1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis member access expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/DeclCXX.h"
13 #include "clang/AST/DeclObjC.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Overload.h"
20 #include "clang/Sema/Scope.h"
21 #include "clang/Sema/ScopeInfo.h"
22 #include "clang/Sema/SemaObjC.h"
23 #include "clang/Sema/SemaOpenMP.h"
25 using namespace clang
;
28 typedef llvm::SmallPtrSet
<const CXXRecordDecl
*, 4> BaseSet
;
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema
&SemaRef
, CXXRecordDecl
*Record
,
33 const BaseSet
&Bases
) {
34 auto BaseIsNotInSet
= [&Bases
](const CXXRecordDecl
*Base
) {
35 return !Bases
.count(Base
->getCanonicalDecl());
37 return BaseIsNotInSet(Record
) && Record
->forallBases(BaseIsNotInSet
);
41 /// The reference is definitely not an instance member access.
44 /// The reference may be an implicit instance member access.
47 /// The reference may be to an instance member, but it might be invalid if
48 /// so, because the context is not an instance method.
49 IMA_Mixed_StaticOrExplicitContext
,
51 /// The reference may be to an instance member, but it is invalid if
52 /// so, because the context is from an unrelated class.
55 /// The reference is definitely an implicit instance member access.
58 /// The reference may be to an unresolved using declaration.
61 /// The reference is a contextually-permitted abstract member reference.
64 /// Whether the context is static is dependent on the enclosing template (i.e.
65 /// in a dependent class scope explicit specialization).
68 /// The reference may be to an unresolved using declaration and the
69 /// context is not an instance method.
70 IMA_Unresolved_StaticOrExplicitContext
,
72 // The reference refers to a field which is not a member of the containing
73 // class, which is allowed because we're in C++11 mode and the context is
75 IMA_Field_Uneval_Context
,
77 /// All possible referrents are instance members and the current
78 /// context is not an instance method.
79 IMA_Error_StaticOrExplicitContext
,
81 /// All possible referrents are instance members of an unrelated
86 /// The given lookup names class member(s) and is not being used for
87 /// an address-of-member expression. Classify the type of access
88 /// according to whether it's possible that this reference names an
89 /// instance member. This is best-effort in dependent contexts; it is okay to
90 /// conservatively answer "yes", in which case some errors will simply
91 /// not be caught until template-instantiation.
92 static IMAKind
ClassifyImplicitMemberAccess(Sema
&SemaRef
,
93 const LookupResult
&R
) {
94 assert(!R
.empty() && (*R
.begin())->isCXXClassMember());
96 DeclContext
*DC
= SemaRef
.getFunctionLevelDeclContext();
98 bool couldInstantiateToStatic
= false;
99 bool isStaticOrExplicitContext
= SemaRef
.CXXThisTypeOverride
.isNull();
101 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
)) {
102 if (MD
->isImplicitObjectMemberFunction()) {
103 isStaticOrExplicitContext
= false;
104 // A dependent class scope function template explicit specialization
105 // that is neither declared 'static' nor with an explicit object
106 // parameter could instantiate to a static or non-static member function.
107 couldInstantiateToStatic
= MD
->getDependentSpecializationInfo();
111 if (R
.isUnresolvableResult()) {
112 if (couldInstantiateToStatic
)
113 return IMA_Dependent
;
114 return isStaticOrExplicitContext
? IMA_Unresolved_StaticOrExplicitContext
118 // Collect all the declaring classes of instance members we find.
119 bool hasNonInstance
= false;
120 bool isField
= false;
122 for (NamedDecl
*D
: R
) {
123 // Look through any using decls.
124 D
= D
->getUnderlyingDecl();
126 if (D
->isCXXInstanceMember()) {
127 isField
|= isa
<FieldDecl
>(D
) || isa
<MSPropertyDecl
>(D
) ||
128 isa
<IndirectFieldDecl
>(D
);
130 CXXRecordDecl
*R
= cast
<CXXRecordDecl
>(D
->getDeclContext());
131 Classes
.insert(R
->getCanonicalDecl());
133 hasNonInstance
= true;
136 // If we didn't find any instance members, it can't be an implicit
141 if (couldInstantiateToStatic
)
142 return IMA_Dependent
;
144 // C++11 [expr.prim.general]p12:
145 // An id-expression that denotes a non-static data member or non-static
146 // member function of a class can only be used:
148 // - if that id-expression denotes a non-static data member and it
149 // appears in an unevaluated operand.
151 // This rule is specific to C++11. However, we also permit this form
152 // in unevaluated inline assembly operands, like the operand to a SIZE.
153 IMAKind AbstractInstanceResult
= IMA_Static
; // happens to be 'false'
154 assert(!AbstractInstanceResult
);
155 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
156 case Sema::ExpressionEvaluationContext::Unevaluated
:
157 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
158 if (isField
&& SemaRef
.getLangOpts().CPlusPlus11
)
159 AbstractInstanceResult
= IMA_Field_Uneval_Context
;
162 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
163 AbstractInstanceResult
= IMA_Abstract
;
166 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
167 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
168 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
169 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
170 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
174 // If the current context is not an instance method, it can't be
175 // an implicit member reference.
176 if (isStaticOrExplicitContext
) {
178 return IMA_Mixed_StaticOrExplicitContext
;
180 return AbstractInstanceResult
? AbstractInstanceResult
181 : IMA_Error_StaticOrExplicitContext
;
184 CXXRecordDecl
*contextClass
;
185 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
186 contextClass
= MD
->getParent()->getCanonicalDecl();
187 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
190 return AbstractInstanceResult
? AbstractInstanceResult
191 : IMA_Error_StaticOrExplicitContext
;
193 // [class.mfct.non-static]p3:
194 // ...is used in the body of a non-static member function of class X,
195 // if name lookup (3.4.1) resolves the name in the id-expression to a
196 // non-static non-type member of some class C [...]
197 // ...if C is not X or a base class of X, the class member access expression
199 if (R
.getNamingClass() &&
200 contextClass
->getCanonicalDecl() !=
201 R
.getNamingClass()->getCanonicalDecl()) {
202 // If the naming class is not the current context, this was a qualified
203 // member name lookup, and it's sufficient to check that we have the naming
204 // class as a base class.
206 Classes
.insert(R
.getNamingClass()->getCanonicalDecl());
209 // If we can prove that the current context is unrelated to all the
210 // declaring classes, it can't be an implicit member reference (in
211 // which case it's an error if any of those members are selected).
212 if (isProvablyNotDerivedFrom(SemaRef
, contextClass
, Classes
))
213 return hasNonInstance
? IMA_Mixed_Unrelated
:
214 AbstractInstanceResult
? AbstractInstanceResult
:
217 return (hasNonInstance
? IMA_Mixed
: IMA_Instance
);
220 /// Diagnose a reference to a field with no object available.
221 static void diagnoseInstanceReference(Sema
&SemaRef
,
222 const CXXScopeSpec
&SS
,
224 const DeclarationNameInfo
&nameInfo
) {
225 SourceLocation Loc
= nameInfo
.getLoc();
226 SourceRange
Range(Loc
);
227 if (SS
.isSet()) Range
.setBegin(SS
.getRange().getBegin());
229 // Look through using shadow decls and aliases.
230 Rep
= Rep
->getUnderlyingDecl();
232 DeclContext
*FunctionLevelDC
= SemaRef
.getFunctionLevelDeclContext();
233 CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(FunctionLevelDC
);
234 CXXRecordDecl
*ContextClass
= Method
? Method
->getParent() : nullptr;
235 CXXRecordDecl
*RepClass
= dyn_cast
<CXXRecordDecl
>(Rep
->getDeclContext());
237 bool InStaticMethod
= Method
&& Method
->isStatic();
238 bool InExplicitObjectMethod
=
239 Method
&& Method
->isExplicitObjectMemberFunction();
240 bool IsField
= isa
<FieldDecl
>(Rep
) || isa
<IndirectFieldDecl
>(Rep
);
242 std::string Replacement
;
243 if (InExplicitObjectMethod
) {
244 DeclarationName N
= Method
->getParamDecl(0)->getDeclName();
246 Replacement
.append(N
.getAsString());
247 Replacement
.append(".");
250 if (IsField
&& InStaticMethod
)
251 // "invalid use of member 'x' in static member function"
252 SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_method
)
253 << Range
<< nameInfo
.getName() << /*static*/ 0;
254 else if (IsField
&& InExplicitObjectMethod
) {
255 auto Diag
= SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_method
)
256 << Range
<< nameInfo
.getName() << /*explicit*/ 1;
257 if (!Replacement
.empty())
258 Diag
<< FixItHint::CreateInsertion(Loc
, Replacement
);
259 } else if (ContextClass
&& RepClass
&& SS
.isEmpty() &&
260 !InExplicitObjectMethod
&& !InStaticMethod
&&
261 !RepClass
->Equals(ContextClass
) &&
262 RepClass
->Encloses(ContextClass
))
263 // Unqualified lookup in a non-static member function found a member of an
265 SemaRef
.Diag(Loc
, diag::err_nested_non_static_member_use
)
266 << IsField
<< RepClass
<< nameInfo
.getName() << ContextClass
<< Range
;
268 SemaRef
.Diag(Loc
, diag::err_invalid_non_static_member_use
)
269 << nameInfo
.getName() << Range
;
270 else if (!InExplicitObjectMethod
)
271 SemaRef
.Diag(Loc
, diag::err_member_call_without_object
)
272 << Range
<< /*static*/ 0;
274 if (const auto *Tpl
= dyn_cast
<FunctionTemplateDecl
>(Rep
))
275 Rep
= Tpl
->getTemplatedDecl();
276 const auto *Callee
= cast
<CXXMethodDecl
>(Rep
);
277 auto Diag
= SemaRef
.Diag(Loc
, diag::err_member_call_without_object
)
278 << Range
<< Callee
->isExplicitObjectMemberFunction();
279 if (!Replacement
.empty())
280 Diag
<< FixItHint::CreateInsertion(Loc
, Replacement
);
284 bool Sema::isPotentialImplicitMemberAccess(const CXXScopeSpec
&SS
,
286 bool IsAddressOfOperand
) {
287 if (!getLangOpts().CPlusPlus
)
289 else if (R
.empty() || !R
.begin()->isCXXClassMember())
291 else if (!IsAddressOfOperand
)
293 else if (!SS
.isEmpty())
295 else if (R
.isOverloadedResult())
297 else if (R
.isUnresolvableResult())
300 return isa
<FieldDecl
, IndirectFieldDecl
, MSPropertyDecl
>(R
.getFoundDecl());
303 ExprResult
Sema::BuildPossibleImplicitMemberExpr(
304 const CXXScopeSpec
&SS
, SourceLocation TemplateKWLoc
, LookupResult
&R
,
305 const TemplateArgumentListInfo
*TemplateArgs
, const Scope
*S
) {
306 switch (IMAKind Classification
= ClassifyImplicitMemberAccess(*this, R
)) {
309 case IMA_Mixed_Unrelated
:
311 return BuildImplicitMemberExpr(
312 SS
, TemplateKWLoc
, R
, TemplateArgs
,
313 /*IsKnownInstance=*/Classification
== IMA_Instance
, S
);
314 case IMA_Field_Uneval_Context
:
315 Diag(R
.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use
)
316 << R
.getLookupNameInfo().getName();
320 case IMA_Mixed_StaticOrExplicitContext
:
321 case IMA_Unresolved_StaticOrExplicitContext
:
322 if (TemplateArgs
|| TemplateKWLoc
.isValid())
323 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, /*RequiresADL=*/false,
325 return BuildDeclarationNameExpr(SS
, R
, /*NeedsADL=*/false,
326 /*AcceptInvalidDecl=*/false);
328 R
.suppressDiagnostics();
329 return UnresolvedLookupExpr::Create(
330 Context
, R
.getNamingClass(), SS
.getWithLocInContext(Context
),
331 TemplateKWLoc
, R
.getLookupNameInfo(), /*RequiresADL=*/false,
332 TemplateArgs
, R
.begin(), R
.end(), /*KnownDependent=*/true,
333 /*KnownInstantiationDependent=*/true);
335 case IMA_Error_StaticOrExplicitContext
:
336 case IMA_Error_Unrelated
:
337 diagnoseInstanceReference(*this, SS
, R
.getRepresentativeDecl(),
338 R
.getLookupNameInfo());
342 llvm_unreachable("unexpected instance member access kind");
345 /// Determine whether input char is from rgba component set.
359 // OpenCL v1.1, s6.1.7
360 // The component swizzle length must be in accordance with the acceptable
362 static bool IsValidOpenCLComponentSwizzleLength(unsigned len
)
364 return (len
>= 1 && len
<= 4) || len
== 8 || len
== 16;
367 /// Check an ext-vector component access expression.
369 /// VK should be set in advance to the value kind of the base
372 CheckExtVectorComponent(Sema
&S
, QualType baseType
, ExprValueKind
&VK
,
373 SourceLocation OpLoc
, const IdentifierInfo
*CompName
,
374 SourceLocation CompLoc
) {
375 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
378 // FIXME: This logic can be greatly simplified by splitting it along
379 // halving/not halving and reworking the component checking.
380 const ExtVectorType
*vecType
= baseType
->castAs
<ExtVectorType
>();
382 // The vector accessor can't exceed the number of elements.
383 const char *compStr
= CompName
->getNameStart();
385 // This flag determines whether or not the component is one of the four
386 // special names that indicate a subset of exactly half the elements are
388 bool HalvingSwizzle
= false;
390 // This flag determines whether or not CompName has an 's' char prefix,
391 // indicating that it is a string of hex values to be used as vector indices.
392 bool HexSwizzle
= (*compStr
== 's' || *compStr
== 'S') && compStr
[1];
394 bool HasRepeated
= false;
395 bool HasIndex
[16] = {};
399 // Check that we've found one of the special components, or that the component
400 // names must come from the same set.
401 if (!strcmp(compStr
, "hi") || !strcmp(compStr
, "lo") ||
402 !strcmp(compStr
, "even") || !strcmp(compStr
, "odd")) {
403 HalvingSwizzle
= true;
404 } else if (!HexSwizzle
&&
405 (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1) {
406 bool HasRGBA
= IsRGBA(*compStr
);
408 // Ensure that xyzw and rgba components don't intermingle.
409 if (HasRGBA
!= IsRGBA(*compStr
))
411 if (HasIndex
[Idx
]) HasRepeated
= true;
412 HasIndex
[Idx
] = true;
414 } while (*compStr
&& (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1);
416 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
417 if (HasRGBA
|| (*compStr
&& IsRGBA(*compStr
))) {
418 if (S
.getLangOpts().OpenCL
&&
419 S
.getLangOpts().getOpenCLCompatibleVersion() < 300) {
420 const char *DiagBegin
= HasRGBA
? CompName
->getNameStart() : compStr
;
421 S
.Diag(OpLoc
, diag::ext_opencl_ext_vector_type_rgba_selector
)
422 << StringRef(DiagBegin
, 1) << SourceRange(CompLoc
);
426 if (HexSwizzle
) compStr
++;
427 while ((Idx
= vecType
->getNumericAccessorIdx(*compStr
)) != -1) {
428 if (HasIndex
[Idx
]) HasRepeated
= true;
429 HasIndex
[Idx
] = true;
434 if (!HalvingSwizzle
&& *compStr
) {
435 // We didn't get to the end of the string. This means the component names
436 // didn't come from the same set *or* we encountered an illegal name.
437 S
.Diag(OpLoc
, diag::err_ext_vector_component_name_illegal
)
438 << StringRef(compStr
, 1) << SourceRange(CompLoc
);
442 // Ensure no component accessor exceeds the width of the vector type it
444 if (!HalvingSwizzle
) {
445 compStr
= CompName
->getNameStart();
451 if (!vecType
->isAccessorWithinNumElements(*compStr
++, HexSwizzle
)) {
452 S
.Diag(OpLoc
, diag::err_ext_vector_component_exceeds_length
)
453 << baseType
<< SourceRange(CompLoc
);
459 // OpenCL mode requires swizzle length to be in accordance with accepted
460 // sizes. Clang however supports arbitrary lengths for other languages.
461 if (S
.getLangOpts().OpenCL
&& !HalvingSwizzle
) {
462 unsigned SwizzleLength
= CompName
->getLength();
467 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength
) == false) {
468 S
.Diag(OpLoc
, diag::err_opencl_ext_vector_component_invalid_length
)
469 << SwizzleLength
<< SourceRange(CompLoc
);
474 // The component accessor looks fine - now we need to compute the actual type.
475 // The vector type is implied by the component accessor. For example,
476 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
477 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
478 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
479 unsigned CompSize
= HalvingSwizzle
? (vecType
->getNumElements() + 1) / 2
480 : CompName
->getLength();
485 return vecType
->getElementType();
490 QualType VT
= S
.Context
.getExtVectorType(vecType
->getElementType(), CompSize
);
491 // Now look up the TypeDefDecl from the vector type. Without this,
492 // diagostics look bad. We want extended vector types to appear built-in.
493 for (Sema::ExtVectorDeclsType::iterator
494 I
= S
.ExtVectorDecls
.begin(S
.getExternalSource()),
495 E
= S
.ExtVectorDecls
.end();
497 if ((*I
)->getUnderlyingType() == VT
)
498 return S
.Context
.getTypedefType(*I
);
501 return VT
; // should never get here (a typedef type should always be found).
504 static Decl
*FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl
*PDecl
,
505 IdentifierInfo
*Member
,
507 ASTContext
&Context
) {
509 if (ObjCPropertyDecl
*PD
= PDecl
->FindPropertyDeclaration(
510 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
))
512 if (ObjCMethodDecl
*OMD
= PDecl
->getInstanceMethod(Sel
))
515 for (const auto *I
: PDecl
->protocols()) {
516 if (Decl
*D
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
,
523 static Decl
*FindGetterSetterNameDecl(const ObjCObjectPointerType
*QIdTy
,
524 IdentifierInfo
*Member
,
526 ASTContext
&Context
) {
527 // Check protocols on qualified interfaces.
528 Decl
*GDecl
= nullptr;
529 for (const auto *I
: QIdTy
->quals()) {
531 if (ObjCPropertyDecl
*PD
= I
->FindPropertyDeclaration(
532 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
536 // Also must look for a getter or setter name which uses property syntax.
537 if (ObjCMethodDecl
*OMD
= I
->getInstanceMethod(Sel
)) {
543 for (const auto *I
: QIdTy
->quals()) {
544 // Search in the protocol-qualifier list of current protocol.
545 GDecl
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
, Context
);
554 Sema::ActOnDependentMemberExpr(Expr
*BaseExpr
, QualType BaseType
,
555 bool IsArrow
, SourceLocation OpLoc
,
556 const CXXScopeSpec
&SS
,
557 SourceLocation TemplateKWLoc
,
558 NamedDecl
*FirstQualifierInScope
,
559 const DeclarationNameInfo
&NameInfo
,
560 const TemplateArgumentListInfo
*TemplateArgs
) {
561 // Even in dependent contexts, try to diagnose base expressions with
562 // obviously wrong types, e.g.:
567 // In Obj-C++, however, the above expression is valid, since it could be
568 // accessing the 'f' property if T is an Obj-C interface. The extra check
569 // allows this, while still reporting an error if T is a struct pointer.
571 const PointerType
*PT
= BaseType
->getAs
<PointerType
>();
572 if (PT
&& (!getLangOpts().ObjC
||
573 PT
->getPointeeType()->isRecordType())) {
574 assert(BaseExpr
&& "cannot happen with implicit member accesses");
575 Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
576 << BaseType
<< BaseExpr
->getSourceRange() << NameInfo
.getSourceRange();
581 assert(BaseType
->isDependentType() || NameInfo
.getName().isDependentName() ||
582 isDependentScopeSpecifier(SS
) ||
583 (TemplateArgs
&& llvm::any_of(TemplateArgs
->arguments(),
584 [](const TemplateArgumentLoc
&Arg
) {
585 return Arg
.getArgument().isDependent();
588 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
589 // must have pointer type, and the accessed type is the pointee.
590 return CXXDependentScopeMemberExpr::Create(
591 Context
, BaseExpr
, BaseType
, IsArrow
, OpLoc
,
592 SS
.getWithLocInContext(Context
), TemplateKWLoc
, FirstQualifierInScope
,
593 NameInfo
, TemplateArgs
);
596 /// We know that the given qualified member reference points only to
597 /// declarations which do not belong to the static type of the base
598 /// expression. Diagnose the problem.
599 static void DiagnoseQualifiedMemberReference(Sema
&SemaRef
,
602 const CXXScopeSpec
&SS
,
604 const DeclarationNameInfo
&nameInfo
) {
605 // If this is an implicit member access, use a different set of
608 return diagnoseInstanceReference(SemaRef
, SS
, rep
, nameInfo
);
610 SemaRef
.Diag(nameInfo
.getLoc(), diag::err_qualified_member_of_unrelated
)
611 << SS
.getRange() << rep
<< BaseType
;
614 bool Sema::CheckQualifiedMemberReference(Expr
*BaseExpr
,
616 const CXXScopeSpec
&SS
,
617 const LookupResult
&R
) {
618 CXXRecordDecl
*BaseRecord
=
619 cast_or_null
<CXXRecordDecl
>(computeDeclContext(BaseType
));
621 // We can't check this yet because the base type is still
623 assert(BaseType
->isDependentType());
627 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
628 // If this is an implicit member reference and we find a
629 // non-instance member, it's not an error.
630 if (!BaseExpr
&& !(*I
)->isCXXInstanceMember())
633 // Note that we use the DC of the decl, not the underlying decl.
634 DeclContext
*DC
= (*I
)->getDeclContext()->getNonTransparentContext();
638 CXXRecordDecl
*MemberRecord
= cast
<CXXRecordDecl
>(DC
)->getCanonicalDecl();
639 if (BaseRecord
->getCanonicalDecl() == MemberRecord
||
640 !BaseRecord
->isProvablyNotDerivedFrom(MemberRecord
))
644 DiagnoseQualifiedMemberReference(*this, BaseExpr
, BaseType
, SS
,
645 R
.getRepresentativeDecl(),
646 R
.getLookupNameInfo());
652 // Callback to only accept typo corrections that are either a ValueDecl or a
653 // FunctionTemplateDecl and are declared in the current record or, for a C++
654 // classes, one of its base classes.
655 class RecordMemberExprValidatorCCC final
: public CorrectionCandidateCallback
{
657 explicit RecordMemberExprValidatorCCC(QualType RTy
)
658 : Record(RTy
->getAsRecordDecl()) {
659 // Don't add bare keywords to the consumer since they will always fail
660 // validation by virtue of not being associated with any decls.
661 WantTypeSpecifiers
= false;
662 WantExpressionKeywords
= false;
663 WantCXXNamedCasts
= false;
664 WantFunctionLikeCasts
= false;
665 WantRemainingKeywords
= false;
668 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
669 NamedDecl
*ND
= candidate
.getCorrectionDecl();
670 // Don't accept candidates that cannot be member functions, constants,
671 // variables, or templates.
672 if (!ND
|| !(isa
<ValueDecl
>(ND
) || isa
<FunctionTemplateDecl
>(ND
)))
675 // Accept candidates that occur in the current record.
676 if (Record
->containsDecl(ND
))
679 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Record
)) {
680 // Accept candidates that occur in any of the current class' base classes.
681 for (const auto &BS
: RD
->bases()) {
682 if (const auto *BSTy
= BS
.getType()->getAs
<RecordType
>()) {
683 if (BSTy
->getDecl()->containsDecl(ND
))
692 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
693 return std::make_unique
<RecordMemberExprValidatorCCC
>(*this);
697 const RecordDecl
*const Record
;
702 static bool LookupMemberExprInRecord(Sema
&SemaRef
, LookupResult
&R
,
703 Expr
*BaseExpr
, QualType RTy
,
704 SourceLocation OpLoc
, bool IsArrow
,
705 CXXScopeSpec
&SS
, bool HasTemplateArgs
,
706 SourceLocation TemplateKWLoc
,
708 SourceRange BaseRange
= BaseExpr
? BaseExpr
->getSourceRange() : SourceRange();
709 if (!RTy
->isDependentType() &&
710 !SemaRef
.isThisOutsideMemberFunctionBody(RTy
) &&
711 SemaRef
.RequireCompleteType(
712 OpLoc
, RTy
, diag::err_typecheck_incomplete_tag
, BaseRange
))
715 // LookupTemplateName/LookupParsedName don't expect these both to exist
717 QualType ObjectType
= SS
.isSet() ? QualType() : RTy
;
718 if (HasTemplateArgs
|| TemplateKWLoc
.isValid())
719 return SemaRef
.LookupTemplateName(R
,
720 /*S=*/nullptr, SS
, ObjectType
,
721 /*EnteringContext=*/false, TemplateKWLoc
);
723 SemaRef
.LookupParsedName(R
, /*S=*/nullptr, &SS
, ObjectType
);
725 if (!R
.empty() || R
.wasNotFoundInCurrentInstantiation())
728 DeclarationName Typo
= R
.getLookupName();
729 SourceLocation TypoLoc
= R
.getNameLoc();
730 // Recompute the lookup context.
731 DeclContext
*DC
= SS
.isSet() ? SemaRef
.computeDeclContext(SS
)
732 : SemaRef
.computeDeclContext(RTy
);
736 DeclarationNameInfo NameInfo
;
737 Sema::LookupNameKind LookupKind
;
738 RedeclarationKind Redecl
;
740 QueryState Q
= {R
.getSema(), R
.getLookupNameInfo(), R
.getLookupKind(),
741 R
.redeclarationKind()};
742 RecordMemberExprValidatorCCC
CCC(RTy
);
743 TE
= SemaRef
.CorrectTypoDelayed(
744 R
.getLookupNameInfo(), R
.getLookupKind(), nullptr, &SS
, CCC
,
745 [=, &SemaRef
](const TypoCorrection
&TC
) {
747 assert(!TC
.isKeyword() &&
748 "Got a keyword as a correction for a member!");
749 bool DroppedSpecifier
=
750 TC
.WillReplaceSpecifier() &&
751 Typo
.getAsString() == TC
.getAsString(SemaRef
.getLangOpts());
752 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(diag::err_no_member_suggest
)
753 << Typo
<< DC
<< DroppedSpecifier
756 SemaRef
.Diag(TypoLoc
, diag::err_no_member
)
757 << Typo
<< DC
<< (SS
.isSet() ? SS
.getRange() : BaseRange
);
760 [=](Sema
&SemaRef
, TypoExpr
*TE
, TypoCorrection TC
) mutable {
761 LookupResult
R(Q
.SemaRef
, Q
.NameInfo
, Q
.LookupKind
, Q
.Redecl
);
762 R
.clear(); // Ensure there's no decls lingering in the shared state.
763 R
.suppressDiagnostics();
764 R
.setLookupName(TC
.getCorrection());
765 for (NamedDecl
*ND
: TC
)
768 return SemaRef
.BuildMemberReferenceExpr(
769 BaseExpr
, BaseExpr
->getType(), OpLoc
, IsArrow
, SS
, SourceLocation(),
770 nullptr, R
, nullptr, nullptr);
772 Sema::CTK_ErrorRecovery
, DC
);
777 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
778 ExprResult
&BaseExpr
, bool &IsArrow
,
779 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
780 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
781 SourceLocation TemplateKWLoc
);
783 ExprResult
Sema::BuildMemberReferenceExpr(
784 Expr
*Base
, QualType BaseType
, SourceLocation OpLoc
, bool IsArrow
,
785 CXXScopeSpec
&SS
, SourceLocation TemplateKWLoc
,
786 NamedDecl
*FirstQualifierInScope
, const DeclarationNameInfo
&NameInfo
,
787 const TemplateArgumentListInfo
*TemplateArgs
, const Scope
*S
,
788 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
789 LookupResult
R(*this, NameInfo
, LookupMemberName
);
791 // Implicit member accesses.
793 TypoExpr
*TE
= nullptr;
794 QualType RecordTy
= BaseType
;
795 if (IsArrow
) RecordTy
= RecordTy
->castAs
<PointerType
>()->getPointeeType();
796 if (LookupMemberExprInRecord(*this, R
, nullptr, RecordTy
, OpLoc
, IsArrow
,
797 SS
, TemplateArgs
!= nullptr, TemplateKWLoc
,
803 // Explicit member accesses.
805 ExprResult BaseResult
= Base
;
807 LookupMemberExpr(*this, R
, BaseResult
, IsArrow
, OpLoc
, SS
,
808 ExtraArgs
? ExtraArgs
->ObjCImpDecl
: nullptr,
809 TemplateArgs
!= nullptr, TemplateKWLoc
);
811 if (BaseResult
.isInvalid())
813 Base
= BaseResult
.get();
815 if (Result
.isInvalid())
821 // LookupMemberExpr can modify Base, and thus change BaseType
822 BaseType
= Base
->getType();
825 // BuildMemberReferenceExpr expects the nested-name-specifier, if any, to be
830 return BuildMemberReferenceExpr(Base
, BaseType
,
831 OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
832 FirstQualifierInScope
, R
, TemplateArgs
, S
,
837 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec
&SS
,
839 IndirectFieldDecl
*indirectField
,
840 DeclAccessPair foundDecl
,
841 Expr
*baseObjectExpr
,
842 SourceLocation opLoc
) {
843 // First, build the expression that refers to the base object.
845 // Case 1: the base of the indirect field is not a field.
846 VarDecl
*baseVariable
= indirectField
->getVarDecl();
847 CXXScopeSpec EmptySS
;
849 assert(baseVariable
->getType()->isRecordType());
851 // In principle we could have a member access expression that
852 // accesses an anonymous struct/union that's a static member of
853 // the base object's class. However, under the current standard,
854 // static data members cannot be anonymous structs or unions.
855 // Supporting this is as easy as building a MemberExpr here.
856 assert(!baseObjectExpr
&& "anonymous struct/union is static data member?");
858 DeclarationNameInfo
baseNameInfo(DeclarationName(), loc
);
861 = BuildDeclarationNameExpr(EmptySS
, baseNameInfo
, baseVariable
);
862 if (result
.isInvalid()) return ExprError();
864 baseObjectExpr
= result
.get();
867 assert((baseVariable
|| baseObjectExpr
) &&
868 "referencing anonymous struct/union without a base variable or "
871 // Build the implicit member references to the field of the
872 // anonymous struct/union.
873 Expr
*result
= baseObjectExpr
;
874 IndirectFieldDecl::chain_iterator
875 FI
= indirectField
->chain_begin(), FEnd
= indirectField
->chain_end();
877 // Case 2: the base of the indirect field is a field and the user
878 // wrote a member expression.
880 FieldDecl
*field
= cast
<FieldDecl
>(*FI
);
882 bool baseObjectIsPointer
= baseObjectExpr
->getType()->isPointerType();
884 // Make a nameInfo that properly uses the anonymous name.
885 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
887 // Build the first member access in the chain with full information.
889 BuildFieldReferenceExpr(result
, baseObjectIsPointer
, SourceLocation(),
890 SS
, field
, foundDecl
, memberNameInfo
)
896 // In all cases, we should now skip the first declaration in the chain.
900 FieldDecl
*field
= cast
<FieldDecl
>(*FI
++);
902 // FIXME: these are somewhat meaningless
903 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
904 DeclAccessPair fakeFoundDecl
=
905 DeclAccessPair::make(field
, field
->getAccess());
908 BuildFieldReferenceExpr(result
, /*isarrow*/ false, SourceLocation(),
909 (FI
== FEnd
? SS
: EmptySS
), field
,
910 fakeFoundDecl
, memberNameInfo
)
918 BuildMSPropertyRefExpr(Sema
&S
, Expr
*BaseExpr
, bool IsArrow
,
919 const CXXScopeSpec
&SS
,
921 const DeclarationNameInfo
&NameInfo
) {
922 // Property names are always simple identifiers and therefore never
923 // require any interesting additional storage.
924 return new (S
.Context
) MSPropertyRefExpr(BaseExpr
, PD
, IsArrow
,
925 S
.Context
.PseudoObjectTy
, VK_LValue
,
926 SS
.getWithLocInContext(S
.Context
),
930 MemberExpr
*Sema::BuildMemberExpr(
931 Expr
*Base
, bool IsArrow
, SourceLocation OpLoc
, NestedNameSpecifierLoc NNS
,
932 SourceLocation TemplateKWLoc
, ValueDecl
*Member
, DeclAccessPair FoundDecl
,
933 bool HadMultipleCandidates
, const DeclarationNameInfo
&MemberNameInfo
,
934 QualType Ty
, ExprValueKind VK
, ExprObjectKind OK
,
935 const TemplateArgumentListInfo
*TemplateArgs
) {
936 assert((!IsArrow
|| Base
->isPRValue()) &&
937 "-> base must be a pointer prvalue");
939 MemberExpr::Create(Context
, Base
, IsArrow
, OpLoc
, NNS
, TemplateKWLoc
,
940 Member
, FoundDecl
, MemberNameInfo
, TemplateArgs
, Ty
,
941 VK
, OK
, getNonOdrUseReasonInCurrentContext(Member
));
942 E
->setHadMultipleCandidates(HadMultipleCandidates
);
943 MarkMemberReferenced(E
);
945 // C++ [except.spec]p17:
946 // An exception-specification is considered to be needed when:
947 // - in an expression the function is the unique lookup result or the
948 // selected member of a set of overloaded functions
949 if (auto *FPT
= Ty
->getAs
<FunctionProtoType
>()) {
950 if (isUnresolvedExceptionSpec(FPT
->getExceptionSpecType())) {
951 if (auto *NewFPT
= ResolveExceptionSpec(MemberNameInfo
.getLoc(), FPT
))
952 E
->setType(Context
.getQualifiedType(NewFPT
, Ty
.getQualifiers()));
959 /// Determine if the given scope is within a function-try-block handler.
960 static bool IsInFnTryBlockHandler(const Scope
*S
) {
961 // Walk the scope stack until finding a FnTryCatchScope, or leave the
962 // function scope. If a FnTryCatchScope is found, check whether the TryScope
963 // flag is set. If it is not, it's a function-try-block handler.
964 for (; S
!= S
->getFnParent(); S
= S
->getParent()) {
965 if (S
->isFnTryCatchScope())
966 return (S
->getFlags() & Scope::TryScope
) != Scope::TryScope
;
972 Sema::BuildMemberReferenceExpr(Expr
*BaseExpr
, QualType BaseExprType
,
973 SourceLocation OpLoc
, bool IsArrow
,
974 const CXXScopeSpec
&SS
,
975 SourceLocation TemplateKWLoc
,
976 NamedDecl
*FirstQualifierInScope
,
978 const TemplateArgumentListInfo
*TemplateArgs
,
980 bool SuppressQualifierCheck
,
981 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
982 assert(!SS
.isInvalid() && "nested-name-specifier cannot be invalid");
983 // If the member wasn't found in the current instantiation, or if the
984 // arrow operator was used with a dependent non-pointer object expression,
985 // build a CXXDependentScopeMemberExpr.
986 if (R
.wasNotFoundInCurrentInstantiation() ||
987 (R
.getLookupName().getCXXOverloadedOperator() == OO_Equal
&&
988 (SS
.isSet() ? SS
.getScopeRep()->isDependent()
989 : BaseExprType
->isDependentType())))
990 return ActOnDependentMemberExpr(BaseExpr
, BaseExprType
, IsArrow
, OpLoc
, SS
,
991 TemplateKWLoc
, FirstQualifierInScope
,
992 R
.getLookupNameInfo(), TemplateArgs
);
994 QualType BaseType
= BaseExprType
;
996 assert(BaseType
->isPointerType());
997 BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
999 R
.setBaseObjectType(BaseType
);
1001 assert((SS
.isEmpty()
1002 ? !BaseType
->isDependentType() || computeDeclContext(BaseType
)
1003 : !isDependentScopeSpecifier(SS
) || computeDeclContext(SS
)) &&
1004 "dependent lookup context that isn't the current instantiation?");
1006 // C++1z [expr.ref]p2:
1007 // For the first option (dot) the first expression shall be a glvalue [...]
1008 if (!IsArrow
&& BaseExpr
&& BaseExpr
->isPRValue()) {
1009 ExprResult Converted
= TemporaryMaterializationConversion(BaseExpr
);
1010 if (Converted
.isInvalid())
1012 BaseExpr
= Converted
.get();
1015 const DeclarationNameInfo
&MemberNameInfo
= R
.getLookupNameInfo();
1016 DeclarationName MemberName
= MemberNameInfo
.getName();
1017 SourceLocation MemberLoc
= MemberNameInfo
.getLoc();
1019 if (R
.isAmbiguous())
1022 // [except.handle]p10: Referring to any non-static member or base class of an
1023 // object in the handler for a function-try-block of a constructor or
1024 // destructor for that object results in undefined behavior.
1025 const auto *FD
= getCurFunctionDecl();
1026 if (S
&& BaseExpr
&& FD
&&
1027 (isa
<CXXDestructorDecl
>(FD
) || isa
<CXXConstructorDecl
>(FD
)) &&
1028 isa
<CXXThisExpr
>(BaseExpr
->IgnoreImpCasts()) &&
1029 IsInFnTryBlockHandler(S
))
1030 Diag(MemberLoc
, diag::warn_cdtor_function_try_handler_mem_expr
)
1031 << isa
<CXXDestructorDecl
>(FD
);
1034 ExprResult RetryExpr
= ExprError();
1035 if (ExtraArgs
&& !IsArrow
&& BaseExpr
&& !BaseExpr
->isTypeDependent()) {
1036 SFINAETrap
Trap(*this, true);
1037 ParsedType ObjectType
;
1038 bool MayBePseudoDestructor
= false;
1039 RetryExpr
= ActOnStartCXXMemberReference(getCurScope(), BaseExpr
, OpLoc
,
1040 tok::arrow
, ObjectType
,
1041 MayBePseudoDestructor
);
1042 if (RetryExpr
.isUsable() && !Trap
.hasErrorOccurred()) {
1043 CXXScopeSpec
TempSS(SS
);
1044 RetryExpr
= ActOnMemberAccessExpr(
1045 ExtraArgs
->S
, RetryExpr
.get(), OpLoc
, tok::arrow
, TempSS
,
1046 TemplateKWLoc
, ExtraArgs
->Id
, ExtraArgs
->ObjCImpDecl
);
1048 if (Trap
.hasErrorOccurred())
1049 RetryExpr
= ExprError();
1052 // Rederive where we looked up.
1054 (SS
.isSet() ? computeDeclContext(SS
) : computeDeclContext(BaseType
));
1057 if (RetryExpr
.isUsable())
1058 Diag(OpLoc
, diag::err_no_member_overloaded_arrow
)
1059 << MemberName
<< DC
<< FixItHint::CreateReplacement(OpLoc
, "->");
1061 Diag(R
.getNameLoc(), diag::err_no_member
)
1065 : (BaseExpr
? BaseExpr
->getSourceRange() : SourceRange()));
1069 // Diagnose lookups that find only declarations from a non-base
1070 // type. This is possible for either qualified lookups (which may
1071 // have been qualified with an unrelated type) or implicit member
1072 // expressions (which were found with unqualified lookup and thus
1073 // may have come from an enclosing scope). Note that it's okay for
1074 // lookup to find declarations from a non-base type as long as those
1075 // aren't the ones picked by overload resolution.
1076 if ((SS
.isSet() || !BaseExpr
||
1077 (isa
<CXXThisExpr
>(BaseExpr
) &&
1078 cast
<CXXThisExpr
>(BaseExpr
)->isImplicit())) &&
1079 !SuppressQualifierCheck
&&
1080 CheckQualifiedMemberReference(BaseExpr
, BaseType
, SS
, R
))
1083 // Construct an unresolved result if we in fact got an unresolved
1085 if (R
.isOverloadedResult() || R
.isUnresolvableResult()) {
1086 // Suppress any lookup-related diagnostics; we'll do these when we
1088 R
.suppressDiagnostics();
1090 UnresolvedMemberExpr
*MemExpr
1091 = UnresolvedMemberExpr::Create(Context
, R
.isUnresolvableResult(),
1092 BaseExpr
, BaseExprType
,
1094 SS
.getWithLocInContext(Context
),
1095 TemplateKWLoc
, MemberNameInfo
,
1096 TemplateArgs
, R
.begin(), R
.end());
1101 assert(R
.isSingleResult());
1102 DeclAccessPair FoundDecl
= R
.begin().getPair();
1103 NamedDecl
*MemberDecl
= R
.getFoundDecl();
1105 // FIXME: diagnose the presence of template arguments now.
1107 // If the decl being referenced had an error, return an error for this
1108 // sub-expr without emitting another error, in order to avoid cascading
1110 if (MemberDecl
->isInvalidDecl())
1113 // Handle the implicit-member-access case.
1115 // If this is not an instance member, convert to a non-member access.
1116 if (!MemberDecl
->isCXXInstanceMember()) {
1117 // We might have a variable template specialization (or maybe one day a
1118 // member concept-id).
1119 if (TemplateArgs
|| TemplateKWLoc
.isValid())
1120 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, /*ADL*/false, TemplateArgs
);
1122 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), MemberDecl
,
1123 FoundDecl
, TemplateArgs
);
1125 SourceLocation Loc
= R
.getNameLoc();
1126 if (SS
.getRange().isValid())
1127 Loc
= SS
.getRange().getBegin();
1128 BaseExpr
= BuildCXXThisExpr(Loc
, BaseExprType
, /*IsImplicit=*/true);
1131 // Check the use of this member.
1132 if (DiagnoseUseOfDecl(MemberDecl
, MemberLoc
))
1135 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(MemberDecl
))
1136 return BuildFieldReferenceExpr(BaseExpr
, IsArrow
, OpLoc
, SS
, FD
, FoundDecl
,
1139 if (MSPropertyDecl
*PD
= dyn_cast
<MSPropertyDecl
>(MemberDecl
))
1140 return BuildMSPropertyRefExpr(*this, BaseExpr
, IsArrow
, SS
, PD
,
1143 if (IndirectFieldDecl
*FD
= dyn_cast
<IndirectFieldDecl
>(MemberDecl
))
1144 // We may have found a field within an anonymous union or struct
1145 // (C++ [class.union]).
1146 return BuildAnonymousStructUnionMemberReference(SS
, MemberLoc
, FD
,
1147 FoundDecl
, BaseExpr
,
1150 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(MemberDecl
)) {
1151 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
,
1152 SS
.getWithLocInContext(Context
), TemplateKWLoc
, Var
,
1153 FoundDecl
, /*HadMultipleCandidates=*/false,
1154 MemberNameInfo
, Var
->getType().getNonReferenceType(),
1155 VK_LValue
, OK_Ordinary
);
1158 if (CXXMethodDecl
*MemberFn
= dyn_cast
<CXXMethodDecl
>(MemberDecl
)) {
1159 ExprValueKind valueKind
;
1161 if (MemberFn
->isInstance()) {
1162 valueKind
= VK_PRValue
;
1163 type
= Context
.BoundMemberTy
;
1165 valueKind
= VK_LValue
;
1166 type
= MemberFn
->getType();
1169 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
,
1170 SS
.getWithLocInContext(Context
), TemplateKWLoc
,
1171 MemberFn
, FoundDecl
, /*HadMultipleCandidates=*/false,
1172 MemberNameInfo
, type
, valueKind
, OK_Ordinary
);
1174 assert(!isa
<FunctionDecl
>(MemberDecl
) && "member function not C++ method?");
1176 if (EnumConstantDecl
*Enum
= dyn_cast
<EnumConstantDecl
>(MemberDecl
)) {
1177 return BuildMemberExpr(
1178 BaseExpr
, IsArrow
, OpLoc
, SS
.getWithLocInContext(Context
),
1179 TemplateKWLoc
, Enum
, FoundDecl
, /*HadMultipleCandidates=*/false,
1180 MemberNameInfo
, Enum
->getType(), VK_PRValue
, OK_Ordinary
);
1183 if (VarTemplateDecl
*VarTempl
= dyn_cast
<VarTemplateDecl
>(MemberDecl
)) {
1184 if (!TemplateArgs
) {
1185 diagnoseMissingTemplateArguments(
1186 SS
, /*TemplateKeyword=*/TemplateKWLoc
.isValid(), VarTempl
, MemberLoc
);
1190 DeclResult VDecl
= CheckVarTemplateId(VarTempl
, TemplateKWLoc
,
1191 MemberNameInfo
.getLoc(), *TemplateArgs
);
1192 if (VDecl
.isInvalid())
1195 // Non-dependent member, but dependent template arguments.
1197 return ActOnDependentMemberExpr(
1198 BaseExpr
, BaseExpr
->getType(), IsArrow
, OpLoc
, SS
, TemplateKWLoc
,
1199 FirstQualifierInScope
, MemberNameInfo
, TemplateArgs
);
1201 VarDecl
*Var
= cast
<VarDecl
>(VDecl
.get());
1202 if (!Var
->getTemplateSpecializationKind())
1203 Var
->setTemplateSpecializationKind(TSK_ImplicitInstantiation
, MemberLoc
);
1205 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
,
1206 SS
.getWithLocInContext(Context
), TemplateKWLoc
, Var
,
1207 FoundDecl
, /*HadMultipleCandidates=*/false,
1208 MemberNameInfo
, Var
->getType().getNonReferenceType(),
1209 VK_LValue
, OK_Ordinary
, TemplateArgs
);
1212 // We found something that we didn't expect. Complain.
1213 if (isa
<TypeDecl
>(MemberDecl
))
1214 Diag(MemberLoc
, diag::err_typecheck_member_reference_type
)
1215 << MemberName
<< BaseType
<< int(IsArrow
);
1217 Diag(MemberLoc
, diag::err_typecheck_member_reference_unknown
)
1218 << MemberName
<< BaseType
<< int(IsArrow
);
1220 Diag(MemberDecl
->getLocation(), diag::note_member_declared_here
)
1222 R
.suppressDiagnostics();
1226 /// Given that normal member access failed on the given expression,
1227 /// and given that the expression's type involves builtin-id or
1228 /// builtin-Class, decide whether substituting in the redefinition
1229 /// types would be profitable. The redefinition type is whatever
1230 /// this translation unit tried to typedef to id/Class; we store
1231 /// it to the side and then re-use it in places like this.
1232 static bool ShouldTryAgainWithRedefinitionType(Sema
&S
, ExprResult
&base
) {
1233 const ObjCObjectPointerType
*opty
1234 = base
.get()->getType()->getAs
<ObjCObjectPointerType
>();
1235 if (!opty
) return false;
1237 const ObjCObjectType
*ty
= opty
->getObjectType();
1240 if (ty
->isObjCId()) {
1241 redef
= S
.Context
.getObjCIdRedefinitionType();
1242 } else if (ty
->isObjCClass()) {
1243 redef
= S
.Context
.getObjCClassRedefinitionType();
1248 // Do the substitution as long as the redefinition type isn't just a
1249 // possibly-qualified pointer to builtin-id or builtin-Class again.
1250 opty
= redef
->getAs
<ObjCObjectPointerType
>();
1251 if (opty
&& !opty
->getObjectType()->getInterface())
1254 base
= S
.ImpCastExprToType(base
.get(), redef
, CK_BitCast
);
1258 static bool isRecordType(QualType T
) {
1259 return T
->isRecordType();
1261 static bool isPointerToRecordType(QualType T
) {
1262 if (const PointerType
*PT
= T
->getAs
<PointerType
>())
1263 return PT
->getPointeeType()->isRecordType();
1268 Sema::PerformMemberExprBaseConversion(Expr
*Base
, bool IsArrow
) {
1269 if (IsArrow
&& !Base
->getType()->isFunctionType())
1270 return DefaultFunctionArrayLvalueConversion(Base
);
1272 return CheckPlaceholderExpr(Base
);
1275 /// Look up the given member of the given non-type-dependent
1276 /// expression. This can return in one of two ways:
1277 /// * If it returns a sentinel null-but-valid result, the caller will
1278 /// assume that lookup was performed and the results written into
1279 /// the provided structure. It will take over from there.
1280 /// * Otherwise, the returned expression will be produced in place of
1281 /// an ordinary member expression.
1283 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1284 /// fixed for ObjC++.
1285 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
1286 ExprResult
&BaseExpr
, bool &IsArrow
,
1287 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
1288 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
1289 SourceLocation TemplateKWLoc
) {
1290 assert(BaseExpr
.get() && "no base expression");
1292 // Perform default conversions.
1293 BaseExpr
= S
.PerformMemberExprBaseConversion(BaseExpr
.get(), IsArrow
);
1294 if (BaseExpr
.isInvalid())
1297 QualType BaseType
= BaseExpr
.get()->getType();
1299 DeclarationName MemberName
= R
.getLookupName();
1300 SourceLocation MemberLoc
= R
.getNameLoc();
1302 // For later type-checking purposes, turn arrow accesses into dot
1303 // accesses. The only access type we support that doesn't follow
1304 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1305 // and those never use arrows, so this is unaffected.
1307 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>())
1308 BaseType
= Ptr
->getPointeeType();
1309 else if (const ObjCObjectPointerType
*Ptr
=
1310 BaseType
->getAs
<ObjCObjectPointerType
>())
1311 BaseType
= Ptr
->getPointeeType();
1312 else if (BaseType
->isFunctionType())
1314 else if (BaseType
->isDependentType())
1315 BaseType
= S
.Context
.DependentTy
;
1316 else if (BaseType
->isRecordType()) {
1317 // Recover from arrow accesses to records, e.g.:
1318 // struct MyRecord foo;
1320 // This is actually well-formed in C++ if MyRecord has an
1321 // overloaded operator->, but that should have been dealt with
1322 // by now--or a diagnostic message already issued if a problem
1323 // was encountered while looking for the overloaded operator->.
1324 if (!S
.getLangOpts().CPlusPlus
) {
1325 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1326 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1327 << FixItHint::CreateReplacement(OpLoc
, ".");
1331 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_arrow
)
1332 << BaseType
<< BaseExpr
.get()->getSourceRange();
1337 // If the base type is an atomic type, this access is undefined behavior per
1338 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1339 // about the UB and recover by converting the atomic lvalue into a non-atomic
1340 // lvalue. Because this is inherently unsafe as an atomic operation, the
1341 // warning defaults to an error.
1342 if (const auto *ATy
= BaseType
->getAs
<AtomicType
>()) {
1343 S
.DiagRuntimeBehavior(OpLoc
, nullptr,
1344 S
.PDiag(diag::warn_atomic_member_access
));
1345 BaseType
= ATy
->getValueType().getUnqualifiedType();
1346 BaseExpr
= ImplicitCastExpr::Create(
1347 S
.Context
, IsArrow
? S
.Context
.getPointerType(BaseType
) : BaseType
,
1348 CK_AtomicToNonAtomic
, BaseExpr
.get(), nullptr,
1349 BaseExpr
.get()->getValueKind(), FPOptionsOverride());
1352 // Handle field access to simple records.
1353 if (BaseType
->getAsRecordDecl()) {
1354 TypoExpr
*TE
= nullptr;
1355 if (LookupMemberExprInRecord(S
, R
, BaseExpr
.get(), BaseType
, OpLoc
, IsArrow
,
1356 SS
, HasTemplateArgs
, TemplateKWLoc
, TE
))
1359 // Returning valid-but-null is how we indicate to the caller that
1360 // the lookup result was filled in. If typo correction was attempted and
1361 // failed, the lookup result will have been cleared--that combined with the
1362 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1363 return ExprResult(TE
);
1364 } else if (BaseType
->isDependentType()) {
1365 R
.setNotFoundInCurrentInstantiation();
1369 // Handle ivar access to Objective-C objects.
1370 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>()) {
1371 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1372 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1373 << 1 << SS
.getScopeRep()
1374 << FixItHint::CreateRemoval(SS
.getRange());
1378 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1380 // There are three cases for the base type:
1381 // - builtin id (qualified or unqualified)
1382 // - builtin Class (qualified or unqualified)
1384 ObjCInterfaceDecl
*IDecl
= OTy
->getInterface();
1386 if (S
.getLangOpts().ObjCAutoRefCount
&&
1387 (OTy
->isObjCId() || OTy
->isObjCClass()))
1389 // There's an implicit 'isa' ivar on all objects.
1390 // But we only actually find it this way on objects of type 'id',
1392 if (OTy
->isObjCId() && Member
->isStr("isa"))
1393 return new (S
.Context
) ObjCIsaExpr(BaseExpr
.get(), IsArrow
, MemberLoc
,
1394 OpLoc
, S
.Context
.getObjCClassType());
1395 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1396 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1397 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1401 if (S
.RequireCompleteType(OpLoc
, BaseType
,
1402 diag::err_typecheck_incomplete_tag
,
1406 ObjCInterfaceDecl
*ClassDeclared
= nullptr;
1407 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
1410 // Attempt to correct for typos in ivar names.
1411 DeclFilterCCC
<ObjCIvarDecl
> Validator
{};
1412 Validator
.IsObjCIvarLookup
= IsArrow
;
1413 if (TypoCorrection Corrected
= S
.CorrectTypo(
1414 R
.getLookupNameInfo(), Sema::LookupMemberName
, nullptr, nullptr,
1415 Validator
, Sema::CTK_ErrorRecovery
, IDecl
)) {
1416 IV
= Corrected
.getCorrectionDeclAs
<ObjCIvarDecl
>();
1419 S
.PDiag(diag::err_typecheck_member_reference_ivar_suggest
)
1420 << IDecl
->getDeclName() << MemberName
);
1422 // Figure out the class that declares the ivar.
1423 assert(!ClassDeclared
);
1425 Decl
*D
= cast
<Decl
>(IV
->getDeclContext());
1426 if (auto *Category
= dyn_cast
<ObjCCategoryDecl
>(D
))
1427 D
= Category
->getClassInterface();
1429 if (auto *Implementation
= dyn_cast
<ObjCImplementationDecl
>(D
))
1430 ClassDeclared
= Implementation
->getClassInterface();
1431 else if (auto *Interface
= dyn_cast
<ObjCInterfaceDecl
>(D
))
1432 ClassDeclared
= Interface
;
1434 assert(ClassDeclared
&& "cannot query interface");
1437 IDecl
->FindPropertyDeclaration(
1438 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
1439 S
.Diag(MemberLoc
, diag::err_property_found_suggest
)
1440 << Member
<< BaseExpr
.get()->getType()
1441 << FixItHint::CreateReplacement(OpLoc
, ".");
1445 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_ivar
)
1446 << IDecl
->getDeclName() << MemberName
1447 << BaseExpr
.get()->getSourceRange();
1452 assert(ClassDeclared
);
1454 // If the decl being referenced had an error, return an error for this
1455 // sub-expr without emitting another error, in order to avoid cascading
1457 if (IV
->isInvalidDecl())
1460 // Check whether we can reference this field.
1461 if (S
.DiagnoseUseOfDecl(IV
, MemberLoc
))
1463 if (IV
->getAccessControl() != ObjCIvarDecl::Public
&&
1464 IV
->getAccessControl() != ObjCIvarDecl::Package
) {
1465 ObjCInterfaceDecl
*ClassOfMethodDecl
= nullptr;
1466 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl())
1467 ClassOfMethodDecl
= MD
->getClassInterface();
1468 else if (ObjCImpDecl
&& S
.getCurFunctionDecl()) {
1469 // Case of a c-function declared inside an objc implementation.
1470 // FIXME: For a c-style function nested inside an objc implementation
1471 // class, there is no implementation context available, so we pass
1472 // down the context as argument to this routine. Ideally, this context
1473 // need be passed down in the AST node and somehow calculated from the
1474 // AST for a function decl.
1475 if (ObjCImplementationDecl
*IMPD
=
1476 dyn_cast
<ObjCImplementationDecl
>(ObjCImpDecl
))
1477 ClassOfMethodDecl
= IMPD
->getClassInterface();
1478 else if (ObjCCategoryImplDecl
* CatImplClass
=
1479 dyn_cast
<ObjCCategoryImplDecl
>(ObjCImpDecl
))
1480 ClassOfMethodDecl
= CatImplClass
->getClassInterface();
1482 if (!S
.getLangOpts().DebuggerSupport
) {
1483 if (IV
->getAccessControl() == ObjCIvarDecl::Private
) {
1484 if (!declaresSameEntity(ClassDeclared
, IDecl
) ||
1485 !declaresSameEntity(ClassOfMethodDecl
, ClassDeclared
))
1486 S
.Diag(MemberLoc
, diag::err_private_ivar_access
)
1487 << IV
->getDeclName();
1488 } else if (!IDecl
->isSuperClassOf(ClassOfMethodDecl
))
1490 S
.Diag(MemberLoc
, diag::err_protected_ivar_access
)
1491 << IV
->getDeclName();
1495 if (S
.getLangOpts().ObjCWeak
) {
1496 Expr
*BaseExp
= BaseExpr
.get()->IgnoreParenImpCasts();
1497 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(BaseExp
))
1498 if (UO
->getOpcode() == UO_Deref
)
1499 BaseExp
= UO
->getSubExpr()->IgnoreParenCasts();
1501 if (DeclRefExpr
*DE
= dyn_cast
<DeclRefExpr
>(BaseExp
))
1502 if (DE
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1503 S
.Diag(DE
->getLocation(), diag::err_arc_weak_ivar_access
);
1508 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl()) {
1509 ObjCMethodFamily MF
= MD
->getMethodFamily();
1510 warn
= (MF
!= OMF_init
&& MF
!= OMF_dealloc
&& MF
!= OMF_finalize
&&
1511 !S
.ObjC().IvarBacksCurrentMethodAccessor(IDecl
, MD
, IV
));
1514 S
.Diag(MemberLoc
, diag::warn_direct_ivar_access
) << IV
->getDeclName();
1517 ObjCIvarRefExpr
*Result
= new (S
.Context
) ObjCIvarRefExpr(
1518 IV
, IV
->getUsageType(BaseType
), MemberLoc
, OpLoc
, BaseExpr
.get(),
1521 if (IV
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1522 if (!S
.isUnevaluatedContext() &&
1523 !S
.Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, MemberLoc
))
1524 S
.getCurFunction()->recordUseOfWeak(Result
);
1530 // Objective-C property access.
1531 const ObjCObjectPointerType
*OPT
;
1532 if (!IsArrow
&& (OPT
= BaseType
->getAs
<ObjCObjectPointerType
>())) {
1533 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1534 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1535 << 0 << SS
.getScopeRep() << FixItHint::CreateRemoval(SS
.getRange());
1539 // This actually uses the base as an r-value.
1540 BaseExpr
= S
.DefaultLvalueConversion(BaseExpr
.get());
1541 if (BaseExpr
.isInvalid())
1544 assert(S
.Context
.hasSameUnqualifiedType(BaseType
,
1545 BaseExpr
.get()->getType()));
1547 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1549 const ObjCObjectType
*OT
= OPT
->getObjectType();
1551 // id, with and without qualifiers.
1552 if (OT
->isObjCId()) {
1553 // Check protocols on qualified interfaces.
1554 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1556 FindGetterSetterNameDecl(OPT
, Member
, Sel
, S
.Context
)) {
1557 if (ObjCPropertyDecl
*PD
= dyn_cast
<ObjCPropertyDecl
>(PMDecl
)) {
1558 // Check the use of this declaration
1559 if (S
.DiagnoseUseOfDecl(PD
, MemberLoc
))
1562 return new (S
.Context
)
1563 ObjCPropertyRefExpr(PD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1564 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1567 if (ObjCMethodDecl
*OMD
= dyn_cast
<ObjCMethodDecl
>(PMDecl
)) {
1568 Selector SetterSel
=
1569 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1570 S
.PP
.getSelectorTable(),
1572 ObjCMethodDecl
*SMD
= nullptr;
1573 if (Decl
*SDecl
= FindGetterSetterNameDecl(OPT
,
1574 /*Property id*/ nullptr,
1575 SetterSel
, S
.Context
))
1576 SMD
= dyn_cast
<ObjCMethodDecl
>(SDecl
);
1578 return new (S
.Context
)
1579 ObjCPropertyRefExpr(OMD
, SMD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1580 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1583 // Use of id.member can only be for a property reference. Do not
1584 // use the 'id' redefinition in this case.
1585 if (IsArrow
&& ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1586 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1587 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1589 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1590 << MemberName
<< BaseType
);
1593 // 'Class', unqualified only.
1594 if (OT
->isObjCClass()) {
1595 // Only works in a method declaration (??!).
1596 ObjCMethodDecl
*MD
= S
.getCurMethodDecl();
1598 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1599 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1600 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1605 // Also must look for a getter name which uses property syntax.
1606 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1607 ObjCInterfaceDecl
*IFace
= MD
->getClassInterface();
1611 ObjCMethodDecl
*Getter
;
1612 if ((Getter
= IFace
->lookupClassMethod(Sel
))) {
1613 // Check the use of this method.
1614 if (S
.DiagnoseUseOfDecl(Getter
, MemberLoc
))
1617 Getter
= IFace
->lookupPrivateMethod(Sel
, false);
1618 // If we found a getter then this may be a valid dot-reference, we
1619 // will look for the matching setter, in case it is needed.
1620 Selector SetterSel
=
1621 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1622 S
.PP
.getSelectorTable(),
1624 ObjCMethodDecl
*Setter
= IFace
->lookupClassMethod(SetterSel
);
1626 // If this reference is in an @implementation, also check for 'private'
1628 Setter
= IFace
->lookupPrivateMethod(SetterSel
, false);
1631 if (Setter
&& S
.DiagnoseUseOfDecl(Setter
, MemberLoc
))
1634 if (Getter
|| Setter
) {
1635 return new (S
.Context
) ObjCPropertyRefExpr(
1636 Getter
, Setter
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1637 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1640 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1641 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1642 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1644 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1645 << MemberName
<< BaseType
);
1648 // Normal property access.
1649 return S
.ObjC().HandleExprPropertyRefExpr(
1650 OPT
, BaseExpr
.get(), OpLoc
, MemberName
, MemberLoc
, SourceLocation(),
1654 if (BaseType
->isExtVectorBoolType()) {
1655 // We disallow element access for ext_vector_type bool. There is no way to
1656 // materialize a reference to a vector element as a pointer (each element is
1657 // one bit in the vector).
1658 S
.Diag(R
.getNameLoc(), diag::err_ext_vector_component_name_illegal
)
1660 << (BaseExpr
.get() ? BaseExpr
.get()->getSourceRange() : SourceRange());
1664 // Handle 'field access' to vectors, such as 'V.xx'.
1665 if (BaseType
->isExtVectorType()) {
1666 // FIXME: this expr should store IsArrow.
1667 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1668 ExprValueKind VK
= (IsArrow
? VK_LValue
: BaseExpr
.get()->getValueKind());
1669 QualType ret
= CheckExtVectorComponent(S
, BaseType
, VK
, OpLoc
,
1674 S
.Context
.getCanonicalType(BaseExpr
.get()->getType()).getQualifiers();
1675 ret
= S
.Context
.getQualifiedType(ret
, BaseQ
);
1677 return new (S
.Context
)
1678 ExtVectorElementExpr(ret
, VK
, BaseExpr
.get(), *Member
, MemberLoc
);
1681 // Adjust builtin-sel to the appropriate redefinition type if that's
1682 // not just a pointer to builtin-sel again.
1683 if (IsArrow
&& BaseType
->isSpecificBuiltinType(BuiltinType::ObjCSel
) &&
1684 !S
.Context
.getObjCSelRedefinitionType()->isObjCSelType()) {
1685 BaseExpr
= S
.ImpCastExprToType(
1686 BaseExpr
.get(), S
.Context
.getObjCSelRedefinitionType(), CK_BitCast
);
1687 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1688 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1694 // Recover from dot accesses to pointers, e.g.:
1697 // This is actually well-formed in two cases:
1698 // - 'type' is an Objective C type
1699 // - 'bar' is a pseudo-destructor name which happens to refer to
1700 // the appropriate pointer type
1701 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>()) {
1702 if (!IsArrow
&& Ptr
->getPointeeType()->isRecordType() &&
1703 MemberName
.getNameKind() != DeclarationName::CXXDestructorName
) {
1704 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1705 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1706 << FixItHint::CreateReplacement(OpLoc
, "->");
1708 if (S
.isSFINAEContext())
1711 // Recurse as an -> access.
1713 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1714 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1718 // If the user is trying to apply -> or . to a function name, it's probably
1719 // because they forgot parentheses to call that function.
1720 if (S
.tryToRecoverWithCall(
1721 BaseExpr
, S
.PDiag(diag::err_member_reference_needs_call
),
1723 IsArrow
? &isPointerToRecordType
: &isRecordType
)) {
1724 if (BaseExpr
.isInvalid())
1726 BaseExpr
= S
.DefaultFunctionArrayConversion(BaseExpr
.get());
1727 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1728 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1731 // HLSL supports implicit conversion of scalar types to single element vector
1732 // rvalues in member expressions.
1733 if (S
.getLangOpts().HLSL
&& BaseType
->isScalarType()) {
1734 QualType VectorTy
= S
.Context
.getExtVectorType(BaseType
, 1);
1735 BaseExpr
= S
.ImpCastExprToType(BaseExpr
.get(), VectorTy
, CK_VectorSplat
,
1736 BaseExpr
.get()->getValueKind());
1737 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
, ObjCImpDecl
,
1738 HasTemplateArgs
, TemplateKWLoc
);
1741 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
1742 << BaseType
<< BaseExpr
.get()->getSourceRange() << MemberLoc
;
1747 ExprResult
Sema::ActOnMemberAccessExpr(Scope
*S
, Expr
*Base
,
1748 SourceLocation OpLoc
,
1749 tok::TokenKind OpKind
, CXXScopeSpec
&SS
,
1750 SourceLocation TemplateKWLoc
,
1751 UnqualifiedId
&Id
, Decl
*ObjCImpDecl
) {
1752 // Warn about the explicit constructor calls Microsoft extension.
1753 if (getLangOpts().MicrosoftExt
&&
1754 Id
.getKind() == UnqualifiedIdKind::IK_ConstructorName
)
1755 Diag(Id
.getSourceRange().getBegin(),
1756 diag::ext_ms_explicit_constructor_call
);
1758 TemplateArgumentListInfo TemplateArgsBuffer
;
1760 // Decompose the name into its component parts.
1761 DeclarationNameInfo NameInfo
;
1762 const TemplateArgumentListInfo
*TemplateArgs
;
1763 DecomposeUnqualifiedId(Id
, TemplateArgsBuffer
,
1764 NameInfo
, TemplateArgs
);
1766 bool IsArrow
= (OpKind
== tok::arrow
);
1768 if (getLangOpts().HLSL
&& IsArrow
)
1769 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 2);
1771 NamedDecl
*FirstQualifierInScope
1772 = (!SS
.isSet() ? nullptr : FindFirstQualifierInScope(S
, SS
.getScopeRep()));
1774 // This is a postfix expression, so get rid of ParenListExprs.
1775 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
1776 if (Result
.isInvalid()) return ExprError();
1777 Base
= Result
.get();
1779 ActOnMemberAccessExtraArgs ExtraArgs
= {S
, Id
, ObjCImpDecl
};
1780 ExprResult Res
= BuildMemberReferenceExpr(
1781 Base
, Base
->getType(), OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
1782 FirstQualifierInScope
, NameInfo
, TemplateArgs
, S
, &ExtraArgs
);
1784 if (!Res
.isInvalid() && isa
<MemberExpr
>(Res
.get()))
1785 CheckMemberAccessOfNoDeref(cast
<MemberExpr
>(Res
.get()));
1790 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr
*E
) {
1791 if (isUnevaluatedContext())
1794 QualType ResultTy
= E
->getType();
1796 // Member accesses have four cases:
1797 // 1: non-array member via "->": dereferences
1798 // 2: non-array member via ".": nothing interesting happens
1799 // 3: array member access via "->": nothing interesting happens
1800 // (this returns an array lvalue and does not actually dereference memory)
1801 // 4: array member access via ".": *adds* a layer of indirection
1802 if (ResultTy
->isArrayType()) {
1803 if (!E
->isArrow()) {
1804 // This might be something like:
1805 // (*structPtr).arrayMember
1806 // which behaves roughly like:
1807 // &(*structPtr).pointerMember
1808 // in that the apparent dereference in the base expression does not
1810 CheckAddressOfNoDeref(E
->getBase());
1812 } else if (E
->isArrow()) {
1813 if (const auto *Ptr
= dyn_cast
<PointerType
>(
1814 E
->getBase()->getType().getDesugaredType(Context
))) {
1815 if (Ptr
->getPointeeType()->hasAttr(attr::NoDeref
))
1816 ExprEvalContexts
.back().PossibleDerefs
.insert(E
);
1822 Sema::BuildFieldReferenceExpr(Expr
*BaseExpr
, bool IsArrow
,
1823 SourceLocation OpLoc
, const CXXScopeSpec
&SS
,
1824 FieldDecl
*Field
, DeclAccessPair FoundDecl
,
1825 const DeclarationNameInfo
&MemberNameInfo
) {
1826 // x.a is an l-value if 'a' has a reference type. Otherwise:
1827 // x.a is an l-value/x-value/pr-value if the base is (and note
1828 // that *x is always an l-value), except that if the base isn't
1829 // an ordinary object then we must have an rvalue.
1830 ExprValueKind VK
= VK_LValue
;
1831 ExprObjectKind OK
= OK_Ordinary
;
1833 if (BaseExpr
->getObjectKind() == OK_Ordinary
)
1834 VK
= BaseExpr
->getValueKind();
1838 if (VK
!= VK_PRValue
&& Field
->isBitField())
1841 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1842 QualType MemberType
= Field
->getType();
1843 if (const ReferenceType
*Ref
= MemberType
->getAs
<ReferenceType
>()) {
1844 MemberType
= Ref
->getPointeeType();
1847 QualType BaseType
= BaseExpr
->getType();
1848 if (IsArrow
) BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
1850 Qualifiers BaseQuals
= BaseType
.getQualifiers();
1852 // GC attributes are never picked up by members.
1853 BaseQuals
.removeObjCGCAttr();
1855 // CVR attributes from the base are picked up by members,
1856 // except that 'mutable' members don't pick up 'const'.
1857 if (Field
->isMutable()) BaseQuals
.removeConst();
1859 Qualifiers MemberQuals
=
1860 Context
.getCanonicalType(MemberType
).getQualifiers();
1862 assert(!MemberQuals
.hasAddressSpace());
1864 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
1865 if (Combined
!= MemberQuals
)
1866 MemberType
= Context
.getQualifiedType(MemberType
, Combined
);
1868 // Pick up NoDeref from the base in case we end up using AddrOf on the
1869 // result. E.g. the expression
1870 // &someNoDerefPtr->pointerMember
1871 // should be a noderef pointer again.
1872 if (BaseType
->hasAttr(attr::NoDeref
))
1874 Context
.getAttributedType(attr::NoDeref
, MemberType
, MemberType
);
1877 auto isDefaultedSpecialMember
= [this](const DeclContext
*Ctx
) {
1878 auto *Method
= dyn_cast
<CXXMethodDecl
>(CurContext
);
1879 if (!Method
|| !Method
->isDefaulted())
1882 return getDefaultedFunctionKind(Method
).isSpecialMember();
1885 // Implicit special members should not mark fields as used.
1886 if (!isDefaultedSpecialMember(CurContext
))
1887 UnusedPrivateFields
.remove(Field
);
1889 ExprResult Base
= PerformObjectMemberConversion(BaseExpr
, SS
.getScopeRep(),
1891 if (Base
.isInvalid())
1894 // Build a reference to a private copy for non-static data members in
1895 // non-static member functions, privatized by OpenMP constructs.
1896 if (getLangOpts().OpenMP
&& IsArrow
&&
1897 !CurContext
->isDependentContext() &&
1898 isa
<CXXThisExpr
>(Base
.get()->IgnoreParenImpCasts())) {
1899 if (auto *PrivateCopy
= OpenMP().isOpenMPCapturedDecl(Field
)) {
1900 return OpenMP().getOpenMPCapturedExpr(PrivateCopy
, VK
, OK
,
1901 MemberNameInfo
.getLoc());
1905 return BuildMemberExpr(
1906 Base
.get(), IsArrow
, OpLoc
, SS
.getWithLocInContext(Context
),
1907 /*TemplateKWLoc=*/SourceLocation(), Field
, FoundDecl
,
1908 /*HadMultipleCandidates=*/false, MemberNameInfo
, MemberType
, VK
, OK
);
1912 Sema::BuildImplicitMemberExpr(const CXXScopeSpec
&SS
,
1913 SourceLocation TemplateKWLoc
,
1915 const TemplateArgumentListInfo
*TemplateArgs
,
1916 bool IsKnownInstance
, const Scope
*S
) {
1917 assert(!R
.empty() && !R
.isAmbiguous());
1919 SourceLocation loc
= R
.getNameLoc();
1921 // If this is known to be an instance access, go ahead and build an
1922 // implicit 'this' expression now.
1923 QualType ThisTy
= getCurrentThisType();
1924 assert(!ThisTy
.isNull() && "didn't correctly pre-flight capture of 'this'");
1926 Expr
*baseExpr
= nullptr; // null signifies implicit access
1927 if (IsKnownInstance
) {
1928 SourceLocation Loc
= R
.getNameLoc();
1929 if (SS
.getRange().isValid())
1930 Loc
= SS
.getRange().getBegin();
1931 baseExpr
= BuildCXXThisExpr(loc
, ThisTy
, /*IsImplicit=*/true);
1934 return BuildMemberReferenceExpr(
1936 /*OpLoc=*/SourceLocation(),
1937 /*IsArrow=*/!getLangOpts().HLSL
, SS
, TemplateKWLoc
,
1938 /*FirstQualifierInScope=*/nullptr, R
, TemplateArgs
, S
);