool Explicit = (Kind != TryCapture_Implicit);
18935 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18936 do {
18938 LambdaScopeInfo *LSI = nullptr;
18939 if (!FunctionScopes.empty())
18940 LSI = dyn_cast_or_null<LambdaScopeInfo>(
18941 FunctionScopes[FunctionScopesIndex]);
18943 bool IsInScopeDeclarationContext =
18944 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
18946 if (LSI && !LSI->AfterParameterList) {
18947 // This allows capturing parameters from a default value which does not
18948 // seems correct
18949 if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
18950 return true;
18952 // If the variable is declared in the current context, there is no need to
18953 // capture it.
18954 if (IsInScopeDeclarationContext &&
18955 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
18956 return true;
18958 // Only block literals, captured statements, and lambda expressions can
18959 // capture; other scopes don't work.
18960 DeclContext *ParentDC =
18961 !IsInScopeDeclarationContext
18962 ? DC->getParent()
18963 : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
18964 BuildAndDiagnose, *this);
18965 // We need to check for the parent *first* because, if we *have*
18966 // private-captured a global variable, we need to recursively capture it in
18967 // intermediate blocks, lambdas, etc.
18968 if (!ParentDC) {
18969 if (IsGlobal) {
18970 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18971 break;
18973 return true;
18976 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
18977 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18979 // Check whether we've already captured it.
18980 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18981 DeclRefType)) {
18982 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18983 break;
18986 // When evaluating some attributes (like enable_if) we might refer to a
18987 // function parameter appertaining to the same declaration as that
18988 // attribute.
18989 if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
18990 Parm && Parm->getDeclContext() == DC)
18991 return true;
18993 // If we are instantiating a generic lambda call operator body,
18994 // we do not want to capture new variables. What was captured
18995 // during either a lambdas transformation or initial parsing
18996 // should be used.
18997 if (isGenericLambdaCallOperatorSpecialization(DC)) {
18998 if (BuildAndDiagnose) {
18999 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19000 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19001 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19002 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19003 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19004 buildLambdaCaptureFixit(*this, LSI, Var);
19005 } else
19006 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19008 return true;
19011 // Try to capture variable-length arrays types.
19012 if (Var->getType()->isVariablyModifiedType()) {
19013 // We're going to walk down into the type and look for VLA
19014 // expressions.
19015 QualType QTy = Var->getType();
19016 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19017 QTy = PVD->getOriginalType();
19018 captureVariablyModifiedType(Context, QTy, CSI);
19021 if (getLangOpts().OpenMP) {
19022 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19023 // OpenMP private variables should not be captured in outer scope, so
19024 // just break here. Similarly, global variables that are captured in a
19025 // target region should not be captured outside the scope of the region.
19026 if (RSI->CapRegionKind == CR_OpenMP) {
19027 // FIXME: We should support capturing structured bindings in OpenMP.
19028 if (isa<BindingDecl>(Var)) {
19029 if (BuildAndDiagnose) {
19030 Diag(ExprLoc, diag::err_capture_binding_openmp) << Var;
19031 Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19033 return true;
19035 OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
19036 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19037 // If the variable is private (i.e. not captured) and has variably
19038 // modified type, we still need to capture the type for correct
19039 // codegen in all regions, associated with the construct. Currently,
19040 // it is captured in the innermost captured region only.
19041 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19042 Var->getType()->isVariablyModifiedType()) {
19043 QualType QTy = Var->getType();
19044 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19045 QTy = PVD->getOriginalType();
19046 for (int I = 1,
19047 E = OpenMP().getNumberOfConstructScopes(RSI->OpenMPLevel);
19048 I < E; ++I) {
19049 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19050 FunctionScopes[FunctionScopesIndex - I]);
19051 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19052 "Wrong number of captured regions associated with the "
19053 "OpenMP construct.");
19054 captureVariablyModifiedType(Context, QTy, OuterRSI);
19057 bool IsTargetCap =
19058 IsOpenMPPrivateDecl != OMPC_private &&
19059 OpenMP().isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19060 RSI->OpenMPCaptureLevel);
19061 // Do not capture global if it is not privatized in outer regions.
19062 bool IsGlobalCap =
19063 IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
19064 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19066 // When we detect target captures we are looking from inside the
19067 // target region, therefore we need to propagate the capture from the
19068 // enclosing region. Therefore, the capture is not initially nested.
19069 if (IsTargetCap)
19070 OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
19071 RSI->OpenMPLevel);
19073 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19074 (IsGlobal && !IsGlobalCap)) {
19075 Nested = !IsTargetCap;
19076 bool HasConst = DeclRefType.isConstQualified();
19077 DeclRefType = DeclRefType.getUnqualifiedType();
19078 // Don't lose diagnostics about assignments to const.
19079 if (HasConst)
19080 DeclRefType.addConst();
19081 CaptureType = Context.getLValueReferenceType(DeclRefType);
19082 break;
19087 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19088 // No capture-default, and this is not an explicit capture
19089 // so cannot capture this variable.
19090 if (BuildAndDiagnose) {
19091 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19092 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19093 auto *LSI = cast<LambdaScopeInfo>(CSI);
19094 if (LSI->Lambda) {
19095 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19096 buildLambdaCaptureFixit(*this, LSI, Var);
19098 // FIXME: If we error out because an outer lambda can not implicitly
19099 // capture a variable that an inner lambda explicitly captures, we
19100 // should have the inner lambda do the explicit capture - because
19101 // it makes for cleaner diagnostics later. This would purely be done
19102 // so that the diagnostic does not misleadingly claim that a variable
19103 // can not be captured by a lambda implicitly even though it is captured
19104 // explicitly. Suggestion:
19105 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19106 // at the function head
19107 // - cache the StartingDeclContext - this must be a lambda
19108 // - captureInLambda in the innermost lambda the variable.
19110 return true;
19112 Explicit = false;
19113 FunctionScopesIndex--;
19114 if (IsInScopeDeclarationContext)
19115 DC = ParentDC;
19116 } while (!VarDC->Equals(DC));
19118 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19119 // computing the type of the capture at each step, checking type-specific
19120 // requirements, and adding captures if requested.
19121 // If the variable had already been captured previously, we start capturing
19122 // at the lambda nested within that one.
19123 bool Invalid = false;
19124 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19125 ++I) {
19126 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19128 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19129 // certain types of variables (unnamed, variably modified types etc.)
19130 // so check for eligibility.
19131 if (!Invalid)
19132 Invalid =
19133 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19135 // After encountering an error, if we're actually supposed to capture, keep
19136 // capturing in nested contexts to suppress any follow-on diagnostics.
19137 if (Invalid && !BuildAndDiagnose)
19138 return true;
19140 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19141 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19142 DeclRefType, Nested, *this, Invalid);
19143 Nested = true;
19144 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19145 Invalid = !captureInCapturedRegion(
19146 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19147 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19148 Nested = true;
19149 } else {
19150 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19151 Invalid =
19152 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19153 DeclRefType, Nested, Kind, EllipsisLoc,
19154 /*IsTopScope*/ I == N - 1, *this, Invalid);
19155 Nested = true;
19158 if (Invalid && !BuildAndDiagnose)
19159 return true;
19161 return Invalid;
19164 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19165 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19166 QualType CaptureType;
19167 QualType DeclRefType;
19168 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19169 /*BuildAndDiagnose=*/true, CaptureType,
19170 DeclRefType, nullptr);
19173 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19174 QualType CaptureType;
19175 QualType DeclRefType;
19176 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19177 /*BuildAndDiagnose=*/false, CaptureType,
19178 DeclRefType, nullptr);
19181 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19182 QualType CaptureType;
19183 QualType DeclRefType;
19185 // Determine whether we can capture this variable.
19186 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19187 /*BuildAndDiagnose=*/false, CaptureType,
19188 DeclRefType, nullptr))
19189 return QualType();
19191 return DeclRefType;
19194 namespace {
19195 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19196 // The produced TemplateArgumentListInfo* points to data stored within this
19197 // object, so should only be used in contexts where the pointer will not be
19198 // used after the CopiedTemplateArgs object is destroyed.
19199 class CopiedTemplateArgs {
19200 bool HasArgs;
19201 TemplateArgumentListInfo TemplateArgStorage;
19202 public:
19203 template<typename RefExpr>
19204 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19205 if (HasArgs)
19206 E->copyTemplateArgumentsInto(TemplateArgStorage);
19208 operator TemplateArgumentListInfo*()
19209 #ifdef __has_cpp_attribute
19210 #if __has_cpp_attribute(clang::lifetimebound)
19211 [[clang::lifetimebound]]
19212 #endif
19213 #endif
19215 return HasArgs ? &TemplateArgStorage : nullptr;
19220 /// Walk the set of potential results of an expression and mark them all as
19221 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19223 /// \return A new expression if we found any potential results, ExprEmpty() if
19224 /// not, and ExprError() if we diagnosed an error.
19225 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19226 NonOdrUseReason NOUR) {
19227 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19228 // an object that satisfies the requirements for appearing in a
19229 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19230 // is immediately applied." This function handles the lvalue-to-rvalue
19231 // conversion part.
19233 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19234 // transform it into the relevant kind of non-odr-use node and rebuild the
19235 // tree of nodes leading to it.
19237 // This is a mini-TreeTransform that only transforms a restricted subset of
19238 // nodes (and only certain operands of them).
19240 // Rebuild a subexpression.
19241 auto Rebuild = [&](Expr *Sub) {
19242 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19245 // Check whether a potential result satisfies the requirements of NOUR.
19246 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19247 // Any entity other than a VarDecl is always odr-used whenever it's named
19248 // in a potentially-evaluated expression.
19249 auto *VD = dyn_cast<VarDecl>(D);
19250 if (!VD)
19251 return true;
19253 // C++2a [basic.def.odr]p4:
19254 // A variable x whose name appears as a potentially-evalauted expression
19255 // e is odr-used by e unless
19256 // -- x is a reference that is usable in constant expressions, or
19257 // -- x is a variable of non-reference type that is usable in constant
19258 // expressions and has no mutable subobjects, and e is an element of
19259 // the set of potential results of an expression of
19260 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19261 // conversion is applied, or
19262 // -- x is a variable of non-reference type, and e is an element of the
19263 // set of potential results of a discarded-value expression to which
19264 // the lvalue-to-rvalue conversion is not applied
19266 // We check the first bullet and the "potentially-evaluated" condition in
19267 // BuildDeclRefExpr. We check the type requirements in the second bullet
19268 // in CheckLValueToRValueConversionOperand below.
19269 switch (NOUR) {
19270 case NOUR_None:
19271 case NOUR_Unevaluated:
19272 llvm_unreachable("unexpected non-odr-use-reason");
19274 case NOUR_Constant:
19275 // Constant references were handled when they were built.
19276 if (VD->getType()->isReferenceType())
19277 return true;
19278 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19279 if (RD->hasMutableFields())
19280 return true;
19281 if (!VD->isUsableInConstantExpressions(S.Context))
19282 return true;
19283 break;
19285 case NOUR_Discarded:
19286 if (VD->getType()->isReferenceType())
19287 return true;
19288 break;
19290 return false;
19293 // Mark that this expression does not constitute an odr-use.
19294 auto MarkNotOdrUsed = [&] {
19295 S.MaybeODRUseExprs.remove(E);
19296 if (LambdaScopeInfo *LSI = S.getCurLambda())
19297 LSI->markVariableExprAsNonODRUsed(E);
19300 // C++2a [basic.def.odr]p2:
19301 // The set of potential results of an expression e is defined as follows:
19302 switch (E->getStmtClass()) {
19303 // -- If e is an id-expression, ...
19304 case Expr::DeclRefExprClass: {
19305 auto *DRE = cast<DeclRefExpr>(E);
19306 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19307 break;
19309 // Rebuild as a non-odr-use DeclRefExpr.
19310 MarkNotOdrUsed();
19311 return DeclRefExpr::Create(
19312 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19313 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19314 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19315 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19318 case Expr::FunctionParmPackExprClass: {
19319 auto *FPPE = cast<FunctionParmPackExpr>(E);
19320 // If any of the declarations in the pack is odr-used, then the expression
19321 // as a whole constitutes an odr-use.
19322 for (VarDecl *D : *FPPE)
19323 if (IsPotentialResultOdrUsed(D))
19324 return ExprEmpty();
19326 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19327 // nothing cares about whether we marked this as an odr-use, but it might
19328 // be useful for non-compiler tools.
19329 MarkNotOdrUsed();
19330 break;
19333 // -- If e is a subscripting operation with an array operand...
19334 case Expr::ArraySubscriptExprClass: {
19335 auto *ASE = cast<ArraySubscriptExpr>(E);
19336 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19337 if (!OldBase->getType()->isArrayType())
19338 break;
19339 ExprResult Base = Rebuild(OldBase);
19340 if (!Base.isUsable())
19341 return Base;
19342 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19343 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19344 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19345 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19346 ASE->getRBracketLoc());
19349 case Expr::MemberExprClass: {
19350 auto *ME = cast<MemberExpr>(E);
19351 // -- If e is a class member access expression [...] naming a non-static
19352 // data member...
19353 if (isa<FieldDecl>(ME->getMemberDecl())) {
19354 ExprResult Base = Rebuild(ME->getBase());
19355 if (!Base.isUsable())
19356 return Base;
19357 return MemberExpr::Create(
19358 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19359 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19360 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19361 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19362 ME->getObjectKind(), ME->isNonOdrUse());
19365 if (ME->getMemberDecl()->isCXXInstanceMember())
19366 break;
19368 // -- If e is a class member access expression naming a static data member,
19369 // ...
19370 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19371 break;
19373 // Rebuild as a non-odr-use MemberExpr.
19374 MarkNotOdrUsed();
19375 return MemberExpr::Create(
19376 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19377 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19378 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19379 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19382 case Expr::BinaryOperatorClass: {
19383 auto *BO = cast<BinaryOperator>(E);
19384 Expr *LHS = BO->getLHS();
19385 Expr *RHS = BO->getRHS();
19386 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19387 if (BO->getOpcode() == BO_PtrMemD) {
19388 ExprResult Sub = Rebuild(LHS);
19389 if (!Sub.isUsable())
19390 return Sub;
19391 BO->setLHS(Sub.get());
19392 // -- If e is a comma expression, ...
19393 } else if (BO->getOpcode() == BO_Comma) {
19394 ExprResult Sub = Rebuild(RHS);
19395 if (!Sub.isUsable())
19396 return Sub;
19397 BO->setRHS(Sub.get());
19398 } else {
19399 break;
19401 return ExprResult(BO);
19404 // -- If e has the form (e1)...
19405 case Expr::ParenExprClass: {
19406 auto *PE = cast<ParenExpr>(E);
19407 ExprResult Sub = Rebuild(PE->getSubExpr());
19408 if (!Sub.isUsable())
19409 return Sub;
19410 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19413 // -- If e is a glvalue conditional expression, ...
19414 // We don't apply this to a binary conditional operator. FIXME: Should we?
19415 case Expr::ConditionalOperatorClass: {
19416 auto *CO = cast<ConditionalOperator>(E);
19417 ExprResult LHS = Rebuild(CO->getLHS());
19418 if (LHS.isInvalid())
19419 return ExprError();
19420 ExprResult RHS = Rebuild(CO->getRHS());
19421 if (RHS.isInvalid())
19422 return ExprError();
19423 if (!LHS.isUsable() && !RHS.isUsable())
19424 return ExprEmpty();
19425 if (!LHS.isUsable())
19426 LHS = CO->getLHS();
19427 if (!RHS.isUsable())
19428 RHS = CO->getRHS();
19429 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19430 CO->getCond(), LHS.get(), RHS.get());
19433 // [Clang extension]
19434 // -- If e has the form __extension__ e1...
19435 case Expr::UnaryOperatorClass: {
19436 auto *UO = cast<UnaryOperator>(E);
19437 if (UO->getOpcode() != UO_Extension)
19438 break;
19439 ExprResult Sub = Rebuild(UO->getSubExpr());
19440 if (!Sub.isUsable())
19441 return Sub;
19442 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19443 Sub.get());
19446 // [Clang extension]
19447 // -- If e has the form _Generic(...), the set of potential results is the
19448 // union of the sets of potential results of the associated expressions.
19449 case Expr::GenericSelectionExprClass: {
19450 auto *GSE = cast<GenericSelectionExpr>(E);
19452 SmallVector<Expr *, 4> AssocExprs;
19453 bool AnyChanged = false;
19454 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19455 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19456 if (AssocExpr.isInvalid())
19457 return ExprError();
19458 if (AssocExpr.isUsable()) {
19459 AssocExprs.push_back(AssocExpr.get());
19460 AnyChanged = true;
19461 } else {
19462 AssocExprs.push_back(OrigAssocExpr);
19466 void *ExOrTy = nullptr;
19467 bool IsExpr = GSE->isExprPredicate();
19468 if (IsExpr)
19469 ExOrTy = GSE->getControllingExpr();
19470 else
19471 ExOrTy = GSE->getControllingType();
19472 return AnyChanged ? S.CreateGenericSelectionExpr(
19473 GSE->getGenericLoc(), GSE->getDefaultLoc(),
19474 GSE->getRParenLoc(), IsExpr, ExOrTy,
19475 GSE->getAssocTypeSourceInfos(), AssocExprs)
19476 : ExprEmpty();
19479 // [Clang extension]
19480 // -- If e has the form __builtin_choose_expr(...), the set of potential
19481 // results is the union of the sets of potential results of the
19482 // second and third subexpressions.
19483 case Expr::ChooseExprClass: {
19484 auto *CE = cast<ChooseExpr>(E);
19486 ExprResult LHS = Rebuild(CE->getLHS());
19487 if (LHS.isInvalid())
19488 return ExprError();
19490 ExprResult RHS = Rebuild(CE->getLHS());
19491 if (RHS.isInvalid())
19492 return ExprError();
19494 if (!LHS.get() && !RHS.get())
19495 return ExprEmpty();
19496 if (!LHS.isUsable())
19497 LHS = CE->getLHS();
19498 if (!RHS.isUsable())
19499 RHS = CE->getRHS();
19501 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19502 RHS.get(), CE->getRParenLoc());
19505 // Step through non-syntactic nodes.
19506 case Expr::ConstantExprClass: {
19507 auto *CE = cast<ConstantExpr>(E);
19508 ExprResult Sub = Rebuild(CE->getSubExpr());
19509 if (!Sub.isUsable())
19510 return Sub;
19511 return ConstantExpr::Create(S.Context, Sub.get());
19514 // We could mostly rely on the recursive rebuilding to rebuild implicit
19515 // casts, but not at the top level, so rebuild them here.
19516 case Expr::ImplicitCastExprClass: {
19517 auto *ICE = cast<ImplicitCastExpr>(E);
19518 // Only step through the narrow set of cast kinds we expect to encounter.
19519 // Anything else suggests we've left the region in which potential results
19520 // can be found.
19521 switch (ICE->getCastKind()) {
19522 case CK_NoOp:
19523 case CK_DerivedToBase:
19524 case CK_UncheckedDerivedToBase: {
19525 ExprResult Sub = Rebuild(ICE->getSubExpr());
19526 if (!Sub.isUsable())
19527 return Sub;
19528 CXXCastPath Path(ICE->path());
19529 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19530 ICE->getValueKind(), &Path);
19533 default:
19534 break;
19536 break;
19539 default:
19540 break;
19543 // Can't traverse through this node. Nothing to do.
19544 return ExprEmpty();
19547 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19548 // Check whether the operand is or contains an object of non-trivial C union
19549 // type.
19550 if (E->getType().isVolatileQualified() &&
19551 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19552 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19553 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19554 Sema::NTCUC_LValueToRValueVolatile,
19555 NTCUK_Destruct|NTCUK_Copy);
19557 // C++2a [basic.def.odr]p4:
19558 // [...] an expression of non-volatile-qualified non-class type to which
19559 // the lvalue-to-rvalue conversion is applied [...]
19560 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19561 return E;
19563 ExprResult Result =
19564 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19565 if (Result.isInvalid())
19566 return ExprError();
19567 return Result.get() ? Result : E;
19570 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19571 Res = CorrectDelayedTyposInExpr(Res);
19573 if (!Res.isUsable())
19574 return Res;
19576 // If a constant-expression is a reference to a variable where we delay
19577 // deciding whether it is an odr-use, just assume we will apply the
19578 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19579 // (a non-type template argument), we have special handling anyway.
19580 return CheckLValueToRValueConversionOperand(Res.get());
19583 void Sema::CleanupVarDeclMarking() {
19584 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19585 // call.
19586 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19587 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19589 for (Expr *E : LocalMaybeODRUseExprs) {
19590 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19591 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19592 DRE->getLocation(), *this);
19593 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19594 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19595 *this);
19596 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19597 for (VarDecl *VD : *FP)
19598 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19599 } else {
19600 llvm_unreachable("Unexpected expression");
19604 assert(MaybeODRUseExprs.empty() &&
19605 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19608 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19609 ValueDecl *Var, Expr *E) {
19610 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19611 if (!VD)
19612 return;
19614 const bool RefersToEnclosingScope =
19615 (SemaRef.CurContext != VD->getDeclContext() &&
19616 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19617 if (RefersToEnclosingScope) {
19618 LambdaScopeInfo *const LSI =
19619 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19620 if (LSI && (!LSI->CallOperator ||
19621 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19622 // If a variable could potentially be odr-used, defer marking it so
19623 // until we finish analyzing the full expression for any
19624 // lvalue-to-rvalue
19625 // or discarded value conversions that would obviate odr-use.
19626 // Add it to the list of potential captures that will be analyzed
19627 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19628 // unless the variable is a reference that was initialized by a constant
19629 // expression (this will never need to be captured or odr-used).
19631 // FIXME: We can simplify this a lot after implementing P0588R1.
19632 assert(E && "Capture variable should be used in an expression.");
19633 if (!Var->getType()->isReferenceType() ||
19634 !VD->isUsableInConstantExpressions(SemaRef.Context))
19635 LSI->addPotentialCapture(E->IgnoreParens());
19640 static void DoMarkVarDeclReferenced(
19641 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19642 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19643 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19644 isa<FunctionParmPackExpr>(E)) &&
19645 "Invalid Expr argument to DoMarkVarDeclReferenced");
19646 Var->setReferenced();
19648 if (Var->isInvalidDecl())
19649 return;
19651 auto *MSI = Var->getMemberSpecializationInfo();
19652 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19653 : Var->getTemplateSpecializationKind();
19655 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19656 bool UsableInConstantExpr =
19657 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19659 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19660 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19663 // C++20 [expr.const]p12:
19664 // A variable [...] is needed for constant evaluation if it is [...] a
19665 // variable whose name appears as a potentially constant evaluated
19666 // expression that is either a contexpr variable or is of non-volatile
19667 // const-qualified integral type or of reference type
19668 bool NeededForConstantEvaluation =
19669 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19671 bool NeedDefinition =
19672 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19674 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19675 "Can't instantiate a partial template specialization.");
19677 // If this might be a member specialization of a static data member, check
19678 // the specialization is visible. We already did the checks for variable
19679 // template specializations when we created them.
19680 if (NeedDefinition && TSK != TSK_Undeclared &&
19681 !isa<VarTemplateSpecializationDecl>(Var))
19682 SemaRef.checkSpecializationVisibility(Loc, Var);
19684 // Perform implicit instantiation of static data members, static data member
19685 // templates of class templates, and variable template specializations. Delay
19686 // instantiations of variable templates, except for those that could be used
19687 // in a constant expression.
19688 if (NeedDefinition && isTemplateInstantiation(TSK)) {
19689 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19690 // instantiation declaration if a variable is usable in a constant
19691 // expression (among other cases).
19692 bool TryInstantiating =
19693 TSK == TSK_ImplicitInstantiation ||
19694 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19696 if (TryInstantiating) {
19697 SourceLocation PointOfInstantiation =
19698 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19699 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19700 if (FirstInstantiation) {
19701 PointOfInstantiation = Loc;
19702 if (MSI)
19703 MSI->setPointOfInstantiation(PointOfInstantiation);
19704 // FIXME: Notify listener.
19705 else
19706 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19709 if (UsableInConstantExpr) {
19710 // Do not defer instantiations of variables that could be used in a
19711 // constant expression.
19712 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19713 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19716 // Re-set the member to trigger a recomputation of the dependence bits
19717 // for the expression.
19718 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19719 DRE->setDecl(DRE->getDecl());
19720 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19721 ME->setMemberDecl(ME->getMemberDecl());
19722 } else if (FirstInstantiation) {
19723 SemaRef.PendingInstantiations
19724 .push_back(std::make_pair(Var, PointOfInstantiation));
19725 } else {
19726 bool Inserted = false;
19727 for (auto &I : SemaRef.SavedPendingInstantiations) {
19728 auto Iter = llvm::find_if(
19729 I, [Var](const Sema::PendingImplicitInstantiation &P) {
19730 return P.first == Var;
19732 if (Iter != I.end()) {
19733 SemaRef.PendingInstantiations.push_back(*Iter);
19734 I.erase(Iter);
19735 Inserted = true;
19736 break;
19740 // FIXME: For a specialization of a variable template, we don't
19741 // distinguish between "declaration and type implicitly instantiated"
19742 // and "implicit instantiation of definition requested", so we have
19743 // no direct way to avoid enqueueing the pending instantiation
19744 // multiple times.
19745 if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
19746 SemaRef.PendingInstantiations
19747 .push_back(std::make_pair(Var, PointOfInstantiation));
19752 // C++2a [basic.def.odr]p4:
19753 // A variable x whose name appears as a potentially-evaluated expression e
19754 // is odr-used by e unless
19755 // -- x is a reference that is usable in constant expressions
19756 // -- x is a variable of non-reference type that is usable in constant
19757 // expressions and has no mutable subobjects [FIXME], and e is an
19758 // element of the set of potential results of an expression of
19759 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19760 // conversion is applied
19761 // -- x is a variable of non-reference type, and e is an element of the set
19762 // of potential results of a discarded-value expression to which the
19763 // lvalue-to-rvalue conversion is not applied [FIXME]
19765 // We check the first part of the second bullet here, and
19766 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19767 // FIXME: To get the third bullet right, we need to delay this even for
19768 // variables that are not usable in constant expressions.
19770 // If we already know this isn't an odr-use, there's nothing more to do.
19771 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19772 if (DRE->isNonOdrUse())
19773 return;
19774 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19775 if (ME->isNonOdrUse())
19776 return;
19778 switch (OdrUse) {
19779 case OdrUseContext::None:
19780 // In some cases, a variable may not have been marked unevaluated, if it
19781 // appears in a defaukt initializer.
19782 assert((!E || isa<FunctionParmPackExpr>(E) ||
19783 SemaRef.isUnevaluatedContext()) &&
19784 "missing non-odr-use marking for unevaluated decl ref");
19785 break;
19787 case OdrUseContext::FormallyOdrUsed:
19788 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19789 // behavior.
19790 break;
19792 case OdrUseContext::Used:
19793 // If we might later find that this expression isn't actually an odr-use,
19794 // delay the marking.
19795 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19796 SemaRef.MaybeODRUseExprs.insert(E);
19797 else
19798 MarkVarDeclODRUsed(Var, Loc, SemaRef);
19799 break;
19801 case OdrUseContext::Dependent:
19802 // If this is a dependent context, we don't need to mark variables as
19803 // odr-used, but we may still need to track them for lambda capture.
19804 // FIXME: Do we also need to do this inside dependent typeid expressions
19805 // (which are modeled as unevaluated at this point)?
19806 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19807 break;
19811 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19812 BindingDecl *BD, Expr *E) {
19813 BD->setReferenced();
19815 if (BD->isInvalidDecl())
19816 return;
19818 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19819 if (OdrUse == OdrUseContext::Used) {
19820 QualType CaptureType, DeclRefType;
19821 SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19822 /*EllipsisLoc*/ SourceLocation(),
19823 /*BuildAndDiagnose*/ true, CaptureType,
19824 DeclRefType,
19825 /*FunctionScopeIndexToStopAt*/ nullptr);
19826 } else if (OdrUse == OdrUseContext::Dependent) {
19827 DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19831 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19832 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19835 // C++ [temp.dep.expr]p3:
19836 // An id-expression is type-dependent if it contains:
19837 // - an identifier associated by name lookup with an entity captured by copy
19838 // in a lambda-expression that has an explicit object parameter whose type
19839 // is dependent ([dcl.fct]),
19840 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
19841 Sema &SemaRef, ValueDecl *D, Expr *E) {
19842 auto *ID = dyn_cast<DeclRefExpr>(E);
19843 if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
19844 return;
19846 // If any enclosing lambda with a dependent explicit object parameter either
19847 // explicitly captures the variable by value, or has a capture default of '='
19848 // and does not capture the variable by reference, then the type of the DRE
19849 // is dependent on the type of that lambda's explicit object parameter.
19850 auto IsDependent = [&]() {
19851 for (auto *Scope : llvm::reverse(SemaRef.FunctionScopes)) {
19852 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
19853 if (!LSI)
19854 continue;
19856 if (LSI->Lambda && !LSI->Lambda->Encloses(SemaRef.CurContext) &&
19857 LSI->AfterParameterList)
19858 return false;
19860 const auto *MD = LSI->CallOperator;
19861 if (MD->getType().isNull())
19862 continue;
19864 const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
19865 if (!Ty || !MD->isExplicitObjectMemberFunction() ||
19866 !Ty->getParamType(0)->isDependentType())
19867 continue;
19869 if (auto *C = LSI->CaptureMap.count(D) ? &LSI->getCapture(D) : nullptr) {
19870 if (C->isCopyCapture())
19871 return true;
19872 continue;
19875 if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
19876 return true;
19878 return false;
19879 }();
19881 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
19882 IsDependent, SemaRef.getASTContext());
19885 static void
19886 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19887 bool MightBeOdrUse,
19888 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19889 if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
19890 SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
19892 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19893 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19894 if (SemaRef.getLangOpts().CPlusPlus)
19895 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19896 Var, E);
19897 return;
19900 if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19901 DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
19902 if (SemaRef.getLangOpts().CPlusPlus)
19903 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19904 Decl, E);
19905 return;
19907 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19909 // If this is a call to a method via a cast, also mark the method in the
19910 // derived class used in case codegen can devirtualize the call.
19911 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19912 if (!ME)
19913 return;
19914 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19915 if (!MD)
19916 return;
19917 // Only attempt to devirtualize if this is truly a virtual call.
19918 bool IsVirtualCall = MD->isVirtual() &&
19919 ME->performsVirtualDispatch(SemaRef.getLangOpts());
19920 if (!IsVirtualCall)
19921 return;
19923 // If it's possible to devirtualize the call, mark the called function
19924 // referenced.
19925 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19926 ME->getBase(), SemaRef.getLangOpts().AppleKext);
19927 if (DM)
19928 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19931 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19932 // TODO: update this with DR# once a defect report is filed.
19933 // C++11 defect. The address of a pure member should not be an ODR use, even
19934 // if it's a qualified reference.
19935 bool OdrUse = true;
19936 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19937 if (Method->isVirtual() &&
19938 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19939 OdrUse = false;
19941 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
19942 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
19943 !isImmediateFunctionContext() &&
19944 !isCheckingDefaultArgumentOrInitializer() &&
19945 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
19946 !FD->isDependentContext())
19947 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19949 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19950 RefsMinusAssignments);
19953 void Sema::MarkMemberReferenced(MemberExpr *E) {
19954 // C++11 [basic.def.odr]p2:
19955 // A non-overloaded function whose name appears as a potentially-evaluated
19956 // expression or a member of a set of candidate functions, if selected by
19957 // overload resolution when referred to from a potentially-evaluated
19958 // expression, is odr-used, unless it is a pure virtual function and its
19959 // name is not explicitly qualified.
19960 bool MightBeOdrUse = true;
19961 if (E->performsVirtualDispatch(getLangOpts())) {
19962 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19963 if (Method->isPureVirtual())
19964 MightBeOdrUse = false;
19966 SourceLocation Loc =
19967 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19968 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19969 RefsMinusAssignments);
19972 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19973 for (VarDecl *VD : *E)
19974 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19975 RefsMinusAssignments);
19978 /// Perform marking for a reference to an arbitrary declaration. It
19979 /// marks the declaration referenced, and performs odr-use checking for
19980 /// functions and variables. This method should not be used when building a
19981 /// normal expression which refers to a variable.
19982 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19983 bool MightBeOdrUse) {
19984 if (MightBeOdrUse) {
19985 if (auto *VD = dyn_cast<VarDecl>(D)) {
19986 MarkVariableReferenced(Loc, VD);
19987 return;
19990 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19991 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19992 return;
19994 D->setReferenced();
19997 namespace {
19998 // Mark all of the declarations used by a type as referenced.
19999 // FIXME: Not fully implemented yet! We need to have a better understanding
20000 // of when we're entering a context we should not recurse into.
20001 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20002 // TreeTransforms rebuilding the type in a new context. Rather than
20003 // duplicating the TreeTransform logic, we should consider reusing it here.
20004 // Currently that causes problems when rebuilding LambdaExprs.
20005 class MarkReferencedDecls : public DynamicRecursiveASTVisitor {
20006 Sema &S;
20007 SourceLocation Loc;
20009 public:
20010 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) {}
20012 bool TraverseTemplateArgument(const TemplateArgument &Arg) override;
20016 bool MarkReferencedDecls::TraverseTemplateArgument(
20017 const TemplateArgument &Arg) {
20019 // A non-type template argument is a constant-evaluated context.
20020 EnterExpressionEvaluationContext Evaluated(
20021 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20022 if (Arg.getKind() == TemplateArgument::Declaration) {
20023 if (Decl *D = Arg.getAsDecl())
20024 S.MarkAnyDeclReferenced(Loc, D, true);
20025 } else if (Arg.getKind() == TemplateArgument::Expression) {
20026 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20030 return DynamicRecursiveASTVisitor::TraverseTemplateArgument(Arg);
20033 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20034 MarkReferencedDecls Marker(*this, Loc);
20035 Marker.TraverseType(T);
20038 namespace {
20039 /// Helper class that marks all of the declarations referenced by
20040 /// potentially-evaluated subexpressions as "referenced".
20041 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20042 public:
20043 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20044 bool SkipLocalVariables;
20045 ArrayRef<const Expr *> StopAt;
20047 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20048 ArrayRef<const Expr *> StopAt)
20049 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20051 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20052 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20055 void Visit(Expr *E) {
20056 if (llvm::is_contained(StopAt, E))
20057 return;
20058 Inherited::Visit(E);
20061 void VisitConstantExpr(ConstantExpr *E) {
20062 // Don't mark declarations within a ConstantExpression, as this expression
20063 // will be evaluated and folded to a value.
20066 void VisitDeclRefExpr(DeclRefExpr *E) {
20067 // If we were asked not to visit local variables, don't.
20068 if (SkipLocalVariables) {
20069 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20070 if (VD->hasLocalStorage())
20071 return;
20074 // FIXME: This can trigger the instantiation of the initializer of a
20075 // variable, which can cause the expression to become value-dependent
20076 // or error-dependent. Do we need to propagate the new dependence bits?
20077 S.MarkDeclRefReferenced(E);
20080 void VisitMemberExpr(MemberExpr *E) {
20081 S.MarkMemberReferenced(E);
20082 Visit(E->getBase());
20085 } // namespace
20087 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20088 bool SkipLocalVariables,
20089 ArrayRef<const Expr*> StopAt) {
20090 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20093 /// Emit a diagnostic when statements are reachable.
20094 /// FIXME: check for reachability even in expressions for which we don't build a
20095 /// CFG (eg, in the initializer of a global or in a constant expression).
20096 /// For example,
20097 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20098 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20099 const PartialDiagnostic &PD) {
20100 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20101 if (!FunctionScopes.empty())
20102 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20103 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20104 return true;
20107 // The initializer of a constexpr variable or of the first declaration of a
20108 // static data member is not syntactically a constant evaluated constant,
20109 // but nonetheless is always required to be a constant expression, so we
20110 // can skip diagnosing.
20111 // FIXME: Using the mangling context here is a hack.
20112 if (auto *VD = dyn_cast_or_null<VarDecl>(
20113 ExprEvalContexts.back().ManglingContextDecl)) {
20114 if (VD->isConstexpr() ||
20115 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20116 return false;
20117 // FIXME: For any other kind of variable, we should build a CFG for its
20118 // initializer and check whether the context in question is reachable.
20121 Diag(Loc, PD);
20122 return true;
20125 /// Emit a diagnostic that describes an effect on the run-time behavior
20126 /// of the program being compiled.
20128 /// This routine emits the given diagnostic when the code currently being
20129 /// type-checked is "potentially evaluated", meaning that there is a
20130 /// possibility that the code will actually be executable. Code in sizeof()
20131 /// expressions, code used only during overload resolution, etc., are not
20132 /// potentially evaluated. This routine will suppress such diagnostics or,
20133 /// in the absolutely nutty case of potentially potentially evaluated
20134 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20135 /// later.
20137 /// This routine should be used for all diagnostics that describe the run-time
20138 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20139 /// Failure to do so will likely result in spurious diagnostics or failures
20140 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20141 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20142 const PartialDiagnostic &PD) {
20144 if (ExprEvalContexts.back().isDiscardedStatementContext())
20145 return false;
20147 switch (ExprEvalContexts.back().Context) {
20148 case ExpressionEvaluationContext::Unevaluated:
20149 case ExpressionEvaluationContext::UnevaluatedList:
20150 case ExpressionEvaluationContext::UnevaluatedAbstract:
20151 case ExpressionEvaluationContext::DiscardedStatement:
20152 // The argument will never be evaluated, so don't complain.
20153 break;
20155 case ExpressionEvaluationContext::ConstantEvaluated:
20156 case ExpressionEvaluationContext::ImmediateFunctionContext:
20157 // Relevant diagnostics should be produced by constant evaluation.
20158 break;
20160 case ExpressionEvaluationContext::PotentiallyEvaluated:
20161 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20162 return DiagIfReachable(Loc, Stmts, PD);
20165 return false;
20168 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20169 const PartialDiagnostic &PD) {
20170 return DiagRuntimeBehavior(
20171 Loc, Statement ? llvm::ArrayRef(Statement) : llvm::ArrayRef<Stmt *>(),
20172 PD);
20175 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20176 CallExpr *CE, FunctionDecl *FD) {
20177 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20178 return false;
20180 // If we're inside a decltype's expression, don't check for a valid return
20181 // type or construct temporaries until we know whether this is the last call.
20182 if (ExprEvalContexts.back().ExprContext ==
20183 ExpressionEvaluationContextRecord::EK_Decltype) {
20184 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20185 return false;
20188 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20189 FunctionDecl *FD;
20190 CallExpr *CE;
20192 public:
20193 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20194 : FD(FD), CE(CE) { }
20196 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20197 if (!FD) {
20198 S.Diag(Loc, diag::err_call_incomplete_return)
20199 << T << CE->getSourceRange();
20200 return;
20203 S.Diag(Loc, diag::err_call_function_incomplete_return)
20204 << CE->getSourceRange() << FD << T;
20205 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20206 << FD->getDeclName();
20208 } Diagnoser(FD, CE);
20210 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20211 return true;
20213 return false;
20216 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20217 // will prevent this condition from triggering, which is what we want.
20218 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20219 SourceLocation Loc;
20221 unsigned diagnostic = diag::warn_condition_is_assignment;
20222 bool IsOrAssign = false;
20224 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20225 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20226 return;
20228 IsOrAssign = Op->getOpcode() == BO_OrAssign;
20230 // Greylist some idioms by putting them into a warning subcategory.
20231 if (ObjCMessageExpr *ME
20232 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20233 Selector Sel = ME->getSelector();
20235 // self = [<foo> init...]
20236 if (ObjC().isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20237 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20239 // <foo> = [<bar> nextObject]
20240 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20241 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20244 Loc = Op->getOperatorLoc();
20245 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20246 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20247 return;
20249 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20250 Loc = Op->getOperatorLoc();
20251 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20252 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20253 else {
20254 // Not an assignment.
20255 return;
20258 Diag(Loc, diagnostic) << E->getSourceRange();
20260 SourceLocation Open = E->getBeginLoc();
20261 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20262 Diag(Loc, diag::note_condition_assign_silence)
20263 << FixItHint::CreateInsertion(Open, "(")
20264 << FixItHint::CreateInsertion(Close, ")");
20266 if (IsOrAssign)
20267 Diag(Loc, diag::note_condition_or_assign_to_comparison)
20268 << FixItHint::CreateReplacement(Loc, "!=");
20269 else
20270 Diag(Loc, diag::note_condition_assign_to_comparison)
20271 << FixItHint::CreateReplacement(Loc, "==");
20274 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20275 // Don't warn if the parens came from a macro.
20276 SourceLocation parenLoc = ParenE->getBeginLoc();
20277 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20278 return;
20279 // Don't warn for dependent expressions.
20280 if (ParenE->isTypeDependent())
20281 return;
20283 Expr *E = ParenE->IgnoreParens();
20284 if (ParenE->isProducedByFoldExpansion() && ParenE->getSubExpr() == E)
20285 return;
20287 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20288 if (opE->getOpcode() == BO_EQ &&
20289 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20290 == Expr::MLV_Valid) {
20291 SourceLocation Loc = opE->getOperatorLoc();
20293 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20294 SourceRange ParenERange = ParenE->getSourceRange();
20295 Diag(Loc, diag::note_equality_comparison_silence)
20296 << FixItHint::CreateRemoval(ParenERange.getBegin())
20297 << FixItHint::CreateRemoval(ParenERange.getEnd());
20298 Diag(Loc, diag::note_equality_comparison_to_assign)
20299 << FixItHint::CreateReplacement(Loc, "=");
20303 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20304 bool IsConstexpr) {
20305 DiagnoseAssignmentAsCondition(E);
20306 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20307 DiagnoseEqualityWithExtraParens(parenE);
20309 ExprResult result = CheckPlaceholderExpr(E);
20310 if (result.isInvalid()) return ExprError();
20311 E = result.get();
20313 if (!E->isTypeDependent()) {
20314 if (getLangOpts().CPlusPlus)
20315 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20317 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20318 if (ERes.isInvalid())
20319 return ExprError();
20320 E = ERes.get();
20322 QualType T = E->getType();
20323 if (!T->isScalarType()) { // C99 6.8.4.1p1
20324 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20325 << T << E->getSourceRange();
20326 return ExprError();
20328 CheckBoolLikeConversion(E, Loc);
20331 return E;
20334 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20335 Expr *SubExpr, ConditionKind CK,
20336 bool MissingOK) {
20337 // MissingOK indicates whether having no condition expression is valid
20338 // (for loop) or invalid (e.g. while loop).
20339 if (!SubExpr)
20340 return MissingOK ? ConditionResult() : ConditionError();
20342 ExprResult Cond;
20343 switch (CK) {
20344 case ConditionKind::Boolean:
20345 Cond = CheckBooleanCondition(Loc, SubExpr);
20346 break;
20348 case ConditionKind::ConstexprIf:
20349 Cond = CheckBooleanCondition(Loc, SubExpr, true);
20350 break;
20352 case ConditionKind::Switch:
20353 Cond = CheckSwitchCondition(Loc, SubExpr);
20354 break;
20356 if (Cond.isInvalid()) {
20357 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20358 {SubExpr}, PreferredConditionType(CK));
20359 if (!Cond.get())
20360 return ConditionError();
20362 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20363 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20364 if (!FullExpr.get())
20365 return ConditionError();
20367 return ConditionResult(*this, nullptr, FullExpr,
20368 CK == ConditionKind::ConstexprIf);
20371 namespace {
20372 /// A visitor for rebuilding a call to an __unknown_any expression
20373 /// to have an appropriate type.
20374 struct RebuildUnknownAnyFunction
20375 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20377 Sema &S;
20379 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20381 ExprResult VisitStmt(Stmt *S) {
20382 llvm_unreachable("unexpected statement!");
20385 ExprResult VisitExpr(Expr *E) {
20386 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20387 << E->getSourceRange();
20388 return ExprError();
20391 /// Rebuild an expression which simply semantically wraps another
20392 /// expression which it shares the type and value kind of.
20393 template <class T> ExprResult rebuildSugarExpr(T *E) {
20394 ExprResult SubResult = Visit(E->getSubExpr());
20395 if (SubResult.isInvalid()) return ExprError();
20397 Expr *SubExpr = SubResult.get();
20398 E->setSubExpr(SubExpr);
20399 E->setType(SubExpr->getType());
20400 E->setValueKind(SubExpr->getValueKind());
20401 assert(E->getObjectKind() == OK_Ordinary);
20402 return E;
20405 ExprResult VisitParenExpr(ParenExpr *E) {
20406 return rebuildSugarExpr(E);
20409 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20410 return rebuildSugarExpr(E);
20413 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20414 ExprResult SubResult = Visit(E->getSubExpr());
20415 if (SubResult.isInvalid()) return ExprError();
20417 Expr *SubExpr = SubResult.get();
20418 E->setSubExpr(SubExpr);
20419 E->setType(S.Context.getPointerType(SubExpr->getType()));
20420 assert(E->isPRValue());
20421 assert(E->getObjectKind() == OK_Ordinary);
20422 return E;
20425 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20426 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20428 E->setType(VD->getType());
20430 assert(E->isPRValue());
20431 if (S.getLangOpts().CPlusPlus &&
20432 !(isa<CXXMethodDecl>(VD) &&
20433 cast<CXXMethodDecl>(VD)->isInstance()))
20434 E->setValueKind(VK_LValue);
20436 return E;
20439 ExprResult VisitMemberExpr(MemberExpr *E) {
20440 return resolveDecl(E, E->getMemberDecl());
20443 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20444 return resolveDecl(E, E->getDecl());
20449 /// Given a function expression of unknown-any type, try to rebuild it
20450 /// to have a function type.
20451 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20452 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20453 if (Result.isInvalid()) return ExprError();
20454 return S.DefaultFunctionArrayConversion(Result.get());
20457 namespace {
20458 /// A visitor for rebuilding an expression of type __unknown_anytype
20459 /// into one which resolves the type directly on the referring
20460 /// expression. Strict preservation of the original source
20461 /// structure is not a goal.
20462 struct RebuildUnknownAnyExpr
20463 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20465 Sema &S;
20467 /// The current destination type.
20468 QualType DestType;
20470 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20471 : S(S), DestType(CastType) {}
20473 ExprResult VisitStmt(Stmt *S) {
20474 llvm_unreachable("unexpected statement!");
20477 ExprResult VisitExpr(Expr *E) {
20478 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20479 << E->getSourceRange();
20480 return ExprError();
20483 ExprResult VisitCallExpr(CallExpr *E);
20484 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20486 /// Rebuild an expression which simply semantically wraps another
20487 /// expression which it shares the type and value kind of.
20488 template <class T> ExprResult rebuildSugarExpr(T *E) {
20489 ExprResult SubResult = Visit(E->getSubExpr());
20490 if (SubResult.isInvalid()) return ExprError();
20491 Expr *SubExpr = SubResult.get();
20492 E->setSubExpr(SubExpr);
20493 E->setType(SubExpr->getType());
20494 E->setValueKind(SubExpr->getValueKind());
20495 assert(E->getObjectKind() == OK_Ordinary);
20496 return E;
20499 ExprResult VisitParenExpr(ParenExpr *E) {
20500 return rebuildSugarExpr(E);
20503 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20504 return rebuildSugarExpr(E);
20507 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20508 const PointerType *Ptr = DestType->getAs<PointerType>();
20509 if (!Ptr) {
20510 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20511 << E->getSourceRange();
20512 return ExprError();
20515 if (isa<CallExpr>(E->getSubExpr())) {
20516 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20517 << E->getSourceRange();
20518 return ExprError();
20521 assert(E->isPRValue());
20522 assert(E->getObjectKind() == OK_Ordinary);
20523 E->setType(DestType);
20525 // Build the sub-expression as if it were an object of the pointee type.
20526 DestType = Ptr->getPointeeType();
20527 ExprResult SubResult = Visit(E->getSubExpr());
20528 if (SubResult.isInvalid()) return ExprError();
20529 E->setSubExpr(SubResult.get());
20530 return E;
20533 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20535 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20537 ExprResult VisitMemberExpr(MemberExpr *E) {
20538 return resolveDecl(E, E->getMemberDecl());
20541 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20542 return resolveDecl(E, E->getDecl());
20547 /// Rebuilds a call expression which yielded __unknown_anytype.
20548 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20549 Expr *CalleeExpr = E->getCallee();
20551 enum FnKind {
20552 FK_MemberFunction,
20553 FK_FunctionPointer,
20554 FK_BlockPointer
20557 FnKind Kind;
20558 QualType CalleeType = CalleeExpr->getType();
20559 if (CalleeType == S.Context.BoundMemberTy) {
20560 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20561 Kind = FK_MemberFunction;
20562 CalleeType = Expr::findBoundMemberType(CalleeExpr);
20563 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20564 CalleeType = Ptr->getPointeeType();
20565 Kind = FK_FunctionPointer;
20566 } else {
20567 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20568 Kind = FK_BlockPointer;
20570 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20572 // Verify that this is a legal result type of a function.
20573 if (DestType->isArrayType() || DestType->isFunctionType()) {
20574 unsigned diagID = diag::err_func_returning_array_function;
20575 if (Kind == FK_BlockPointer)
20576 diagID = diag::err_block_returning_array_function;
20578 S.Diag(E->getExprLoc(), diagID)
20579 << DestType->isFunctionType() << DestType;
20580 return ExprError();
20583 // Otherwise, go ahead and set DestType as the call's result.
20584 E->setType(DestType.getNonLValueExprType(S.Context));
20585 E->setValueKind(Expr::getValueKindForType(DestType));
20586 assert(E->getObjectKind() == OK_Ordinary);
20588 // Rebuild the function type, replacing the result type with DestType.
20589 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20590 if (Proto) {
20591 // __unknown_anytype(...) is a special case used by the debugger when
20592 // it has no idea what a function's signature is.
20594 // We want to build this call essentially under the K&R
20595 // unprototyped rules, but making a FunctionNoProtoType in C++
20596 // would foul up all sorts of assumptions. However, we cannot
20597 // simply pass all arguments as variadic arguments, nor can we
20598 // portably just call the function under a non-variadic type; see
20599 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20600 // However, it turns out that in practice it is generally safe to
20601 // call a function declared as "A foo(B,C,D);" under the prototype
20602 // "A foo(B,C,D,...);". The only known exception is with the
20603 // Windows ABI, where any variadic function is implicitly cdecl
20604 // regardless of its normal CC. Therefore we change the parameter
20605 // types to match the types of the arguments.
20607 // This is a hack, but it is far superior to moving the
20608 // corresponding target-specific code from IR-gen to Sema/AST.
20610 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20611 SmallVector<QualType, 8> ArgTypes;
20612 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20613 ArgTypes.reserve(E->getNumArgs());
20614 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20615 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20617 ParamTypes = ArgTypes;
20619 DestType = S.Context.getFunctionType(DestType, ParamTypes,
20620 Proto->getExtProtoInfo());
20621 } else {
20622 DestType = S.Context.getFunctionNoProtoType(DestType,
20623 FnType->getExtInfo());
20626 // Rebuild the appropriate pointer-to-function type.
20627 switch (Kind) {
20628 case FK_MemberFunction:
20629 // Nothing to do.
20630 break;
20632 case FK_FunctionPointer:
20633 DestType = S.Context.getPointerType(DestType);
20634 break;
20636 case FK_BlockPointer:
20637 DestType = S.Context.getBlockPointerType(DestType);
20638 break;
20641 // Finally, we can recurse.
20642 ExprResult CalleeResult = Visit(CalleeExpr);
20643 if (!CalleeResult.isUsable()) return ExprError();
20644 E->setCallee(CalleeResult.get());
20646 // Bind a temporary if necessary.
20647 return S.MaybeBindToTemporary(E);
20650 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20651 // Verify that this is a legal result type of a call.
20652 if (DestType->isArrayType() || DestType->isFunctionType()) {
20653 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20654 << DestType->isFunctionType() << DestType;
20655 return ExprError();
20658 // Rewrite the method result type if available.
20659 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20660 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20661 Method->setReturnType(DestType);
20664 // Change the type of the message.
20665 E->setType(DestType.getNonReferenceType());
20666 E->setValueKind(Expr::getValueKindForType(DestType));
20668 return S.MaybeBindToTemporary(E);
20671 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20672 // The only case we should ever see here is a function-to-pointer decay.
20673 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20674 assert(E->isPRValue());
20675 assert(E->getObjectKind() == OK_Ordinary);
20677 E->setType(DestType);
20679 // Rebuild the sub-expression as the pointee (function) type.
20680 DestType = DestType->castAs<PointerType>()->getPointeeType();
20682 ExprResult Result = Visit(E->getSubExpr());
20683 if (!Result.isUsable()) return ExprError();
20685 E->setSubExpr(Result.get());
20686 return E;
20687 } else if (E->getCastKind() == CK_LValueToRValue) {
20688 assert(E->isPRValue());
20689 assert(E->getObjectKind() == OK_Ordinary);
20691 assert(isa<BlockPointerType>(E->getType()));
20693 E->setType(DestType);
20695 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20696 DestType = S.Context.getLValueReferenceType(DestType);
20698 ExprResult Result = Visit(E->getSubExpr());
20699 if (!Result.isUsable()) return ExprError();
20701 E->setSubExpr(Result.get());
20702 return E;
20703 } else {
20704 llvm_unreachable("Unhandled cast type!");
20708 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20709 ExprValueKind ValueKind = VK_LValue;
20710 QualType Type = DestType;
20712 // We know how to make this work for certain kinds of decls:
20714 // - functions
20715 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20716 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20717 DestType = Ptr->getPointeeType();
20718 ExprResult Result = resolveDecl(E, VD);
20719 if (Result.isInvalid()) return ExprError();
20720 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20721 VK_PRValue);
20724 if (!Type->isFunctionType()) {
20725 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20726 << VD << E->getSourceRange();
20727 return ExprError();
20729 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20730 // We must match the FunctionDecl's type to the hack introduced in
20731 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20732 // type. See the lengthy commentary in that routine.
20733 QualType FDT = FD->getType();
20734 const FunctionType *FnType = FDT->castAs<FunctionType>();
20735 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20736 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20737 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20738 SourceLocation Loc = FD->getLocation();
20739 FunctionDecl *NewFD = FunctionDecl::Create(
20740 S.Context, FD->getDeclContext(), Loc, Loc,
20741 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20742 SC_None, S.getCurFPFeatures().isFPConstrained(),
20743 false /*isInlineSpecified*/, FD->hasPrototype(),
20744 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20746 if (FD->getQualifier())
20747 NewFD->setQualifierInfo(FD->getQualifierLoc());
20749 SmallVector<ParmVarDecl*, 16> Params;
20750 for (const auto &AI : FT->param_types()) {
20751 ParmVarDecl *Param =
20752 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20753 Param->setScopeInfo(0, Params.size());
20754 Params.push_back(Param);
20756 NewFD->setParams(Params);
20757 DRE->setDecl(NewFD);
20758 VD = DRE->getDecl();
20762 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20763 if (MD->isInstance()) {
20764 ValueKind = VK_PRValue;
20765 Type = S.Context.BoundMemberTy;
20768 // Function references aren't l-values in C.
20769 if (!S.getLangOpts().CPlusPlus)
20770 ValueKind = VK_PRValue;
20772 // - variables
20773 } else if (isa<VarDecl>(VD)) {
20774 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20775 Type = RefTy->getPointeeType();
20776 } else if (Type->isFunctionType()) {
20777 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20778 << VD << E->getSourceRange();
20779 return ExprError();
20782 // - nothing else
20783 } else {
20784 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20785 << VD << E->getSourceRange();
20786 return ExprError();
20789 // Modifying the declaration like this is friendly to IR-gen but
20790 // also really dangerous.
20791 VD->setType(DestType);
20792 E->setType(Type);
20793 E->setValueKind(ValueKind);
20794 return E;
20797 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20798 Expr *CastExpr, CastKind &CastKind,
20799 ExprValueKind &VK, CXXCastPath &Path) {
20800 // The type we're casting to must be either void or complete.
20801 if (!CastType->isVoidType() &&
20802 RequireCompleteType(TypeRange.getBegin(), CastType,
20803 diag::err_typecheck_cast_to_incomplete))
20804 return ExprError();
20806 // Rewrite the casted expression from scratch.
20807 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20808 if (!result.isUsable()) return ExprError();
20810 CastExpr = result.get();
20811 VK = CastExpr->getValueKind();
20812 CastKind = CK_NoOp;
20814 return CastExpr;
20817 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20818 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20821 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20822 Expr *arg, QualType &paramType) {
20823 // If the syntactic form of the argument is not an explicit cast of
20824 // any sort, just do default argument promotion.
20825 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20826 if (!castArg) {
20827 ExprResult result = DefaultArgumentPromotion(arg);
20828 if (result.isInvalid()) return ExprError();
20829 paramType = result.get()->getType();
20830 return result;
20833 // Otherwise, use the type that was written in the explicit cast.
20834 assert(!arg->hasPlaceholderType());
20835 paramType = castArg->getTypeAsWritten();
20837 // Copy-initialize a parameter of that type.
20838 InitializedEntity entity =
20839 InitializedEntity::InitializeParameter(Context, paramType,
20840 /*consumed*/ false);
20841 return PerformCopyInitialization(entity, callLoc, arg);
20844 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20845 Expr *orig = E;
20846 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20847 while (true) {
20848 E = E->IgnoreParenImpCasts();
20849 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20850 E = call->getCallee();
20851 diagID = diag::err_uncasted_call_of_unknown_any;
20852 } else {
20853 break;
20857 SourceLocation loc;
20858 NamedDecl *d;
20859 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20860 loc = ref->getLocation();
20861 d = ref->getDecl();
20862 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20863 loc = mem->getMemberLoc();
20864 d = mem->getMemberDecl();
20865 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20866 diagID = diag::err_uncasted_call_of_unknown_any;
20867 loc = msg->getSelectorStartLoc();
20868 d = msg->getMethodDecl();
20869 if (!d) {
20870 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20871 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20872 << orig->getSourceRange();
20873 return ExprError();
20875 } else {
20876 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20877 << E->getSourceRange();
20878 return ExprError();
20881 S.Diag(loc, diagID) << d << orig->getSourceRange();
20883 // Never recoverable.
20884 return ExprError();
20887 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20888 if (!Context.isDependenceAllowed()) {
20889 // C cannot handle TypoExpr nodes on either side of a binop because it
20890 // doesn't handle dependent types properly, so make sure any TypoExprs have
20891 // been dealt with before checking the operands.
20892 ExprResult Result = CorrectDelayedTyposInExpr(E);
20893 if (!Result.isUsable()) return ExprError();
20894 E = Result.get();
20897 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20898 if (!placeholderType) return E;
20900 switch (placeholderType->getKind()) {
20901 case BuiltinType::UnresolvedTemplate: {
20902 auto *ULE = cast<UnresolvedLookupExpr>(E);
20903 const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
20904 // There's only one FoundDecl for UnresolvedTemplate type. See
20905 // BuildTemplateIdExpr.
20906 NamedDecl *Temp = *ULE->decls_begin();
20907 const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Temp);
20909 if (NestedNameSpecifierLoc Loc = ULE->getQualifierLoc(); Loc.hasQualifier())
20910 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20911 << Loc.getNestedNameSpecifier() << NameInfo.getName().getAsString()
20912 << Loc.getSourceRange() << IsTypeAliasTemplateDecl;
20913 else
20914 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20915 << "" << NameInfo.getName().getAsString() << ULE->getSourceRange()
20916 << IsTypeAliasTemplateDecl;
20917 Diag(Temp->getLocation(), diag::note_referenced_type_template)
20918 << IsTypeAliasTemplateDecl;
20920 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
20923 // Overloaded expressions.
20924 case BuiltinType::Overload: {
20925 // Try to resolve a single function template specialization.
20926 // This is obligatory.
20927 ExprResult Result = E;
20928 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20929 return Result;
20931 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20932 // leaves Result unchanged on failure.
20933 Result = E;
20934 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20935 return Result;
20937 // If that failed, try to recover with a call.
20938 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20939 /*complain*/ true);
20940 return Result;
20943 // Bound member functions.
20944 case BuiltinType::BoundMember: {
20945 ExprResult result = E;
20946 const Expr *BME = E->IgnoreParens();
20947 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20948 // Try to give a nicer diagnostic if it is a bound member that we recognize.
20949 if (isa<CXXPseudoDestructorExpr>(BME)) {
20950 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20951 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20952 if (ME->getMemberNameInfo().getName().getNameKind() ==
20953 DeclarationName::CXXDestructorName)
20954 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20956 tryToRecoverWithCall(result, PD,
20957 /*complain*/ true);
20958 return result;
20961 // ARC unbridged casts.
20962 case BuiltinType::ARCUnbridgedCast: {
20963 Expr *realCast = ObjC().stripARCUnbridgedCast(E);
20964 ObjC().diagnoseARCUnbridgedCast(realCast);
20965 return realCast;
20968 // Expressions of unknown type.
20969 case BuiltinType::UnknownAny:
20970 return diagnoseUnknownAnyExpr(*this, E);
20972 // Pseudo-objects.
20973 case BuiltinType::PseudoObject:
20974 return PseudoObject().checkRValue(E);
20976 case BuiltinType::BuiltinFn: {
20977 // Accept __noop without parens by implicitly converting it to a call expr.
20978 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20979 if (DRE) {
20980 auto *FD = cast<FunctionDecl>(DRE->getDecl());
20981 unsigned BuiltinID = FD->getBuiltinID();
20982 if (BuiltinID == Builtin::BI__noop) {
20983 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20984 CK_BuiltinFnToFnPtr)
20985 .get();
20986 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20987 VK_PRValue, SourceLocation(),
20988 FPOptionsOverride());
20991 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20992 // Any use of these other than a direct call is ill-formed as of C++20,
20993 // because they are not addressable functions. In earlier language
20994 // modes, warn and force an instantiation of the real body.
20995 Diag(E->getBeginLoc(),
20996 getLangOpts().CPlusPlus20
20997 ? diag::err_use_of_unaddressable_function
20998 : diag::warn_cxx20_compat_use_of_unaddressable_function);
20999 if (FD->isImplicitlyInstantiable()) {
21000 // Require a definition here because a normal attempt at
21001 // instantiation for a builtin will be ignored, and we won't try
21002 // again later. We assume that the definition of the template
21003 // precedes this use.
21004 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21005 /*Recursive=*/false,
21006 /*DefinitionRequired=*/true,
21007 /*AtEndOfTU=*/false);
21009 // Produce a properly-typed reference to the function.
21010 CXXScopeSpec SS;
21011 SS.Adopt(DRE->getQualifierLoc());
21012 TemplateArgumentListInfo TemplateArgs;
21013 DRE->copyTemplateArgumentsInto(TemplateArgs);
21014 return BuildDeclRefExpr(
21015 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21016 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21017 DRE->getTemplateKeywordLoc(),
21018 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21022 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21023 return ExprError();
21026 case BuiltinType::IncompleteMatrixIdx:
21027 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21028 ->getRowIdx()
21029 ->getBeginLoc(),
21030 diag::err_matrix_incomplete_index);
21031 return ExprError();
21033 // Expressions of unknown type.
21034 case BuiltinType::ArraySection:
21035 Diag(E->getBeginLoc(), diag::err_array_section_use)
21036 << cast<ArraySectionExpr>(E)->isOMPArraySection();
21037 return ExprError();
21039 // Expressions of unknown type.
21040 case BuiltinType::OMPArrayShaping:
21041 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21043 case BuiltinType::OMPIterator:
21044 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21046 // Everything else should be impossible.
21047 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21048 case BuiltinType::Id:
21049 #include "clang/Basic/OpenCLImageTypes.def"
21050 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21051 case BuiltinType::Id:
21052 #include "clang/Basic/OpenCLExtensionTypes.def"
21053 #define SVE_TYPE(Name, Id, SingletonId) \
21054 case BuiltinType::Id:
21055 #include "clang/Basic/AArch64SVEACLETypes.def"
21056 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21057 case BuiltinType::Id:
21058 #include "clang/Basic/PPCTypes.def"
21059 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21060 #include "clang/Basic/RISCVVTypes.def"
21061 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21062 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21063 #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id:
21064 #include "clang/Basic/AMDGPUTypes.def"
21065 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21066 #include "clang/Basic/HLSLIntangibleTypes.def"
21067 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21068 #define PLACEHOLDER_TYPE(Id, SingletonId)
21069 #include "clang/AST/BuiltinTypes.def"
21070 break;
21073 llvm_unreachable("invalid placeholder type!");
21076 bool Sema::CheckCaseExpression(Expr *E) {
21077 if (E->isTypeDependent())
21078 return true;
21079 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21080 return E->getType()->isIntegralOrEnumerationType();
21081 return false;
21084 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21085 ArrayRef<Expr *> SubExprs, QualType T) {
21086 if (!Context.getLangOpts().RecoveryAST)
21087 return ExprError();
21089 if (isSFINAEContext())
21090 return ExprError();
21092 if (T.isNull() || T->isUndeducedType() ||
21093 !Context.getLangOpts().RecoveryASTType)
21094 // We don't know the concrete type, fallback to dependent type.
21095 T = Context.DependentTy;
21097 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);