[flang] Update CommandTest for AIX (NFC) (#118403)
[llvm-project.git] / clang / lib / Sema / SemaLambda.cpp
bloba67c0b2b367d1aadc784712414982150f0adb9ec
1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ lambda expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/SemaLambda.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/MangleNumberingContext.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Scope.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "clang/Sema/SemaCUDA.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "clang/Sema/SemaOpenMP.h"
27 #include "clang/Sema/Template.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include <optional>
30 using namespace clang;
31 using namespace sema;
33 /// Examines the FunctionScopeInfo stack to determine the nearest
34 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
35 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
36 /// If successful, returns the index into Sema's FunctionScopeInfo stack
37 /// of the capture-ready lambda's LambdaScopeInfo.
38 ///
39 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
40 /// lambda - is on top) to determine the index of the nearest enclosing/outer
41 /// lambda that is ready to capture the \p VarToCapture being referenced in
42 /// the current lambda.
43 /// As we climb down the stack, we want the index of the first such lambda -
44 /// that is the lambda with the highest index that is 'capture-ready'.
45 ///
46 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
47 /// - its enclosing context is non-dependent
48 /// - and if the chain of lambdas between L and the lambda in which
49 /// V is potentially used (i.e. the lambda at the top of the scope info
50 /// stack), can all capture or have already captured V.
51 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
52 ///
53 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
54 /// for whether it is 'capture-capable' (see
55 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
56 /// capture.
57 ///
58 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
59 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
60 /// is at the top of the stack and has the highest index.
61 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
62 ///
63 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
64 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
65 /// lambda which is capture-ready. If the return value evaluates to 'false'
66 /// then no lambda is capture-ready for \p VarToCapture.
68 static inline std::optional<unsigned>
69 getStackIndexOfNearestEnclosingCaptureReadyLambda(
70 ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
71 ValueDecl *VarToCapture) {
72 // Label failure to capture.
73 const std::optional<unsigned> NoLambdaIsCaptureReady;
75 // Ignore all inner captured regions.
76 unsigned CurScopeIndex = FunctionScopes.size() - 1;
77 while (CurScopeIndex > 0 && isa<clang::sema::CapturedRegionScopeInfo>(
78 FunctionScopes[CurScopeIndex]))
79 --CurScopeIndex;
80 assert(
81 isa<clang::sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]) &&
82 "The function on the top of sema's function-info stack must be a lambda");
84 // If VarToCapture is null, we are attempting to capture 'this'.
85 const bool IsCapturingThis = !VarToCapture;
86 const bool IsCapturingVariable = !IsCapturingThis;
88 // Start with the current lambda at the top of the stack (highest index).
89 DeclContext *EnclosingDC =
90 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
92 do {
93 const clang::sema::LambdaScopeInfo *LSI =
94 cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
95 // IF we have climbed down to an intervening enclosing lambda that contains
96 // the variable declaration - it obviously can/must not capture the
97 // variable.
98 // Since its enclosing DC is dependent, all the lambdas between it and the
99 // innermost nested lambda are dependent (otherwise we wouldn't have
100 // arrived here) - so we don't yet have a lambda that can capture the
101 // variable.
102 if (IsCapturingVariable &&
103 VarToCapture->getDeclContext()->Equals(EnclosingDC))
104 return NoLambdaIsCaptureReady;
106 // For an enclosing lambda to be capture ready for an entity, all
107 // intervening lambda's have to be able to capture that entity. If even
108 // one of the intervening lambda's is not capable of capturing the entity
109 // then no enclosing lambda can ever capture that entity.
110 // For e.g.
111 // const int x = 10;
112 // [=](auto a) { #1
113 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
114 // [=](auto c) { #3
115 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
116 // }; }; };
117 // If they do not have a default implicit capture, check to see
118 // if the entity has already been explicitly captured.
119 // If even a single dependent enclosing lambda lacks the capability
120 // to ever capture this variable, there is no further enclosing
121 // non-dependent lambda that can capture this variable.
122 if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
123 if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
124 return NoLambdaIsCaptureReady;
125 if (IsCapturingThis && !LSI->isCXXThisCaptured())
126 return NoLambdaIsCaptureReady;
128 EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
130 assert(CurScopeIndex);
131 --CurScopeIndex;
132 } while (!EnclosingDC->isTranslationUnit() &&
133 EnclosingDC->isDependentContext() &&
134 isLambdaCallOperator(EnclosingDC));
136 assert(CurScopeIndex < (FunctionScopes.size() - 1));
137 // If the enclosingDC is not dependent, then the immediately nested lambda
138 // (one index above) is capture-ready.
139 if (!EnclosingDC->isDependentContext())
140 return CurScopeIndex + 1;
141 return NoLambdaIsCaptureReady;
144 /// Examines the FunctionScopeInfo stack to determine the nearest
145 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
146 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
147 /// If successful, returns the index into Sema's FunctionScopeInfo stack
148 /// of the capture-capable lambda's LambdaScopeInfo.
150 /// Given the current stack of lambdas being processed by Sema and
151 /// the variable of interest, to identify the nearest enclosing lambda (to the
152 /// current lambda at the top of the stack) that can truly capture
153 /// a variable, it has to have the following two properties:
154 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
155 /// - climb down the stack (i.e. starting from the innermost and examining
156 /// each outer lambda step by step) checking if each enclosing
157 /// lambda can either implicitly or explicitly capture the variable.
158 /// Record the first such lambda that is enclosed in a non-dependent
159 /// context. If no such lambda currently exists return failure.
160 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
161 /// capture the variable by checking all its enclosing lambdas:
162 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
163 /// identified above in 'a' can also capture the variable (this is done
164 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
165 /// 'this' by passing in the index of the Lambda identified in step 'a')
167 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
168 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
169 /// is at the top of the stack.
171 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
174 /// \returns An std::optional<unsigned> Index that if evaluates to 'true'
175 /// contains the index (into Sema's FunctionScopeInfo stack) of the innermost
176 /// lambda which is capture-capable. If the return value evaluates to 'false'
177 /// then no lambda is capture-capable for \p VarToCapture.
179 std::optional<unsigned>
180 clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
181 ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
182 ValueDecl *VarToCapture, Sema &S) {
184 const std::optional<unsigned> NoLambdaIsCaptureCapable;
186 const std::optional<unsigned> OptionalStackIndex =
187 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
188 VarToCapture);
189 if (!OptionalStackIndex)
190 return NoLambdaIsCaptureCapable;
192 const unsigned IndexOfCaptureReadyLambda = *OptionalStackIndex;
193 assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
194 S.getCurGenericLambda()) &&
195 "The capture ready lambda for a potential capture can only be the "
196 "current lambda if it is a generic lambda");
198 const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
199 cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
201 // If VarToCapture is null, we are attempting to capture 'this'
202 const bool IsCapturingThis = !VarToCapture;
203 const bool IsCapturingVariable = !IsCapturingThis;
205 if (IsCapturingVariable) {
206 // Check if the capture-ready lambda can truly capture the variable, by
207 // checking whether all enclosing lambdas of the capture-ready lambda allow
208 // the capture - i.e. make sure it is capture-capable.
209 QualType CaptureType, DeclRefType;
210 const bool CanCaptureVariable =
211 !S.tryCaptureVariable(VarToCapture,
212 /*ExprVarIsUsedInLoc*/ SourceLocation(),
213 clang::Sema::TryCapture_Implicit,
214 /*EllipsisLoc*/ SourceLocation(),
215 /*BuildAndDiagnose*/ false, CaptureType,
216 DeclRefType, &IndexOfCaptureReadyLambda);
217 if (!CanCaptureVariable)
218 return NoLambdaIsCaptureCapable;
219 } else {
220 // Check if the capture-ready lambda can truly capture 'this' by checking
221 // whether all enclosing lambdas of the capture-ready lambda can capture
222 // 'this'.
223 const bool CanCaptureThis =
224 !S.CheckCXXThisCapture(
225 CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
226 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
227 &IndexOfCaptureReadyLambda);
228 if (!CanCaptureThis)
229 return NoLambdaIsCaptureCapable;
231 return IndexOfCaptureReadyLambda;
234 static inline TemplateParameterList *
235 getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
236 if (!LSI->GLTemplateParameterList && !LSI->TemplateParams.empty()) {
237 LSI->GLTemplateParameterList = TemplateParameterList::Create(
238 SemaRef.Context,
239 /*Template kw loc*/ SourceLocation(),
240 /*L angle loc*/ LSI->ExplicitTemplateParamsRange.getBegin(),
241 LSI->TemplateParams,
242 /*R angle loc*/LSI->ExplicitTemplateParamsRange.getEnd(),
243 LSI->RequiresClause.get());
245 return LSI->GLTemplateParameterList;
248 CXXRecordDecl *
249 Sema::createLambdaClosureType(SourceRange IntroducerRange, TypeSourceInfo *Info,
250 unsigned LambdaDependencyKind,
251 LambdaCaptureDefault CaptureDefault) {
252 DeclContext *DC = CurContext;
253 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
254 DC = DC->getParent();
256 bool IsGenericLambda =
257 Info && getGenericLambdaTemplateParameterList(getCurLambda(), *this);
258 // Start constructing the lambda class.
259 CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(
260 Context, DC, Info, IntroducerRange.getBegin(), LambdaDependencyKind,
261 IsGenericLambda, CaptureDefault);
262 DC->addDecl(Class);
264 return Class;
267 /// Determine whether the given context is or is enclosed in an inline
268 /// function.
269 static bool isInInlineFunction(const DeclContext *DC) {
270 while (!DC->isFileContext()) {
271 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
272 if (FD->isInlined())
273 return true;
275 DC = DC->getLexicalParent();
278 return false;
281 std::tuple<MangleNumberingContext *, Decl *>
282 Sema::getCurrentMangleNumberContext(const DeclContext *DC) {
283 // Compute the context for allocating mangling numbers in the current
284 // expression, if the ABI requires them.
285 Decl *ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
287 enum ContextKind {
288 Normal,
289 DefaultArgument,
290 DataMember,
291 InlineVariable,
292 TemplatedVariable,
293 Concept
294 } Kind = Normal;
296 bool IsInNonspecializedTemplate =
297 inTemplateInstantiation() || CurContext->isDependentContext();
299 // Default arguments of member function parameters that appear in a class
300 // definition, as well as the initializers of data members, receive special
301 // treatment. Identify them.
302 if (ManglingContextDecl) {
303 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
304 if (const DeclContext *LexicalDC
305 = Param->getDeclContext()->getLexicalParent())
306 if (LexicalDC->isRecord())
307 Kind = DefaultArgument;
308 } else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
309 if (Var->getMostRecentDecl()->isInline())
310 Kind = InlineVariable;
311 else if (Var->getDeclContext()->isRecord() && IsInNonspecializedTemplate)
312 Kind = TemplatedVariable;
313 else if (Var->getDescribedVarTemplate())
314 Kind = TemplatedVariable;
315 else if (auto *VTS = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
316 if (!VTS->isExplicitSpecialization())
317 Kind = TemplatedVariable;
319 } else if (isa<FieldDecl>(ManglingContextDecl)) {
320 Kind = DataMember;
321 } else if (isa<ImplicitConceptSpecializationDecl>(ManglingContextDecl)) {
322 Kind = Concept;
326 // Itanium ABI [5.1.7]:
327 // In the following contexts [...] the one-definition rule requires closure
328 // types in different translation units to "correspond":
329 switch (Kind) {
330 case Normal: {
331 // -- the bodies of inline or templated functions
332 if ((IsInNonspecializedTemplate &&
333 !(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
334 isInInlineFunction(CurContext)) {
335 while (auto *CD = dyn_cast<CapturedDecl>(DC))
336 DC = CD->getParent();
337 return std::make_tuple(&Context.getManglingNumberContext(DC), nullptr);
340 return std::make_tuple(nullptr, nullptr);
343 case Concept:
344 // Concept definitions aren't code generated and thus aren't mangled,
345 // however the ManglingContextDecl is important for the purposes of
346 // re-forming the template argument list of the lambda for constraint
347 // evaluation.
348 case DataMember:
349 // -- default member initializers
350 case DefaultArgument:
351 // -- default arguments appearing in class definitions
352 case InlineVariable:
353 case TemplatedVariable:
354 // -- the initializers of inline or templated variables
355 return std::make_tuple(
356 &Context.getManglingNumberContext(ASTContext::NeedExtraManglingDecl,
357 ManglingContextDecl),
358 ManglingContextDecl);
361 llvm_unreachable("unexpected context");
364 static QualType
365 buildTypeForLambdaCallOperator(Sema &S, clang::CXXRecordDecl *Class,
366 TemplateParameterList *TemplateParams,
367 TypeSourceInfo *MethodTypeInfo) {
368 assert(MethodTypeInfo && "expected a non null type");
370 QualType MethodType = MethodTypeInfo->getType();
371 // If a lambda appears in a dependent context or is a generic lambda (has
372 // template parameters) and has an 'auto' return type, deduce it to a
373 // dependent type.
374 if (Class->isDependentContext() || TemplateParams) {
375 const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
376 QualType Result = FPT->getReturnType();
377 if (Result->isUndeducedType()) {
378 Result = S.SubstAutoTypeDependent(Result);
379 MethodType = S.Context.getFunctionType(Result, FPT->getParamTypes(),
380 FPT->getExtProtoInfo());
383 return MethodType;
386 // [C++2b] [expr.prim.lambda.closure] p4
387 // Given a lambda with a lambda-capture, the type of the explicit object
388 // parameter, if any, of the lambda's function call operator (possibly
389 // instantiated from a function call operator template) shall be either:
390 // - the closure type,
391 // - class type publicly and unambiguously derived from the closure type, or
392 // - a reference to a possibly cv-qualified such type.
393 bool Sema::DiagnoseInvalidExplicitObjectParameterInLambda(
394 CXXMethodDecl *Method, SourceLocation CallLoc) {
395 if (!isLambdaCallWithExplicitObjectParameter(Method))
396 return false;
397 CXXRecordDecl *RD = Method->getParent();
398 if (Method->getType()->isDependentType())
399 return false;
400 if (RD->isCapturelessLambda())
401 return false;
403 ParmVarDecl *Param = Method->getParamDecl(0);
404 QualType ExplicitObjectParameterType = Param->getType()
405 .getNonReferenceType()
406 .getUnqualifiedType()
407 .getDesugaredType(getASTContext());
408 QualType LambdaType = getASTContext().getRecordType(RD);
409 if (LambdaType == ExplicitObjectParameterType)
410 return false;
412 // Don't check the same instantiation twice.
414 // If this call operator is ill-formed, there is no point in issuing
415 // a diagnostic every time it is called because the problem is in the
416 // definition of the derived type, not at the call site.
418 // FIXME: Move this check to where we instantiate the method? This should
419 // be possible, but the naive approach of just marking the method as invalid
420 // leads to us emitting more diagnostics than we should have to for this case
421 // (1 error here *and* 1 error about there being no matching overload at the
422 // call site). It might be possible to avoid that by also checking if there
423 // is an empty cast path for the method stored in the context (signalling that
424 // we've already diagnosed it) and then just not building the call, but that
425 // doesn't really seem any simpler than diagnosing it at the call site...
426 auto [It, Inserted] = Context.LambdaCastPaths.try_emplace(Method);
427 if (!Inserted)
428 return It->second.empty();
430 CXXCastPath &Path = It->second;
431 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
432 /*DetectVirtual=*/false);
433 if (!IsDerivedFrom(RD->getLocation(), ExplicitObjectParameterType, LambdaType,
434 Paths)) {
435 Diag(Param->getLocation(), diag::err_invalid_explicit_object_type_in_lambda)
436 << ExplicitObjectParameterType;
437 return true;
440 if (Paths.isAmbiguous(LambdaType->getCanonicalTypeUnqualified())) {
441 std::string PathsDisplay = getAmbiguousPathsDisplayString(Paths);
442 Diag(CallLoc, diag::err_explicit_object_lambda_ambiguous_base)
443 << LambdaType << PathsDisplay;
444 return true;
447 if (CheckBaseClassAccess(CallLoc, LambdaType, ExplicitObjectParameterType,
448 Paths.front(),
449 diag::err_explicit_object_lambda_inaccessible_base))
450 return true;
452 BuildBasePathArray(Paths, Path);
453 return false;
456 void Sema::handleLambdaNumbering(
457 CXXRecordDecl *Class, CXXMethodDecl *Method,
458 std::optional<CXXRecordDecl::LambdaNumbering> NumberingOverride) {
459 if (NumberingOverride) {
460 Class->setLambdaNumbering(*NumberingOverride);
461 return;
464 ContextRAII ManglingContext(*this, Class->getDeclContext());
466 auto getMangleNumberingContext =
467 [this](CXXRecordDecl *Class,
468 Decl *ManglingContextDecl) -> MangleNumberingContext * {
469 // Get mangle numbering context if there's any extra decl context.
470 if (ManglingContextDecl)
471 return &Context.getManglingNumberContext(
472 ASTContext::NeedExtraManglingDecl, ManglingContextDecl);
473 // Otherwise, from that lambda's decl context.
474 auto DC = Class->getDeclContext();
475 while (auto *CD = dyn_cast<CapturedDecl>(DC))
476 DC = CD->getParent();
477 return &Context.getManglingNumberContext(DC);
480 CXXRecordDecl::LambdaNumbering Numbering;
481 MangleNumberingContext *MCtx;
482 std::tie(MCtx, Numbering.ContextDecl) =
483 getCurrentMangleNumberContext(Class->getDeclContext());
484 if (!MCtx && (getLangOpts().CUDA || getLangOpts().SYCLIsDevice ||
485 getLangOpts().SYCLIsHost)) {
486 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
487 // ODR. Both device- and host-compilation need to have a consistent naming
488 // on kernel functions. As lambdas are potential part of these `__global__`
489 // function names, they needs numbering following ODR.
490 // Also force for SYCL, since we need this for the
491 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
492 // mangling.
493 MCtx = getMangleNumberingContext(Class, Numbering.ContextDecl);
494 assert(MCtx && "Retrieving mangle numbering context failed!");
495 Numbering.HasKnownInternalLinkage = true;
497 if (MCtx) {
498 Numbering.IndexInContext = MCtx->getNextLambdaIndex();
499 Numbering.ManglingNumber = MCtx->getManglingNumber(Method);
500 Numbering.DeviceManglingNumber = MCtx->getDeviceManglingNumber(Method);
501 Class->setLambdaNumbering(Numbering);
503 if (auto *Source =
504 dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource()))
505 Source->AssignedLambdaNumbering(Class);
509 static void buildLambdaScopeReturnType(Sema &S, LambdaScopeInfo *LSI,
510 CXXMethodDecl *CallOperator,
511 bool ExplicitResultType) {
512 if (ExplicitResultType) {
513 LSI->HasImplicitReturnType = false;
514 LSI->ReturnType = CallOperator->getReturnType();
515 if (!LSI->ReturnType->isDependentType() && !LSI->ReturnType->isVoidType())
516 S.RequireCompleteType(CallOperator->getBeginLoc(), LSI->ReturnType,
517 diag::err_lambda_incomplete_result);
518 } else {
519 LSI->HasImplicitReturnType = true;
523 void Sema::buildLambdaScope(LambdaScopeInfo *LSI, CXXMethodDecl *CallOperator,
524 SourceRange IntroducerRange,
525 LambdaCaptureDefault CaptureDefault,
526 SourceLocation CaptureDefaultLoc,
527 bool ExplicitParams, bool Mutable) {
528 LSI->CallOperator = CallOperator;
529 CXXRecordDecl *LambdaClass = CallOperator->getParent();
530 LSI->Lambda = LambdaClass;
531 if (CaptureDefault == LCD_ByCopy)
532 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
533 else if (CaptureDefault == LCD_ByRef)
534 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
535 LSI->CaptureDefaultLoc = CaptureDefaultLoc;
536 LSI->IntroducerRange = IntroducerRange;
537 LSI->ExplicitParams = ExplicitParams;
538 LSI->Mutable = Mutable;
541 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
542 LSI->finishedExplicitCaptures();
545 void Sema::ActOnLambdaExplicitTemplateParameterList(
546 LambdaIntroducer &Intro, SourceLocation LAngleLoc,
547 ArrayRef<NamedDecl *> TParams, SourceLocation RAngleLoc,
548 ExprResult RequiresClause) {
549 LambdaScopeInfo *LSI = getCurLambda();
550 assert(LSI && "Expected a lambda scope");
551 assert(LSI->NumExplicitTemplateParams == 0 &&
552 "Already acted on explicit template parameters");
553 assert(LSI->TemplateParams.empty() &&
554 "Explicit template parameters should come "
555 "before invented (auto) ones");
556 assert(!TParams.empty() &&
557 "No template parameters to act on");
558 LSI->TemplateParams.append(TParams.begin(), TParams.end());
559 LSI->NumExplicitTemplateParams = TParams.size();
560 LSI->ExplicitTemplateParamsRange = {LAngleLoc, RAngleLoc};
561 LSI->RequiresClause = RequiresClause;
564 /// If this expression is an enumerator-like expression of some type
565 /// T, return the type T; otherwise, return null.
567 /// Pointer comparisons on the result here should always work because
568 /// it's derived from either the parent of an EnumConstantDecl
569 /// (i.e. the definition) or the declaration returned by
570 /// EnumType::getDecl() (i.e. the definition).
571 static EnumDecl *findEnumForBlockReturn(Expr *E) {
572 // An expression is an enumerator-like expression of type T if,
573 // ignoring parens and parens-like expressions:
574 E = E->IgnoreParens();
576 // - it is an enumerator whose enum type is T or
577 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
578 if (EnumConstantDecl *D
579 = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
580 return cast<EnumDecl>(D->getDeclContext());
582 return nullptr;
585 // - it is a comma expression whose RHS is an enumerator-like
586 // expression of type T or
587 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
588 if (BO->getOpcode() == BO_Comma)
589 return findEnumForBlockReturn(BO->getRHS());
590 return nullptr;
593 // - it is a statement-expression whose value expression is an
594 // enumerator-like expression of type T or
595 if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
596 if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
597 return findEnumForBlockReturn(last);
598 return nullptr;
601 // - it is a ternary conditional operator (not the GNU ?:
602 // extension) whose second and third operands are
603 // enumerator-like expressions of type T or
604 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
605 if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
606 if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
607 return ED;
608 return nullptr;
611 // (implicitly:)
612 // - it is an implicit integral conversion applied to an
613 // enumerator-like expression of type T or
614 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
615 // We can sometimes see integral conversions in valid
616 // enumerator-like expressions.
617 if (ICE->getCastKind() == CK_IntegralCast)
618 return findEnumForBlockReturn(ICE->getSubExpr());
620 // Otherwise, just rely on the type.
623 // - it is an expression of that formal enum type.
624 if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
625 return ET->getDecl();
628 // Otherwise, nope.
629 return nullptr;
632 /// Attempt to find a type T for which the returned expression of the
633 /// given statement is an enumerator-like expression of that type.
634 static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
635 if (Expr *retValue = ret->getRetValue())
636 return findEnumForBlockReturn(retValue);
637 return nullptr;
640 /// Attempt to find a common type T for which all of the returned
641 /// expressions in a block are enumerator-like expressions of that
642 /// type.
643 static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
644 ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
646 // Try to find one for the first return.
647 EnumDecl *ED = findEnumForBlockReturn(*i);
648 if (!ED) return nullptr;
650 // Check that the rest of the returns have the same enum.
651 for (++i; i != e; ++i) {
652 if (findEnumForBlockReturn(*i) != ED)
653 return nullptr;
656 // Never infer an anonymous enum type.
657 if (!ED->hasNameForLinkage()) return nullptr;
659 return ED;
662 /// Adjust the given return statements so that they formally return
663 /// the given type. It should require, at most, an IntegralCast.
664 static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
665 QualType returnType) {
666 for (ArrayRef<ReturnStmt*>::iterator
667 i = returns.begin(), e = returns.end(); i != e; ++i) {
668 ReturnStmt *ret = *i;
669 Expr *retValue = ret->getRetValue();
670 if (S.Context.hasSameType(retValue->getType(), returnType))
671 continue;
673 // Right now we only support integral fixup casts.
674 assert(returnType->isIntegralOrUnscopedEnumerationType());
675 assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
677 ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
679 Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
680 E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast, E,
681 /*base path*/ nullptr, VK_PRValue,
682 FPOptionsOverride());
683 if (cleanups) {
684 cleanups->setSubExpr(E);
685 } else {
686 ret->setRetValue(E);
691 void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
692 assert(CSI.HasImplicitReturnType);
693 // If it was ever a placeholder, it had to been deduced to DependentTy.
694 assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
695 assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
696 "lambda expressions use auto deduction in C++14 onwards");
698 // C++ core issue 975:
699 // If a lambda-expression does not include a trailing-return-type,
700 // it is as if the trailing-return-type denotes the following type:
701 // - if there are no return statements in the compound-statement,
702 // or all return statements return either an expression of type
703 // void or no expression or braced-init-list, the type void;
704 // - otherwise, if all return statements return an expression
705 // and the types of the returned expressions after
706 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
707 // array-to-pointer conversion (4.2 [conv.array]), and
708 // function-to-pointer conversion (4.3 [conv.func]) are the
709 // same, that common type;
710 // - otherwise, the program is ill-formed.
712 // C++ core issue 1048 additionally removes top-level cv-qualifiers
713 // from the types of returned expressions to match the C++14 auto
714 // deduction rules.
716 // In addition, in blocks in non-C++ modes, if all of the return
717 // statements are enumerator-like expressions of some type T, where
718 // T has a name for linkage, then we infer the return type of the
719 // block to be that type.
721 // First case: no return statements, implicit void return type.
722 ASTContext &Ctx = getASTContext();
723 if (CSI.Returns.empty()) {
724 // It's possible there were simply no /valid/ return statements.
725 // In this case, the first one we found may have at least given us a type.
726 if (CSI.ReturnType.isNull())
727 CSI.ReturnType = Ctx.VoidTy;
728 return;
731 // Second case: at least one return statement has dependent type.
732 // Delay type checking until instantiation.
733 assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
734 if (CSI.ReturnType->isDependentType())
735 return;
737 // Try to apply the enum-fuzz rule.
738 if (!getLangOpts().CPlusPlus) {
739 assert(isa<BlockScopeInfo>(CSI));
740 const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
741 if (ED) {
742 CSI.ReturnType = Context.getTypeDeclType(ED);
743 adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
744 return;
748 // Third case: only one return statement. Don't bother doing extra work!
749 if (CSI.Returns.size() == 1)
750 return;
752 // General case: many return statements.
753 // Check that they all have compatible return types.
755 // We require the return types to strictly match here.
756 // Note that we've already done the required promotions as part of
757 // processing the return statement.
758 for (const ReturnStmt *RS : CSI.Returns) {
759 const Expr *RetE = RS->getRetValue();
761 QualType ReturnType =
762 (RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
763 if (Context.getCanonicalFunctionResultType(ReturnType) ==
764 Context.getCanonicalFunctionResultType(CSI.ReturnType)) {
765 // Use the return type with the strictest possible nullability annotation.
766 auto RetTyNullability = ReturnType->getNullability();
767 auto BlockNullability = CSI.ReturnType->getNullability();
768 if (BlockNullability &&
769 (!RetTyNullability ||
770 hasWeakerNullability(*RetTyNullability, *BlockNullability)))
771 CSI.ReturnType = ReturnType;
772 continue;
775 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
776 // TODO: It's possible that the *first* return is the divergent one.
777 Diag(RS->getBeginLoc(),
778 diag::err_typecheck_missing_return_type_incompatible)
779 << ReturnType << CSI.ReturnType << isa<LambdaScopeInfo>(CSI);
780 // Continue iterating so that we keep emitting diagnostics.
784 QualType Sema::buildLambdaInitCaptureInitialization(
785 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
786 std::optional<unsigned> NumExpansions, IdentifierInfo *Id,
787 bool IsDirectInit, Expr *&Init) {
788 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
789 // deduce against.
790 QualType DeductType = Context.getAutoDeductType();
791 TypeLocBuilder TLB;
792 AutoTypeLoc TL = TLB.push<AutoTypeLoc>(DeductType);
793 TL.setNameLoc(Loc);
794 if (ByRef) {
795 DeductType = BuildReferenceType(DeductType, true, Loc, Id);
796 assert(!DeductType.isNull() && "can't build reference to auto");
797 TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
799 if (EllipsisLoc.isValid()) {
800 if (Init->containsUnexpandedParameterPack()) {
801 Diag(EllipsisLoc, getLangOpts().CPlusPlus20
802 ? diag::warn_cxx17_compat_init_capture_pack
803 : diag::ext_init_capture_pack);
804 DeductType = Context.getPackExpansionType(DeductType, NumExpansions,
805 /*ExpectPackInType=*/false);
806 TLB.push<PackExpansionTypeLoc>(DeductType).setEllipsisLoc(EllipsisLoc);
807 } else {
808 // Just ignore the ellipsis for now and form a non-pack variable. We'll
809 // diagnose this later when we try to capture it.
812 TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
814 // Deduce the type of the init capture.
815 QualType DeducedType = deduceVarTypeFromInitializer(
816 /*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
817 SourceRange(Loc, Loc), IsDirectInit, Init);
818 if (DeducedType.isNull())
819 return QualType();
821 // Are we a non-list direct initialization?
822 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
824 // Perform initialization analysis and ensure any implicit conversions
825 // (such as lvalue-to-rvalue) are enforced.
826 InitializedEntity Entity =
827 InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
828 InitializationKind Kind =
829 IsDirectInit
830 ? (CXXDirectInit ? InitializationKind::CreateDirect(
831 Loc, Init->getBeginLoc(), Init->getEndLoc())
832 : InitializationKind::CreateDirectList(Loc))
833 : InitializationKind::CreateCopy(Loc, Init->getBeginLoc());
835 MultiExprArg Args = Init;
836 if (CXXDirectInit)
837 Args =
838 MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
839 QualType DclT;
840 InitializationSequence InitSeq(*this, Entity, Kind, Args);
841 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
843 if (Result.isInvalid())
844 return QualType();
846 Init = Result.getAs<Expr>();
847 return DeducedType;
850 VarDecl *Sema::createLambdaInitCaptureVarDecl(
851 SourceLocation Loc, QualType InitCaptureType, SourceLocation EllipsisLoc,
852 IdentifierInfo *Id, unsigned InitStyle, Expr *Init, DeclContext *DeclCtx) {
853 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
854 // rather than reconstructing it here.
855 TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType, Loc);
856 if (auto PETL = TSI->getTypeLoc().getAs<PackExpansionTypeLoc>())
857 PETL.setEllipsisLoc(EllipsisLoc);
859 // Create a dummy variable representing the init-capture. This is not actually
860 // used as a variable, and only exists as a way to name and refer to the
861 // init-capture.
862 // FIXME: Pass in separate source locations for '&' and identifier.
863 VarDecl *NewVD = VarDecl::Create(Context, DeclCtx, Loc, Loc, Id,
864 InitCaptureType, TSI, SC_Auto);
865 NewVD->setInitCapture(true);
866 NewVD->setReferenced(true);
867 // FIXME: Pass in a VarDecl::InitializationStyle.
868 NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
869 NewVD->markUsed(Context);
870 NewVD->setInit(Init);
871 if (NewVD->isParameterPack())
872 getCurLambda()->LocalPacks.push_back(NewVD);
873 return NewVD;
876 void Sema::addInitCapture(LambdaScopeInfo *LSI, VarDecl *Var, bool ByRef) {
877 assert(Var->isInitCapture() && "init capture flag should be set");
878 LSI->addCapture(Var, /*isBlock=*/false, ByRef,
879 /*isNested=*/false, Var->getLocation(), SourceLocation(),
880 Var->getType(), /*Invalid=*/false);
883 // Unlike getCurLambda, getCurrentLambdaScopeUnsafe doesn't
884 // check that the current lambda is in a consistent or fully constructed state.
885 static LambdaScopeInfo *getCurrentLambdaScopeUnsafe(Sema &S) {
886 assert(!S.FunctionScopes.empty());
887 return cast<LambdaScopeInfo>(S.FunctionScopes[S.FunctionScopes.size() - 1]);
890 static TypeSourceInfo *
891 getDummyLambdaType(Sema &S, SourceLocation Loc = SourceLocation()) {
892 // C++11 [expr.prim.lambda]p4:
893 // If a lambda-expression does not include a lambda-declarator, it is as
894 // if the lambda-declarator were ().
895 FunctionProtoType::ExtProtoInfo EPI(S.Context.getDefaultCallingConvention(
896 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
897 EPI.HasTrailingReturn = true;
898 EPI.TypeQuals.addConst();
899 LangAS AS = S.getDefaultCXXMethodAddrSpace();
900 if (AS != LangAS::Default)
901 EPI.TypeQuals.addAddressSpace(AS);
903 // C++1y [expr.prim.lambda]:
904 // The lambda return type is 'auto', which is replaced by the
905 // trailing-return type if provided and/or deduced from 'return'
906 // statements
907 // We don't do this before C++1y, because we don't support deduced return
908 // types there.
909 QualType DefaultTypeForNoTrailingReturn = S.getLangOpts().CPlusPlus14
910 ? S.Context.getAutoDeductType()
911 : S.Context.DependentTy;
912 QualType MethodTy =
913 S.Context.getFunctionType(DefaultTypeForNoTrailingReturn, {}, EPI);
914 return S.Context.getTrivialTypeSourceInfo(MethodTy, Loc);
917 static TypeSourceInfo *getLambdaType(Sema &S, LambdaIntroducer &Intro,
918 Declarator &ParamInfo, Scope *CurScope,
919 SourceLocation Loc,
920 bool &ExplicitResultType) {
922 ExplicitResultType = false;
924 assert(
925 (ParamInfo.getDeclSpec().getStorageClassSpec() ==
926 DeclSpec::SCS_unspecified ||
927 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static) &&
928 "Unexpected storage specifier");
929 bool IsLambdaStatic =
930 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
932 TypeSourceInfo *MethodTyInfo;
934 if (ParamInfo.getNumTypeObjects() == 0) {
935 MethodTyInfo = getDummyLambdaType(S, Loc);
936 } else {
937 // Check explicit parameters
938 S.CheckExplicitObjectLambda(ParamInfo);
940 DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
942 bool HasExplicitObjectParameter =
943 ParamInfo.isExplicitObjectMemberFunction();
945 ExplicitResultType = FTI.hasTrailingReturnType();
946 if (!FTI.hasMutableQualifier() && !IsLambdaStatic &&
947 !HasExplicitObjectParameter)
948 FTI.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const, Loc);
950 if (ExplicitResultType && S.getLangOpts().HLSL) {
951 QualType RetTy = FTI.getTrailingReturnType().get();
952 if (!RetTy.isNull()) {
953 // HLSL does not support specifying an address space on a lambda return
954 // type.
955 LangAS AddressSpace = RetTy.getAddressSpace();
956 if (AddressSpace != LangAS::Default)
957 S.Diag(FTI.getTrailingReturnTypeLoc(),
958 diag::err_return_value_with_address_space);
962 MethodTyInfo = S.GetTypeForDeclarator(ParamInfo);
963 assert(MethodTyInfo && "no type from lambda-declarator");
965 // Check for unexpanded parameter packs in the method type.
966 if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
967 S.DiagnoseUnexpandedParameterPack(Intro.Range.getBegin(), MethodTyInfo,
968 S.UPPC_DeclarationType);
970 return MethodTyInfo;
973 CXXMethodDecl *Sema::CreateLambdaCallOperator(SourceRange IntroducerRange,
974 CXXRecordDecl *Class) {
976 // C++20 [expr.prim.lambda.closure]p3:
977 // The closure type for a lambda-expression has a public inline function
978 // call operator (for a non-generic lambda) or function call operator
979 // template (for a generic lambda) whose parameters and return type are
980 // described by the lambda-expression's parameter-declaration-clause
981 // and trailing-return-type respectively.
982 DeclarationName MethodName =
983 Context.DeclarationNames.getCXXOperatorName(OO_Call);
984 DeclarationNameLoc MethodNameLoc =
985 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange.getBegin());
986 CXXMethodDecl *Method = CXXMethodDecl::Create(
987 Context, Class, SourceLocation(),
988 DeclarationNameInfo(MethodName, IntroducerRange.getBegin(),
989 MethodNameLoc),
990 QualType(), /*Tinfo=*/nullptr, SC_None,
991 getCurFPFeatures().isFPConstrained(),
992 /*isInline=*/true, ConstexprSpecKind::Unspecified, SourceLocation(),
993 /*TrailingRequiresClause=*/nullptr);
994 Method->setAccess(AS_public);
995 return Method;
998 void Sema::AddTemplateParametersToLambdaCallOperator(
999 CXXMethodDecl *CallOperator, CXXRecordDecl *Class,
1000 TemplateParameterList *TemplateParams) {
1001 assert(TemplateParams && "no template parameters");
1002 FunctionTemplateDecl *TemplateMethod = FunctionTemplateDecl::Create(
1003 Context, Class, CallOperator->getLocation(), CallOperator->getDeclName(),
1004 TemplateParams, CallOperator);
1005 TemplateMethod->setAccess(AS_public);
1006 CallOperator->setDescribedFunctionTemplate(TemplateMethod);
1009 void Sema::CompleteLambdaCallOperator(
1010 CXXMethodDecl *Method, SourceLocation LambdaLoc,
1011 SourceLocation CallOperatorLoc, Expr *TrailingRequiresClause,
1012 TypeSourceInfo *MethodTyInfo, ConstexprSpecKind ConstexprKind,
1013 StorageClass SC, ArrayRef<ParmVarDecl *> Params,
1014 bool HasExplicitResultType) {
1016 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1018 if (TrailingRequiresClause)
1019 Method->setTrailingRequiresClause(TrailingRequiresClause);
1021 TemplateParameterList *TemplateParams =
1022 getGenericLambdaTemplateParameterList(LSI, *this);
1024 DeclContext *DC = Method->getLexicalDeclContext();
1025 // DeclContext::addDecl() assumes that the DeclContext we're adding to is the
1026 // lexical context of the Method. Do so.
1027 Method->setLexicalDeclContext(LSI->Lambda);
1028 if (TemplateParams) {
1029 FunctionTemplateDecl *TemplateMethod =
1030 Method->getDescribedFunctionTemplate();
1031 assert(TemplateMethod &&
1032 "AddTemplateParametersToLambdaCallOperator should have been called");
1034 LSI->Lambda->addDecl(TemplateMethod);
1035 TemplateMethod->setLexicalDeclContext(DC);
1036 } else {
1037 LSI->Lambda->addDecl(Method);
1039 LSI->Lambda->setLambdaIsGeneric(TemplateParams);
1040 LSI->Lambda->setLambdaTypeInfo(MethodTyInfo);
1042 Method->setLexicalDeclContext(DC);
1043 Method->setLocation(LambdaLoc);
1044 Method->setInnerLocStart(CallOperatorLoc);
1045 Method->setTypeSourceInfo(MethodTyInfo);
1046 Method->setType(buildTypeForLambdaCallOperator(*this, LSI->Lambda,
1047 TemplateParams, MethodTyInfo));
1048 Method->setConstexprKind(ConstexprKind);
1049 Method->setStorageClass(SC);
1050 if (!Params.empty()) {
1051 CheckParmsForFunctionDef(Params, /*CheckParameterNames=*/false);
1052 Method->setParams(Params);
1053 for (auto P : Method->parameters()) {
1054 assert(P && "null in a parameter list");
1055 P->setOwningFunction(Method);
1059 buildLambdaScopeReturnType(*this, LSI, Method, HasExplicitResultType);
1062 void Sema::ActOnLambdaExpressionAfterIntroducer(LambdaIntroducer &Intro,
1063 Scope *CurrentScope) {
1065 LambdaScopeInfo *LSI = getCurLambda();
1066 assert(LSI && "LambdaScopeInfo should be on stack!");
1068 if (Intro.Default == LCD_ByCopy)
1069 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
1070 else if (Intro.Default == LCD_ByRef)
1071 LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
1072 LSI->CaptureDefaultLoc = Intro.DefaultLoc;
1073 LSI->IntroducerRange = Intro.Range;
1074 LSI->AfterParameterList = false;
1076 assert(LSI->NumExplicitTemplateParams == 0);
1078 // Determine if we're within a context where we know that the lambda will
1079 // be dependent, because there are template parameters in scope.
1080 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind =
1081 CXXRecordDecl::LDK_Unknown;
1082 if (CurScope->getTemplateParamParent() != nullptr) {
1083 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
1084 } else if (Scope *P = CurScope->getParent()) {
1085 // Given a lambda defined inside a requires expression,
1087 // struct S {
1088 // S(auto var) requires requires { [&] -> decltype(var) { }; }
1089 // {}
1090 // };
1092 // The parameter var is not injected into the function Decl at the point of
1093 // parsing lambda. In such scenarios, perceiving it as dependent could
1094 // result in the constraint being evaluated, which matches what GCC does.
1095 while (P->getEntity() && P->getEntity()->isRequiresExprBody())
1096 P = P->getParent();
1097 if (P->isFunctionDeclarationScope() &&
1098 llvm::any_of(P->decls(), [](Decl *D) {
1099 return isa<ParmVarDecl>(D) &&
1100 cast<ParmVarDecl>(D)->getType()->isTemplateTypeParmType();
1102 LambdaDependencyKind = CXXRecordDecl::LDK_AlwaysDependent;
1105 CXXRecordDecl *Class = createLambdaClosureType(
1106 Intro.Range, /*Info=*/nullptr, LambdaDependencyKind, Intro.Default);
1107 LSI->Lambda = Class;
1109 CXXMethodDecl *Method = CreateLambdaCallOperator(Intro.Range, Class);
1110 LSI->CallOperator = Method;
1111 // Temporarily set the lexical declaration context to the current
1112 // context, so that the Scope stack matches the lexical nesting.
1113 Method->setLexicalDeclContext(CurContext);
1115 PushDeclContext(CurScope, Method);
1117 bool ContainsUnexpandedParameterPack = false;
1119 // Distinct capture names, for diagnostics.
1120 llvm::DenseMap<IdentifierInfo *, ValueDecl *> CaptureNames;
1122 // Handle explicit captures.
1123 SourceLocation PrevCaptureLoc =
1124 Intro.Default == LCD_None ? Intro.Range.getBegin() : Intro.DefaultLoc;
1125 for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
1126 PrevCaptureLoc = C->Loc, ++C) {
1127 if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
1128 if (C->Kind == LCK_StarThis)
1129 Diag(C->Loc, !getLangOpts().CPlusPlus17
1130 ? diag::ext_star_this_lambda_capture_cxx17
1131 : diag::warn_cxx14_compat_star_this_lambda_capture);
1133 // C++11 [expr.prim.lambda]p8:
1134 // An identifier or this shall not appear more than once in a
1135 // lambda-capture.
1136 if (LSI->isCXXThisCaptured()) {
1137 Diag(C->Loc, diag::err_capture_more_than_once)
1138 << "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
1139 << FixItHint::CreateRemoval(
1140 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1141 continue;
1144 // C++20 [expr.prim.lambda]p8:
1145 // If a lambda-capture includes a capture-default that is =,
1146 // each simple-capture of that lambda-capture shall be of the form
1147 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1148 // redundant but accepted for compatibility with ISO C++14. --end note ]
1149 if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis)
1150 Diag(C->Loc, !getLangOpts().CPlusPlus20
1151 ? diag::ext_equals_this_lambda_capture_cxx20
1152 : diag::warn_cxx17_compat_equals_this_lambda_capture);
1154 // C++11 [expr.prim.lambda]p12:
1155 // If this is captured by a local lambda expression, its nearest
1156 // enclosing function shall be a non-static member function.
1157 QualType ThisCaptureType = getCurrentThisType();
1158 if (ThisCaptureType.isNull()) {
1159 Diag(C->Loc, diag::err_this_capture) << true;
1160 continue;
1163 CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1164 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1165 C->Kind == LCK_StarThis);
1166 if (!LSI->Captures.empty())
1167 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1168 continue;
1171 assert(C->Id && "missing identifier for capture");
1173 if (C->Init.isInvalid())
1174 continue;
1176 ValueDecl *Var = nullptr;
1177 if (C->Init.isUsable()) {
1178 Diag(C->Loc, getLangOpts().CPlusPlus14
1179 ? diag::warn_cxx11_compat_init_capture
1180 : diag::ext_init_capture);
1182 // If the initializer expression is usable, but the InitCaptureType
1183 // is not, then an error has occurred - so ignore the capture for now.
1184 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1185 // FIXME: we should create the init capture variable and mark it invalid
1186 // in this case.
1187 if (C->InitCaptureType.get().isNull())
1188 continue;
1190 if (C->Init.get()->containsUnexpandedParameterPack() &&
1191 !C->InitCaptureType.get()->getAs<PackExpansionType>())
1192 DiagnoseUnexpandedParameterPack(C->Init.get(), UPPC_Initializer);
1194 unsigned InitStyle;
1195 switch (C->InitKind) {
1196 case LambdaCaptureInitKind::NoInit:
1197 llvm_unreachable("not an init-capture?");
1198 case LambdaCaptureInitKind::CopyInit:
1199 InitStyle = VarDecl::CInit;
1200 break;
1201 case LambdaCaptureInitKind::DirectInit:
1202 InitStyle = VarDecl::CallInit;
1203 break;
1204 case LambdaCaptureInitKind::ListInit:
1205 InitStyle = VarDecl::ListInit;
1206 break;
1208 Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
1209 C->EllipsisLoc, C->Id, InitStyle,
1210 C->Init.get(), Method);
1211 assert(Var && "createLambdaInitCaptureVarDecl returned a null VarDecl?");
1212 if (auto *V = dyn_cast<VarDecl>(Var))
1213 CheckShadow(CurrentScope, V);
1214 PushOnScopeChains(Var, CurrentScope, false);
1215 } else {
1216 assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
1217 "init capture has valid but null init?");
1219 // C++11 [expr.prim.lambda]p8:
1220 // If a lambda-capture includes a capture-default that is &, the
1221 // identifiers in the lambda-capture shall not be preceded by &.
1222 // If a lambda-capture includes a capture-default that is =, [...]
1223 // each identifier it contains shall be preceded by &.
1224 if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
1225 Diag(C->Loc, diag::err_reference_capture_with_reference_default)
1226 << FixItHint::CreateRemoval(
1227 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1228 continue;
1229 } else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
1230 Diag(C->Loc, diag::err_copy_capture_with_copy_default)
1231 << FixItHint::CreateRemoval(
1232 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1233 continue;
1236 // C++11 [expr.prim.lambda]p10:
1237 // The identifiers in a capture-list are looked up using the usual
1238 // rules for unqualified name lookup (3.4.1)
1239 DeclarationNameInfo Name(C->Id, C->Loc);
1240 LookupResult R(*this, Name, LookupOrdinaryName);
1241 LookupName(R, CurScope);
1242 if (R.isAmbiguous())
1243 continue;
1244 if (R.empty()) {
1245 // FIXME: Disable corrections that would add qualification?
1246 CXXScopeSpec ScopeSpec;
1247 DeclFilterCCC<VarDecl> Validator{};
1248 if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R, Validator))
1249 continue;
1252 if (auto *BD = R.getAsSingle<BindingDecl>())
1253 Var = BD;
1254 else if (R.getAsSingle<FieldDecl>()) {
1255 Diag(C->Loc, diag::err_capture_class_member_does_not_name_variable)
1256 << C->Id;
1257 continue;
1258 } else
1259 Var = R.getAsSingle<VarDecl>();
1260 if (Var && DiagnoseUseOfDecl(Var, C->Loc))
1261 continue;
1264 // C++11 [expr.prim.lambda]p10:
1265 // [...] each such lookup shall find a variable with automatic storage
1266 // duration declared in the reaching scope of the local lambda expression.
1267 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1268 if (!Var) {
1269 Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
1270 continue;
1273 // C++11 [expr.prim.lambda]p8:
1274 // An identifier or this shall not appear more than once in a
1275 // lambda-capture.
1276 if (auto [It, Inserted] = CaptureNames.insert(std::pair{C->Id, Var});
1277 !Inserted) {
1278 if (C->InitKind == LambdaCaptureInitKind::NoInit &&
1279 !Var->isInitCapture()) {
1280 Diag(C->Loc, diag::err_capture_more_than_once)
1281 << C->Id << It->second->getBeginLoc()
1282 << FixItHint::CreateRemoval(
1283 SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
1284 Var->setInvalidDecl();
1285 } else if (Var && Var->isPlaceholderVar(getLangOpts())) {
1286 DiagPlaceholderVariableDefinition(C->Loc);
1287 } else {
1288 // Previous capture captured something different (one or both was
1289 // an init-capture): no fixit.
1290 Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
1291 continue;
1295 // Ignore invalid decls; they'll just confuse the code later.
1296 if (Var->isInvalidDecl())
1297 continue;
1299 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
1301 if (!Underlying->hasLocalStorage()) {
1302 Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
1303 Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
1304 continue;
1307 // C++11 [expr.prim.lambda]p23:
1308 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1309 SourceLocation EllipsisLoc;
1310 if (C->EllipsisLoc.isValid()) {
1311 if (Var->isParameterPack()) {
1312 EllipsisLoc = C->EllipsisLoc;
1313 } else {
1314 Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1315 << (C->Init.isUsable() ? C->Init.get()->getSourceRange()
1316 : SourceRange(C->Loc));
1318 // Just ignore the ellipsis.
1320 } else if (Var->isParameterPack()) {
1321 ContainsUnexpandedParameterPack = true;
1324 if (C->Init.isUsable()) {
1325 addInitCapture(LSI, cast<VarDecl>(Var), C->Kind == LCK_ByRef);
1326 } else {
1327 TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef
1328 : TryCapture_ExplicitByVal;
1329 tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
1331 if (!LSI->Captures.empty())
1332 LSI->ExplicitCaptureRanges[LSI->Captures.size() - 1] = C->ExplicitRange;
1334 finishLambdaExplicitCaptures(LSI);
1335 LSI->ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
1336 PopDeclContext();
1339 void Sema::ActOnLambdaClosureQualifiers(LambdaIntroducer &Intro,
1340 SourceLocation MutableLoc) {
1342 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1343 LSI->Mutable = MutableLoc.isValid();
1344 ContextRAII Context(*this, LSI->CallOperator, /*NewThisContext*/ false);
1346 // C++11 [expr.prim.lambda]p9:
1347 // A lambda-expression whose smallest enclosing scope is a block scope is a
1348 // local lambda expression; any other lambda expression shall not have a
1349 // capture-default or simple-capture in its lambda-introducer.
1351 // For simple-captures, this is covered by the check below that any named
1352 // entity is a variable that can be captured.
1354 // For DR1632, we also allow a capture-default in any context where we can
1355 // odr-use 'this' (in particular, in a default initializer for a non-static
1356 // data member).
1357 if (Intro.Default != LCD_None &&
1358 !LSI->Lambda->getParent()->isFunctionOrMethod() &&
1359 (getCurrentThisType().isNull() ||
1360 CheckCXXThisCapture(SourceLocation(), /*Explicit=*/true,
1361 /*BuildAndDiagnose=*/false)))
1362 Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
1365 void Sema::ActOnLambdaClosureParameters(
1366 Scope *LambdaScope, MutableArrayRef<DeclaratorChunk::ParamInfo> Params) {
1367 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1368 PushDeclContext(LambdaScope, LSI->CallOperator);
1370 for (const DeclaratorChunk::ParamInfo &P : Params) {
1371 auto *Param = cast<ParmVarDecl>(P.Param);
1372 Param->setOwningFunction(LSI->CallOperator);
1373 if (Param->getIdentifier())
1374 PushOnScopeChains(Param, LambdaScope, false);
1377 // After the parameter list, we may parse a noexcept/requires/trailing return
1378 // type which need to know whether the call operator constiture a dependent
1379 // context, so we need to setup the FunctionTemplateDecl of generic lambdas
1380 // now.
1381 TemplateParameterList *TemplateParams =
1382 getGenericLambdaTemplateParameterList(LSI, *this);
1383 if (TemplateParams) {
1384 AddTemplateParametersToLambdaCallOperator(LSI->CallOperator, LSI->Lambda,
1385 TemplateParams);
1386 LSI->Lambda->setLambdaIsGeneric(true);
1387 LSI->ContainsUnexpandedParameterPack |=
1388 TemplateParams->containsUnexpandedParameterPack();
1390 LSI->AfterParameterList = true;
1393 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
1394 Declarator &ParamInfo,
1395 const DeclSpec &DS) {
1397 LambdaScopeInfo *LSI = getCurrentLambdaScopeUnsafe(*this);
1398 LSI->CallOperator->setConstexprKind(DS.getConstexprSpecifier());
1400 SmallVector<ParmVarDecl *, 8> Params;
1401 bool ExplicitResultType;
1403 SourceLocation TypeLoc, CallOperatorLoc;
1404 if (ParamInfo.getNumTypeObjects() == 0) {
1405 CallOperatorLoc = TypeLoc = Intro.Range.getEnd();
1406 } else {
1407 unsigned Index;
1408 ParamInfo.isFunctionDeclarator(Index);
1409 const auto &Object = ParamInfo.getTypeObject(Index);
1410 TypeLoc =
1411 Object.Loc.isValid() ? Object.Loc : ParamInfo.getSourceRange().getEnd();
1412 CallOperatorLoc = ParamInfo.getSourceRange().getEnd();
1415 CXXRecordDecl *Class = LSI->Lambda;
1416 CXXMethodDecl *Method = LSI->CallOperator;
1418 TypeSourceInfo *MethodTyInfo = getLambdaType(
1419 *this, Intro, ParamInfo, getCurScope(), TypeLoc, ExplicitResultType);
1421 LSI->ExplicitParams = ParamInfo.getNumTypeObjects() != 0;
1423 if (ParamInfo.isFunctionDeclarator() != 0 &&
1424 !FTIHasSingleVoidParameter(ParamInfo.getFunctionTypeInfo())) {
1425 const auto &FTI = ParamInfo.getFunctionTypeInfo();
1426 Params.reserve(Params.size());
1427 for (unsigned I = 0; I < FTI.NumParams; ++I) {
1428 auto *Param = cast<ParmVarDecl>(FTI.Params[I].Param);
1429 Param->setScopeInfo(0, Params.size());
1430 Params.push_back(Param);
1434 bool IsLambdaStatic =
1435 ParamInfo.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static;
1437 CompleteLambdaCallOperator(
1438 Method, Intro.Range.getBegin(), CallOperatorLoc,
1439 ParamInfo.getTrailingRequiresClause(), MethodTyInfo,
1440 ParamInfo.getDeclSpec().getConstexprSpecifier(),
1441 IsLambdaStatic ? SC_Static : SC_None, Params, ExplicitResultType);
1443 CheckCXXDefaultArguments(Method);
1445 // This represents the function body for the lambda function, check if we
1446 // have to apply optnone due to a pragma.
1447 AddRangeBasedOptnone(Method);
1449 // code_seg attribute on lambda apply to the method.
1450 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(
1451 Method, /*IsDefinition=*/true))
1452 Method->addAttr(A);
1454 // Attributes on the lambda apply to the method.
1455 ProcessDeclAttributes(CurScope, Method, ParamInfo);
1457 // CUDA lambdas get implicit host and device attributes.
1458 if (getLangOpts().CUDA)
1459 CUDA().SetLambdaAttrs(Method);
1461 // OpenMP lambdas might get assumumption attributes.
1462 if (LangOpts.OpenMP)
1463 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method);
1465 handleLambdaNumbering(Class, Method);
1467 for (auto &&C : LSI->Captures) {
1468 if (!C.isVariableCapture())
1469 continue;
1470 ValueDecl *Var = C.getVariable();
1471 if (Var && Var->isInitCapture()) {
1472 PushOnScopeChains(Var, CurScope, false);
1476 auto CheckRedefinition = [&](ParmVarDecl *Param) {
1477 for (const auto &Capture : Intro.Captures) {
1478 if (Capture.Id == Param->getIdentifier()) {
1479 Diag(Param->getLocation(), diag::err_parameter_shadow_capture);
1480 Diag(Capture.Loc, diag::note_var_explicitly_captured_here)
1481 << Capture.Id << true;
1482 return false;
1485 return true;
1488 for (ParmVarDecl *P : Params) {
1489 if (!P->getIdentifier())
1490 continue;
1491 if (CheckRedefinition(P))
1492 CheckShadow(CurScope, P);
1493 PushOnScopeChains(P, CurScope);
1496 // C++23 [expr.prim.lambda.capture]p5:
1497 // If an identifier in a capture appears as the declarator-id of a parameter
1498 // of the lambda-declarator's parameter-declaration-clause or as the name of a
1499 // template parameter of the lambda-expression's template-parameter-list, the
1500 // program is ill-formed.
1501 TemplateParameterList *TemplateParams =
1502 getGenericLambdaTemplateParameterList(LSI, *this);
1503 if (TemplateParams) {
1504 for (const auto *TP : TemplateParams->asArray()) {
1505 if (!TP->getIdentifier())
1506 continue;
1507 for (const auto &Capture : Intro.Captures) {
1508 if (Capture.Id == TP->getIdentifier()) {
1509 Diag(Capture.Loc, diag::err_template_param_shadow) << Capture.Id;
1510 NoteTemplateParameterLocation(*TP);
1516 // C++20: dcl.decl.general p4:
1517 // The optional requires-clause ([temp.pre]) in an init-declarator or
1518 // member-declarator shall be present only if the declarator declares a
1519 // templated function ([dcl.fct]).
1520 if (Expr *TRC = Method->getTrailingRequiresClause()) {
1521 // [temp.pre]/8:
1522 // An entity is templated if it is
1523 // - a template,
1524 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
1525 // templated entity,
1526 // - a member of a templated entity,
1527 // - an enumerator for an enumeration that is a templated entity, or
1528 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
1529 // appearing in the declaration of a templated entity. [Note 6: A local
1530 // class, a local or block variable, or a friend function defined in a
1531 // templated entity is a templated entity. — end note]
1533 // A templated function is a function template or a function that is
1534 // templated. A templated class is a class template or a class that is
1535 // templated. A templated variable is a variable template or a variable
1536 // that is templated.
1538 // Note: we only have to check if this is defined in a template entity, OR
1539 // if we are a template, since the rest don't apply. The requires clause
1540 // applies to the call operator, which we already know is a member function,
1541 // AND defined.
1542 if (!Method->getDescribedFunctionTemplate() && !Method->isTemplated()) {
1543 Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
1547 // Enter a new evaluation context to insulate the lambda from any
1548 // cleanups from the enclosing full-expression.
1549 PushExpressionEvaluationContext(
1550 LSI->CallOperator->isConsteval()
1551 ? ExpressionEvaluationContext::ImmediateFunctionContext
1552 : ExpressionEvaluationContext::PotentiallyEvaluated);
1553 ExprEvalContexts.back().InImmediateFunctionContext =
1554 LSI->CallOperator->isConsteval();
1555 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
1556 getLangOpts().CPlusPlus20 && LSI->CallOperator->isImmediateEscalating();
1559 void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
1560 bool IsInstantiation) {
1561 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
1563 // Leave the expression-evaluation context.
1564 DiscardCleanupsInEvaluationContext();
1565 PopExpressionEvaluationContext();
1567 // Leave the context of the lambda.
1568 if (!IsInstantiation)
1569 PopDeclContext();
1571 // Finalize the lambda.
1572 CXXRecordDecl *Class = LSI->Lambda;
1573 Class->setInvalidDecl();
1574 SmallVector<Decl*, 4> Fields(Class->fields());
1575 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
1576 SourceLocation(), ParsedAttributesView());
1577 CheckCompletedCXXClass(nullptr, Class);
1579 PopFunctionScopeInfo();
1582 template <typename Func>
1583 static void repeatForLambdaConversionFunctionCallingConvs(
1584 Sema &S, const FunctionProtoType &CallOpProto, Func F) {
1585 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1586 CallOpProto.isVariadic(), /*IsCXXMethod=*/false);
1587 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1588 CallOpProto.isVariadic(), /*IsCXXMethod=*/true);
1589 CallingConv CallOpCC = CallOpProto.getCallConv();
1591 /// Implement emitting a version of the operator for many of the calling
1592 /// conventions for MSVC, as described here:
1593 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1594 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1595 /// vectorcall are generated by MSVC when it is supported by the target.
1596 /// Additionally, we are ensuring that the default-free/default-member and
1597 /// call-operator calling convention are generated as well.
1598 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1599 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1600 /// that someone who intentionally places 'thiscall' on the lambda call
1601 /// operator will still get that overload, since we don't have the a way of
1602 /// detecting the attribute by the time we get here.
1603 if (S.getLangOpts().MSVCCompat) {
1604 CallingConv Convs[] = {
1605 CC_C, CC_X86StdCall, CC_X86FastCall, CC_X86VectorCall,
1606 DefaultFree, DefaultMember, CallOpCC};
1607 llvm::sort(Convs);
1608 llvm::iterator_range<CallingConv *> Range(
1609 std::begin(Convs), std::unique(std::begin(Convs), std::end(Convs)));
1610 const TargetInfo &TI = S.getASTContext().getTargetInfo();
1612 for (CallingConv C : Range) {
1613 if (TI.checkCallingConvention(C) == TargetInfo::CCCR_OK)
1614 F(C);
1616 return;
1619 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree) {
1620 F(DefaultFree);
1621 F(DefaultMember);
1622 } else {
1623 F(CallOpCC);
1627 // Returns the 'standard' calling convention to be used for the lambda
1628 // conversion function, that is, the 'free' function calling convention unless
1629 // it is overridden by a non-default calling convention attribute.
1630 static CallingConv
1631 getLambdaConversionFunctionCallConv(Sema &S,
1632 const FunctionProtoType *CallOpProto) {
1633 CallingConv DefaultFree = S.Context.getDefaultCallingConvention(
1634 CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
1635 CallingConv DefaultMember = S.Context.getDefaultCallingConvention(
1636 CallOpProto->isVariadic(), /*IsCXXMethod=*/true);
1637 CallingConv CallOpCC = CallOpProto->getCallConv();
1639 // If the call-operator hasn't been changed, return both the 'free' and
1640 // 'member' function calling convention.
1641 if (CallOpCC == DefaultMember && DefaultMember != DefaultFree)
1642 return DefaultFree;
1643 return CallOpCC;
1646 QualType Sema::getLambdaConversionFunctionResultType(
1647 const FunctionProtoType *CallOpProto, CallingConv CC) {
1648 const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
1649 CallOpProto->getExtProtoInfo();
1650 FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
1651 InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
1652 InvokerExtInfo.TypeQuals = Qualifiers();
1653 assert(InvokerExtInfo.RefQualifier == RQ_None &&
1654 "Lambda's call operator should not have a reference qualifier");
1655 return Context.getFunctionType(CallOpProto->getReturnType(),
1656 CallOpProto->getParamTypes(), InvokerExtInfo);
1659 /// Add a lambda's conversion to function pointer, as described in
1660 /// C++11 [expr.prim.lambda]p6.
1661 static void addFunctionPointerConversion(Sema &S, SourceRange IntroducerRange,
1662 CXXRecordDecl *Class,
1663 CXXMethodDecl *CallOperator,
1664 QualType InvokerFunctionTy) {
1665 // This conversion is explicitly disabled if the lambda's function has
1666 // pass_object_size attributes on any of its parameters.
1667 auto HasPassObjectSizeAttr = [](const ParmVarDecl *P) {
1668 return P->hasAttr<PassObjectSizeAttr>();
1670 if (llvm::any_of(CallOperator->parameters(), HasPassObjectSizeAttr))
1671 return;
1673 // Add the conversion to function pointer.
1674 QualType PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
1676 // Create the type of the conversion function.
1677 FunctionProtoType::ExtProtoInfo ConvExtInfo(
1678 S.Context.getDefaultCallingConvention(
1679 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1680 // The conversion function is always const and noexcept.
1681 ConvExtInfo.TypeQuals = Qualifiers();
1682 ConvExtInfo.TypeQuals.addConst();
1683 ConvExtInfo.ExceptionSpec.Type = EST_BasicNoexcept;
1684 QualType ConvTy = S.Context.getFunctionType(PtrToFunctionTy, {}, ConvExtInfo);
1686 SourceLocation Loc = IntroducerRange.getBegin();
1687 DeclarationName ConversionName
1688 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1689 S.Context.getCanonicalType(PtrToFunctionTy));
1690 // Construct a TypeSourceInfo for the conversion function, and wire
1691 // all the parameters appropriately for the FunctionProtoTypeLoc
1692 // so that everything works during transformation/instantiation of
1693 // generic lambdas.
1694 // The main reason for wiring up the parameters of the conversion
1695 // function with that of the call operator is so that constructs
1696 // like the following work:
1697 // auto L = [](auto b) { <-- 1
1698 // return [](auto a) -> decltype(a) { <-- 2
1699 // return a;
1700 // };
1701 // };
1702 // int (*fp)(int) = L(5);
1703 // Because the trailing return type can contain DeclRefExprs that refer
1704 // to the original call operator's variables, we hijack the call
1705 // operators ParmVarDecls below.
1706 TypeSourceInfo *ConvNamePtrToFunctionTSI =
1707 S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
1708 DeclarationNameLoc ConvNameLoc =
1709 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI);
1711 // The conversion function is a conversion to a pointer-to-function.
1712 TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
1713 FunctionProtoTypeLoc ConvTL =
1714 ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
1715 // Get the result of the conversion function which is a pointer-to-function.
1716 PointerTypeLoc PtrToFunctionTL =
1717 ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
1718 // Do the same for the TypeSourceInfo that is used to name the conversion
1719 // operator.
1720 PointerTypeLoc ConvNamePtrToFunctionTL =
1721 ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
1723 // Get the underlying function types that the conversion function will
1724 // be converting to (should match the type of the call operator).
1725 FunctionProtoTypeLoc CallOpConvTL =
1726 PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1727 FunctionProtoTypeLoc CallOpConvNameTL =
1728 ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
1730 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1731 // These parameter's are essentially used to transform the name and
1732 // the type of the conversion operator. By using the same parameters
1733 // as the call operator's we don't have to fix any back references that
1734 // the trailing return type of the call operator's uses (such as
1735 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1736 // - we can simply use the return type of the call operator, and
1737 // everything should work.
1738 SmallVector<ParmVarDecl *, 4> InvokerParams;
1739 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
1740 ParmVarDecl *From = CallOperator->getParamDecl(I);
1742 InvokerParams.push_back(ParmVarDecl::Create(
1743 S.Context,
1744 // Temporarily add to the TU. This is set to the invoker below.
1745 S.Context.getTranslationUnitDecl(), From->getBeginLoc(),
1746 From->getLocation(), From->getIdentifier(), From->getType(),
1747 From->getTypeSourceInfo(), From->getStorageClass(),
1748 /*DefArg=*/nullptr));
1749 CallOpConvTL.setParam(I, From);
1750 CallOpConvNameTL.setParam(I, From);
1753 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1754 S.Context, Class, Loc,
1755 DeclarationNameInfo(ConversionName, Loc, ConvNameLoc), ConvTy, ConvTSI,
1756 S.getCurFPFeatures().isFPConstrained(),
1757 /*isInline=*/true, ExplicitSpecifier(),
1758 S.getLangOpts().CPlusPlus17 ? ConstexprSpecKind::Constexpr
1759 : ConstexprSpecKind::Unspecified,
1760 CallOperator->getBody()->getEndLoc());
1761 Conversion->setAccess(AS_public);
1762 Conversion->setImplicit(true);
1764 // A non-generic lambda may still be a templated entity. We need to preserve
1765 // constraints when converting the lambda to a function pointer. See GH63181.
1766 if (Expr *Requires = CallOperator->getTrailingRequiresClause())
1767 Conversion->setTrailingRequiresClause(Requires);
1769 if (Class->isGenericLambda()) {
1770 // Create a template version of the conversion operator, using the template
1771 // parameter list of the function call operator.
1772 FunctionTemplateDecl *TemplateCallOperator =
1773 CallOperator->getDescribedFunctionTemplate();
1774 FunctionTemplateDecl *ConversionTemplate =
1775 FunctionTemplateDecl::Create(S.Context, Class,
1776 Loc, ConversionName,
1777 TemplateCallOperator->getTemplateParameters(),
1778 Conversion);
1779 ConversionTemplate->setAccess(AS_public);
1780 ConversionTemplate->setImplicit(true);
1781 Conversion->setDescribedFunctionTemplate(ConversionTemplate);
1782 Class->addDecl(ConversionTemplate);
1783 } else
1784 Class->addDecl(Conversion);
1786 // If the lambda is not static, we need to add a static member
1787 // function that will be the result of the conversion with a
1788 // certain unique ID.
1789 // When it is static we just return the static call operator instead.
1790 if (CallOperator->isImplicitObjectMemberFunction()) {
1791 DeclarationName InvokerName =
1792 &S.Context.Idents.get(getLambdaStaticInvokerName());
1793 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1794 // we should get a prebuilt TrivialTypeSourceInfo from Context
1795 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1796 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1797 // loop below and then use its Params to set Invoke->setParams(...) below.
1798 // This would avoid the 'const' qualifier of the calloperator from
1799 // contaminating the type of the invoker, which is currently adjusted
1800 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1801 // trailing return type of the invoker would require a visitor to rebuild
1802 // the trailing return type and adjusting all back DeclRefExpr's to refer
1803 // to the new static invoker parameters - not the call operator's.
1804 CXXMethodDecl *Invoke = CXXMethodDecl::Create(
1805 S.Context, Class, Loc, DeclarationNameInfo(InvokerName, Loc),
1806 InvokerFunctionTy, CallOperator->getTypeSourceInfo(), SC_Static,
1807 S.getCurFPFeatures().isFPConstrained(),
1808 /*isInline=*/true, CallOperator->getConstexprKind(),
1809 CallOperator->getBody()->getEndLoc());
1810 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
1811 InvokerParams[I]->setOwningFunction(Invoke);
1812 Invoke->setParams(InvokerParams);
1813 Invoke->setAccess(AS_private);
1814 Invoke->setImplicit(true);
1815 if (Class->isGenericLambda()) {
1816 FunctionTemplateDecl *TemplateCallOperator =
1817 CallOperator->getDescribedFunctionTemplate();
1818 FunctionTemplateDecl *StaticInvokerTemplate =
1819 FunctionTemplateDecl::Create(
1820 S.Context, Class, Loc, InvokerName,
1821 TemplateCallOperator->getTemplateParameters(), Invoke);
1822 StaticInvokerTemplate->setAccess(AS_private);
1823 StaticInvokerTemplate->setImplicit(true);
1824 Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
1825 Class->addDecl(StaticInvokerTemplate);
1826 } else
1827 Class->addDecl(Invoke);
1831 /// Add a lambda's conversion to function pointers, as described in
1832 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1833 /// single pointer conversion. In the event that the default calling convention
1834 /// for free and member functions is different, it will emit both conventions.
1835 static void addFunctionPointerConversions(Sema &S, SourceRange IntroducerRange,
1836 CXXRecordDecl *Class,
1837 CXXMethodDecl *CallOperator) {
1838 const FunctionProtoType *CallOpProto =
1839 CallOperator->getType()->castAs<FunctionProtoType>();
1841 repeatForLambdaConversionFunctionCallingConvs(
1842 S, *CallOpProto, [&](CallingConv CC) {
1843 QualType InvokerFunctionTy =
1844 S.getLambdaConversionFunctionResultType(CallOpProto, CC);
1845 addFunctionPointerConversion(S, IntroducerRange, Class, CallOperator,
1846 InvokerFunctionTy);
1850 /// Add a lambda's conversion to block pointer.
1851 static void addBlockPointerConversion(Sema &S,
1852 SourceRange IntroducerRange,
1853 CXXRecordDecl *Class,
1854 CXXMethodDecl *CallOperator) {
1855 const FunctionProtoType *CallOpProto =
1856 CallOperator->getType()->castAs<FunctionProtoType>();
1857 QualType FunctionTy = S.getLambdaConversionFunctionResultType(
1858 CallOpProto, getLambdaConversionFunctionCallConv(S, CallOpProto));
1859 QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
1861 FunctionProtoType::ExtProtoInfo ConversionEPI(
1862 S.Context.getDefaultCallingConvention(
1863 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1864 ConversionEPI.TypeQuals = Qualifiers();
1865 ConversionEPI.TypeQuals.addConst();
1866 QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, {}, ConversionEPI);
1868 SourceLocation Loc = IntroducerRange.getBegin();
1869 DeclarationName Name
1870 = S.Context.DeclarationNames.getCXXConversionFunctionName(
1871 S.Context.getCanonicalType(BlockPtrTy));
1872 DeclarationNameLoc NameLoc = DeclarationNameLoc::makeNamedTypeLoc(
1873 S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc));
1874 CXXConversionDecl *Conversion = CXXConversionDecl::Create(
1875 S.Context, Class, Loc, DeclarationNameInfo(Name, Loc, NameLoc), ConvTy,
1876 S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
1877 S.getCurFPFeatures().isFPConstrained(),
1878 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified,
1879 CallOperator->getBody()->getEndLoc());
1880 Conversion->setAccess(AS_public);
1881 Conversion->setImplicit(true);
1882 Class->addDecl(Conversion);
1885 ExprResult Sema::BuildCaptureInit(const Capture &Cap,
1886 SourceLocation ImplicitCaptureLoc,
1887 bool IsOpenMPMapping) {
1888 // VLA captures don't have a stored initialization expression.
1889 if (Cap.isVLATypeCapture())
1890 return ExprResult();
1892 // An init-capture is initialized directly from its stored initializer.
1893 if (Cap.isInitCapture())
1894 return cast<VarDecl>(Cap.getVariable())->getInit();
1896 // For anything else, build an initialization expression. For an implicit
1897 // capture, the capture notionally happens at the capture-default, so use
1898 // that location here.
1899 SourceLocation Loc =
1900 ImplicitCaptureLoc.isValid() ? ImplicitCaptureLoc : Cap.getLocation();
1902 // C++11 [expr.prim.lambda]p21:
1903 // When the lambda-expression is evaluated, the entities that
1904 // are captured by copy are used to direct-initialize each
1905 // corresponding non-static data member of the resulting closure
1906 // object. (For array members, the array elements are
1907 // direct-initialized in increasing subscript order.) These
1908 // initializations are performed in the (unspecified) order in
1909 // which the non-static data members are declared.
1911 // C++ [expr.prim.lambda]p12:
1912 // An entity captured by a lambda-expression is odr-used (3.2) in
1913 // the scope containing the lambda-expression.
1914 ExprResult Init;
1915 IdentifierInfo *Name = nullptr;
1916 if (Cap.isThisCapture()) {
1917 QualType ThisTy = getCurrentThisType();
1918 Expr *This = BuildCXXThisExpr(Loc, ThisTy, ImplicitCaptureLoc.isValid());
1919 if (Cap.isCopyCapture())
1920 Init = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
1921 else
1922 Init = This;
1923 } else {
1924 assert(Cap.isVariableCapture() && "unknown kind of capture");
1925 ValueDecl *Var = Cap.getVariable();
1926 Name = Var->getIdentifier();
1927 Init = BuildDeclarationNameExpr(
1928 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
1931 // In OpenMP, the capture kind doesn't actually describe how to capture:
1932 // variables are "mapped" onto the device in a process that does not formally
1933 // make a copy, even for a "copy capture".
1934 if (IsOpenMPMapping)
1935 return Init;
1937 if (Init.isInvalid())
1938 return ExprError();
1940 Expr *InitExpr = Init.get();
1941 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1942 Name, Cap.getCaptureType(), Loc);
1943 InitializationKind InitKind =
1944 InitializationKind::CreateDirect(Loc, Loc, Loc);
1945 InitializationSequence InitSeq(*this, Entity, InitKind, InitExpr);
1946 return InitSeq.Perform(*this, Entity, InitKind, InitExpr);
1949 ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body) {
1950 LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
1951 ActOnFinishFunctionBody(LSI.CallOperator, Body);
1953 return BuildLambdaExpr(StartLoc, Body->getEndLoc(), &LSI);
1956 static LambdaCaptureDefault
1957 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
1958 switch (ICS) {
1959 case CapturingScopeInfo::ImpCap_None:
1960 return LCD_None;
1961 case CapturingScopeInfo::ImpCap_LambdaByval:
1962 return LCD_ByCopy;
1963 case CapturingScopeInfo::ImpCap_CapturedRegion:
1964 case CapturingScopeInfo::ImpCap_LambdaByref:
1965 return LCD_ByRef;
1966 case CapturingScopeInfo::ImpCap_Block:
1967 llvm_unreachable("block capture in lambda");
1969 llvm_unreachable("Unknown implicit capture style");
1972 bool Sema::CaptureHasSideEffects(const Capture &From) {
1973 if (From.isInitCapture()) {
1974 Expr *Init = cast<VarDecl>(From.getVariable())->getInit();
1975 if (Init && Init->HasSideEffects(Context))
1976 return true;
1979 if (!From.isCopyCapture())
1980 return false;
1982 const QualType T = From.isThisCapture()
1983 ? getCurrentThisType()->getPointeeType()
1984 : From.getCaptureType();
1986 if (T.isVolatileQualified())
1987 return true;
1989 const Type *BaseT = T->getBaseElementTypeUnsafe();
1990 if (const CXXRecordDecl *RD = BaseT->getAsCXXRecordDecl())
1991 return !RD->isCompleteDefinition() || !RD->hasTrivialCopyConstructor() ||
1992 !RD->hasTrivialDestructor();
1994 return false;
1997 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
1998 const Capture &From) {
1999 if (CaptureHasSideEffects(From))
2000 return false;
2002 if (From.isVLATypeCapture())
2003 return false;
2005 // FIXME: maybe we should warn on these if we can find a sensible diagnostic
2006 // message
2007 if (From.isInitCapture() &&
2008 From.getVariable()->isPlaceholderVar(getLangOpts()))
2009 return false;
2011 auto diag = Diag(From.getLocation(), diag::warn_unused_lambda_capture);
2012 if (From.isThisCapture())
2013 diag << "'this'";
2014 else
2015 diag << From.getVariable();
2016 diag << From.isNonODRUsed();
2017 diag << FixItHint::CreateRemoval(CaptureRange);
2018 return true;
2021 /// Create a field within the lambda class or captured statement record for the
2022 /// given capture.
2023 FieldDecl *Sema::BuildCaptureField(RecordDecl *RD,
2024 const sema::Capture &Capture) {
2025 SourceLocation Loc = Capture.getLocation();
2026 QualType FieldType = Capture.getCaptureType();
2028 TypeSourceInfo *TSI = nullptr;
2029 if (Capture.isVariableCapture()) {
2030 const auto *Var = dyn_cast_or_null<VarDecl>(Capture.getVariable());
2031 if (Var && Var->isInitCapture())
2032 TSI = Var->getTypeSourceInfo();
2035 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
2036 // appropriate, at least for an implicit capture.
2037 if (!TSI)
2038 TSI = Context.getTrivialTypeSourceInfo(FieldType, Loc);
2040 // Build the non-static data member.
2041 FieldDecl *Field =
2042 FieldDecl::Create(Context, RD, /*StartLoc=*/Loc, /*IdLoc=*/Loc,
2043 /*Id=*/nullptr, FieldType, TSI, /*BW=*/nullptr,
2044 /*Mutable=*/false, ICIS_NoInit);
2045 // If the variable being captured has an invalid type, mark the class as
2046 // invalid as well.
2047 if (!FieldType->isDependentType()) {
2048 if (RequireCompleteSizedType(Loc, FieldType,
2049 diag::err_field_incomplete_or_sizeless)) {
2050 RD->setInvalidDecl();
2051 Field->setInvalidDecl();
2052 } else {
2053 NamedDecl *Def;
2054 FieldType->isIncompleteType(&Def);
2055 if (Def && Def->isInvalidDecl()) {
2056 RD->setInvalidDecl();
2057 Field->setInvalidDecl();
2061 Field->setImplicit(true);
2062 Field->setAccess(AS_private);
2063 RD->addDecl(Field);
2065 if (Capture.isVLATypeCapture())
2066 Field->setCapturedVLAType(Capture.getCapturedVLAType());
2068 return Field;
2071 ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
2072 LambdaScopeInfo *LSI) {
2073 // Collect information from the lambda scope.
2074 SmallVector<LambdaCapture, 4> Captures;
2075 SmallVector<Expr *, 4> CaptureInits;
2076 SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
2077 LambdaCaptureDefault CaptureDefault =
2078 mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
2079 CXXRecordDecl *Class;
2080 CXXMethodDecl *CallOperator;
2081 SourceRange IntroducerRange;
2082 bool ExplicitParams;
2083 bool ExplicitResultType;
2084 CleanupInfo LambdaCleanup;
2085 bool ContainsUnexpandedParameterPack;
2086 bool IsGenericLambda;
2088 CallOperator = LSI->CallOperator;
2089 Class = LSI->Lambda;
2090 IntroducerRange = LSI->IntroducerRange;
2091 ExplicitParams = LSI->ExplicitParams;
2092 ExplicitResultType = !LSI->HasImplicitReturnType;
2093 LambdaCleanup = LSI->Cleanup;
2094 ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
2095 IsGenericLambda = Class->isGenericLambda();
2097 CallOperator->setLexicalDeclContext(Class);
2098 Decl *TemplateOrNonTemplateCallOperatorDecl =
2099 CallOperator->getDescribedFunctionTemplate()
2100 ? CallOperator->getDescribedFunctionTemplate()
2101 : cast<Decl>(CallOperator);
2103 // FIXME: Is this really the best choice? Keeping the lexical decl context
2104 // set as CurContext seems more faithful to the source.
2105 TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
2107 PopExpressionEvaluationContext();
2109 // True if the current capture has a used capture or default before it.
2110 bool CurHasPreviousCapture = CaptureDefault != LCD_None;
2111 SourceLocation PrevCaptureLoc = CurHasPreviousCapture ?
2112 CaptureDefaultLoc : IntroducerRange.getBegin();
2114 for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I) {
2115 const Capture &From = LSI->Captures[I];
2117 if (From.isInvalid())
2118 return ExprError();
2120 assert(!From.isBlockCapture() && "Cannot capture __block variables");
2121 bool IsImplicit = I >= LSI->NumExplicitCaptures;
2122 SourceLocation ImplicitCaptureLoc =
2123 IsImplicit ? CaptureDefaultLoc : SourceLocation();
2125 // Use source ranges of explicit captures for fixits where available.
2126 SourceRange CaptureRange = LSI->ExplicitCaptureRanges[I];
2128 // Warn about unused explicit captures.
2129 bool IsCaptureUsed = true;
2130 if (!CurContext->isDependentContext() && !IsImplicit &&
2131 !From.isODRUsed()) {
2132 // Initialized captures that are non-ODR used may not be eliminated.
2133 // FIXME: Where did the IsGenericLambda here come from?
2134 bool NonODRUsedInitCapture =
2135 IsGenericLambda && From.isNonODRUsed() && From.isInitCapture();
2136 if (!NonODRUsedInitCapture) {
2137 bool IsLast = (I + 1) == LSI->NumExplicitCaptures;
2138 SourceRange FixItRange;
2139 if (CaptureRange.isValid()) {
2140 if (!CurHasPreviousCapture && !IsLast) {
2141 // If there are no captures preceding this capture, remove the
2142 // following comma.
2143 FixItRange = SourceRange(CaptureRange.getBegin(),
2144 getLocForEndOfToken(CaptureRange.getEnd()));
2145 } else {
2146 // Otherwise, remove the comma since the last used capture.
2147 FixItRange = SourceRange(getLocForEndOfToken(PrevCaptureLoc),
2148 CaptureRange.getEnd());
2152 IsCaptureUsed = !DiagnoseUnusedLambdaCapture(FixItRange, From);
2156 if (CaptureRange.isValid()) {
2157 CurHasPreviousCapture |= IsCaptureUsed;
2158 PrevCaptureLoc = CaptureRange.getEnd();
2161 // Map the capture to our AST representation.
2162 LambdaCapture Capture = [&] {
2163 if (From.isThisCapture()) {
2164 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
2165 // because it results in a reference capture. Don't warn prior to
2166 // C++2a; there's nothing that can be done about it before then.
2167 if (getLangOpts().CPlusPlus20 && IsImplicit &&
2168 CaptureDefault == LCD_ByCopy) {
2169 Diag(From.getLocation(), diag::warn_deprecated_this_capture);
2170 Diag(CaptureDefaultLoc, diag::note_deprecated_this_capture)
2171 << FixItHint::CreateInsertion(
2172 getLocForEndOfToken(CaptureDefaultLoc), ", this");
2174 return LambdaCapture(From.getLocation(), IsImplicit,
2175 From.isCopyCapture() ? LCK_StarThis : LCK_This);
2176 } else if (From.isVLATypeCapture()) {
2177 return LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType);
2178 } else {
2179 assert(From.isVariableCapture() && "unknown kind of capture");
2180 ValueDecl *Var = From.getVariable();
2181 LambdaCaptureKind Kind =
2182 From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
2183 return LambdaCapture(From.getLocation(), IsImplicit, Kind, Var,
2184 From.getEllipsisLoc());
2186 }();
2188 // Form the initializer for the capture field.
2189 ExprResult Init = BuildCaptureInit(From, ImplicitCaptureLoc);
2191 // FIXME: Skip this capture if the capture is not used, the initializer
2192 // has no side-effects, the type of the capture is trivial, and the
2193 // lambda is not externally visible.
2195 // Add a FieldDecl for the capture and form its initializer.
2196 BuildCaptureField(Class, From);
2197 Captures.push_back(Capture);
2198 CaptureInits.push_back(Init.get());
2200 if (LangOpts.CUDA)
2201 CUDA().CheckLambdaCapture(CallOperator, From);
2204 Class->setCaptures(Context, Captures);
2206 // C++11 [expr.prim.lambda]p6:
2207 // The closure type for a lambda-expression with no lambda-capture
2208 // has a public non-virtual non-explicit const conversion function
2209 // to pointer to function having the same parameter and return
2210 // types as the closure type's function call operator.
2211 if (Captures.empty() && CaptureDefault == LCD_None)
2212 addFunctionPointerConversions(*this, IntroducerRange, Class,
2213 CallOperator);
2215 // Objective-C++:
2216 // The closure type for a lambda-expression has a public non-virtual
2217 // non-explicit const conversion function to a block pointer having the
2218 // same parameter and return types as the closure type's function call
2219 // operator.
2220 // FIXME: Fix generic lambda to block conversions.
2221 if (getLangOpts().Blocks && getLangOpts().ObjC && !IsGenericLambda)
2222 addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
2224 // Finalize the lambda class.
2225 SmallVector<Decl*, 4> Fields(Class->fields());
2226 ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
2227 SourceLocation(), ParsedAttributesView());
2228 CheckCompletedCXXClass(nullptr, Class);
2231 Cleanup.mergeFrom(LambdaCleanup);
2233 LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
2234 CaptureDefault, CaptureDefaultLoc,
2235 ExplicitParams, ExplicitResultType,
2236 CaptureInits, EndLoc,
2237 ContainsUnexpandedParameterPack);
2238 // If the lambda expression's call operator is not explicitly marked constexpr
2239 // and we are not in a dependent context, analyze the call operator to infer
2240 // its constexpr-ness, suppressing diagnostics while doing so.
2241 if (getLangOpts().CPlusPlus17 && !CallOperator->isInvalidDecl() &&
2242 !CallOperator->isConstexpr() &&
2243 !isa<CoroutineBodyStmt>(CallOperator->getBody()) &&
2244 !Class->getDeclContext()->isDependentContext()) {
2245 CallOperator->setConstexprKind(
2246 CheckConstexprFunctionDefinition(CallOperator,
2247 CheckConstexprKind::CheckValid)
2248 ? ConstexprSpecKind::Constexpr
2249 : ConstexprSpecKind::Unspecified);
2252 // Emit delayed shadowing warnings now that the full capture list is known.
2253 DiagnoseShadowingLambdaDecls(LSI);
2255 if (!CurContext->isDependentContext()) {
2256 switch (ExprEvalContexts.back().Context) {
2257 // C++11 [expr.prim.lambda]p2:
2258 // A lambda-expression shall not appear in an unevaluated operand
2259 // (Clause 5).
2260 case ExpressionEvaluationContext::Unevaluated:
2261 case ExpressionEvaluationContext::UnevaluatedList:
2262 case ExpressionEvaluationContext::UnevaluatedAbstract:
2263 // C++1y [expr.const]p2:
2264 // A conditional-expression e is a core constant expression unless the
2265 // evaluation of e, following the rules of the abstract machine, would
2266 // evaluate [...] a lambda-expression.
2268 // This is technically incorrect, there are some constant evaluated contexts
2269 // where this should be allowed. We should probably fix this when DR1607 is
2270 // ratified, it lays out the exact set of conditions where we shouldn't
2271 // allow a lambda-expression.
2272 case ExpressionEvaluationContext::ConstantEvaluated:
2273 case ExpressionEvaluationContext::ImmediateFunctionContext:
2274 // We don't actually diagnose this case immediately, because we
2275 // could be within a context where we might find out later that
2276 // the expression is potentially evaluated (e.g., for typeid).
2277 ExprEvalContexts.back().Lambdas.push_back(Lambda);
2278 break;
2280 case ExpressionEvaluationContext::DiscardedStatement:
2281 case ExpressionEvaluationContext::PotentiallyEvaluated:
2282 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
2283 break;
2285 maybeAddDeclWithEffects(LSI->CallOperator);
2288 return MaybeBindToTemporary(Lambda);
2291 ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
2292 SourceLocation ConvLocation,
2293 CXXConversionDecl *Conv,
2294 Expr *Src) {
2295 // Make sure that the lambda call operator is marked used.
2296 CXXRecordDecl *Lambda = Conv->getParent();
2297 CXXMethodDecl *CallOperator
2298 = cast<CXXMethodDecl>(
2299 Lambda->lookup(
2300 Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
2301 CallOperator->setReferenced();
2302 CallOperator->markUsed(Context);
2304 ExprResult Init = PerformCopyInitialization(
2305 InitializedEntity::InitializeLambdaToBlock(ConvLocation, Src->getType()),
2306 CurrentLocation, Src);
2307 if (!Init.isInvalid())
2308 Init = ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false);
2310 if (Init.isInvalid())
2311 return ExprError();
2313 // Create the new block to be returned.
2314 BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
2316 // Set the type information.
2317 Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
2318 Block->setIsVariadic(CallOperator->isVariadic());
2319 Block->setBlockMissingReturnType(false);
2321 // Add parameters.
2322 SmallVector<ParmVarDecl *, 4> BlockParams;
2323 for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
2324 ParmVarDecl *From = CallOperator->getParamDecl(I);
2325 BlockParams.push_back(ParmVarDecl::Create(
2326 Context, Block, From->getBeginLoc(), From->getLocation(),
2327 From->getIdentifier(), From->getType(), From->getTypeSourceInfo(),
2328 From->getStorageClass(),
2329 /*DefArg=*/nullptr));
2331 Block->setParams(BlockParams);
2333 Block->setIsConversionFromLambda(true);
2335 // Add capture. The capture uses a fake variable, which doesn't correspond
2336 // to any actual memory location. However, the initializer copy-initializes
2337 // the lambda object.
2338 TypeSourceInfo *CapVarTSI =
2339 Context.getTrivialTypeSourceInfo(Src->getType());
2340 VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
2341 ConvLocation, nullptr,
2342 Src->getType(), CapVarTSI,
2343 SC_None);
2344 BlockDecl::Capture Capture(/*variable=*/CapVar, /*byRef=*/false,
2345 /*nested=*/false, /*copy=*/Init.get());
2346 Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
2348 // Add a fake function body to the block. IR generation is responsible
2349 // for filling in the actual body, which cannot be expressed as an AST.
2350 Block->setBody(new (Context) CompoundStmt(ConvLocation));
2352 // Create the block literal expression.
2353 // TODO: Do we ever get here if we have unexpanded packs in the lambda???
2354 Expr *BuildBlock =
2355 new (Context) BlockExpr(Block, Conv->getConversionType(),
2356 /*ContainsUnexpandedParameterPack=*/false);
2357 ExprCleanupObjects.push_back(Block);
2358 Cleanup.setExprNeedsCleanups(true);
2360 return BuildBlock;
2363 static FunctionDecl *getPatternFunctionDecl(FunctionDecl *FD) {
2364 if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization) {
2365 while (FD->getInstantiatedFromMemberFunction())
2366 FD = FD->getInstantiatedFromMemberFunction();
2367 return FD;
2370 if (FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate)
2371 return FD->getInstantiatedFromDecl();
2373 FunctionTemplateDecl *FTD = FD->getPrimaryTemplate();
2374 if (!FTD)
2375 return nullptr;
2377 while (FTD->getInstantiatedFromMemberTemplate())
2378 FTD = FTD->getInstantiatedFromMemberTemplate();
2380 return FTD->getTemplatedDecl();
2383 Sema::LambdaScopeForCallOperatorInstantiationRAII::
2384 LambdaScopeForCallOperatorInstantiationRAII(
2385 Sema &SemaRef, FunctionDecl *FD, MultiLevelTemplateArgumentList MLTAL,
2386 LocalInstantiationScope &Scope, bool ShouldAddDeclsFromParentScope)
2387 : FunctionScopeRAII(SemaRef) {
2388 if (!isLambdaCallOperator(FD)) {
2389 FunctionScopeRAII::disable();
2390 return;
2393 SemaRef.RebuildLambdaScopeInfo(cast<CXXMethodDecl>(FD));
2395 FunctionDecl *FDPattern = getPatternFunctionDecl(FD);
2396 if (!FDPattern)
2397 return;
2399 if (!ShouldAddDeclsFromParentScope)
2400 return;
2402 FunctionDecl *InnermostFD = FD, *InnermostFDPattern = FDPattern;
2403 llvm::SmallVector<std::pair<FunctionDecl *, FunctionDecl *>, 4>
2404 ParentInstantiations;
2405 while (true) {
2406 FDPattern =
2407 dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(FDPattern));
2408 FD = dyn_cast<FunctionDecl>(getLambdaAwareParentOfDeclContext(FD));
2410 if (!FDPattern || !FD)
2411 break;
2413 ParentInstantiations.emplace_back(FDPattern, FD);
2416 // Add instantiated parameters and local vars to scopes, starting from the
2417 // outermost lambda to the innermost lambda. This ordering ensures that
2418 // parameters in inner lambdas can correctly depend on those defined
2419 // in outer lambdas, e.g. auto L = [](auto... x) {
2420 // return [](decltype(x)... y) { }; // `y` depends on `x`
2421 // };
2423 for (const auto &[FDPattern, FD] : llvm::reverse(ParentInstantiations)) {
2424 SemaRef.addInstantiatedParametersToScope(FD, FDPattern, Scope, MLTAL);
2425 SemaRef.addInstantiatedLocalVarsToScope(FD, FDPattern, Scope);
2427 if (isLambdaCallOperator(FD))
2428 SemaRef.addInstantiatedCapturesToScope(FD, FDPattern, Scope, MLTAL);
2431 SemaRef.addInstantiatedCapturesToScope(InnermostFD, InnermostFDPattern, Scope,
2432 MLTAL);