[clangd] Re-land "support outgoing calls in call hierarchy" (#117673)
[llvm-project.git] / clang / lib / Sema / SemaLookup.cpp
blobe1171d4284c763ecddc8d73a2c585823797291ae
1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements name lookup for C, C++, Objective-C, and
10 // Objective-C++.
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/LangOptions.h"
25 #include "clang/Lex/HeaderSearch.h"
26 #include "clang/Lex/ModuleLoader.h"
27 #include "clang/Lex/Preprocessor.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/Lookup.h"
30 #include "clang/Sema/Overload.h"
31 #include "clang/Sema/RISCVIntrinsicManager.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/SemaRISCV.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/STLForwardCompat.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/TinyPtrVector.h"
43 #include "llvm/ADT/edit_distance.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include <algorithm>
47 #include <iterator>
48 #include <list>
49 #include <optional>
50 #include <set>
51 #include <utility>
52 #include <vector>
54 #include "OpenCLBuiltins.inc"
56 using namespace clang;
57 using namespace sema;
59 namespace {
60 class UnqualUsingEntry {
61 const DeclContext *Nominated;
62 const DeclContext *CommonAncestor;
64 public:
65 UnqualUsingEntry(const DeclContext *Nominated,
66 const DeclContext *CommonAncestor)
67 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
70 const DeclContext *getCommonAncestor() const {
71 return CommonAncestor;
74 const DeclContext *getNominatedNamespace() const {
75 return Nominated;
78 // Sort by the pointer value of the common ancestor.
79 struct Comparator {
80 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
81 return L.getCommonAncestor() < R.getCommonAncestor();
84 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
85 return E.getCommonAncestor() < DC;
88 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
89 return DC < E.getCommonAncestor();
94 /// A collection of using directives, as used by C++ unqualified
95 /// lookup.
96 class UnqualUsingDirectiveSet {
97 Sema &SemaRef;
99 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
101 ListTy list;
102 llvm::SmallPtrSet<DeclContext*, 8> visited;
104 public:
105 UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
107 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
108 // C++ [namespace.udir]p1:
109 // During unqualified name lookup, the names appear as if they
110 // were declared in the nearest enclosing namespace which contains
111 // both the using-directive and the nominated namespace.
112 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
113 assert(InnermostFileDC && InnermostFileDC->isFileContext());
115 for (; S; S = S->getParent()) {
116 // C++ [namespace.udir]p1:
117 // A using-directive shall not appear in class scope, but may
118 // appear in namespace scope or in block scope.
119 DeclContext *Ctx = S->getEntity();
120 if (Ctx && Ctx->isFileContext()) {
121 visit(Ctx, Ctx);
122 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
123 for (auto *I : S->using_directives())
124 if (SemaRef.isVisible(I))
125 visit(I, InnermostFileDC);
130 // Visits a context and collect all of its using directives
131 // recursively. Treats all using directives as if they were
132 // declared in the context.
134 // A given context is only every visited once, so it is important
135 // that contexts be visited from the inside out in order to get
136 // the effective DCs right.
137 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
138 if (!visited.insert(DC).second)
139 return;
141 addUsingDirectives(DC, EffectiveDC);
144 // Visits a using directive and collects all of its using
145 // directives recursively. Treats all using directives as if they
146 // were declared in the effective DC.
147 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
148 DeclContext *NS = UD->getNominatedNamespace();
149 if (!visited.insert(NS).second)
150 return;
152 addUsingDirective(UD, EffectiveDC);
153 addUsingDirectives(NS, EffectiveDC);
156 // Adds all the using directives in a context (and those nominated
157 // by its using directives, transitively) as if they appeared in
158 // the given effective context.
159 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
160 SmallVector<DeclContext*, 4> queue;
161 while (true) {
162 for (auto *UD : DC->using_directives()) {
163 DeclContext *NS = UD->getNominatedNamespace();
164 if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
165 addUsingDirective(UD, EffectiveDC);
166 queue.push_back(NS);
170 if (queue.empty())
171 return;
173 DC = queue.pop_back_val();
177 // Add a using directive as if it had been declared in the given
178 // context. This helps implement C++ [namespace.udir]p3:
179 // The using-directive is transitive: if a scope contains a
180 // using-directive that nominates a second namespace that itself
181 // contains using-directives, the effect is as if the
182 // using-directives from the second namespace also appeared in
183 // the first.
184 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
185 // Find the common ancestor between the effective context and
186 // the nominated namespace.
187 DeclContext *Common = UD->getNominatedNamespace();
188 while (!Common->Encloses(EffectiveDC))
189 Common = Common->getParent();
190 Common = Common->getPrimaryContext();
192 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
195 void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
197 typedef ListTy::const_iterator const_iterator;
199 const_iterator begin() const { return list.begin(); }
200 const_iterator end() const { return list.end(); }
202 llvm::iterator_range<const_iterator>
203 getNamespacesFor(const DeclContext *DC) const {
204 return llvm::make_range(std::equal_range(begin(), end(),
205 DC->getPrimaryContext(),
206 UnqualUsingEntry::Comparator()));
209 } // end anonymous namespace
211 // Retrieve the set of identifier namespaces that correspond to a
212 // specific kind of name lookup.
213 static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
214 bool CPlusPlus,
215 bool Redeclaration) {
216 unsigned IDNS = 0;
217 switch (NameKind) {
218 case Sema::LookupObjCImplicitSelfParam:
219 case Sema::LookupOrdinaryName:
220 case Sema::LookupRedeclarationWithLinkage:
221 case Sema::LookupLocalFriendName:
222 case Sema::LookupDestructorName:
223 IDNS = Decl::IDNS_Ordinary;
224 if (CPlusPlus) {
225 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
226 if (Redeclaration)
227 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
229 if (Redeclaration)
230 IDNS |= Decl::IDNS_LocalExtern;
231 break;
233 case Sema::LookupOperatorName:
234 // Operator lookup is its own crazy thing; it is not the same
235 // as (e.g.) looking up an operator name for redeclaration.
236 assert(!Redeclaration && "cannot do redeclaration operator lookup");
237 IDNS = Decl::IDNS_NonMemberOperator;
238 break;
240 case Sema::LookupTagName:
241 if (CPlusPlus) {
242 IDNS = Decl::IDNS_Type;
244 // When looking for a redeclaration of a tag name, we add:
245 // 1) TagFriend to find undeclared friend decls
246 // 2) Namespace because they can't "overload" with tag decls.
247 // 3) Tag because it includes class templates, which can't
248 // "overload" with tag decls.
249 if (Redeclaration)
250 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
251 } else {
252 IDNS = Decl::IDNS_Tag;
254 break;
256 case Sema::LookupLabel:
257 IDNS = Decl::IDNS_Label;
258 break;
260 case Sema::LookupMemberName:
261 IDNS = Decl::IDNS_Member;
262 if (CPlusPlus)
263 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
264 break;
266 case Sema::LookupNestedNameSpecifierName:
267 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
268 break;
270 case Sema::LookupNamespaceName:
271 IDNS = Decl::IDNS_Namespace;
272 break;
274 case Sema::LookupUsingDeclName:
275 assert(Redeclaration && "should only be used for redecl lookup");
276 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
277 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
278 Decl::IDNS_LocalExtern;
279 break;
281 case Sema::LookupObjCProtocolName:
282 IDNS = Decl::IDNS_ObjCProtocol;
283 break;
285 case Sema::LookupOMPReductionName:
286 IDNS = Decl::IDNS_OMPReduction;
287 break;
289 case Sema::LookupOMPMapperName:
290 IDNS = Decl::IDNS_OMPMapper;
291 break;
293 case Sema::LookupAnyName:
294 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
295 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
296 | Decl::IDNS_Type;
297 break;
299 return IDNS;
302 void LookupResult::configure() {
303 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
304 isForRedeclaration());
306 // If we're looking for one of the allocation or deallocation
307 // operators, make sure that the implicitly-declared new and delete
308 // operators can be found.
309 switch (NameInfo.getName().getCXXOverloadedOperator()) {
310 case OO_New:
311 case OO_Delete:
312 case OO_Array_New:
313 case OO_Array_Delete:
314 getSema().DeclareGlobalNewDelete();
315 break;
317 default:
318 break;
321 // Compiler builtins are always visible, regardless of where they end
322 // up being declared.
323 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
324 if (unsigned BuiltinID = Id->getBuiltinID()) {
325 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
326 AllowHidden = true;
331 bool LookupResult::checkDebugAssumptions() const {
332 // This function is never called by NDEBUG builds.
333 assert(ResultKind != NotFound || Decls.size() == 0);
334 assert(ResultKind != Found || Decls.size() == 1);
335 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
336 (Decls.size() == 1 &&
337 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
338 assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
339 assert(ResultKind != Ambiguous || Decls.size() > 1 ||
340 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
341 Ambiguity == AmbiguousBaseSubobjectTypes)));
342 assert((Paths != nullptr) == (ResultKind == Ambiguous &&
343 (Ambiguity == AmbiguousBaseSubobjectTypes ||
344 Ambiguity == AmbiguousBaseSubobjects)));
345 return true;
348 // Necessary because CXXBasePaths is not complete in Sema.h
349 void LookupResult::deletePaths(CXXBasePaths *Paths) {
350 delete Paths;
353 /// Get a representative context for a declaration such that two declarations
354 /// will have the same context if they were found within the same scope.
355 static const DeclContext *getContextForScopeMatching(const Decl *D) {
356 // For function-local declarations, use that function as the context. This
357 // doesn't account for scopes within the function; the caller must deal with
358 // those.
359 if (const DeclContext *DC = D->getLexicalDeclContext();
360 DC->isFunctionOrMethod())
361 return DC;
363 // Otherwise, look at the semantic context of the declaration. The
364 // declaration must have been found there.
365 return D->getDeclContext()->getRedeclContext();
368 /// Determine whether \p D is a better lookup result than \p Existing,
369 /// given that they declare the same entity.
370 static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
371 const NamedDecl *D,
372 const NamedDecl *Existing) {
373 // When looking up redeclarations of a using declaration, prefer a using
374 // shadow declaration over any other declaration of the same entity.
375 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
376 !isa<UsingShadowDecl>(Existing))
377 return true;
379 const auto *DUnderlying = D->getUnderlyingDecl();
380 const auto *EUnderlying = Existing->getUnderlyingDecl();
382 // If they have different underlying declarations, prefer a typedef over the
383 // original type (this happens when two type declarations denote the same
384 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
385 // might carry additional semantic information, such as an alignment override.
386 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
387 // declaration over a typedef. Also prefer a tag over a typedef for
388 // destructor name lookup because in some contexts we only accept a
389 // class-name in a destructor declaration.
390 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
391 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
392 bool HaveTag = isa<TagDecl>(EUnderlying);
393 bool WantTag =
394 Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
395 return HaveTag != WantTag;
398 // Pick the function with more default arguments.
399 // FIXME: In the presence of ambiguous default arguments, we should keep both,
400 // so we can diagnose the ambiguity if the default argument is needed.
401 // See C++ [over.match.best]p3.
402 if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
403 const auto *EFD = cast<FunctionDecl>(EUnderlying);
404 unsigned DMin = DFD->getMinRequiredArguments();
405 unsigned EMin = EFD->getMinRequiredArguments();
406 // If D has more default arguments, it is preferred.
407 if (DMin != EMin)
408 return DMin < EMin;
409 // FIXME: When we track visibility for default function arguments, check
410 // that we pick the declaration with more visible default arguments.
413 // Pick the template with more default template arguments.
414 if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
415 const auto *ETD = cast<TemplateDecl>(EUnderlying);
416 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
417 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
418 // If D has more default arguments, it is preferred. Note that default
419 // arguments (and their visibility) is monotonically increasing across the
420 // redeclaration chain, so this is a quick proxy for "is more recent".
421 if (DMin != EMin)
422 return DMin < EMin;
423 // If D has more *visible* default arguments, it is preferred. Note, an
424 // earlier default argument being visible does not imply that a later
425 // default argument is visible, so we can't just check the first one.
426 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
427 I != N; ++I) {
428 if (!S.hasVisibleDefaultArgument(
429 ETD->getTemplateParameters()->getParam(I)) &&
430 S.hasVisibleDefaultArgument(
431 DTD->getTemplateParameters()->getParam(I)))
432 return true;
436 // VarDecl can have incomplete array types, prefer the one with more complete
437 // array type.
438 if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) {
439 const auto *EVD = cast<VarDecl>(EUnderlying);
440 if (EVD->getType()->isIncompleteType() &&
441 !DVD->getType()->isIncompleteType()) {
442 // Prefer the decl with a more complete type if visible.
443 return S.isVisible(DVD);
445 return false; // Avoid picking up a newer decl, just because it was newer.
448 // For most kinds of declaration, it doesn't really matter which one we pick.
449 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
450 // If the existing declaration is hidden, prefer the new one. Otherwise,
451 // keep what we've got.
452 return !S.isVisible(Existing);
455 // Pick the newer declaration; it might have a more precise type.
456 for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
457 Prev = Prev->getPreviousDecl())
458 if (Prev == EUnderlying)
459 return true;
460 return false;
463 /// Determine whether \p D can hide a tag declaration.
464 static bool canHideTag(const NamedDecl *D) {
465 // C++ [basic.scope.declarative]p4:
466 // Given a set of declarations in a single declarative region [...]
467 // exactly one declaration shall declare a class name or enumeration name
468 // that is not a typedef name and the other declarations shall all refer to
469 // the same variable, non-static data member, or enumerator, or all refer
470 // to functions and function templates; in this case the class name or
471 // enumeration name is hidden.
472 // C++ [basic.scope.hiding]p2:
473 // A class name or enumeration name can be hidden by the name of a
474 // variable, data member, function, or enumerator declared in the same
475 // scope.
476 // An UnresolvedUsingValueDecl always instantiates to one of these.
477 D = D->getUnderlyingDecl();
478 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
479 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
480 isa<UnresolvedUsingValueDecl>(D);
483 /// Resolves the result kind of this lookup.
484 void LookupResult::resolveKind() {
485 unsigned N = Decls.size();
487 // Fast case: no possible ambiguity.
488 if (N == 0) {
489 assert(ResultKind == NotFound ||
490 ResultKind == NotFoundInCurrentInstantiation);
491 return;
494 // If there's a single decl, we need to examine it to decide what
495 // kind of lookup this is.
496 if (N == 1) {
497 const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
498 if (isa<FunctionTemplateDecl>(D))
499 ResultKind = FoundOverloaded;
500 else if (isa<UnresolvedUsingValueDecl>(D))
501 ResultKind = FoundUnresolvedValue;
502 return;
505 // Don't do any extra resolution if we've already resolved as ambiguous.
506 if (ResultKind == Ambiguous) return;
508 llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique;
509 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
511 bool Ambiguous = false;
512 bool ReferenceToPlaceHolderVariable = false;
513 bool HasTag = false, HasFunction = false;
514 bool HasFunctionTemplate = false, HasUnresolved = false;
515 const NamedDecl *HasNonFunction = nullptr;
517 llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions;
518 llvm::BitVector RemovedDecls(N);
520 for (unsigned I = 0; I < N; I++) {
521 const NamedDecl *D = Decls[I]->getUnderlyingDecl();
522 D = cast<NamedDecl>(D->getCanonicalDecl());
524 // Ignore an invalid declaration unless it's the only one left.
525 // Also ignore HLSLBufferDecl which not have name conflict with other Decls.
526 if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) &&
527 N - RemovedDecls.count() > 1) {
528 RemovedDecls.set(I);
529 continue;
532 // C++ [basic.scope.hiding]p2:
533 // A class name or enumeration name can be hidden by the name of
534 // an object, function, or enumerator declared in the same
535 // scope. If a class or enumeration name and an object, function,
536 // or enumerator are declared in the same scope (in any order)
537 // with the same name, the class or enumeration name is hidden
538 // wherever the object, function, or enumerator name is visible.
539 if (HideTags && isa<TagDecl>(D)) {
540 bool Hidden = false;
541 for (auto *OtherDecl : Decls) {
542 if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() &&
543 getContextForScopeMatching(OtherDecl)->Equals(
544 getContextForScopeMatching(Decls[I]))) {
545 RemovedDecls.set(I);
546 Hidden = true;
547 break;
550 if (Hidden)
551 continue;
554 std::optional<unsigned> ExistingI;
556 // Redeclarations of types via typedef can occur both within a scope
557 // and, through using declarations and directives, across scopes. There is
558 // no ambiguity if they all refer to the same type, so unique based on the
559 // canonical type.
560 if (const auto *TD = dyn_cast<TypeDecl>(D)) {
561 QualType T = getSema().Context.getTypeDeclType(TD);
562 auto UniqueResult = UniqueTypes.insert(
563 std::make_pair(getSema().Context.getCanonicalType(T), I));
564 if (!UniqueResult.second) {
565 // The type is not unique.
566 ExistingI = UniqueResult.first->second;
570 // For non-type declarations, check for a prior lookup result naming this
571 // canonical declaration.
572 if (!ExistingI) {
573 auto UniqueResult = Unique.insert(std::make_pair(D, I));
574 if (!UniqueResult.second) {
575 // We've seen this entity before.
576 ExistingI = UniqueResult.first->second;
580 if (ExistingI) {
581 // This is not a unique lookup result. Pick one of the results and
582 // discard the other.
583 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
584 Decls[*ExistingI]))
585 Decls[*ExistingI] = Decls[I];
586 RemovedDecls.set(I);
587 continue;
590 // Otherwise, do some decl type analysis and then continue.
592 if (isa<UnresolvedUsingValueDecl>(D)) {
593 HasUnresolved = true;
594 } else if (isa<TagDecl>(D)) {
595 if (HasTag)
596 Ambiguous = true;
597 HasTag = true;
598 } else if (isa<FunctionTemplateDecl>(D)) {
599 HasFunction = true;
600 HasFunctionTemplate = true;
601 } else if (isa<FunctionDecl>(D)) {
602 HasFunction = true;
603 } else {
604 if (HasNonFunction) {
605 // If we're about to create an ambiguity between two declarations that
606 // are equivalent, but one is an internal linkage declaration from one
607 // module and the other is an internal linkage declaration from another
608 // module, just skip it.
609 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
610 D)) {
611 EquivalentNonFunctions.push_back(D);
612 RemovedDecls.set(I);
613 continue;
615 if (D->isPlaceholderVar(getSema().getLangOpts()) &&
616 getContextForScopeMatching(D) ==
617 getContextForScopeMatching(Decls[I])) {
618 ReferenceToPlaceHolderVariable = true;
620 Ambiguous = true;
622 HasNonFunction = D;
626 // FIXME: This diagnostic should really be delayed until we're done with
627 // the lookup result, in case the ambiguity is resolved by the caller.
628 if (!EquivalentNonFunctions.empty() && !Ambiguous)
629 getSema().diagnoseEquivalentInternalLinkageDeclarations(
630 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
632 // Remove decls by replacing them with decls from the end (which
633 // means that we need to iterate from the end) and then truncating
634 // to the new size.
635 for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I))
636 Decls[I] = Decls[--N];
637 Decls.truncate(N);
639 if ((HasNonFunction && (HasFunction || HasUnresolved)) ||
640 (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved)))
641 Ambiguous = true;
643 if (Ambiguous && ReferenceToPlaceHolderVariable)
644 setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable);
645 else if (Ambiguous)
646 setAmbiguous(LookupResult::AmbiguousReference);
647 else if (HasUnresolved)
648 ResultKind = LookupResult::FoundUnresolvedValue;
649 else if (N > 1 || HasFunctionTemplate)
650 ResultKind = LookupResult::FoundOverloaded;
651 else
652 ResultKind = LookupResult::Found;
655 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
656 CXXBasePaths::const_paths_iterator I, E;
657 for (I = P.begin(), E = P.end(); I != E; ++I)
658 for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
659 ++DI)
660 addDecl(*DI);
663 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
664 Paths = new CXXBasePaths;
665 Paths->swap(P);
666 addDeclsFromBasePaths(*Paths);
667 resolveKind();
668 setAmbiguous(AmbiguousBaseSubobjects);
671 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
672 Paths = new CXXBasePaths;
673 Paths->swap(P);
674 addDeclsFromBasePaths(*Paths);
675 resolveKind();
676 setAmbiguous(AmbiguousBaseSubobjectTypes);
679 void LookupResult::print(raw_ostream &Out) {
680 Out << Decls.size() << " result(s)";
681 if (isAmbiguous()) Out << ", ambiguous";
682 if (Paths) Out << ", base paths present";
684 for (iterator I = begin(), E = end(); I != E; ++I) {
685 Out << "\n";
686 (*I)->print(Out, 2);
690 LLVM_DUMP_METHOD void LookupResult::dump() {
691 llvm::errs() << "lookup results for " << getLookupName().getAsString()
692 << ":\n";
693 for (NamedDecl *D : *this)
694 D->dump();
697 /// Diagnose a missing builtin type.
698 static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
699 llvm::StringRef Name) {
700 S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
701 << TypeClass << Name;
702 return S.Context.VoidTy;
705 /// Lookup an OpenCL enum type.
706 static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
707 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
708 Sema::LookupTagName);
709 S.LookupName(Result, S.TUScope);
710 if (Result.empty())
711 return diagOpenCLBuiltinTypeError(S, "enum", Name);
712 EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
713 if (!Decl)
714 return diagOpenCLBuiltinTypeError(S, "enum", Name);
715 return S.Context.getEnumType(Decl);
718 /// Lookup an OpenCL typedef type.
719 static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
720 LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
721 Sema::LookupOrdinaryName);
722 S.LookupName(Result, S.TUScope);
723 if (Result.empty())
724 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
725 TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
726 if (!Decl)
727 return diagOpenCLBuiltinTypeError(S, "typedef", Name);
728 return S.Context.getTypedefType(Decl);
731 /// Get the QualType instances of the return type and arguments for an OpenCL
732 /// builtin function signature.
733 /// \param S (in) The Sema instance.
734 /// \param OpenCLBuiltin (in) The signature currently handled.
735 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
736 /// type used as return type or as argument.
737 /// Only meaningful for generic types, otherwise equals 1.
738 /// \param RetTypes (out) List of the possible return types.
739 /// \param ArgTypes (out) List of the possible argument types. For each
740 /// argument, ArgTypes contains QualTypes for the Cartesian product
741 /// of (vector sizes) x (types) .
742 static void GetQualTypesForOpenCLBuiltin(
743 Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
744 SmallVector<QualType, 1> &RetTypes,
745 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
746 // Get the QualType instances of the return types.
747 unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
748 OCL2Qual(S, TypeTable[Sig], RetTypes);
749 GenTypeMaxCnt = RetTypes.size();
751 // Get the QualType instances of the arguments.
752 // First type is the return type, skip it.
753 for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
754 SmallVector<QualType, 1> Ty;
755 OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
756 Ty);
757 GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
758 ArgTypes.push_back(std::move(Ty));
762 /// Create a list of the candidate function overloads for an OpenCL builtin
763 /// function.
764 /// \param Context (in) The ASTContext instance.
765 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
766 /// type used as return type or as argument.
767 /// Only meaningful for generic types, otherwise equals 1.
768 /// \param FunctionList (out) List of FunctionTypes.
769 /// \param RetTypes (in) List of the possible return types.
770 /// \param ArgTypes (in) List of the possible types for the arguments.
771 static void GetOpenCLBuiltinFctOverloads(
772 ASTContext &Context, unsigned GenTypeMaxCnt,
773 std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
774 SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
775 FunctionProtoType::ExtProtoInfo PI(
776 Context.getDefaultCallingConvention(false, false, true));
777 PI.Variadic = false;
779 // Do not attempt to create any FunctionTypes if there are no return types,
780 // which happens when a type belongs to a disabled extension.
781 if (RetTypes.size() == 0)
782 return;
784 // Create FunctionTypes for each (gen)type.
785 for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
786 SmallVector<QualType, 5> ArgList;
788 for (unsigned A = 0; A < ArgTypes.size(); A++) {
789 // Bail out if there is an argument that has no available types.
790 if (ArgTypes[A].size() == 0)
791 return;
793 // Builtins such as "max" have an "sgentype" argument that represents
794 // the corresponding scalar type of a gentype. The number of gentypes
795 // must be a multiple of the number of sgentypes.
796 assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
797 "argument type count not compatible with gentype type count");
798 unsigned Idx = IGenType % ArgTypes[A].size();
799 ArgList.push_back(ArgTypes[A][Idx]);
802 FunctionList.push_back(Context.getFunctionType(
803 RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
807 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
808 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
809 /// builtin function. Add all candidate signatures to the LookUpResult.
811 /// \param S (in) The Sema instance.
812 /// \param LR (inout) The LookupResult instance.
813 /// \param II (in) The identifier being resolved.
814 /// \param FctIndex (in) Starting index in the BuiltinTable.
815 /// \param Len (in) The signature list has Len elements.
816 static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
817 IdentifierInfo *II,
818 const unsigned FctIndex,
819 const unsigned Len) {
820 // The builtin function declaration uses generic types (gentype).
821 bool HasGenType = false;
823 // Maximum number of types contained in a generic type used as return type or
824 // as argument. Only meaningful for generic types, otherwise equals 1.
825 unsigned GenTypeMaxCnt;
827 ASTContext &Context = S.Context;
829 for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
830 const OpenCLBuiltinStruct &OpenCLBuiltin =
831 BuiltinTable[FctIndex + SignatureIndex];
833 // Ignore this builtin function if it is not available in the currently
834 // selected language version.
835 if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
836 OpenCLBuiltin.Versions))
837 continue;
839 // Ignore this builtin function if it carries an extension macro that is
840 // not defined. This indicates that the extension is not supported by the
841 // target, so the builtin function should not be available.
842 StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
843 if (!Extensions.empty()) {
844 SmallVector<StringRef, 2> ExtVec;
845 Extensions.split(ExtVec, " ");
846 bool AllExtensionsDefined = true;
847 for (StringRef Ext : ExtVec) {
848 if (!S.getPreprocessor().isMacroDefined(Ext)) {
849 AllExtensionsDefined = false;
850 break;
853 if (!AllExtensionsDefined)
854 continue;
857 SmallVector<QualType, 1> RetTypes;
858 SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
860 // Obtain QualType lists for the function signature.
861 GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
862 ArgTypes);
863 if (GenTypeMaxCnt > 1) {
864 HasGenType = true;
867 // Create function overload for each type combination.
868 std::vector<QualType> FunctionList;
869 GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
870 ArgTypes);
872 SourceLocation Loc = LR.getNameLoc();
873 DeclContext *Parent = Context.getTranslationUnitDecl();
874 FunctionDecl *NewOpenCLBuiltin;
876 for (const auto &FTy : FunctionList) {
877 NewOpenCLBuiltin = FunctionDecl::Create(
878 Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
879 S.getCurFPFeatures().isFPConstrained(), false,
880 FTy->isFunctionProtoType());
881 NewOpenCLBuiltin->setImplicit();
883 // Create Decl objects for each parameter, adding them to the
884 // FunctionDecl.
885 const auto *FP = cast<FunctionProtoType>(FTy);
886 SmallVector<ParmVarDecl *, 4> ParmList;
887 for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
888 ParmVarDecl *Parm = ParmVarDecl::Create(
889 Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
890 nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
891 Parm->setScopeInfo(0, IParm);
892 ParmList.push_back(Parm);
894 NewOpenCLBuiltin->setParams(ParmList);
896 // Add function attributes.
897 if (OpenCLBuiltin.IsPure)
898 NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
899 if (OpenCLBuiltin.IsConst)
900 NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
901 if (OpenCLBuiltin.IsConv)
902 NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
904 if (!S.getLangOpts().OpenCLCPlusPlus)
905 NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
907 LR.addDecl(NewOpenCLBuiltin);
911 // If we added overloads, need to resolve the lookup result.
912 if (Len > 1 || HasGenType)
913 LR.resolveKind();
916 bool Sema::LookupBuiltin(LookupResult &R) {
917 Sema::LookupNameKind NameKind = R.getLookupKind();
919 // If we didn't find a use of this identifier, and if the identifier
920 // corresponds to a compiler builtin, create the decl object for the builtin
921 // now, injecting it into translation unit scope, and return it.
922 if (NameKind == Sema::LookupOrdinaryName ||
923 NameKind == Sema::LookupRedeclarationWithLinkage) {
924 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
925 if (II) {
926 if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
927 if (II == getASTContext().getMakeIntegerSeqName()) {
928 R.addDecl(getASTContext().getMakeIntegerSeqDecl());
929 return true;
931 if (II == getASTContext().getTypePackElementName()) {
932 R.addDecl(getASTContext().getTypePackElementDecl());
933 return true;
935 if (II == getASTContext().getBuiltinCommonTypeName()) {
936 R.addDecl(getASTContext().getBuiltinCommonTypeDecl());
937 return true;
941 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
942 if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
943 auto Index = isOpenCLBuiltin(II->getName());
944 if (Index.first) {
945 InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
946 Index.second);
947 return true;
951 if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) {
952 if (!RISCV().IntrinsicManager)
953 RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(*this);
955 RISCV().IntrinsicManager->InitIntrinsicList();
957 if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(R, II, PP))
958 return true;
961 // If this is a builtin on this (or all) targets, create the decl.
962 if (unsigned BuiltinID = II->getBuiltinID()) {
963 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
964 // library functions like 'malloc'. Instead, we'll just error.
965 if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
966 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
967 return false;
969 if (NamedDecl *D =
970 LazilyCreateBuiltin(II, BuiltinID, TUScope,
971 R.isForRedeclaration(), R.getNameLoc())) {
972 R.addDecl(D);
973 return true;
979 return false;
982 /// Looks up the declaration of "struct objc_super" and
983 /// saves it for later use in building builtin declaration of
984 /// objc_msgSendSuper and objc_msgSendSuper_stret.
985 static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
986 ASTContext &Context = Sema.Context;
987 LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
988 Sema::LookupTagName);
989 Sema.LookupName(Result, S);
990 if (Result.getResultKind() == LookupResult::Found)
991 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
992 Context.setObjCSuperType(Context.getTagDeclType(TD));
995 void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
996 if (ID == Builtin::BIobjc_msgSendSuper)
997 LookupPredefedObjCSuperType(*this, S);
1000 /// Determine whether we can declare a special member function within
1001 /// the class at this point.
1002 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
1003 // We need to have a definition for the class.
1004 if (!Class->getDefinition() || Class->isDependentContext())
1005 return false;
1007 // We can't be in the middle of defining the class.
1008 return !Class->isBeingDefined();
1011 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
1012 if (!CanDeclareSpecialMemberFunction(Class))
1013 return;
1015 // If the default constructor has not yet been declared, do so now.
1016 if (Class->needsImplicitDefaultConstructor())
1017 DeclareImplicitDefaultConstructor(Class);
1019 // If the copy constructor has not yet been declared, do so now.
1020 if (Class->needsImplicitCopyConstructor())
1021 DeclareImplicitCopyConstructor(Class);
1023 // If the copy assignment operator has not yet been declared, do so now.
1024 if (Class->needsImplicitCopyAssignment())
1025 DeclareImplicitCopyAssignment(Class);
1027 if (getLangOpts().CPlusPlus11) {
1028 // If the move constructor has not yet been declared, do so now.
1029 if (Class->needsImplicitMoveConstructor())
1030 DeclareImplicitMoveConstructor(Class);
1032 // If the move assignment operator has not yet been declared, do so now.
1033 if (Class->needsImplicitMoveAssignment())
1034 DeclareImplicitMoveAssignment(Class);
1037 // If the destructor has not yet been declared, do so now.
1038 if (Class->needsImplicitDestructor())
1039 DeclareImplicitDestructor(Class);
1042 /// Determine whether this is the name of an implicitly-declared
1043 /// special member function.
1044 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
1045 switch (Name.getNameKind()) {
1046 case DeclarationName::CXXConstructorName:
1047 case DeclarationName::CXXDestructorName:
1048 return true;
1050 case DeclarationName::CXXOperatorName:
1051 return Name.getCXXOverloadedOperator() == OO_Equal;
1053 default:
1054 break;
1057 return false;
1060 /// If there are any implicit member functions with the given name
1061 /// that need to be declared in the given declaration context, do so.
1062 static void DeclareImplicitMemberFunctionsWithName(Sema &S,
1063 DeclarationName Name,
1064 SourceLocation Loc,
1065 const DeclContext *DC) {
1066 if (!DC)
1067 return;
1069 switch (Name.getNameKind()) {
1070 case DeclarationName::CXXConstructorName:
1071 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1072 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1073 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1074 if (Record->needsImplicitDefaultConstructor())
1075 S.DeclareImplicitDefaultConstructor(Class);
1076 if (Record->needsImplicitCopyConstructor())
1077 S.DeclareImplicitCopyConstructor(Class);
1078 if (S.getLangOpts().CPlusPlus11 &&
1079 Record->needsImplicitMoveConstructor())
1080 S.DeclareImplicitMoveConstructor(Class);
1082 break;
1084 case DeclarationName::CXXDestructorName:
1085 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
1086 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
1087 CanDeclareSpecialMemberFunction(Record))
1088 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
1089 break;
1091 case DeclarationName::CXXOperatorName:
1092 if (Name.getCXXOverloadedOperator() != OO_Equal)
1093 break;
1095 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
1096 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
1097 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
1098 if (Record->needsImplicitCopyAssignment())
1099 S.DeclareImplicitCopyAssignment(Class);
1100 if (S.getLangOpts().CPlusPlus11 &&
1101 Record->needsImplicitMoveAssignment())
1102 S.DeclareImplicitMoveAssignment(Class);
1105 break;
1107 case DeclarationName::CXXDeductionGuideName:
1108 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
1109 break;
1111 default:
1112 break;
1116 // Adds all qualifying matches for a name within a decl context to the
1117 // given lookup result. Returns true if any matches were found.
1118 static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
1119 bool Found = false;
1121 // Lazily declare C++ special member functions.
1122 if (S.getLangOpts().CPlusPlus)
1123 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
1124 DC);
1126 // Perform lookup into this declaration context.
1127 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
1128 for (NamedDecl *D : DR) {
1129 if ((D = R.getAcceptableDecl(D))) {
1130 R.addDecl(D);
1131 Found = true;
1135 if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
1136 return true;
1138 if (R.getLookupName().getNameKind()
1139 != DeclarationName::CXXConversionFunctionName ||
1140 R.getLookupName().getCXXNameType()->isDependentType() ||
1141 !isa<CXXRecordDecl>(DC))
1142 return Found;
1144 // C++ [temp.mem]p6:
1145 // A specialization of a conversion function template is not found by
1146 // name lookup. Instead, any conversion function templates visible in the
1147 // context of the use are considered. [...]
1148 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
1149 if (!Record->isCompleteDefinition())
1150 return Found;
1152 // For conversion operators, 'operator auto' should only match
1153 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1154 // as a candidate for template substitution.
1155 auto *ContainedDeducedType =
1156 R.getLookupName().getCXXNameType()->getContainedDeducedType();
1157 if (R.getLookupName().getNameKind() ==
1158 DeclarationName::CXXConversionFunctionName &&
1159 ContainedDeducedType && ContainedDeducedType->isUndeducedType())
1160 return Found;
1162 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
1163 UEnd = Record->conversion_end(); U != UEnd; ++U) {
1164 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
1165 if (!ConvTemplate)
1166 continue;
1168 // When we're performing lookup for the purposes of redeclaration, just
1169 // add the conversion function template. When we deduce template
1170 // arguments for specializations, we'll end up unifying the return
1171 // type of the new declaration with the type of the function template.
1172 if (R.isForRedeclaration()) {
1173 R.addDecl(ConvTemplate);
1174 Found = true;
1175 continue;
1178 // C++ [temp.mem]p6:
1179 // [...] For each such operator, if argument deduction succeeds
1180 // (14.9.2.3), the resulting specialization is used as if found by
1181 // name lookup.
1183 // When referencing a conversion function for any purpose other than
1184 // a redeclaration (such that we'll be building an expression with the
1185 // result), perform template argument deduction and place the
1186 // specialization into the result set. We do this to avoid forcing all
1187 // callers to perform special deduction for conversion functions.
1188 TemplateDeductionInfo Info(R.getNameLoc());
1189 FunctionDecl *Specialization = nullptr;
1191 const FunctionProtoType *ConvProto
1192 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
1193 assert(ConvProto && "Nonsensical conversion function template type");
1195 // Compute the type of the function that we would expect the conversion
1196 // function to have, if it were to match the name given.
1197 // FIXME: Calling convention!
1198 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
1199 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
1200 EPI.ExceptionSpec = EST_None;
1201 QualType ExpectedType = R.getSema().Context.getFunctionType(
1202 R.getLookupName().getCXXNameType(), {}, EPI);
1204 // Perform template argument deduction against the type that we would
1205 // expect the function to have.
1206 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
1207 Specialization, Info) ==
1208 TemplateDeductionResult::Success) {
1209 R.addDecl(Specialization);
1210 Found = true;
1214 return Found;
1217 // Performs C++ unqualified lookup into the given file context.
1218 static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
1219 const DeclContext *NS,
1220 UnqualUsingDirectiveSet &UDirs) {
1222 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
1224 // Perform direct name lookup into the LookupCtx.
1225 bool Found = LookupDirect(S, R, NS);
1227 // Perform direct name lookup into the namespaces nominated by the
1228 // using directives whose common ancestor is this namespace.
1229 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
1230 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
1231 Found = true;
1233 R.resolveKind();
1235 return Found;
1238 static bool isNamespaceOrTranslationUnitScope(Scope *S) {
1239 if (DeclContext *Ctx = S->getEntity())
1240 return Ctx->isFileContext();
1241 return false;
1244 /// Find the outer declaration context from this scope. This indicates the
1245 /// context that we should search up to (exclusive) before considering the
1246 /// parent of the specified scope.
1247 static DeclContext *findOuterContext(Scope *S) {
1248 for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
1249 if (DeclContext *DC = OuterS->getLookupEntity())
1250 return DC;
1251 return nullptr;
1254 namespace {
1255 /// An RAII object to specify that we want to find block scope extern
1256 /// declarations.
1257 struct FindLocalExternScope {
1258 FindLocalExternScope(LookupResult &R)
1259 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1260 Decl::IDNS_LocalExtern) {
1261 R.setFindLocalExtern(R.getIdentifierNamespace() &
1262 (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
1264 void restore() {
1265 R.setFindLocalExtern(OldFindLocalExtern);
1267 ~FindLocalExternScope() {
1268 restore();
1270 LookupResult &R;
1271 bool OldFindLocalExtern;
1273 } // end anonymous namespace
1275 bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1276 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
1278 DeclarationName Name = R.getLookupName();
1279 Sema::LookupNameKind NameKind = R.getLookupKind();
1281 // If this is the name of an implicitly-declared special member function,
1282 // go through the scope stack to implicitly declare
1283 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1284 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1285 if (DeclContext *DC = PreS->getEntity())
1286 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1289 // C++23 [temp.dep.general]p2:
1290 // The component name of an unqualified-id is dependent if
1291 // - it is a conversion-function-id whose conversion-type-id
1292 // is dependent, or
1293 // - it is operator= and the current class is a templated entity, or
1294 // - the unqualified-id is the postfix-expression in a dependent call.
1295 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
1296 Name.getCXXNameType()->isDependentType()) {
1297 R.setNotFoundInCurrentInstantiation();
1298 return false;
1301 // Implicitly declare member functions with the name we're looking for, if in
1302 // fact we are in a scope where it matters.
1304 Scope *Initial = S;
1305 IdentifierResolver::iterator
1306 I = IdResolver.begin(Name),
1307 IEnd = IdResolver.end();
1309 // First we lookup local scope.
1310 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1311 // ...During unqualified name lookup (3.4.1), the names appear as if
1312 // they were declared in the nearest enclosing namespace which contains
1313 // both the using-directive and the nominated namespace.
1314 // [Note: in this context, "contains" means "contains directly or
1315 // indirectly".
1317 // For example:
1318 // namespace A { int i; }
1319 // void foo() {
1320 // int i;
1321 // {
1322 // using namespace A;
1323 // ++i; // finds local 'i', A::i appears at global scope
1324 // }
1325 // }
1327 UnqualUsingDirectiveSet UDirs(*this);
1328 bool VisitedUsingDirectives = false;
1329 bool LeftStartingScope = false;
1331 // When performing a scope lookup, we want to find local extern decls.
1332 FindLocalExternScope FindLocals(R);
1334 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1335 bool SearchNamespaceScope = true;
1336 // Check whether the IdResolver has anything in this scope.
1337 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1338 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1339 if (NameKind == LookupRedeclarationWithLinkage &&
1340 !(*I)->isTemplateParameter()) {
1341 // If it's a template parameter, we still find it, so we can diagnose
1342 // the invalid redeclaration.
1344 // Determine whether this (or a previous) declaration is
1345 // out-of-scope.
1346 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1347 LeftStartingScope = true;
1349 // If we found something outside of our starting scope that
1350 // does not have linkage, skip it.
1351 if (LeftStartingScope && !((*I)->hasLinkage())) {
1352 R.setShadowed();
1353 continue;
1355 } else {
1356 // We found something in this scope, we should not look at the
1357 // namespace scope
1358 SearchNamespaceScope = false;
1360 R.addDecl(ND);
1363 if (!SearchNamespaceScope) {
1364 R.resolveKind();
1365 if (S->isClassScope())
1366 if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity()))
1367 R.setNamingClass(Record);
1368 return true;
1371 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1372 // C++11 [class.friend]p11:
1373 // If a friend declaration appears in a local class and the name
1374 // specified is an unqualified name, a prior declaration is
1375 // looked up without considering scopes that are outside the
1376 // innermost enclosing non-class scope.
1377 return false;
1380 if (DeclContext *Ctx = S->getLookupEntity()) {
1381 DeclContext *OuterCtx = findOuterContext(S);
1382 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1383 // We do not directly look into transparent contexts, since
1384 // those entities will be found in the nearest enclosing
1385 // non-transparent context.
1386 if (Ctx->isTransparentContext())
1387 continue;
1389 // We do not look directly into function or method contexts,
1390 // since all of the local variables and parameters of the
1391 // function/method are present within the Scope.
1392 if (Ctx->isFunctionOrMethod()) {
1393 // If we have an Objective-C instance method, look for ivars
1394 // in the corresponding interface.
1395 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1396 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1397 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1398 ObjCInterfaceDecl *ClassDeclared;
1399 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1400 Name.getAsIdentifierInfo(),
1401 ClassDeclared)) {
1402 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1403 R.addDecl(ND);
1404 R.resolveKind();
1405 return true;
1411 continue;
1414 // If this is a file context, we need to perform unqualified name
1415 // lookup considering using directives.
1416 if (Ctx->isFileContext()) {
1417 // If we haven't handled using directives yet, do so now.
1418 if (!VisitedUsingDirectives) {
1419 // Add using directives from this context up to the top level.
1420 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1421 if (UCtx->isTransparentContext())
1422 continue;
1424 UDirs.visit(UCtx, UCtx);
1427 // Find the innermost file scope, so we can add using directives
1428 // from local scopes.
1429 Scope *InnermostFileScope = S;
1430 while (InnermostFileScope &&
1431 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1432 InnermostFileScope = InnermostFileScope->getParent();
1433 UDirs.visitScopeChain(Initial, InnermostFileScope);
1435 UDirs.done();
1437 VisitedUsingDirectives = true;
1440 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1441 R.resolveKind();
1442 return true;
1445 continue;
1448 // Perform qualified name lookup into this context.
1449 // FIXME: In some cases, we know that every name that could be found by
1450 // this qualified name lookup will also be on the identifier chain. For
1451 // example, inside a class without any base classes, we never need to
1452 // perform qualified lookup because all of the members are on top of the
1453 // identifier chain.
1454 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1455 return true;
1460 // Stop if we ran out of scopes.
1461 // FIXME: This really, really shouldn't be happening.
1462 if (!S) return false;
1464 // If we are looking for members, no need to look into global/namespace scope.
1465 if (NameKind == LookupMemberName)
1466 return false;
1468 // Collect UsingDirectiveDecls in all scopes, and recursively all
1469 // nominated namespaces by those using-directives.
1471 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1472 // don't build it for each lookup!
1473 if (!VisitedUsingDirectives) {
1474 UDirs.visitScopeChain(Initial, S);
1475 UDirs.done();
1478 // If we're not performing redeclaration lookup, do not look for local
1479 // extern declarations outside of a function scope.
1480 if (!R.isForRedeclaration())
1481 FindLocals.restore();
1483 // Lookup namespace scope, and global scope.
1484 // Unqualified name lookup in C++ requires looking into scopes
1485 // that aren't strictly lexical, and therefore we walk through the
1486 // context as well as walking through the scopes.
1487 for (; S; S = S->getParent()) {
1488 // Check whether the IdResolver has anything in this scope.
1489 bool Found = false;
1490 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1491 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1492 // We found something. Look for anything else in our scope
1493 // with this same name and in an acceptable identifier
1494 // namespace, so that we can construct an overload set if we
1495 // need to.
1496 Found = true;
1497 R.addDecl(ND);
1501 if (Found && S->isTemplateParamScope()) {
1502 R.resolveKind();
1503 return true;
1506 DeclContext *Ctx = S->getLookupEntity();
1507 if (Ctx) {
1508 DeclContext *OuterCtx = findOuterContext(S);
1509 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1510 // We do not directly look into transparent contexts, since
1511 // those entities will be found in the nearest enclosing
1512 // non-transparent context.
1513 if (Ctx->isTransparentContext())
1514 continue;
1516 // If we have a context, and it's not a context stashed in the
1517 // template parameter scope for an out-of-line definition, also
1518 // look into that context.
1519 if (!(Found && S->isTemplateParamScope())) {
1520 assert(Ctx->isFileContext() &&
1521 "We should have been looking only at file context here already.");
1523 // Look into context considering using-directives.
1524 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1525 Found = true;
1528 if (Found) {
1529 R.resolveKind();
1530 return true;
1533 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1534 return false;
1538 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1539 return false;
1542 return !R.empty();
1545 void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
1546 if (auto *M = getCurrentModule())
1547 Context.mergeDefinitionIntoModule(ND, M);
1548 else
1549 // We're not building a module; just make the definition visible.
1550 ND->setVisibleDespiteOwningModule();
1552 // If ND is a template declaration, make the template parameters
1553 // visible too. They're not (necessarily) within a mergeable DeclContext.
1554 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1555 for (auto *Param : *TD->getTemplateParameters())
1556 makeMergedDefinitionVisible(Param);
1559 /// Find the module in which the given declaration was defined.
1560 static Module *getDefiningModule(Sema &S, Decl *Entity) {
1561 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1562 // If this function was instantiated from a template, the defining module is
1563 // the module containing the pattern.
1564 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1565 Entity = Pattern;
1566 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1567 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1568 Entity = Pattern;
1569 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1570 if (auto *Pattern = ED->getTemplateInstantiationPattern())
1571 Entity = Pattern;
1572 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1573 if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
1574 Entity = Pattern;
1577 // Walk up to the containing context. That might also have been instantiated
1578 // from a template.
1579 DeclContext *Context = Entity->getLexicalDeclContext();
1580 if (Context->isFileContext())
1581 return S.getOwningModule(Entity);
1582 return getDefiningModule(S, cast<Decl>(Context));
1585 llvm::DenseSet<Module*> &Sema::getLookupModules() {
1586 unsigned N = CodeSynthesisContexts.size();
1587 for (unsigned I = CodeSynthesisContextLookupModules.size();
1588 I != N; ++I) {
1589 Module *M = CodeSynthesisContexts[I].Entity ?
1590 getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
1591 nullptr;
1592 if (M && !LookupModulesCache.insert(M).second)
1593 M = nullptr;
1594 CodeSynthesisContextLookupModules.push_back(M);
1596 return LookupModulesCache;
1599 bool Sema::isUsableModule(const Module *M) {
1600 assert(M && "We shouldn't check nullness for module here");
1601 // Return quickly if we cached the result.
1602 if (UsableModuleUnitsCache.count(M))
1603 return true;
1605 // If M is the global module fragment of the current translation unit. So it
1606 // should be usable.
1607 // [module.global.frag]p1:
1608 // The global module fragment can be used to provide declarations that are
1609 // attached to the global module and usable within the module unit.
1610 if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) {
1611 UsableModuleUnitsCache.insert(M);
1612 return true;
1615 // Otherwise, the global module fragment from other translation unit is not
1616 // directly usable.
1617 if (M->isGlobalModule())
1618 return false;
1620 Module *Current = getCurrentModule();
1622 // If we're not parsing a module, we can't use all the declarations from
1623 // another module easily.
1624 if (!Current)
1625 return false;
1627 // If M is the module we're parsing or M and the current module unit lives in
1628 // the same module, M should be usable.
1630 // Note: It should be fine to search the vector `ModuleScopes` linearly since
1631 // it should be generally small enough. There should be rare module fragments
1632 // in a named module unit.
1633 if (llvm::count_if(ModuleScopes,
1634 [&M](const ModuleScope &MS) { return MS.Module == M; }) ||
1635 getASTContext().isInSameModule(M, Current)) {
1636 UsableModuleUnitsCache.insert(M);
1637 return true;
1640 return false;
1643 bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) {
1644 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1645 if (isModuleVisible(Merged))
1646 return true;
1647 return false;
1650 bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) {
1651 for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
1652 if (isUsableModule(Merged))
1653 return true;
1654 return false;
1657 template <typename ParmDecl>
1658 static bool
1659 hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D,
1660 llvm::SmallVectorImpl<Module *> *Modules,
1661 Sema::AcceptableKind Kind) {
1662 if (!D->hasDefaultArgument())
1663 return false;
1665 llvm::SmallPtrSet<const ParmDecl *, 4> Visited;
1666 while (D && Visited.insert(D).second) {
1667 auto &DefaultArg = D->getDefaultArgStorage();
1668 if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind))
1669 return true;
1671 if (!DefaultArg.isInherited() && Modules) {
1672 auto *NonConstD = const_cast<ParmDecl*>(D);
1673 Modules->push_back(S.getOwningModule(NonConstD));
1676 // If there was a previous default argument, maybe its parameter is
1677 // acceptable.
1678 D = DefaultArg.getInheritedFrom();
1680 return false;
1683 bool Sema::hasAcceptableDefaultArgument(
1684 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules,
1685 Sema::AcceptableKind Kind) {
1686 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1687 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1689 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1690 return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind);
1692 return ::hasAcceptableDefaultArgument(
1693 *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind);
1696 bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1697 llvm::SmallVectorImpl<Module *> *Modules) {
1698 return hasAcceptableDefaultArgument(D, Modules,
1699 Sema::AcceptableKind::Visible);
1702 bool Sema::hasReachableDefaultArgument(
1703 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1704 return hasAcceptableDefaultArgument(D, Modules,
1705 Sema::AcceptableKind::Reachable);
1708 template <typename Filter>
1709 static bool
1710 hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D,
1711 llvm::SmallVectorImpl<Module *> *Modules, Filter F,
1712 Sema::AcceptableKind Kind) {
1713 bool HasFilteredRedecls = false;
1715 for (auto *Redecl : D->redecls()) {
1716 auto *R = cast<NamedDecl>(Redecl);
1717 if (!F(R))
1718 continue;
1720 if (S.isAcceptable(R, Kind))
1721 return true;
1723 HasFilteredRedecls = true;
1725 if (Modules)
1726 Modules->push_back(R->getOwningModule());
1729 // Only return false if there is at least one redecl that is not filtered out.
1730 if (HasFilteredRedecls)
1731 return false;
1733 return true;
1736 static bool
1737 hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D,
1738 llvm::SmallVectorImpl<Module *> *Modules,
1739 Sema::AcceptableKind Kind) {
1740 return hasAcceptableDeclarationImpl(
1741 S, D, Modules,
1742 [](const NamedDecl *D) {
1743 if (auto *RD = dyn_cast<CXXRecordDecl>(D))
1744 return RD->getTemplateSpecializationKind() ==
1745 TSK_ExplicitSpecialization;
1746 if (auto *FD = dyn_cast<FunctionDecl>(D))
1747 return FD->getTemplateSpecializationKind() ==
1748 TSK_ExplicitSpecialization;
1749 if (auto *VD = dyn_cast<VarDecl>(D))
1750 return VD->getTemplateSpecializationKind() ==
1751 TSK_ExplicitSpecialization;
1752 llvm_unreachable("unknown explicit specialization kind");
1754 Kind);
1757 bool Sema::hasVisibleExplicitSpecialization(
1758 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1759 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1760 Sema::AcceptableKind::Visible);
1763 bool Sema::hasReachableExplicitSpecialization(
1764 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1765 return ::hasAcceptableExplicitSpecialization(*this, D, Modules,
1766 Sema::AcceptableKind::Reachable);
1769 static bool
1770 hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D,
1771 llvm::SmallVectorImpl<Module *> *Modules,
1772 Sema::AcceptableKind Kind) {
1773 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
1774 "not a member specialization");
1775 return hasAcceptableDeclarationImpl(
1776 S, D, Modules,
1777 [](const NamedDecl *D) {
1778 // If the specialization is declared at namespace scope, then it's a
1779 // member specialization declaration. If it's lexically inside the class
1780 // definition then it was instantiated.
1782 // FIXME: This is a hack. There should be a better way to determine
1783 // this.
1784 // FIXME: What about MS-style explicit specializations declared within a
1785 // class definition?
1786 return D->getLexicalDeclContext()->isFileContext();
1788 Kind);
1791 bool Sema::hasVisibleMemberSpecialization(
1792 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1793 return hasAcceptableMemberSpecialization(*this, D, Modules,
1794 Sema::AcceptableKind::Visible);
1797 bool Sema::hasReachableMemberSpecialization(
1798 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1799 return hasAcceptableMemberSpecialization(*this, D, Modules,
1800 Sema::AcceptableKind::Reachable);
1803 /// Determine whether a declaration is acceptable to name lookup.
1805 /// This routine determines whether the declaration D is acceptable in the
1806 /// current lookup context, taking into account the current template
1807 /// instantiation stack. During template instantiation, a declaration is
1808 /// acceptable if it is acceptable from a module containing any entity on the
1809 /// template instantiation path (by instantiating a template, you allow it to
1810 /// see the declarations that your module can see, including those later on in
1811 /// your module).
1812 bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D,
1813 Sema::AcceptableKind Kind) {
1814 assert(!D->isUnconditionallyVisible() &&
1815 "should not call this: not in slow case");
1817 Module *DeclModule = SemaRef.getOwningModule(D);
1818 assert(DeclModule && "hidden decl has no owning module");
1820 // If the owning module is visible, the decl is acceptable.
1821 if (SemaRef.isModuleVisible(DeclModule,
1822 D->isInvisibleOutsideTheOwningModule()))
1823 return true;
1825 // Determine whether a decl context is a file context for the purpose of
1826 // visibility/reachability. This looks through some (export and linkage spec)
1827 // transparent contexts, but not others (enums).
1828 auto IsEffectivelyFileContext = [](const DeclContext *DC) {
1829 return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
1830 isa<ExportDecl>(DC);
1833 // If this declaration is not at namespace scope
1834 // then it is acceptable if its lexical parent has a acceptable definition.
1835 DeclContext *DC = D->getLexicalDeclContext();
1836 if (DC && !IsEffectivelyFileContext(DC)) {
1837 // For a parameter, check whether our current template declaration's
1838 // lexical context is acceptable, not whether there's some other acceptable
1839 // definition of it, because parameters aren't "within" the definition.
1841 // In C++ we need to check for a acceptable definition due to ODR merging,
1842 // and in C we must not because each declaration of a function gets its own
1843 // set of declarations for tags in prototype scope.
1844 bool AcceptableWithinParent;
1845 if (D->isTemplateParameter()) {
1846 bool SearchDefinitions = true;
1847 if (const auto *DCD = dyn_cast<Decl>(DC)) {
1848 if (const auto *TD = DCD->getDescribedTemplate()) {
1849 TemplateParameterList *TPL = TD->getTemplateParameters();
1850 auto Index = getDepthAndIndex(D).second;
1851 SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
1854 if (SearchDefinitions)
1855 AcceptableWithinParent =
1856 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1857 else
1858 AcceptableWithinParent =
1859 isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1860 } else if (isa<ParmVarDecl>(D) ||
1861 (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1862 AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind);
1863 else if (D->isModulePrivate()) {
1864 // A module-private declaration is only acceptable if an enclosing lexical
1865 // parent was merged with another definition in the current module.
1866 AcceptableWithinParent = false;
1867 do {
1868 if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
1869 AcceptableWithinParent = true;
1870 break;
1872 DC = DC->getLexicalParent();
1873 } while (!IsEffectivelyFileContext(DC));
1874 } else {
1875 AcceptableWithinParent =
1876 SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind);
1879 if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
1880 Kind == Sema::AcceptableKind::Visible &&
1881 // FIXME: Do something better in this case.
1882 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1883 // Cache the fact that this declaration is implicitly visible because
1884 // its parent has a visible definition.
1885 D->setVisibleDespiteOwningModule();
1887 return AcceptableWithinParent;
1890 if (Kind == Sema::AcceptableKind::Visible)
1891 return false;
1893 assert(Kind == Sema::AcceptableKind::Reachable &&
1894 "Additional Sema::AcceptableKind?");
1895 return isReachableSlow(SemaRef, D);
1898 bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
1899 // The module might be ordinarily visible. For a module-private query, that
1900 // means it is part of the current module.
1901 if (ModulePrivate && isUsableModule(M))
1902 return true;
1904 // For a query which is not module-private, that means it is in our visible
1905 // module set.
1906 if (!ModulePrivate && VisibleModules.isVisible(M))
1907 return true;
1909 // Otherwise, it might be visible by virtue of the query being within a
1910 // template instantiation or similar that is permitted to look inside M.
1912 // Find the extra places where we need to look.
1913 const auto &LookupModules = getLookupModules();
1914 if (LookupModules.empty())
1915 return false;
1917 // If our lookup set contains the module, it's visible.
1918 if (LookupModules.count(M))
1919 return true;
1921 // The global module fragments are visible to its corresponding module unit.
1922 // So the global module fragment should be visible if the its corresponding
1923 // module unit is visible.
1924 if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule()))
1925 return true;
1927 // For a module-private query, that's everywhere we get to look.
1928 if (ModulePrivate)
1929 return false;
1931 // Check whether M is transitively exported to an import of the lookup set.
1932 return llvm::any_of(LookupModules, [&](const Module *LookupM) {
1933 return LookupM->isModuleVisible(M);
1937 // FIXME: Return false directly if we don't have an interface dependency on the
1938 // translation unit containing D.
1939 bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) {
1940 assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n");
1942 Module *DeclModule = SemaRef.getOwningModule(D);
1943 assert(DeclModule && "hidden decl has no owning module");
1945 // Entities in header like modules are reachable only if they're visible.
1946 if (DeclModule->isHeaderLikeModule())
1947 return false;
1949 if (!D->isInAnotherModuleUnit())
1950 return true;
1952 // [module.reach]/p3:
1953 // A declaration D is reachable from a point P if:
1954 // ...
1955 // - D is not discarded ([module.global.frag]), appears in a translation unit
1956 // that is reachable from P, and does not appear within a private module
1957 // fragment.
1959 // A declaration that's discarded in the GMF should be module-private.
1960 if (D->isModulePrivate())
1961 return false;
1963 // [module.reach]/p1
1964 // A translation unit U is necessarily reachable from a point P if U is a
1965 // module interface unit on which the translation unit containing P has an
1966 // interface dependency, or the translation unit containing P imports U, in
1967 // either case prior to P ([module.import]).
1969 // [module.import]/p10
1970 // A translation unit has an interface dependency on a translation unit U if
1971 // it contains a declaration (possibly a module-declaration) that imports U
1972 // or if it has an interface dependency on a translation unit that has an
1973 // interface dependency on U.
1975 // So we could conclude the module unit U is necessarily reachable if:
1976 // (1) The module unit U is module interface unit.
1977 // (2) The current unit has an interface dependency on the module unit U.
1979 // Here we only check for the first condition. Since we couldn't see
1980 // DeclModule if it isn't (transitively) imported.
1981 if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit())
1982 return true;
1984 // [module.reach]/p2
1985 // Additional translation units on
1986 // which the point within the program has an interface dependency may be
1987 // considered reachable, but it is unspecified which are and under what
1988 // circumstances.
1990 // The decision here is to treat all additional tranditional units as
1991 // unreachable.
1992 return false;
1995 bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) {
1996 return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind);
1999 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
2000 // FIXME: If there are both visible and hidden declarations, we need to take
2001 // into account whether redeclaration is possible. Example:
2003 // Non-imported module:
2004 // int f(T); // #1
2005 // Some TU:
2006 // static int f(U); // #2, not a redeclaration of #1
2007 // int f(T); // #3, finds both, should link with #1 if T != U, but
2008 // // with #2 if T == U; neither should be ambiguous.
2009 for (auto *D : R) {
2010 if (isVisible(D))
2011 return true;
2012 assert(D->isExternallyDeclarable() &&
2013 "should not have hidden, non-externally-declarable result here");
2016 // This function is called once "New" is essentially complete, but before a
2017 // previous declaration is attached. We can't query the linkage of "New" in
2018 // general, because attaching the previous declaration can change the
2019 // linkage of New to match the previous declaration.
2021 // However, because we've just determined that there is no *visible* prior
2022 // declaration, we can compute the linkage here. There are two possibilities:
2024 // * This is not a redeclaration; it's safe to compute the linkage now.
2026 // * This is a redeclaration of a prior declaration that is externally
2027 // redeclarable. In that case, the linkage of the declaration is not
2028 // changed by attaching the prior declaration, because both are externally
2029 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2031 // FIXME: This is subtle and fragile.
2032 return New->isExternallyDeclarable();
2035 /// Retrieve the visible declaration corresponding to D, if any.
2037 /// This routine determines whether the declaration D is visible in the current
2038 /// module, with the current imports. If not, it checks whether any
2039 /// redeclaration of D is visible, and if so, returns that declaration.
2041 /// \returns D, or a visible previous declaration of D, whichever is more recent
2042 /// and visible. If no declaration of D is visible, returns null.
2043 static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
2044 unsigned IDNS) {
2045 assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case");
2047 for (auto *RD : D->redecls()) {
2048 // Don't bother with extra checks if we already know this one isn't visible.
2049 if (RD == D)
2050 continue;
2052 auto ND = cast<NamedDecl>(RD);
2053 // FIXME: This is wrong in the case where the previous declaration is not
2054 // visible in the same scope as D. This needs to be done much more
2055 // carefully.
2056 if (ND->isInIdentifierNamespace(IDNS) &&
2057 LookupResult::isAvailableForLookup(SemaRef, ND))
2058 return ND;
2061 return nullptr;
2064 bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
2065 llvm::SmallVectorImpl<Module *> *Modules) {
2066 assert(!isVisible(D) && "not in slow case");
2067 return hasAcceptableDeclarationImpl(
2068 *this, D, Modules, [](const NamedDecl *) { return true; },
2069 Sema::AcceptableKind::Visible);
2072 bool Sema::hasReachableDeclarationSlow(
2073 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
2074 assert(!isReachable(D) && "not in slow case");
2075 return hasAcceptableDeclarationImpl(
2076 *this, D, Modules, [](const NamedDecl *) { return true; },
2077 Sema::AcceptableKind::Reachable);
2080 NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
2081 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
2082 // Namespaces are a bit of a special case: we expect there to be a lot of
2083 // redeclarations of some namespaces, all declarations of a namespace are
2084 // essentially interchangeable, all declarations are found by name lookup
2085 // if any is, and namespaces are never looked up during template
2086 // instantiation. So we benefit from caching the check in this case, and
2087 // it is correct to do so.
2088 auto *Key = ND->getCanonicalDecl();
2089 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
2090 return Acceptable;
2091 auto *Acceptable = isVisible(getSema(), Key)
2092 ? Key
2093 : findAcceptableDecl(getSema(), Key, IDNS);
2094 if (Acceptable)
2095 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
2096 return Acceptable;
2099 return findAcceptableDecl(getSema(), D, IDNS);
2102 bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) {
2103 // If this declaration is already visible, return it directly.
2104 if (D->isUnconditionallyVisible())
2105 return true;
2107 // During template instantiation, we can refer to hidden declarations, if
2108 // they were visible in any module along the path of instantiation.
2109 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible);
2112 bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) {
2113 if (D->isUnconditionallyVisible())
2114 return true;
2116 return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable);
2119 bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) {
2120 // We should check the visibility at the callsite already.
2121 if (isVisible(SemaRef, ND))
2122 return true;
2124 // Deduction guide lives in namespace scope generally, but it is just a
2125 // hint to the compilers. What we actually lookup for is the generated member
2126 // of the corresponding template. So it is sufficient to check the
2127 // reachability of the template decl.
2128 if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate())
2129 return SemaRef.hasReachableDefinition(DeductionGuide);
2131 // FIXME: The lookup for allocation function is a standalone process.
2132 // (We can find the logics in Sema::FindAllocationFunctions)
2134 // Such structure makes it a problem when we instantiate a template
2135 // declaration using placement allocation function if the placement
2136 // allocation function is invisible.
2137 // (See https://github.com/llvm/llvm-project/issues/59601)
2139 // Here we workaround it by making the placement allocation functions
2140 // always acceptable. The downside is that we can't diagnose the direct
2141 // use of the invisible placement allocation functions. (Although such uses
2142 // should be rare).
2143 if (auto *FD = dyn_cast<FunctionDecl>(ND);
2144 FD && FD->isReservedGlobalPlacementOperator())
2145 return true;
2147 auto *DC = ND->getDeclContext();
2148 // If ND is not visible and it is at namespace scope, it shouldn't be found
2149 // by name lookup.
2150 if (DC->isFileContext())
2151 return false;
2153 // [module.interface]p7
2154 // Class and enumeration member names can be found by name lookup in any
2155 // context in which a definition of the type is reachable.
2157 // FIXME: The current implementation didn't consider about scope. For example,
2158 // ```
2159 // // m.cppm
2160 // export module m;
2161 // enum E1 { e1 };
2162 // // Use.cpp
2163 // import m;
2164 // void test() {
2165 // auto a = E1::e1; // Error as expected.
2166 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2167 // }
2168 // ```
2169 // For the above example, the current implementation would emit error for `a`
2170 // correctly. However, the implementation wouldn't diagnose about `b` now.
2171 // Since we only check the reachability for the parent only.
2172 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2173 if (auto *TD = dyn_cast<TagDecl>(DC))
2174 return SemaRef.hasReachableDefinition(TD);
2176 return false;
2179 bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation,
2180 bool ForceNoCPlusPlus) {
2181 DeclarationName Name = R.getLookupName();
2182 if (!Name) return false;
2184 LookupNameKind NameKind = R.getLookupKind();
2186 if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) {
2187 // Unqualified name lookup in C/Objective-C is purely lexical, so
2188 // search in the declarations attached to the name.
2189 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
2190 // Find the nearest non-transparent declaration scope.
2191 while (!(S->getFlags() & Scope::DeclScope) ||
2192 (S->getEntity() && S->getEntity()->isTransparentContext()))
2193 S = S->getParent();
2196 // When performing a scope lookup, we want to find local extern decls.
2197 FindLocalExternScope FindLocals(R);
2199 // Scan up the scope chain looking for a decl that matches this
2200 // identifier that is in the appropriate namespace. This search
2201 // should not take long, as shadowing of names is uncommon, and
2202 // deep shadowing is extremely uncommon.
2203 bool LeftStartingScope = false;
2205 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
2206 IEnd = IdResolver.end();
2207 I != IEnd; ++I)
2208 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
2209 if (NameKind == LookupRedeclarationWithLinkage) {
2210 // Determine whether this (or a previous) declaration is
2211 // out-of-scope.
2212 if (!LeftStartingScope && !S->isDeclScope(*I))
2213 LeftStartingScope = true;
2215 // If we found something outside of our starting scope that
2216 // does not have linkage, skip it.
2217 if (LeftStartingScope && !((*I)->hasLinkage())) {
2218 R.setShadowed();
2219 continue;
2222 else if (NameKind == LookupObjCImplicitSelfParam &&
2223 !isa<ImplicitParamDecl>(*I))
2224 continue;
2226 R.addDecl(D);
2228 // Check whether there are any other declarations with the same name
2229 // and in the same scope.
2230 if (I != IEnd) {
2231 // Find the scope in which this declaration was declared (if it
2232 // actually exists in a Scope).
2233 while (S && !S->isDeclScope(D))
2234 S = S->getParent();
2236 // If the scope containing the declaration is the translation unit,
2237 // then we'll need to perform our checks based on the matching
2238 // DeclContexts rather than matching scopes.
2239 if (S && isNamespaceOrTranslationUnitScope(S))
2240 S = nullptr;
2242 // Compute the DeclContext, if we need it.
2243 DeclContext *DC = nullptr;
2244 if (!S)
2245 DC = (*I)->getDeclContext()->getRedeclContext();
2247 IdentifierResolver::iterator LastI = I;
2248 for (++LastI; LastI != IEnd; ++LastI) {
2249 if (S) {
2250 // Match based on scope.
2251 if (!S->isDeclScope(*LastI))
2252 break;
2253 } else {
2254 // Match based on DeclContext.
2255 DeclContext *LastDC
2256 = (*LastI)->getDeclContext()->getRedeclContext();
2257 if (!LastDC->Equals(DC))
2258 break;
2261 // If the declaration is in the right namespace and visible, add it.
2262 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
2263 R.addDecl(LastD);
2266 R.resolveKind();
2269 return true;
2271 } else {
2272 // Perform C++ unqualified name lookup.
2273 if (CppLookupName(R, S))
2274 return true;
2277 // If we didn't find a use of this identifier, and if the identifier
2278 // corresponds to a compiler builtin, create the decl object for the builtin
2279 // now, injecting it into translation unit scope, and return it.
2280 if (AllowBuiltinCreation && LookupBuiltin(R))
2281 return true;
2283 // If we didn't find a use of this identifier, the ExternalSource
2284 // may be able to handle the situation.
2285 // Note: some lookup failures are expected!
2286 // See e.g. R.isForRedeclaration().
2287 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
2290 /// Perform qualified name lookup in the namespaces nominated by
2291 /// using directives by the given context.
2293 /// C++98 [namespace.qual]p2:
2294 /// Given X::m (where X is a user-declared namespace), or given \::m
2295 /// (where X is the global namespace), let S be the set of all
2296 /// declarations of m in X and in the transitive closure of all
2297 /// namespaces nominated by using-directives in X and its used
2298 /// namespaces, except that using-directives are ignored in any
2299 /// namespace, including X, directly containing one or more
2300 /// declarations of m. No namespace is searched more than once in
2301 /// the lookup of a name. If S is the empty set, the program is
2302 /// ill-formed. Otherwise, if S has exactly one member, or if the
2303 /// context of the reference is a using-declaration
2304 /// (namespace.udecl), S is the required set of declarations of
2305 /// m. Otherwise if the use of m is not one that allows a unique
2306 /// declaration to be chosen from S, the program is ill-formed.
2308 /// C++98 [namespace.qual]p5:
2309 /// During the lookup of a qualified namespace member name, if the
2310 /// lookup finds more than one declaration of the member, and if one
2311 /// declaration introduces a class name or enumeration name and the
2312 /// other declarations either introduce the same object, the same
2313 /// enumerator or a set of functions, the non-type name hides the
2314 /// class or enumeration name if and only if the declarations are
2315 /// from the same namespace; otherwise (the declarations are from
2316 /// different namespaces), the program is ill-formed.
2317 static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
2318 DeclContext *StartDC) {
2319 assert(StartDC->isFileContext() && "start context is not a file context");
2321 // We have not yet looked into these namespaces, much less added
2322 // their "using-children" to the queue.
2323 SmallVector<NamespaceDecl*, 8> Queue;
2325 // We have at least added all these contexts to the queue.
2326 llvm::SmallPtrSet<DeclContext*, 8> Visited;
2327 Visited.insert(StartDC);
2329 // We have already looked into the initial namespace; seed the queue
2330 // with its using-children.
2331 for (auto *I : StartDC->using_directives()) {
2332 NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl();
2333 if (S.isVisible(I) && Visited.insert(ND).second)
2334 Queue.push_back(ND);
2337 // The easiest way to implement the restriction in [namespace.qual]p5
2338 // is to check whether any of the individual results found a tag
2339 // and, if so, to declare an ambiguity if the final result is not
2340 // a tag.
2341 bool FoundTag = false;
2342 bool FoundNonTag = false;
2344 LookupResult LocalR(LookupResult::Temporary, R);
2346 bool Found = false;
2347 while (!Queue.empty()) {
2348 NamespaceDecl *ND = Queue.pop_back_val();
2350 // We go through some convolutions here to avoid copying results
2351 // between LookupResults.
2352 bool UseLocal = !R.empty();
2353 LookupResult &DirectR = UseLocal ? LocalR : R;
2354 bool FoundDirect = LookupDirect(S, DirectR, ND);
2356 if (FoundDirect) {
2357 // First do any local hiding.
2358 DirectR.resolveKind();
2360 // If the local result is a tag, remember that.
2361 if (DirectR.isSingleTagDecl())
2362 FoundTag = true;
2363 else
2364 FoundNonTag = true;
2366 // Append the local results to the total results if necessary.
2367 if (UseLocal) {
2368 R.addAllDecls(LocalR);
2369 LocalR.clear();
2373 // If we find names in this namespace, ignore its using directives.
2374 if (FoundDirect) {
2375 Found = true;
2376 continue;
2379 for (auto *I : ND->using_directives()) {
2380 NamespaceDecl *Nom = I->getNominatedNamespace();
2381 if (S.isVisible(I) && Visited.insert(Nom).second)
2382 Queue.push_back(Nom);
2386 if (Found) {
2387 if (FoundTag && FoundNonTag)
2388 R.setAmbiguousQualifiedTagHiding();
2389 else
2390 R.resolveKind();
2393 return Found;
2396 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2397 bool InUnqualifiedLookup) {
2398 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
2400 if (!R.getLookupName())
2401 return false;
2403 // Make sure that the declaration context is complete.
2404 assert((!isa<TagDecl>(LookupCtx) ||
2405 LookupCtx->isDependentContext() ||
2406 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
2407 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
2408 "Declaration context must already be complete!");
2410 struct QualifiedLookupInScope {
2411 bool oldVal;
2412 DeclContext *Context;
2413 // Set flag in DeclContext informing debugger that we're looking for qualified name
2414 QualifiedLookupInScope(DeclContext *ctx)
2415 : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) {
2416 ctx->setUseQualifiedLookup();
2418 ~QualifiedLookupInScope() {
2419 Context->setUseQualifiedLookup(oldVal);
2421 } QL(LookupCtx);
2423 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2424 // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent
2425 // if it's a dependent conversion-function-id or operator= where the current
2426 // class is a templated entity. This should be handled in LookupName.
2427 if (!InUnqualifiedLookup && !R.isForRedeclaration()) {
2428 // C++23 [temp.dep.type]p5:
2429 // A qualified name is dependent if
2430 // - it is a conversion-function-id whose conversion-type-id
2431 // is dependent, or
2432 // - [...]
2433 // - its lookup context is the current instantiation and it
2434 // is operator=, or
2435 // - [...]
2436 if (DeclarationName Name = R.getLookupName();
2437 Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2438 Name.getCXXNameType()->isDependentType()) {
2439 R.setNotFoundInCurrentInstantiation();
2440 return false;
2444 if (LookupDirect(*this, R, LookupCtx)) {
2445 R.resolveKind();
2446 if (LookupRec)
2447 R.setNamingClass(LookupRec);
2448 return true;
2451 // Don't descend into implied contexts for redeclarations.
2452 // C++98 [namespace.qual]p6:
2453 // In a declaration for a namespace member in which the
2454 // declarator-id is a qualified-id, given that the qualified-id
2455 // for the namespace member has the form
2456 // nested-name-specifier unqualified-id
2457 // the unqualified-id shall name a member of the namespace
2458 // designated by the nested-name-specifier.
2459 // See also [class.mfct]p5 and [class.static.data]p2.
2460 if (R.isForRedeclaration())
2461 return false;
2463 // If this is a namespace, look it up in the implied namespaces.
2464 if (LookupCtx->isFileContext())
2465 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2467 // If this isn't a C++ class, we aren't allowed to look into base
2468 // classes, we're done.
2469 if (!LookupRec || !LookupRec->getDefinition())
2470 return false;
2472 // We're done for lookups that can never succeed for C++ classes.
2473 if (R.getLookupKind() == LookupOperatorName ||
2474 R.getLookupKind() == LookupNamespaceName ||
2475 R.getLookupKind() == LookupObjCProtocolName ||
2476 R.getLookupKind() == LookupLabel)
2477 return false;
2479 // If we're performing qualified name lookup into a dependent class,
2480 // then we are actually looking into a current instantiation. If we have any
2481 // dependent base classes, then we either have to delay lookup until
2482 // template instantiation time (at which point all bases will be available)
2483 // or we have to fail.
2484 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2485 LookupRec->hasAnyDependentBases()) {
2486 R.setNotFoundInCurrentInstantiation();
2487 return false;
2490 // Perform lookup into our base classes.
2492 DeclarationName Name = R.getLookupName();
2493 unsigned IDNS = R.getIdentifierNamespace();
2495 // Look for this member in our base classes.
2496 auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
2497 CXXBasePath &Path) -> bool {
2498 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
2499 // Drop leading non-matching lookup results from the declaration list so
2500 // we don't need to consider them again below.
2501 for (Path.Decls = BaseRecord->lookup(Name).begin();
2502 Path.Decls != Path.Decls.end(); ++Path.Decls) {
2503 if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
2504 return true;
2506 return false;
2509 CXXBasePaths Paths;
2510 Paths.setOrigin(LookupRec);
2511 if (!LookupRec->lookupInBases(BaseCallback, Paths))
2512 return false;
2514 R.setNamingClass(LookupRec);
2516 // C++ [class.member.lookup]p2:
2517 // [...] If the resulting set of declarations are not all from
2518 // sub-objects of the same type, or the set has a nonstatic member
2519 // and includes members from distinct sub-objects, there is an
2520 // ambiguity and the program is ill-formed. Otherwise that set is
2521 // the result of the lookup.
2522 QualType SubobjectType;
2523 int SubobjectNumber = 0;
2524 AccessSpecifier SubobjectAccess = AS_none;
2526 // Check whether the given lookup result contains only static members.
2527 auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
2528 for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
2529 if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
2530 return false;
2531 return true;
2534 bool TemplateNameLookup = R.isTemplateNameLookup();
2536 // Determine whether two sets of members contain the same members, as
2537 // required by C++ [class.member.lookup]p6.
2538 auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
2539 DeclContext::lookup_iterator B) {
2540 using Iterator = DeclContextLookupResult::iterator;
2541 using Result = const void *;
2543 auto Next = [&](Iterator &It, Iterator End) -> Result {
2544 while (It != End) {
2545 NamedDecl *ND = *It++;
2546 if (!ND->isInIdentifierNamespace(IDNS))
2547 continue;
2549 // C++ [temp.local]p3:
2550 // A lookup that finds an injected-class-name (10.2) can result in
2551 // an ambiguity in certain cases (for example, if it is found in
2552 // more than one base class). If all of the injected-class-names
2553 // that are found refer to specializations of the same class
2554 // template, and if the name is used as a template-name, the
2555 // reference refers to the class template itself and not a
2556 // specialization thereof, and is not ambiguous.
2557 if (TemplateNameLookup)
2558 if (auto *TD = getAsTemplateNameDecl(ND))
2559 ND = TD;
2561 // C++ [class.member.lookup]p3:
2562 // type declarations (including injected-class-names) are replaced by
2563 // the types they designate
2564 if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
2565 QualType T = Context.getTypeDeclType(TD);
2566 return T.getCanonicalType().getAsOpaquePtr();
2569 return ND->getUnderlyingDecl()->getCanonicalDecl();
2571 return nullptr;
2574 // We'll often find the declarations are in the same order. Handle this
2575 // case (and the special case of only one declaration) efficiently.
2576 Iterator AIt = A, BIt = B, AEnd, BEnd;
2577 while (true) {
2578 Result AResult = Next(AIt, AEnd);
2579 Result BResult = Next(BIt, BEnd);
2580 if (!AResult && !BResult)
2581 return true;
2582 if (!AResult || !BResult)
2583 return false;
2584 if (AResult != BResult) {
2585 // Found a mismatch; carefully check both lists, accounting for the
2586 // possibility of declarations appearing more than once.
2587 llvm::SmallDenseMap<Result, bool, 32> AResults;
2588 for (; AResult; AResult = Next(AIt, AEnd))
2589 AResults.insert({AResult, /*FoundInB*/false});
2590 unsigned Found = 0;
2591 for (; BResult; BResult = Next(BIt, BEnd)) {
2592 auto It = AResults.find(BResult);
2593 if (It == AResults.end())
2594 return false;
2595 if (!It->second) {
2596 It->second = true;
2597 ++Found;
2600 return AResults.size() == Found;
2605 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2606 Path != PathEnd; ++Path) {
2607 const CXXBasePathElement &PathElement = Path->back();
2609 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2610 // across all paths.
2611 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2613 // Determine whether we're looking at a distinct sub-object or not.
2614 if (SubobjectType.isNull()) {
2615 // This is the first subobject we've looked at. Record its type.
2616 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2617 SubobjectNumber = PathElement.SubobjectNumber;
2618 continue;
2621 if (SubobjectType !=
2622 Context.getCanonicalType(PathElement.Base->getType())) {
2623 // We found members of the given name in two subobjects of
2624 // different types. If the declaration sets aren't the same, this
2625 // lookup is ambiguous.
2627 // FIXME: The language rule says that this applies irrespective of
2628 // whether the sets contain only static members.
2629 if (HasOnlyStaticMembers(Path->Decls) &&
2630 HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
2631 continue;
2633 R.setAmbiguousBaseSubobjectTypes(Paths);
2634 return true;
2637 // FIXME: This language rule no longer exists. Checking for ambiguous base
2638 // subobjects should be done as part of formation of a class member access
2639 // expression (when converting the object parameter to the member's type).
2640 if (SubobjectNumber != PathElement.SubobjectNumber) {
2641 // We have a different subobject of the same type.
2643 // C++ [class.member.lookup]p5:
2644 // A static member, a nested type or an enumerator defined in
2645 // a base class T can unambiguously be found even if an object
2646 // has more than one base class subobject of type T.
2647 if (HasOnlyStaticMembers(Path->Decls))
2648 continue;
2650 // We have found a nonstatic member name in multiple, distinct
2651 // subobjects. Name lookup is ambiguous.
2652 R.setAmbiguousBaseSubobjects(Paths);
2653 return true;
2657 // Lookup in a base class succeeded; return these results.
2659 for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
2660 I != E; ++I) {
2661 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2662 (*I)->getAccess());
2663 if (NamedDecl *ND = R.getAcceptableDecl(*I))
2664 R.addDecl(ND, AS);
2666 R.resolveKind();
2667 return true;
2670 bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2671 CXXScopeSpec &SS) {
2672 auto *NNS = SS.getScopeRep();
2673 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2674 return LookupInSuper(R, NNS->getAsRecordDecl());
2675 else
2677 return LookupQualifiedName(R, LookupCtx);
2680 bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2681 QualType ObjectType, bool AllowBuiltinCreation,
2682 bool EnteringContext) {
2683 // When the scope specifier is invalid, don't even look for anything.
2684 if (SS && SS->isInvalid())
2685 return false;
2687 // Determine where to perform name lookup
2688 DeclContext *DC = nullptr;
2689 bool IsDependent = false;
2690 if (!ObjectType.isNull()) {
2691 // This nested-name-specifier occurs in a member access expression, e.g.,
2692 // x->B::f, and we are looking into the type of the object.
2693 assert((!SS || SS->isEmpty()) &&
2694 "ObjectType and scope specifier cannot coexist");
2695 DC = computeDeclContext(ObjectType);
2696 IsDependent = !DC && ObjectType->isDependentType();
2697 assert(((!DC && ObjectType->isDependentType()) ||
2698 !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() ||
2699 ObjectType->castAs<TagType>()->isBeingDefined()) &&
2700 "Caller should have completed object type");
2701 } else if (SS && SS->isNotEmpty()) {
2702 // This nested-name-specifier occurs after another nested-name-specifier,
2703 // so long into the context associated with the prior nested-name-specifier.
2704 if ((DC = computeDeclContext(*SS, EnteringContext))) {
2705 // The declaration context must be complete.
2706 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2707 return false;
2708 R.setContextRange(SS->getRange());
2709 // FIXME: '__super' lookup semantics could be implemented by a
2710 // LookupResult::isSuperLookup flag which skips the initial search of
2711 // the lookup context in LookupQualified.
2712 if (NestedNameSpecifier *NNS = SS->getScopeRep();
2713 NNS->getKind() == NestedNameSpecifier::Super)
2714 return LookupInSuper(R, NNS->getAsRecordDecl());
2716 IsDependent = !DC && isDependentScopeSpecifier(*SS);
2717 } else {
2718 // Perform unqualified name lookup starting in the given scope.
2719 return LookupName(R, S, AllowBuiltinCreation);
2722 // If we were able to compute a declaration context, perform qualified name
2723 // lookup in that context.
2724 if (DC)
2725 return LookupQualifiedName(R, DC);
2726 else if (IsDependent)
2727 // We could not resolve the scope specified to a specific declaration
2728 // context, which means that SS refers to an unknown specialization.
2729 // Name lookup can't find anything in this case.
2730 R.setNotFoundInCurrentInstantiation();
2731 return false;
2734 bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2735 // The access-control rules we use here are essentially the rules for
2736 // doing a lookup in Class that just magically skipped the direct
2737 // members of Class itself. That is, the naming class is Class, and the
2738 // access includes the access of the base.
2739 for (const auto &BaseSpec : Class->bases()) {
2740 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2741 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2742 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2743 Result.setBaseObjectType(Context.getRecordType(Class));
2744 LookupQualifiedName(Result, RD);
2746 // Copy the lookup results into the target, merging the base's access into
2747 // the path access.
2748 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2749 R.addDecl(I.getDecl(),
2750 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2751 I.getAccess()));
2754 Result.suppressDiagnostics();
2757 R.resolveKind();
2758 R.setNamingClass(Class);
2760 return !R.empty();
2763 void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2764 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
2766 DeclarationName Name = Result.getLookupName();
2767 SourceLocation NameLoc = Result.getNameLoc();
2768 SourceRange LookupRange = Result.getContextRange();
2770 switch (Result.getAmbiguityKind()) {
2771 case LookupResult::AmbiguousBaseSubobjects: {
2772 CXXBasePaths *Paths = Result.getBasePaths();
2773 QualType SubobjectType = Paths->front().back().Base->getType();
2774 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2775 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2776 << LookupRange;
2778 DeclContext::lookup_iterator Found = Paths->front().Decls;
2779 while (isa<CXXMethodDecl>(*Found) &&
2780 cast<CXXMethodDecl>(*Found)->isStatic())
2781 ++Found;
2783 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2784 break;
2787 case LookupResult::AmbiguousBaseSubobjectTypes: {
2788 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2789 << Name << LookupRange;
2791 CXXBasePaths *Paths = Result.getBasePaths();
2792 std::set<const NamedDecl *> DeclsPrinted;
2793 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2794 PathEnd = Paths->end();
2795 Path != PathEnd; ++Path) {
2796 const NamedDecl *D = *Path->Decls;
2797 if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
2798 continue;
2799 if (DeclsPrinted.insert(D).second) {
2800 if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
2801 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2802 << TD->getUnderlyingType();
2803 else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
2804 Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
2805 << Context.getTypeDeclType(TD);
2806 else
2807 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2810 break;
2813 case LookupResult::AmbiguousTagHiding: {
2814 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2816 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2818 for (auto *D : Result)
2819 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2820 TagDecls.insert(TD);
2821 Diag(TD->getLocation(), diag::note_hidden_tag);
2824 for (auto *D : Result)
2825 if (!isa<TagDecl>(D))
2826 Diag(D->getLocation(), diag::note_hiding_object);
2828 // For recovery purposes, go ahead and implement the hiding.
2829 LookupResult::Filter F = Result.makeFilter();
2830 while (F.hasNext()) {
2831 if (TagDecls.count(F.next()))
2832 F.erase();
2834 F.done();
2835 break;
2838 case LookupResult::AmbiguousReferenceToPlaceholderVariable: {
2839 Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange;
2840 DeclContext *DC = nullptr;
2841 for (auto *D : Result) {
2842 Diag(D->getLocation(), diag::note_reference_placeholder) << D;
2843 if (DC != nullptr && DC != D->getDeclContext())
2844 break;
2845 DC = D->getDeclContext();
2847 break;
2850 case LookupResult::AmbiguousReference: {
2851 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2853 for (auto *D : Result)
2854 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2855 break;
2860 namespace {
2861 struct AssociatedLookup {
2862 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2863 Sema::AssociatedNamespaceSet &Namespaces,
2864 Sema::AssociatedClassSet &Classes)
2865 : S(S), Namespaces(Namespaces), Classes(Classes),
2866 InstantiationLoc(InstantiationLoc) {
2869 bool addClassTransitive(CXXRecordDecl *RD) {
2870 Classes.insert(RD);
2871 return ClassesTransitive.insert(RD);
2874 Sema &S;
2875 Sema::AssociatedNamespaceSet &Namespaces;
2876 Sema::AssociatedClassSet &Classes;
2877 SourceLocation InstantiationLoc;
2879 private:
2880 Sema::AssociatedClassSet ClassesTransitive;
2882 } // end anonymous namespace
2884 static void
2885 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2887 // Given the declaration context \param Ctx of a class, class template or
2888 // enumeration, add the associated namespaces to \param Namespaces as described
2889 // in [basic.lookup.argdep]p2.
2890 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2891 DeclContext *Ctx) {
2892 // The exact wording has been changed in C++14 as a result of
2893 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2894 // to all language versions since it is possible to return a local type
2895 // from a lambda in C++11.
2897 // C++14 [basic.lookup.argdep]p2:
2898 // If T is a class type [...]. Its associated namespaces are the innermost
2899 // enclosing namespaces of its associated classes. [...]
2901 // If T is an enumeration type, its associated namespace is the innermost
2902 // enclosing namespace of its declaration. [...]
2904 // We additionally skip inline namespaces. The innermost non-inline namespace
2905 // contains all names of all its nested inline namespaces anyway, so we can
2906 // replace the entire inline namespace tree with its root.
2907 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
2908 Ctx = Ctx->getParent();
2910 Namespaces.insert(Ctx->getPrimaryContext());
2913 // Add the associated classes and namespaces for argument-dependent
2914 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2915 static void
2916 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2917 const TemplateArgument &Arg) {
2918 // C++ [basic.lookup.argdep]p2, last bullet:
2919 // -- [...] ;
2920 switch (Arg.getKind()) {
2921 case TemplateArgument::Null:
2922 break;
2924 case TemplateArgument::Type:
2925 // [...] the namespaces and classes associated with the types of the
2926 // template arguments provided for template type parameters (excluding
2927 // template template parameters)
2928 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2929 break;
2931 case TemplateArgument::Template:
2932 case TemplateArgument::TemplateExpansion: {
2933 // [...] the namespaces in which any template template arguments are
2934 // defined; and the classes in which any member templates used as
2935 // template template arguments are defined.
2936 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2937 if (ClassTemplateDecl *ClassTemplate
2938 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2939 DeclContext *Ctx = ClassTemplate->getDeclContext();
2940 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2941 Result.Classes.insert(EnclosingClass);
2942 // Add the associated namespace for this class.
2943 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2945 break;
2948 case TemplateArgument::Declaration:
2949 case TemplateArgument::Integral:
2950 case TemplateArgument::Expression:
2951 case TemplateArgument::NullPtr:
2952 case TemplateArgument::StructuralValue:
2953 // [Note: non-type template arguments do not contribute to the set of
2954 // associated namespaces. ]
2955 break;
2957 case TemplateArgument::Pack:
2958 for (const auto &P : Arg.pack_elements())
2959 addAssociatedClassesAndNamespaces(Result, P);
2960 break;
2964 // Add the associated classes and namespaces for argument-dependent lookup
2965 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2966 static void
2967 addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2968 CXXRecordDecl *Class) {
2970 // Just silently ignore anything whose name is __va_list_tag.
2971 if (Class->getDeclName() == Result.S.VAListTagName)
2972 return;
2974 // C++ [basic.lookup.argdep]p2:
2975 // [...]
2976 // -- If T is a class type (including unions), its associated
2977 // classes are: the class itself; the class of which it is a
2978 // member, if any; and its direct and indirect base classes.
2979 // Its associated namespaces are the innermost enclosing
2980 // namespaces of its associated classes.
2982 // Add the class of which it is a member, if any.
2983 DeclContext *Ctx = Class->getDeclContext();
2984 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2985 Result.Classes.insert(EnclosingClass);
2987 // Add the associated namespace for this class.
2988 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2990 // -- If T is a template-id, its associated namespaces and classes are
2991 // the namespace in which the template is defined; for member
2992 // templates, the member template's class; the namespaces and classes
2993 // associated with the types of the template arguments provided for
2994 // template type parameters (excluding template template parameters); the
2995 // namespaces in which any template template arguments are defined; and
2996 // the classes in which any member templates used as template template
2997 // arguments are defined. [Note: non-type template arguments do not
2998 // contribute to the set of associated namespaces. ]
2999 if (ClassTemplateSpecializationDecl *Spec
3000 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
3001 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
3002 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3003 Result.Classes.insert(EnclosingClass);
3004 // Add the associated namespace for this class.
3005 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3007 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
3008 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
3009 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
3012 // Add the class itself. If we've already transitively visited this class,
3013 // we don't need to visit base classes.
3014 if (!Result.addClassTransitive(Class))
3015 return;
3017 // Only recurse into base classes for complete types.
3018 if (!Result.S.isCompleteType(Result.InstantiationLoc,
3019 Result.S.Context.getRecordType(Class)))
3020 return;
3022 // Add direct and indirect base classes along with their associated
3023 // namespaces.
3024 SmallVector<CXXRecordDecl *, 32> Bases;
3025 Bases.push_back(Class);
3026 while (!Bases.empty()) {
3027 // Pop this class off the stack.
3028 Class = Bases.pop_back_val();
3030 // Visit the base classes.
3031 for (const auto &Base : Class->bases()) {
3032 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
3033 // In dependent contexts, we do ADL twice, and the first time around,
3034 // the base type might be a dependent TemplateSpecializationType, or a
3035 // TemplateTypeParmType. If that happens, simply ignore it.
3036 // FIXME: If we want to support export, we probably need to add the
3037 // namespace of the template in a TemplateSpecializationType, or even
3038 // the classes and namespaces of known non-dependent arguments.
3039 if (!BaseType)
3040 continue;
3041 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
3042 if (Result.addClassTransitive(BaseDecl)) {
3043 // Find the associated namespace for this base class.
3044 DeclContext *BaseCtx = BaseDecl->getDeclContext();
3045 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
3047 // Make sure we visit the bases of this base class.
3048 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
3049 Bases.push_back(BaseDecl);
3055 // Add the associated classes and namespaces for
3056 // argument-dependent lookup with an argument of type T
3057 // (C++ [basic.lookup.koenig]p2).
3058 static void
3059 addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
3060 // C++ [basic.lookup.koenig]p2:
3062 // For each argument type T in the function call, there is a set
3063 // of zero or more associated namespaces and a set of zero or more
3064 // associated classes to be considered. The sets of namespaces and
3065 // classes is determined entirely by the types of the function
3066 // arguments (and the namespace of any template template
3067 // argument). Typedef names and using-declarations used to specify
3068 // the types do not contribute to this set. The sets of namespaces
3069 // and classes are determined in the following way:
3071 SmallVector<const Type *, 16> Queue;
3072 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
3074 while (true) {
3075 switch (T->getTypeClass()) {
3077 #define TYPE(Class, Base)
3078 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3079 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3080 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3081 #define ABSTRACT_TYPE(Class, Base)
3082 #include "clang/AST/TypeNodes.inc"
3083 // T is canonical. We can also ignore dependent types because
3084 // we don't need to do ADL at the definition point, but if we
3085 // wanted to implement template export (or if we find some other
3086 // use for associated classes and namespaces...) this would be
3087 // wrong.
3088 break;
3090 // -- If T is a pointer to U or an array of U, its associated
3091 // namespaces and classes are those associated with U.
3092 case Type::Pointer:
3093 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
3094 continue;
3095 case Type::ConstantArray:
3096 case Type::IncompleteArray:
3097 case Type::VariableArray:
3098 T = cast<ArrayType>(T)->getElementType().getTypePtr();
3099 continue;
3101 // -- If T is a fundamental type, its associated sets of
3102 // namespaces and classes are both empty.
3103 case Type::Builtin:
3104 break;
3106 // -- If T is a class type (including unions), its associated
3107 // classes are: the class itself; the class of which it is
3108 // a member, if any; and its direct and indirect base classes.
3109 // Its associated namespaces are the innermost enclosing
3110 // namespaces of its associated classes.
3111 case Type::Record: {
3112 CXXRecordDecl *Class =
3113 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
3114 addAssociatedClassesAndNamespaces(Result, Class);
3115 break;
3118 // -- If T is an enumeration type, its associated namespace
3119 // is the innermost enclosing namespace of its declaration.
3120 // If it is a class member, its associated class is the
3121 // member’s class; else it has no associated class.
3122 case Type::Enum: {
3123 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
3125 DeclContext *Ctx = Enum->getDeclContext();
3126 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
3127 Result.Classes.insert(EnclosingClass);
3129 // Add the associated namespace for this enumeration.
3130 CollectEnclosingNamespace(Result.Namespaces, Ctx);
3132 break;
3135 // -- If T is a function type, its associated namespaces and
3136 // classes are those associated with the function parameter
3137 // types and those associated with the return type.
3138 case Type::FunctionProto: {
3139 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
3140 for (const auto &Arg : Proto->param_types())
3141 Queue.push_back(Arg.getTypePtr());
3142 // fallthrough
3143 [[fallthrough]];
3145 case Type::FunctionNoProto: {
3146 const FunctionType *FnType = cast<FunctionType>(T);
3147 T = FnType->getReturnType().getTypePtr();
3148 continue;
3151 // -- If T is a pointer to a member function of a class X, its
3152 // associated namespaces and classes are those associated
3153 // with the function parameter types and return type,
3154 // together with those associated with X.
3156 // -- If T is a pointer to a data member of class X, its
3157 // associated namespaces and classes are those associated
3158 // with the member type together with those associated with
3159 // X.
3160 case Type::MemberPointer: {
3161 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
3163 // Queue up the class type into which this points.
3164 Queue.push_back(MemberPtr->getClass());
3166 // And directly continue with the pointee type.
3167 T = MemberPtr->getPointeeType().getTypePtr();
3168 continue;
3171 // As an extension, treat this like a normal pointer.
3172 case Type::BlockPointer:
3173 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
3174 continue;
3176 // References aren't covered by the standard, but that's such an
3177 // obvious defect that we cover them anyway.
3178 case Type::LValueReference:
3179 case Type::RValueReference:
3180 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
3181 continue;
3183 // These are fundamental types.
3184 case Type::Vector:
3185 case Type::ExtVector:
3186 case Type::ConstantMatrix:
3187 case Type::Complex:
3188 case Type::BitInt:
3189 break;
3191 // Non-deduced auto types only get here for error cases.
3192 case Type::Auto:
3193 case Type::DeducedTemplateSpecialization:
3194 break;
3196 // If T is an Objective-C object or interface type, or a pointer to an
3197 // object or interface type, the associated namespace is the global
3198 // namespace.
3199 case Type::ObjCObject:
3200 case Type::ObjCInterface:
3201 case Type::ObjCObjectPointer:
3202 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
3203 break;
3205 // Atomic types are just wrappers; use the associations of the
3206 // contained type.
3207 case Type::Atomic:
3208 T = cast<AtomicType>(T)->getValueType().getTypePtr();
3209 continue;
3210 case Type::Pipe:
3211 T = cast<PipeType>(T)->getElementType().getTypePtr();
3212 continue;
3214 // Array parameter types are treated as fundamental types.
3215 case Type::ArrayParameter:
3216 break;
3218 case Type::HLSLAttributedResource:
3219 T = cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr();
3222 if (Queue.empty())
3223 break;
3224 T = Queue.pop_back_val();
3228 void Sema::FindAssociatedClassesAndNamespaces(
3229 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
3230 AssociatedNamespaceSet &AssociatedNamespaces,
3231 AssociatedClassSet &AssociatedClasses) {
3232 AssociatedNamespaces.clear();
3233 AssociatedClasses.clear();
3235 AssociatedLookup Result(*this, InstantiationLoc,
3236 AssociatedNamespaces, AssociatedClasses);
3238 // C++ [basic.lookup.koenig]p2:
3239 // For each argument type T in the function call, there is a set
3240 // of zero or more associated namespaces and a set of zero or more
3241 // associated classes to be considered. The sets of namespaces and
3242 // classes is determined entirely by the types of the function
3243 // arguments (and the namespace of any template template
3244 // argument).
3245 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
3246 Expr *Arg = Args[ArgIdx];
3248 if (Arg->getType() != Context.OverloadTy) {
3249 addAssociatedClassesAndNamespaces(Result, Arg->getType());
3250 continue;
3253 // [...] In addition, if the argument is the name or address of a
3254 // set of overloaded functions and/or function templates, its
3255 // associated classes and namespaces are the union of those
3256 // associated with each of the members of the set: the namespace
3257 // in which the function or function template is defined and the
3258 // classes and namespaces associated with its (non-dependent)
3259 // parameter types and return type.
3260 OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
3262 for (const NamedDecl *D : OE->decls()) {
3263 // Look through any using declarations to find the underlying function.
3264 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
3266 // Add the classes and namespaces associated with the parameter
3267 // types and return type of this function.
3268 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
3273 NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
3274 SourceLocation Loc,
3275 LookupNameKind NameKind,
3276 RedeclarationKind Redecl) {
3277 LookupResult R(*this, Name, Loc, NameKind, Redecl);
3278 LookupName(R, S);
3279 return R.getAsSingle<NamedDecl>();
3282 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
3283 UnresolvedSetImpl &Functions) {
3284 // C++ [over.match.oper]p3:
3285 // -- The set of non-member candidates is the result of the
3286 // unqualified lookup of operator@ in the context of the
3287 // expression according to the usual rules for name lookup in
3288 // unqualified function calls (3.4.2) except that all member
3289 // functions are ignored.
3290 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
3291 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
3292 LookupName(Operators, S);
3294 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
3295 Functions.append(Operators.begin(), Operators.end());
3298 Sema::SpecialMemberOverloadResult
3299 Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM,
3300 bool ConstArg, bool VolatileArg, bool RValueThis,
3301 bool ConstThis, bool VolatileThis) {
3302 assert(CanDeclareSpecialMemberFunction(RD) &&
3303 "doing special member lookup into record that isn't fully complete");
3304 RD = RD->getDefinition();
3305 if (RValueThis || ConstThis || VolatileThis)
3306 assert((SM == CXXSpecialMemberKind::CopyAssignment ||
3307 SM == CXXSpecialMemberKind::MoveAssignment) &&
3308 "constructors and destructors always have unqualified lvalue this");
3309 if (ConstArg || VolatileArg)
3310 assert((SM != CXXSpecialMemberKind::DefaultConstructor &&
3311 SM != CXXSpecialMemberKind::Destructor) &&
3312 "parameter-less special members can't have qualified arguments");
3314 // FIXME: Get the caller to pass in a location for the lookup.
3315 SourceLocation LookupLoc = RD->getLocation();
3317 llvm::FoldingSetNodeID ID;
3318 ID.AddPointer(RD);
3319 ID.AddInteger(llvm::to_underlying(SM));
3320 ID.AddInteger(ConstArg);
3321 ID.AddInteger(VolatileArg);
3322 ID.AddInteger(RValueThis);
3323 ID.AddInteger(ConstThis);
3324 ID.AddInteger(VolatileThis);
3326 void *InsertPoint;
3327 SpecialMemberOverloadResultEntry *Result =
3328 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
3330 // This was already cached
3331 if (Result)
3332 return *Result;
3334 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
3335 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
3336 SpecialMemberCache.InsertNode(Result, InsertPoint);
3338 if (SM == CXXSpecialMemberKind::Destructor) {
3339 if (RD->needsImplicitDestructor()) {
3340 runWithSufficientStackSpace(RD->getLocation(), [&] {
3341 DeclareImplicitDestructor(RD);
3344 CXXDestructorDecl *DD = RD->getDestructor();
3345 Result->setMethod(DD);
3346 Result->setKind(DD && !DD->isDeleted()
3347 ? SpecialMemberOverloadResult::Success
3348 : SpecialMemberOverloadResult::NoMemberOrDeleted);
3349 return *Result;
3352 // Prepare for overload resolution. Here we construct a synthetic argument
3353 // if necessary and make sure that implicit functions are declared.
3354 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
3355 DeclarationName Name;
3356 Expr *Arg = nullptr;
3357 unsigned NumArgs;
3359 QualType ArgType = CanTy;
3360 ExprValueKind VK = VK_LValue;
3362 if (SM == CXXSpecialMemberKind::DefaultConstructor) {
3363 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3364 NumArgs = 0;
3365 if (RD->needsImplicitDefaultConstructor()) {
3366 runWithSufficientStackSpace(RD->getLocation(), [&] {
3367 DeclareImplicitDefaultConstructor(RD);
3370 } else {
3371 if (SM == CXXSpecialMemberKind::CopyConstructor ||
3372 SM == CXXSpecialMemberKind::MoveConstructor) {
3373 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
3374 if (RD->needsImplicitCopyConstructor()) {
3375 runWithSufficientStackSpace(RD->getLocation(), [&] {
3376 DeclareImplicitCopyConstructor(RD);
3379 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
3380 runWithSufficientStackSpace(RD->getLocation(), [&] {
3381 DeclareImplicitMoveConstructor(RD);
3384 } else {
3385 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
3386 if (RD->needsImplicitCopyAssignment()) {
3387 runWithSufficientStackSpace(RD->getLocation(), [&] {
3388 DeclareImplicitCopyAssignment(RD);
3391 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
3392 runWithSufficientStackSpace(RD->getLocation(), [&] {
3393 DeclareImplicitMoveAssignment(RD);
3398 if (ConstArg)
3399 ArgType.addConst();
3400 if (VolatileArg)
3401 ArgType.addVolatile();
3403 // This isn't /really/ specified by the standard, but it's implied
3404 // we should be working from a PRValue in the case of move to ensure
3405 // that we prefer to bind to rvalue references, and an LValue in the
3406 // case of copy to ensure we don't bind to rvalue references.
3407 // Possibly an XValue is actually correct in the case of move, but
3408 // there is no semantic difference for class types in this restricted
3409 // case.
3410 if (SM == CXXSpecialMemberKind::CopyConstructor ||
3411 SM == CXXSpecialMemberKind::CopyAssignment)
3412 VK = VK_LValue;
3413 else
3414 VK = VK_PRValue;
3417 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
3419 if (SM != CXXSpecialMemberKind::DefaultConstructor) {
3420 NumArgs = 1;
3421 Arg = &FakeArg;
3424 // Create the object argument
3425 QualType ThisTy = CanTy;
3426 if (ConstThis)
3427 ThisTy.addConst();
3428 if (VolatileThis)
3429 ThisTy.addVolatile();
3430 Expr::Classification Classification =
3431 OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
3432 .Classify(Context);
3434 // Now we perform lookup on the name we computed earlier and do overload
3435 // resolution. Lookup is only performed directly into the class since there
3436 // will always be a (possibly implicit) declaration to shadow any others.
3437 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
3438 DeclContext::lookup_result R = RD->lookup(Name);
3440 if (R.empty()) {
3441 // We might have no default constructor because we have a lambda's closure
3442 // type, rather than because there's some other declared constructor.
3443 // Every class has a copy/move constructor, copy/move assignment, and
3444 // destructor.
3445 assert(SM == CXXSpecialMemberKind::DefaultConstructor &&
3446 "lookup for a constructor or assignment operator was empty");
3447 Result->setMethod(nullptr);
3448 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3449 return *Result;
3452 // Copy the candidates as our processing of them may load new declarations
3453 // from an external source and invalidate lookup_result.
3454 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
3456 for (NamedDecl *CandDecl : Candidates) {
3457 if (CandDecl->isInvalidDecl())
3458 continue;
3460 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
3461 auto CtorInfo = getConstructorInfo(Cand);
3462 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
3463 if (SM == CXXSpecialMemberKind::CopyAssignment ||
3464 SM == CXXSpecialMemberKind::MoveAssignment)
3465 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
3466 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3467 else if (CtorInfo)
3468 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
3469 llvm::ArrayRef(&Arg, NumArgs), OCS,
3470 /*SuppressUserConversions*/ true);
3471 else
3472 AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS,
3473 /*SuppressUserConversions*/ true);
3474 } else if (FunctionTemplateDecl *Tmpl =
3475 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
3476 if (SM == CXXSpecialMemberKind::CopyAssignment ||
3477 SM == CXXSpecialMemberKind::MoveAssignment)
3478 AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy,
3479 Classification,
3480 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3481 else if (CtorInfo)
3482 AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl,
3483 CtorInfo.FoundDecl, nullptr,
3484 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3485 else
3486 AddTemplateOverloadCandidate(Tmpl, Cand, nullptr,
3487 llvm::ArrayRef(&Arg, NumArgs), OCS, true);
3488 } else {
3489 assert(isa<UsingDecl>(Cand.getDecl()) &&
3490 "illegal Kind of operator = Decl");
3494 OverloadCandidateSet::iterator Best;
3495 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3496 case OR_Success:
3497 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3498 Result->setKind(SpecialMemberOverloadResult::Success);
3499 break;
3501 case OR_Deleted:
3502 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3503 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3504 break;
3506 case OR_Ambiguous:
3507 Result->setMethod(nullptr);
3508 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3509 break;
3511 case OR_No_Viable_Function:
3512 Result->setMethod(nullptr);
3513 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3514 break;
3517 return *Result;
3520 CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3521 SpecialMemberOverloadResult Result =
3522 LookupSpecialMember(Class, CXXSpecialMemberKind::DefaultConstructor,
3523 false, false, false, false, false);
3525 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3528 CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3529 unsigned Quals) {
3530 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3531 "non-const, non-volatile qualifiers for copy ctor arg");
3532 SpecialMemberOverloadResult Result = LookupSpecialMember(
3533 Class, CXXSpecialMemberKind::CopyConstructor, Quals & Qualifiers::Const,
3534 Quals & Qualifiers::Volatile, false, false, false);
3536 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3539 CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3540 unsigned Quals) {
3541 SpecialMemberOverloadResult Result = LookupSpecialMember(
3542 Class, CXXSpecialMemberKind::MoveConstructor, Quals & Qualifiers::Const,
3543 Quals & Qualifiers::Volatile, false, false, false);
3545 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3548 DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3549 // If the implicit constructors have not yet been declared, do so now.
3550 if (CanDeclareSpecialMemberFunction(Class)) {
3551 runWithSufficientStackSpace(Class->getLocation(), [&] {
3552 if (Class->needsImplicitDefaultConstructor())
3553 DeclareImplicitDefaultConstructor(Class);
3554 if (Class->needsImplicitCopyConstructor())
3555 DeclareImplicitCopyConstructor(Class);
3556 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3557 DeclareImplicitMoveConstructor(Class);
3561 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3562 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3563 return Class->lookup(Name);
3566 CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3567 unsigned Quals, bool RValueThis,
3568 unsigned ThisQuals) {
3569 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3570 "non-const, non-volatile qualifiers for copy assignment arg");
3571 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3572 "non-const, non-volatile qualifiers for copy assignment this");
3573 SpecialMemberOverloadResult Result = LookupSpecialMember(
3574 Class, CXXSpecialMemberKind::CopyAssignment, Quals & Qualifiers::Const,
3575 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3576 ThisQuals & Qualifiers::Volatile);
3578 return Result.getMethod();
3581 CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3582 unsigned Quals,
3583 bool RValueThis,
3584 unsigned ThisQuals) {
3585 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
3586 "non-const, non-volatile qualifiers for copy assignment this");
3587 SpecialMemberOverloadResult Result = LookupSpecialMember(
3588 Class, CXXSpecialMemberKind::MoveAssignment, Quals & Qualifiers::Const,
3589 Quals & Qualifiers::Volatile, RValueThis, ThisQuals & Qualifiers::Const,
3590 ThisQuals & Qualifiers::Volatile);
3592 return Result.getMethod();
3595 CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3596 return cast_or_null<CXXDestructorDecl>(
3597 LookupSpecialMember(Class, CXXSpecialMemberKind::Destructor, false, false,
3598 false, false, false)
3599 .getMethod());
3602 Sema::LiteralOperatorLookupResult
3603 Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3604 ArrayRef<QualType> ArgTys, bool AllowRaw,
3605 bool AllowTemplate, bool AllowStringTemplatePack,
3606 bool DiagnoseMissing, StringLiteral *StringLit) {
3607 LookupName(R, S);
3608 assert(R.getResultKind() != LookupResult::Ambiguous &&
3609 "literal operator lookup can't be ambiguous");
3611 // Filter the lookup results appropriately.
3612 LookupResult::Filter F = R.makeFilter();
3614 bool AllowCooked = true;
3615 bool FoundRaw = false;
3616 bool FoundTemplate = false;
3617 bool FoundStringTemplatePack = false;
3618 bool FoundCooked = false;
3620 while (F.hasNext()) {
3621 Decl *D = F.next();
3622 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3623 D = USD->getTargetDecl();
3625 // If the declaration we found is invalid, skip it.
3626 if (D->isInvalidDecl()) {
3627 F.erase();
3628 continue;
3631 bool IsRaw = false;
3632 bool IsTemplate = false;
3633 bool IsStringTemplatePack = false;
3634 bool IsCooked = false;
3636 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3637 if (FD->getNumParams() == 1 &&
3638 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3639 IsRaw = true;
3640 else if (FD->getNumParams() == ArgTys.size()) {
3641 IsCooked = true;
3642 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3643 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3644 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3645 IsCooked = false;
3646 break;
3651 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3652 TemplateParameterList *Params = FD->getTemplateParameters();
3653 if (Params->size() == 1) {
3654 IsTemplate = true;
3655 if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
3656 // Implied but not stated: user-defined integer and floating literals
3657 // only ever use numeric literal operator templates, not templates
3658 // taking a parameter of class type.
3659 F.erase();
3660 continue;
3663 // A string literal template is only considered if the string literal
3664 // is a well-formed template argument for the template parameter.
3665 if (StringLit) {
3666 SFINAETrap Trap(*this);
3667 SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked;
3668 TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
3669 if (CheckTemplateArgument(
3670 Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(),
3671 0, SugaredChecked, CanonicalChecked, CTAK_Specified) ||
3672 Trap.hasErrorOccurred())
3673 IsTemplate = false;
3675 } else {
3676 IsStringTemplatePack = true;
3680 if (AllowTemplate && StringLit && IsTemplate) {
3681 FoundTemplate = true;
3682 AllowRaw = false;
3683 AllowCooked = false;
3684 AllowStringTemplatePack = false;
3685 if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
3686 F.restart();
3687 FoundRaw = FoundCooked = FoundStringTemplatePack = false;
3689 } else if (AllowCooked && IsCooked) {
3690 FoundCooked = true;
3691 AllowRaw = false;
3692 AllowTemplate = StringLit;
3693 AllowStringTemplatePack = false;
3694 if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
3695 // Go through again and remove the raw and template decls we've
3696 // already found.
3697 F.restart();
3698 FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
3700 } else if (AllowRaw && IsRaw) {
3701 FoundRaw = true;
3702 } else if (AllowTemplate && IsTemplate) {
3703 FoundTemplate = true;
3704 } else if (AllowStringTemplatePack && IsStringTemplatePack) {
3705 FoundStringTemplatePack = true;
3706 } else {
3707 F.erase();
3711 F.done();
3713 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3714 // form for string literal operator templates.
3715 if (StringLit && FoundTemplate)
3716 return LOLR_Template;
3718 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3719 // parameter type, that is used in preference to a raw literal operator
3720 // or literal operator template.
3721 if (FoundCooked)
3722 return LOLR_Cooked;
3724 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3725 // operator template, but not both.
3726 if (FoundRaw && FoundTemplate) {
3727 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3728 for (const NamedDecl *D : R)
3729 NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction());
3730 return LOLR_Error;
3733 if (FoundRaw)
3734 return LOLR_Raw;
3736 if (FoundTemplate)
3737 return LOLR_Template;
3739 if (FoundStringTemplatePack)
3740 return LOLR_StringTemplatePack;
3742 // Didn't find anything we could use.
3743 if (DiagnoseMissing) {
3744 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3745 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3746 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3747 << (AllowTemplate || AllowStringTemplatePack);
3748 return LOLR_Error;
3751 return LOLR_ErrorNoDiagnostic;
3754 void ADLResult::insert(NamedDecl *New) {
3755 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3757 // If we haven't yet seen a decl for this key, or the last decl
3758 // was exactly this one, we're done.
3759 if (Old == nullptr || Old == New) {
3760 Old = New;
3761 return;
3764 // Otherwise, decide which is a more recent redeclaration.
3765 FunctionDecl *OldFD = Old->getAsFunction();
3766 FunctionDecl *NewFD = New->getAsFunction();
3768 FunctionDecl *Cursor = NewFD;
3769 while (true) {
3770 Cursor = Cursor->getPreviousDecl();
3772 // If we got to the end without finding OldFD, OldFD is the newer
3773 // declaration; leave things as they are.
3774 if (!Cursor) return;
3776 // If we do find OldFD, then NewFD is newer.
3777 if (Cursor == OldFD) break;
3779 // Otherwise, keep looking.
3782 Old = New;
3785 void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3786 ArrayRef<Expr *> Args, ADLResult &Result) {
3787 // Find all of the associated namespaces and classes based on the
3788 // arguments we have.
3789 AssociatedNamespaceSet AssociatedNamespaces;
3790 AssociatedClassSet AssociatedClasses;
3791 FindAssociatedClassesAndNamespaces(Loc, Args,
3792 AssociatedNamespaces,
3793 AssociatedClasses);
3795 // C++ [basic.lookup.argdep]p3:
3796 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3797 // and let Y be the lookup set produced by argument dependent
3798 // lookup (defined as follows). If X contains [...] then Y is
3799 // empty. Otherwise Y is the set of declarations found in the
3800 // namespaces associated with the argument types as described
3801 // below. The set of declarations found by the lookup of the name
3802 // is the union of X and Y.
3804 // Here, we compute Y and add its members to the overloaded
3805 // candidate set.
3806 for (auto *NS : AssociatedNamespaces) {
3807 // When considering an associated namespace, the lookup is the
3808 // same as the lookup performed when the associated namespace is
3809 // used as a qualifier (3.4.3.2) except that:
3811 // -- Any using-directives in the associated namespace are
3812 // ignored.
3814 // -- Any namespace-scope friend functions declared in
3815 // associated classes are visible within their respective
3816 // namespaces even if they are not visible during an ordinary
3817 // lookup (11.4).
3819 // C++20 [basic.lookup.argdep] p4.3
3820 // -- are exported, are attached to a named module M, do not appear
3821 // in the translation unit containing the point of the lookup, and
3822 // have the same innermost enclosing non-inline namespace scope as
3823 // a declaration of an associated entity attached to M.
3824 DeclContext::lookup_result R = NS->lookup(Name);
3825 for (auto *D : R) {
3826 auto *Underlying = D;
3827 if (auto *USD = dyn_cast<UsingShadowDecl>(D))
3828 Underlying = USD->getTargetDecl();
3830 if (!isa<FunctionDecl>(Underlying) &&
3831 !isa<FunctionTemplateDecl>(Underlying))
3832 continue;
3834 // The declaration is visible to argument-dependent lookup if either
3835 // it's ordinarily visible or declared as a friend in an associated
3836 // class.
3837 bool Visible = false;
3838 for (D = D->getMostRecentDecl(); D;
3839 D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
3840 if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
3841 if (isVisible(D)) {
3842 Visible = true;
3843 break;
3846 if (!getLangOpts().CPlusPlusModules)
3847 continue;
3849 if (D->isInExportDeclContext()) {
3850 Module *FM = D->getOwningModule();
3851 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3852 // exports are only valid in module purview and outside of any
3853 // PMF (although a PMF should not even be present in a module
3854 // with an import).
3855 assert(FM &&
3856 (FM->isNamedModule() || FM->isImplicitGlobalModule()) &&
3857 !FM->isPrivateModule() && "bad export context");
3858 // .. are attached to a named module M, do not appear in the
3859 // translation unit containing the point of the lookup..
3860 if (D->isInAnotherModuleUnit() &&
3861 llvm::any_of(AssociatedClasses, [&](auto *E) {
3862 // ... and have the same innermost enclosing non-inline
3863 // namespace scope as a declaration of an associated entity
3864 // attached to M
3865 if (E->getOwningModule() != FM)
3866 return false;
3867 // TODO: maybe this could be cached when generating the
3868 // associated namespaces / entities.
3869 DeclContext *Ctx = E->getDeclContext();
3870 while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
3871 Ctx = Ctx->getParent();
3872 return Ctx == NS;
3873 })) {
3874 Visible = true;
3875 break;
3878 } else if (D->getFriendObjectKind()) {
3879 auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
3880 // [basic.lookup.argdep]p4:
3881 // Argument-dependent lookup finds all declarations of functions and
3882 // function templates that
3883 // - ...
3884 // - are declared as a friend ([class.friend]) of any class with a
3885 // reachable definition in the set of associated entities,
3887 // FIXME: If there's a merged definition of D that is reachable, then
3888 // the friend declaration should be considered.
3889 if (AssociatedClasses.count(RD) && isReachable(D)) {
3890 Visible = true;
3891 break;
3896 // FIXME: Preserve D as the FoundDecl.
3897 if (Visible)
3898 Result.insert(Underlying);
3903 //----------------------------------------------------------------------------
3904 // Search for all visible declarations.
3905 //----------------------------------------------------------------------------
3906 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3908 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3910 namespace {
3912 class ShadowContextRAII;
3914 class VisibleDeclsRecord {
3915 public:
3916 /// An entry in the shadow map, which is optimized to store a
3917 /// single declaration (the common case) but can also store a list
3918 /// of declarations.
3919 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3921 private:
3922 /// A mapping from declaration names to the declarations that have
3923 /// this name within a particular scope.
3924 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3926 /// A list of shadow maps, which is used to model name hiding.
3927 std::list<ShadowMap> ShadowMaps;
3929 /// The declaration contexts we have already visited.
3930 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3932 friend class ShadowContextRAII;
3934 public:
3935 /// Determine whether we have already visited this context
3936 /// (and, if not, note that we are going to visit that context now).
3937 bool visitedContext(DeclContext *Ctx) {
3938 return !VisitedContexts.insert(Ctx).second;
3941 bool alreadyVisitedContext(DeclContext *Ctx) {
3942 return VisitedContexts.count(Ctx);
3945 /// Determine whether the given declaration is hidden in the
3946 /// current scope.
3948 /// \returns the declaration that hides the given declaration, or
3949 /// NULL if no such declaration exists.
3950 NamedDecl *checkHidden(NamedDecl *ND);
3952 /// Add a declaration to the current shadow map.
3953 void add(NamedDecl *ND) {
3954 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3958 /// RAII object that records when we've entered a shadow context.
3959 class ShadowContextRAII {
3960 VisibleDeclsRecord &Visible;
3962 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3964 public:
3965 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3966 Visible.ShadowMaps.emplace_back();
3969 ~ShadowContextRAII() {
3970 Visible.ShadowMaps.pop_back();
3974 } // end anonymous namespace
3976 NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3977 unsigned IDNS = ND->getIdentifierNamespace();
3978 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3979 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3980 SM != SMEnd; ++SM) {
3981 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3982 if (Pos == SM->end())
3983 continue;
3985 for (auto *D : Pos->second) {
3986 // A tag declaration does not hide a non-tag declaration.
3987 if (D->hasTagIdentifierNamespace() &&
3988 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3989 Decl::IDNS_ObjCProtocol)))
3990 continue;
3992 // Protocols are in distinct namespaces from everything else.
3993 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3994 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3995 D->getIdentifierNamespace() != IDNS)
3996 continue;
3998 // Functions and function templates in the same scope overload
3999 // rather than hide. FIXME: Look for hiding based on function
4000 // signatures!
4001 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4002 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4003 SM == ShadowMaps.rbegin())
4004 continue;
4006 // A shadow declaration that's created by a resolved using declaration
4007 // is not hidden by the same using declaration.
4008 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
4009 cast<UsingShadowDecl>(ND)->getIntroducer() == D)
4010 continue;
4012 // We've found a declaration that hides this one.
4013 return D;
4017 return nullptr;
4020 namespace {
4021 class LookupVisibleHelper {
4022 public:
4023 LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
4024 bool LoadExternal)
4025 : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
4026 LoadExternal(LoadExternal) {}
4028 void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
4029 bool IncludeGlobalScope) {
4030 // Determine the set of using directives available during
4031 // unqualified name lookup.
4032 Scope *Initial = S;
4033 UnqualUsingDirectiveSet UDirs(SemaRef);
4034 if (SemaRef.getLangOpts().CPlusPlus) {
4035 // Find the first namespace or translation-unit scope.
4036 while (S && !isNamespaceOrTranslationUnitScope(S))
4037 S = S->getParent();
4039 UDirs.visitScopeChain(Initial, S);
4041 UDirs.done();
4043 // Look for visible declarations.
4044 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4045 Result.setAllowHidden(Consumer.includeHiddenDecls());
4046 if (!IncludeGlobalScope)
4047 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4048 ShadowContextRAII Shadow(Visited);
4049 lookupInScope(Initial, Result, UDirs);
4052 void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
4053 Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
4054 LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
4055 Result.setAllowHidden(Consumer.includeHiddenDecls());
4056 if (!IncludeGlobalScope)
4057 Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
4059 ShadowContextRAII Shadow(Visited);
4060 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
4061 /*InBaseClass=*/false);
4064 private:
4065 void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
4066 bool QualifiedNameLookup, bool InBaseClass) {
4067 if (!Ctx)
4068 return;
4070 // Make sure we don't visit the same context twice.
4071 if (Visited.visitedContext(Ctx->getPrimaryContext()))
4072 return;
4074 Consumer.EnteredContext(Ctx);
4076 // Outside C++, lookup results for the TU live on identifiers.
4077 if (isa<TranslationUnitDecl>(Ctx) &&
4078 !Result.getSema().getLangOpts().CPlusPlus) {
4079 auto &S = Result.getSema();
4080 auto &Idents = S.Context.Idents;
4082 // Ensure all external identifiers are in the identifier table.
4083 if (LoadExternal)
4084 if (IdentifierInfoLookup *External =
4085 Idents.getExternalIdentifierLookup()) {
4086 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4087 for (StringRef Name = Iter->Next(); !Name.empty();
4088 Name = Iter->Next())
4089 Idents.get(Name);
4092 // Walk all lookup results in the TU for each identifier.
4093 for (const auto &Ident : Idents) {
4094 for (auto I = S.IdResolver.begin(Ident.getValue()),
4095 E = S.IdResolver.end();
4096 I != E; ++I) {
4097 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
4098 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
4099 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4100 Visited.add(ND);
4106 return;
4109 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
4110 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
4112 llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
4113 // We sometimes skip loading namespace-level results (they tend to be huge).
4114 bool Load = LoadExternal ||
4115 !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
4116 // Enumerate all of the results in this context.
4117 for (DeclContextLookupResult R :
4118 Load ? Ctx->lookups()
4119 : Ctx->noload_lookups(/*PreserveInternalState=*/false))
4120 for (auto *D : R)
4121 // Rather than visit immediately, we put ND into a vector and visit
4122 // all decls, in order, outside of this loop. The reason is that
4123 // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D)
4124 // may invalidate the iterators used in the two
4125 // loops above.
4126 DeclsToVisit.push_back(D);
4128 for (auto *D : DeclsToVisit)
4129 if (auto *ND = Result.getAcceptableDecl(D)) {
4130 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
4131 Visited.add(ND);
4134 DeclsToVisit.clear();
4136 // Traverse using directives for qualified name lookup.
4137 if (QualifiedNameLookup) {
4138 ShadowContextRAII Shadow(Visited);
4139 for (auto *I : Ctx->using_directives()) {
4140 if (!Result.getSema().isVisible(I))
4141 continue;
4142 lookupInDeclContext(I->getNominatedNamespace(), Result,
4143 QualifiedNameLookup, InBaseClass);
4147 // Traverse the contexts of inherited C++ classes.
4148 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
4149 if (!Record->hasDefinition())
4150 return;
4152 for (const auto &B : Record->bases()) {
4153 QualType BaseType = B.getType();
4155 RecordDecl *RD;
4156 if (BaseType->isDependentType()) {
4157 if (!IncludeDependentBases) {
4158 // Don't look into dependent bases, because name lookup can't look
4159 // there anyway.
4160 continue;
4162 const auto *TST = BaseType->getAs<TemplateSpecializationType>();
4163 if (!TST)
4164 continue;
4165 TemplateName TN = TST->getTemplateName();
4166 const auto *TD =
4167 dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
4168 if (!TD)
4169 continue;
4170 RD = TD->getTemplatedDecl();
4171 } else {
4172 const auto *Record = BaseType->getAs<RecordType>();
4173 if (!Record)
4174 continue;
4175 RD = Record->getDecl();
4178 // FIXME: It would be nice to be able to determine whether referencing
4179 // a particular member would be ambiguous. For example, given
4181 // struct A { int member; };
4182 // struct B { int member; };
4183 // struct C : A, B { };
4185 // void f(C *c) { c->### }
4187 // accessing 'member' would result in an ambiguity. However, we
4188 // could be smart enough to qualify the member with the base
4189 // class, e.g.,
4191 // c->B::member
4193 // or
4195 // c->A::member
4197 // Find results in this base class (and its bases).
4198 ShadowContextRAII Shadow(Visited);
4199 lookupInDeclContext(RD, Result, QualifiedNameLookup,
4200 /*InBaseClass=*/true);
4204 // Traverse the contexts of Objective-C classes.
4205 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
4206 // Traverse categories.
4207 for (auto *Cat : IFace->visible_categories()) {
4208 ShadowContextRAII Shadow(Visited);
4209 lookupInDeclContext(Cat, Result, QualifiedNameLookup,
4210 /*InBaseClass=*/false);
4213 // Traverse protocols.
4214 for (auto *I : IFace->all_referenced_protocols()) {
4215 ShadowContextRAII Shadow(Visited);
4216 lookupInDeclContext(I, Result, QualifiedNameLookup,
4217 /*InBaseClass=*/false);
4220 // Traverse the superclass.
4221 if (IFace->getSuperClass()) {
4222 ShadowContextRAII Shadow(Visited);
4223 lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
4224 /*InBaseClass=*/true);
4227 // If there is an implementation, traverse it. We do this to find
4228 // synthesized ivars.
4229 if (IFace->getImplementation()) {
4230 ShadowContextRAII Shadow(Visited);
4231 lookupInDeclContext(IFace->getImplementation(), Result,
4232 QualifiedNameLookup, InBaseClass);
4234 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
4235 for (auto *I : Protocol->protocols()) {
4236 ShadowContextRAII Shadow(Visited);
4237 lookupInDeclContext(I, Result, QualifiedNameLookup,
4238 /*InBaseClass=*/false);
4240 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
4241 for (auto *I : Category->protocols()) {
4242 ShadowContextRAII Shadow(Visited);
4243 lookupInDeclContext(I, Result, QualifiedNameLookup,
4244 /*InBaseClass=*/false);
4247 // If there is an implementation, traverse it.
4248 if (Category->getImplementation()) {
4249 ShadowContextRAII Shadow(Visited);
4250 lookupInDeclContext(Category->getImplementation(), Result,
4251 QualifiedNameLookup, /*InBaseClass=*/true);
4256 void lookupInScope(Scope *S, LookupResult &Result,
4257 UnqualUsingDirectiveSet &UDirs) {
4258 // No clients run in this mode and it's not supported. Please add tests and
4259 // remove the assertion if you start relying on it.
4260 assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
4262 if (!S)
4263 return;
4265 if (!S->getEntity() ||
4266 (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
4267 (S->getEntity())->isFunctionOrMethod()) {
4268 FindLocalExternScope FindLocals(Result);
4269 // Walk through the declarations in this Scope. The consumer might add new
4270 // decls to the scope as part of deserialization, so make a copy first.
4271 SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
4272 for (Decl *D : ScopeDecls) {
4273 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
4274 if ((ND = Result.getAcceptableDecl(ND))) {
4275 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
4276 Visited.add(ND);
4281 DeclContext *Entity = S->getLookupEntity();
4282 if (Entity) {
4283 // Look into this scope's declaration context, along with any of its
4284 // parent lookup contexts (e.g., enclosing classes), up to the point
4285 // where we hit the context stored in the next outer scope.
4286 DeclContext *OuterCtx = findOuterContext(S);
4288 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
4289 Ctx = Ctx->getLookupParent()) {
4290 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
4291 if (Method->isInstanceMethod()) {
4292 // For instance methods, look for ivars in the method's interface.
4293 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
4294 Result.getNameLoc(),
4295 Sema::LookupMemberName);
4296 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
4297 lookupInDeclContext(IFace, IvarResult,
4298 /*QualifiedNameLookup=*/false,
4299 /*InBaseClass=*/false);
4303 // We've already performed all of the name lookup that we need
4304 // to for Objective-C methods; the next context will be the
4305 // outer scope.
4306 break;
4309 if (Ctx->isFunctionOrMethod())
4310 continue;
4312 lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
4313 /*InBaseClass=*/false);
4315 } else if (!S->getParent()) {
4316 // Look into the translation unit scope. We walk through the translation
4317 // unit's declaration context, because the Scope itself won't have all of
4318 // the declarations if we loaded a precompiled header.
4319 // FIXME: We would like the translation unit's Scope object to point to
4320 // the translation unit, so we don't need this special "if" branch.
4321 // However, doing so would force the normal C++ name-lookup code to look
4322 // into the translation unit decl when the IdentifierInfo chains would
4323 // suffice. Once we fix that problem (which is part of a more general
4324 // "don't look in DeclContexts unless we have to" optimization), we can
4325 // eliminate this.
4326 Entity = Result.getSema().Context.getTranslationUnitDecl();
4327 lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
4328 /*InBaseClass=*/false);
4331 if (Entity) {
4332 // Lookup visible declarations in any namespaces found by using
4333 // directives.
4334 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
4335 lookupInDeclContext(
4336 const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
4337 /*QualifiedNameLookup=*/false,
4338 /*InBaseClass=*/false);
4341 // Lookup names in the parent scope.
4342 ShadowContextRAII Shadow(Visited);
4343 lookupInScope(S->getParent(), Result, UDirs);
4346 private:
4347 VisibleDeclsRecord Visited;
4348 VisibleDeclConsumer &Consumer;
4349 bool IncludeDependentBases;
4350 bool LoadExternal;
4352 } // namespace
4354 void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4355 VisibleDeclConsumer &Consumer,
4356 bool IncludeGlobalScope, bool LoadExternal) {
4357 LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
4358 LoadExternal);
4359 H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
4362 void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4363 VisibleDeclConsumer &Consumer,
4364 bool IncludeGlobalScope,
4365 bool IncludeDependentBases, bool LoadExternal) {
4366 LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
4367 H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
4370 LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
4371 SourceLocation GnuLabelLoc) {
4372 // Do a lookup to see if we have a label with this name already.
4373 NamedDecl *Res = nullptr;
4375 if (GnuLabelLoc.isValid()) {
4376 // Local label definitions always shadow existing labels.
4377 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
4378 Scope *S = CurScope;
4379 PushOnScopeChains(Res, S, true);
4380 return cast<LabelDecl>(Res);
4383 // Not a GNU local label.
4384 Res = LookupSingleName(CurScope, II, Loc, LookupLabel,
4385 RedeclarationKind::NotForRedeclaration);
4386 // If we found a label, check to see if it is in the same context as us.
4387 // When in a Block, we don't want to reuse a label in an enclosing function.
4388 if (Res && Res->getDeclContext() != CurContext)
4389 Res = nullptr;
4390 if (!Res) {
4391 // If not forward referenced or defined already, create the backing decl.
4392 Res = LabelDecl::Create(Context, CurContext, Loc, II);
4393 Scope *S = CurScope->getFnParent();
4394 assert(S && "Not in a function?");
4395 PushOnScopeChains(Res, S, true);
4397 return cast<LabelDecl>(Res);
4400 //===----------------------------------------------------------------------===//
4401 // Typo correction
4402 //===----------------------------------------------------------------------===//
4404 static bool isCandidateViable(CorrectionCandidateCallback &CCC,
4405 TypoCorrection &Candidate) {
4406 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
4407 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
4410 static void LookupPotentialTypoResult(Sema &SemaRef,
4411 LookupResult &Res,
4412 IdentifierInfo *Name,
4413 Scope *S, CXXScopeSpec *SS,
4414 DeclContext *MemberContext,
4415 bool EnteringContext,
4416 bool isObjCIvarLookup,
4417 bool FindHidden);
4419 /// Check whether the declarations found for a typo correction are
4420 /// visible. Set the correction's RequiresImport flag to true if none of the
4421 /// declarations are visible, false otherwise.
4422 static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
4423 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
4425 for (/**/; DI != DE; ++DI)
4426 if (!LookupResult::isVisible(SemaRef, *DI))
4427 break;
4428 // No filtering needed if all decls are visible.
4429 if (DI == DE) {
4430 TC.setRequiresImport(false);
4431 return;
4434 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
4435 bool AnyVisibleDecls = !NewDecls.empty();
4437 for (/**/; DI != DE; ++DI) {
4438 if (LookupResult::isVisible(SemaRef, *DI)) {
4439 if (!AnyVisibleDecls) {
4440 // Found a visible decl, discard all hidden ones.
4441 AnyVisibleDecls = true;
4442 NewDecls.clear();
4444 NewDecls.push_back(*DI);
4445 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
4446 NewDecls.push_back(*DI);
4449 if (NewDecls.empty())
4450 TC = TypoCorrection();
4451 else {
4452 TC.setCorrectionDecls(NewDecls);
4453 TC.setRequiresImport(!AnyVisibleDecls);
4457 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4458 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4459 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4460 static void getNestedNameSpecifierIdentifiers(
4461 NestedNameSpecifier *NNS,
4462 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
4463 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
4464 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
4465 else
4466 Identifiers.clear();
4468 const IdentifierInfo *II = nullptr;
4470 switch (NNS->getKind()) {
4471 case NestedNameSpecifier::Identifier:
4472 II = NNS->getAsIdentifier();
4473 break;
4475 case NestedNameSpecifier::Namespace:
4476 if (NNS->getAsNamespace()->isAnonymousNamespace())
4477 return;
4478 II = NNS->getAsNamespace()->getIdentifier();
4479 break;
4481 case NestedNameSpecifier::NamespaceAlias:
4482 II = NNS->getAsNamespaceAlias()->getIdentifier();
4483 break;
4485 case NestedNameSpecifier::TypeSpecWithTemplate:
4486 case NestedNameSpecifier::TypeSpec:
4487 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
4488 break;
4490 case NestedNameSpecifier::Global:
4491 case NestedNameSpecifier::Super:
4492 return;
4495 if (II)
4496 Identifiers.push_back(II);
4499 void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
4500 DeclContext *Ctx, bool InBaseClass) {
4501 // Don't consider hidden names for typo correction.
4502 if (Hiding)
4503 return;
4505 // Only consider entities with identifiers for names, ignoring
4506 // special names (constructors, overloaded operators, selectors,
4507 // etc.).
4508 IdentifierInfo *Name = ND->getIdentifier();
4509 if (!Name)
4510 return;
4512 // Only consider visible declarations and declarations from modules with
4513 // names that exactly match.
4514 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
4515 return;
4517 FoundName(Name->getName());
4520 void TypoCorrectionConsumer::FoundName(StringRef Name) {
4521 // Compute the edit distance between the typo and the name of this
4522 // entity, and add the identifier to the list of results.
4523 addName(Name, nullptr);
4526 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
4527 // Compute the edit distance between the typo and this keyword,
4528 // and add the keyword to the list of results.
4529 addName(Keyword, nullptr, nullptr, true);
4532 void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
4533 NestedNameSpecifier *NNS, bool isKeyword) {
4534 // Use a simple length-based heuristic to determine the minimum possible
4535 // edit distance. If the minimum isn't good enough, bail out early.
4536 StringRef TypoStr = Typo->getName();
4537 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
4538 if (MinED && TypoStr.size() / MinED < 3)
4539 return;
4541 // Compute an upper bound on the allowable edit distance, so that the
4542 // edit-distance algorithm can short-circuit.
4543 unsigned UpperBound = (TypoStr.size() + 2) / 3;
4544 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
4545 if (ED > UpperBound) return;
4547 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
4548 if (isKeyword) TC.makeKeyword();
4549 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
4550 addCorrection(TC);
4553 static const unsigned MaxTypoDistanceResultSets = 5;
4555 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
4556 StringRef TypoStr = Typo->getName();
4557 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
4559 // For very short typos, ignore potential corrections that have a different
4560 // base identifier from the typo or which have a normalized edit distance
4561 // longer than the typo itself.
4562 if (TypoStr.size() < 3 &&
4563 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
4564 return;
4566 // If the correction is resolved but is not viable, ignore it.
4567 if (Correction.isResolved()) {
4568 checkCorrectionVisibility(SemaRef, Correction);
4569 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
4570 return;
4573 TypoResultList &CList =
4574 CorrectionResults[Correction.getEditDistance(false)][Name];
4576 if (!CList.empty() && !CList.back().isResolved())
4577 CList.pop_back();
4578 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
4579 auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
4580 return TypoCorr.getCorrectionDecl() == NewND;
4582 if (RI != CList.end()) {
4583 // The Correction refers to a decl already in the list. No insertion is
4584 // necessary and all further cases will return.
4586 auto IsDeprecated = [](Decl *D) {
4587 while (D) {
4588 if (D->isDeprecated())
4589 return true;
4590 D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
4592 return false;
4595 // Prefer non deprecated Corrections over deprecated and only then
4596 // sort using an alphabetical order.
4597 std::pair<bool, std::string> NewKey = {
4598 IsDeprecated(Correction.getFoundDecl()),
4599 Correction.getAsString(SemaRef.getLangOpts())};
4601 std::pair<bool, std::string> PrevKey = {
4602 IsDeprecated(RI->getFoundDecl()),
4603 RI->getAsString(SemaRef.getLangOpts())};
4605 if (NewKey < PrevKey)
4606 *RI = Correction;
4607 return;
4610 if (CList.empty() || Correction.isResolved())
4611 CList.push_back(Correction);
4613 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
4614 CorrectionResults.erase(std::prev(CorrectionResults.end()));
4617 void TypoCorrectionConsumer::addNamespaces(
4618 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
4619 SearchNamespaces = true;
4621 for (auto KNPair : KnownNamespaces)
4622 Namespaces.addNameSpecifier(KNPair.first);
4624 bool SSIsTemplate = false;
4625 if (NestedNameSpecifier *NNS =
4626 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
4627 if (const Type *T = NNS->getAsType())
4628 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
4630 // Do not transform this into an iterator-based loop. The loop body can
4631 // trigger the creation of further types (through lazy deserialization) and
4632 // invalid iterators into this list.
4633 auto &Types = SemaRef.getASTContext().getTypes();
4634 for (unsigned I = 0; I != Types.size(); ++I) {
4635 const auto *TI = Types[I];
4636 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
4637 CD = CD->getCanonicalDecl();
4638 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
4639 !CD->isUnion() && CD->getIdentifier() &&
4640 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
4641 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4642 Namespaces.addNameSpecifier(CD);
4647 const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4648 if (++CurrentTCIndex < ValidatedCorrections.size())
4649 return ValidatedCorrections[CurrentTCIndex];
4651 CurrentTCIndex = ValidatedCorrections.size();
4652 while (!CorrectionResults.empty()) {
4653 auto DI = CorrectionResults.begin();
4654 if (DI->second.empty()) {
4655 CorrectionResults.erase(DI);
4656 continue;
4659 auto RI = DI->second.begin();
4660 if (RI->second.empty()) {
4661 DI->second.erase(RI);
4662 performQualifiedLookups();
4663 continue;
4666 TypoCorrection TC = RI->second.pop_back_val();
4667 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4668 ValidatedCorrections.push_back(TC);
4669 return ValidatedCorrections[CurrentTCIndex];
4672 return ValidatedCorrections[0]; // The empty correction.
4675 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4676 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4677 DeclContext *TempMemberContext = MemberContext;
4678 CXXScopeSpec *TempSS = SS.get();
4679 retry_lookup:
4680 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4681 EnteringContext,
4682 CorrectionValidator->IsObjCIvarLookup,
4683 Name == Typo && !Candidate.WillReplaceSpecifier());
4684 switch (Result.getResultKind()) {
4685 case LookupResult::NotFound:
4686 case LookupResult::NotFoundInCurrentInstantiation:
4687 case LookupResult::FoundUnresolvedValue:
4688 if (TempSS) {
4689 // Immediately retry the lookup without the given CXXScopeSpec
4690 TempSS = nullptr;
4691 Candidate.WillReplaceSpecifier(true);
4692 goto retry_lookup;
4694 if (TempMemberContext) {
4695 if (SS && !TempSS)
4696 TempSS = SS.get();
4697 TempMemberContext = nullptr;
4698 goto retry_lookup;
4700 if (SearchNamespaces)
4701 QualifiedResults.push_back(Candidate);
4702 break;
4704 case LookupResult::Ambiguous:
4705 // We don't deal with ambiguities.
4706 break;
4708 case LookupResult::Found:
4709 case LookupResult::FoundOverloaded:
4710 // Store all of the Decls for overloaded symbols
4711 for (auto *TRD : Result)
4712 Candidate.addCorrectionDecl(TRD);
4713 checkCorrectionVisibility(SemaRef, Candidate);
4714 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4715 if (SearchNamespaces)
4716 QualifiedResults.push_back(Candidate);
4717 break;
4719 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4720 return true;
4722 return false;
4725 void TypoCorrectionConsumer::performQualifiedLookups() {
4726 unsigned TypoLen = Typo->getName().size();
4727 for (const TypoCorrection &QR : QualifiedResults) {
4728 for (const auto &NSI : Namespaces) {
4729 DeclContext *Ctx = NSI.DeclCtx;
4730 const Type *NSType = NSI.NameSpecifier->getAsType();
4732 // If the current NestedNameSpecifier refers to a class and the
4733 // current correction candidate is the name of that class, then skip
4734 // it as it is unlikely a qualified version of the class' constructor
4735 // is an appropriate correction.
4736 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4737 nullptr) {
4738 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4739 continue;
4742 TypoCorrection TC(QR);
4743 TC.ClearCorrectionDecls();
4744 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4745 TC.setQualifierDistance(NSI.EditDistance);
4746 TC.setCallbackDistance(0); // Reset the callback distance
4748 // If the current correction candidate and namespace combination are
4749 // too far away from the original typo based on the normalized edit
4750 // distance, then skip performing a qualified name lookup.
4751 unsigned TmpED = TC.getEditDistance(true);
4752 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4753 TypoLen / TmpED < 3)
4754 continue;
4756 Result.clear();
4757 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4758 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4759 continue;
4761 // Any corrections added below will be validated in subsequent
4762 // iterations of the main while() loop over the Consumer's contents.
4763 switch (Result.getResultKind()) {
4764 case LookupResult::Found:
4765 case LookupResult::FoundOverloaded: {
4766 if (SS && SS->isValid()) {
4767 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4768 std::string OldQualified;
4769 llvm::raw_string_ostream OldOStream(OldQualified);
4770 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4771 OldOStream << Typo->getName();
4772 // If correction candidate would be an identical written qualified
4773 // identifier, then the existing CXXScopeSpec probably included a
4774 // typedef that didn't get accounted for properly.
4775 if (OldOStream.str() == NewQualified)
4776 break;
4778 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4779 TRD != TRDEnd; ++TRD) {
4780 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4781 NSType ? NSType->getAsCXXRecordDecl()
4782 : nullptr,
4783 TRD.getPair()) == Sema::AR_accessible)
4784 TC.addCorrectionDecl(*TRD);
4786 if (TC.isResolved()) {
4787 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4788 addCorrection(TC);
4790 break;
4792 case LookupResult::NotFound:
4793 case LookupResult::NotFoundInCurrentInstantiation:
4794 case LookupResult::Ambiguous:
4795 case LookupResult::FoundUnresolvedValue:
4796 break;
4800 QualifiedResults.clear();
4803 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4804 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4805 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4806 if (NestedNameSpecifier *NNS =
4807 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4808 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4809 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4811 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4813 // Build the list of identifiers that would be used for an absolute
4814 // (from the global context) NestedNameSpecifier referring to the current
4815 // context.
4816 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4817 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4818 CurContextIdentifiers.push_back(ND->getIdentifier());
4821 // Add the global context as a NestedNameSpecifier
4822 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4823 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4824 DistanceMap[1].push_back(SI);
4827 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4828 DeclContext *Start) -> DeclContextList {
4829 assert(Start && "Building a context chain from a null context");
4830 DeclContextList Chain;
4831 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4832 DC = DC->getLookupParent()) {
4833 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4834 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4835 !(ND && ND->isAnonymousNamespace()))
4836 Chain.push_back(DC->getPrimaryContext());
4838 return Chain;
4841 unsigned
4842 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4843 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4844 unsigned NumSpecifiers = 0;
4845 for (DeclContext *C : llvm::reverse(DeclChain)) {
4846 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4847 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4848 ++NumSpecifiers;
4849 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4850 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4851 RD->getTypeForDecl());
4852 ++NumSpecifiers;
4855 return NumSpecifiers;
4858 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4859 DeclContext *Ctx) {
4860 NestedNameSpecifier *NNS = nullptr;
4861 unsigned NumSpecifiers = 0;
4862 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4863 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4865 // Eliminate common elements from the two DeclContext chains.
4866 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4867 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4868 break;
4869 NamespaceDeclChain.pop_back();
4872 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4873 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4875 // Add an explicit leading '::' specifier if needed.
4876 if (NamespaceDeclChain.empty()) {
4877 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4878 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4879 NumSpecifiers =
4880 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4881 } else if (NamedDecl *ND =
4882 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4883 IdentifierInfo *Name = ND->getIdentifier();
4884 bool SameNameSpecifier = false;
4885 if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
4886 std::string NewNameSpecifier;
4887 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4888 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4889 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4890 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4891 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4893 if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
4894 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4895 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4896 NumSpecifiers =
4897 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4901 // If the built NestedNameSpecifier would be replacing an existing
4902 // NestedNameSpecifier, use the number of component identifiers that
4903 // would need to be changed as the edit distance instead of the number
4904 // of components in the built NestedNameSpecifier.
4905 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4906 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4907 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4908 NumSpecifiers =
4909 llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers),
4910 llvm::ArrayRef(NewNameSpecifierIdentifiers));
4913 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4914 DistanceMap[NumSpecifiers].push_back(SI);
4917 /// Perform name lookup for a possible result for typo correction.
4918 static void LookupPotentialTypoResult(Sema &SemaRef,
4919 LookupResult &Res,
4920 IdentifierInfo *Name,
4921 Scope *S, CXXScopeSpec *SS,
4922 DeclContext *MemberContext,
4923 bool EnteringContext,
4924 bool isObjCIvarLookup,
4925 bool FindHidden) {
4926 Res.suppressDiagnostics();
4927 Res.clear();
4928 Res.setLookupName(Name);
4929 Res.setAllowHidden(FindHidden);
4930 if (MemberContext) {
4931 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4932 if (isObjCIvarLookup) {
4933 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4934 Res.addDecl(Ivar);
4935 Res.resolveKind();
4936 return;
4940 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4941 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4942 Res.addDecl(Prop);
4943 Res.resolveKind();
4944 return;
4948 SemaRef.LookupQualifiedName(Res, MemberContext);
4949 return;
4952 SemaRef.LookupParsedName(Res, S, SS,
4953 /*ObjectType=*/QualType(),
4954 /*AllowBuiltinCreation=*/false, EnteringContext);
4956 // Fake ivar lookup; this should really be part of
4957 // LookupParsedName.
4958 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4959 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4960 (Res.empty() ||
4961 (Res.isSingleResult() &&
4962 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4963 if (ObjCIvarDecl *IV
4964 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4965 Res.addDecl(IV);
4966 Res.resolveKind();
4972 /// Add keywords to the consumer as possible typo corrections.
4973 static void AddKeywordsToConsumer(Sema &SemaRef,
4974 TypoCorrectionConsumer &Consumer,
4975 Scope *S, CorrectionCandidateCallback &CCC,
4976 bool AfterNestedNameSpecifier) {
4977 if (AfterNestedNameSpecifier) {
4978 // For 'X::', we know exactly which keywords can appear next.
4979 Consumer.addKeywordResult("template");
4980 if (CCC.WantExpressionKeywords)
4981 Consumer.addKeywordResult("operator");
4982 return;
4985 if (CCC.WantObjCSuper)
4986 Consumer.addKeywordResult("super");
4988 if (CCC.WantTypeSpecifiers) {
4989 // Add type-specifier keywords to the set of results.
4990 static const char *const CTypeSpecs[] = {
4991 "char", "const", "double", "enum", "float", "int", "long", "short",
4992 "signed", "struct", "union", "unsigned", "void", "volatile",
4993 "_Complex",
4994 // storage-specifiers as well
4995 "extern", "inline", "static", "typedef"
4998 for (const auto *CTS : CTypeSpecs)
4999 Consumer.addKeywordResult(CTS);
5001 if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y)
5002 Consumer.addKeywordResult("_Imaginary");
5004 if (SemaRef.getLangOpts().C99)
5005 Consumer.addKeywordResult("restrict");
5006 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
5007 Consumer.addKeywordResult("bool");
5008 else if (SemaRef.getLangOpts().C99)
5009 Consumer.addKeywordResult("_Bool");
5011 if (SemaRef.getLangOpts().CPlusPlus) {
5012 Consumer.addKeywordResult("class");
5013 Consumer.addKeywordResult("typename");
5014 Consumer.addKeywordResult("wchar_t");
5016 if (SemaRef.getLangOpts().CPlusPlus11) {
5017 Consumer.addKeywordResult("char16_t");
5018 Consumer.addKeywordResult("char32_t");
5019 Consumer.addKeywordResult("constexpr");
5020 Consumer.addKeywordResult("decltype");
5021 Consumer.addKeywordResult("thread_local");
5025 if (SemaRef.getLangOpts().GNUKeywords)
5026 Consumer.addKeywordResult("typeof");
5027 } else if (CCC.WantFunctionLikeCasts) {
5028 static const char *const CastableTypeSpecs[] = {
5029 "char", "double", "float", "int", "long", "short",
5030 "signed", "unsigned", "void"
5032 for (auto *kw : CastableTypeSpecs)
5033 Consumer.addKeywordResult(kw);
5036 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
5037 Consumer.addKeywordResult("const_cast");
5038 Consumer.addKeywordResult("dynamic_cast");
5039 Consumer.addKeywordResult("reinterpret_cast");
5040 Consumer.addKeywordResult("static_cast");
5043 if (CCC.WantExpressionKeywords) {
5044 Consumer.addKeywordResult("sizeof");
5045 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
5046 Consumer.addKeywordResult("false");
5047 Consumer.addKeywordResult("true");
5050 if (SemaRef.getLangOpts().CPlusPlus) {
5051 static const char *const CXXExprs[] = {
5052 "delete", "new", "operator", "throw", "typeid"
5054 for (const auto *CE : CXXExprs)
5055 Consumer.addKeywordResult(CE);
5057 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
5058 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
5059 Consumer.addKeywordResult("this");
5061 if (SemaRef.getLangOpts().CPlusPlus11) {
5062 Consumer.addKeywordResult("alignof");
5063 Consumer.addKeywordResult("nullptr");
5067 if (SemaRef.getLangOpts().C11) {
5068 // FIXME: We should not suggest _Alignof if the alignof macro
5069 // is present.
5070 Consumer.addKeywordResult("_Alignof");
5074 if (CCC.WantRemainingKeywords) {
5075 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
5076 // Statements.
5077 static const char *const CStmts[] = {
5078 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5079 for (const auto *CS : CStmts)
5080 Consumer.addKeywordResult(CS);
5082 if (SemaRef.getLangOpts().CPlusPlus) {
5083 Consumer.addKeywordResult("catch");
5084 Consumer.addKeywordResult("try");
5087 if (S && S->getBreakParent())
5088 Consumer.addKeywordResult("break");
5090 if (S && S->getContinueParent())
5091 Consumer.addKeywordResult("continue");
5093 if (SemaRef.getCurFunction() &&
5094 !SemaRef.getCurFunction()->SwitchStack.empty()) {
5095 Consumer.addKeywordResult("case");
5096 Consumer.addKeywordResult("default");
5098 } else {
5099 if (SemaRef.getLangOpts().CPlusPlus) {
5100 Consumer.addKeywordResult("namespace");
5101 Consumer.addKeywordResult("template");
5104 if (S && S->isClassScope()) {
5105 Consumer.addKeywordResult("explicit");
5106 Consumer.addKeywordResult("friend");
5107 Consumer.addKeywordResult("mutable");
5108 Consumer.addKeywordResult("private");
5109 Consumer.addKeywordResult("protected");
5110 Consumer.addKeywordResult("public");
5111 Consumer.addKeywordResult("virtual");
5115 if (SemaRef.getLangOpts().CPlusPlus) {
5116 Consumer.addKeywordResult("using");
5118 if (SemaRef.getLangOpts().CPlusPlus11)
5119 Consumer.addKeywordResult("static_assert");
5124 std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
5125 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5126 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5127 DeclContext *MemberContext, bool EnteringContext,
5128 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
5130 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
5131 DisableTypoCorrection)
5132 return nullptr;
5134 // In Microsoft mode, don't perform typo correction in a template member
5135 // function dependent context because it interferes with the "lookup into
5136 // dependent bases of class templates" feature.
5137 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
5138 isa<CXXMethodDecl>(CurContext))
5139 return nullptr;
5141 // We only attempt to correct typos for identifiers.
5142 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5143 if (!Typo)
5144 return nullptr;
5146 // If the scope specifier itself was invalid, don't try to correct
5147 // typos.
5148 if (SS && SS->isInvalid())
5149 return nullptr;
5151 // Never try to correct typos during any kind of code synthesis.
5152 if (!CodeSynthesisContexts.empty())
5153 return nullptr;
5155 // Don't try to correct 'super'.
5156 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
5157 return nullptr;
5159 // Abort if typo correction already failed for this specific typo.
5160 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
5161 if (locs != TypoCorrectionFailures.end() &&
5162 locs->second.count(TypoName.getLoc()))
5163 return nullptr;
5165 // Don't try to correct the identifier "vector" when in AltiVec mode.
5166 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5167 // remove this workaround.
5168 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
5169 return nullptr;
5171 // Provide a stop gap for files that are just seriously broken. Trying
5172 // to correct all typos can turn into a HUGE performance penalty, causing
5173 // some files to take minutes to get rejected by the parser.
5174 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
5175 if (Limit && TyposCorrected >= Limit)
5176 return nullptr;
5177 ++TyposCorrected;
5179 // If we're handling a missing symbol error, using modules, and the
5180 // special search all modules option is used, look for a missing import.
5181 if (ErrorRecovery && getLangOpts().Modules &&
5182 getLangOpts().ModulesSearchAll) {
5183 // The following has the side effect of loading the missing module.
5184 getModuleLoader().lookupMissingImports(Typo->getName(),
5185 TypoName.getBeginLoc());
5188 // Extend the lifetime of the callback. We delayed this until here
5189 // to avoid allocations in the hot path (which is where no typo correction
5190 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5191 // initially stack-allocated.
5192 std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
5193 auto Consumer = std::make_unique<TypoCorrectionConsumer>(
5194 *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
5195 EnteringContext);
5197 // Perform name lookup to find visible, similarly-named entities.
5198 bool IsUnqualifiedLookup = false;
5199 DeclContext *QualifiedDC = MemberContext;
5200 if (MemberContext) {
5201 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
5203 // Look in qualified interfaces.
5204 if (OPT) {
5205 for (auto *I : OPT->quals())
5206 LookupVisibleDecls(I, LookupKind, *Consumer);
5208 } else if (SS && SS->isSet()) {
5209 QualifiedDC = computeDeclContext(*SS, EnteringContext);
5210 if (!QualifiedDC)
5211 return nullptr;
5213 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
5214 } else {
5215 IsUnqualifiedLookup = true;
5218 // Determine whether we are going to search in the various namespaces for
5219 // corrections.
5220 bool SearchNamespaces
5221 = getLangOpts().CPlusPlus &&
5222 (IsUnqualifiedLookup || (SS && SS->isSet()));
5224 if (IsUnqualifiedLookup || SearchNamespaces) {
5225 // For unqualified lookup, look through all of the names that we have
5226 // seen in this translation unit.
5227 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5228 for (const auto &I : Context.Idents)
5229 Consumer->FoundName(I.getKey());
5231 // Walk through identifiers in external identifier sources.
5232 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5233 if (IdentifierInfoLookup *External
5234 = Context.Idents.getExternalIdentifierLookup()) {
5235 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
5236 do {
5237 StringRef Name = Iter->Next();
5238 if (Name.empty())
5239 break;
5241 Consumer->FoundName(Name);
5242 } while (true);
5246 AddKeywordsToConsumer(*this, *Consumer, S,
5247 *Consumer->getCorrectionValidator(),
5248 SS && SS->isNotEmpty());
5250 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5251 // to search those namespaces.
5252 if (SearchNamespaces) {
5253 // Load any externally-known namespaces.
5254 if (ExternalSource && !LoadedExternalKnownNamespaces) {
5255 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
5256 LoadedExternalKnownNamespaces = true;
5257 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
5258 for (auto *N : ExternalKnownNamespaces)
5259 KnownNamespaces[N] = true;
5262 Consumer->addNamespaces(KnownNamespaces);
5265 return Consumer;
5268 TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
5269 Sema::LookupNameKind LookupKind,
5270 Scope *S, CXXScopeSpec *SS,
5271 CorrectionCandidateCallback &CCC,
5272 CorrectTypoKind Mode,
5273 DeclContext *MemberContext,
5274 bool EnteringContext,
5275 const ObjCObjectPointerType *OPT,
5276 bool RecordFailure) {
5277 // Always let the ExternalSource have the first chance at correction, even
5278 // if we would otherwise have given up.
5279 if (ExternalSource) {
5280 if (TypoCorrection Correction =
5281 ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
5282 MemberContext, EnteringContext, OPT))
5283 return Correction;
5286 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5287 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5288 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5289 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5290 bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
5292 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5293 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5294 MemberContext, EnteringContext,
5295 OPT, Mode == CTK_ErrorRecovery);
5297 if (!Consumer)
5298 return TypoCorrection();
5300 // If we haven't found anything, we're done.
5301 if (Consumer->empty())
5302 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5304 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5305 // is not more that about a third of the length of the typo's identifier.
5306 unsigned ED = Consumer->getBestEditDistance(true);
5307 unsigned TypoLen = Typo->getName().size();
5308 if (ED > 0 && TypoLen / ED < 3)
5309 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5311 TypoCorrection BestTC = Consumer->getNextCorrection();
5312 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
5313 if (!BestTC)
5314 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5316 ED = BestTC.getEditDistance();
5318 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
5319 // If this was an unqualified lookup and we believe the callback
5320 // object wouldn't have filtered out possible corrections, note
5321 // that no correction was found.
5322 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5325 // If only a single name remains, return that result.
5326 if (!SecondBestTC ||
5327 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
5328 const TypoCorrection &Result = BestTC;
5330 // Don't correct to a keyword that's the same as the typo; the keyword
5331 // wasn't actually in scope.
5332 if (ED == 0 && Result.isKeyword())
5333 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5335 TypoCorrection TC = Result;
5336 TC.setCorrectionRange(SS, TypoName);
5337 checkCorrectionVisibility(*this, TC);
5338 return TC;
5339 } else if (SecondBestTC && ObjCMessageReceiver) {
5340 // Prefer 'super' when we're completing in a message-receiver
5341 // context.
5343 if (BestTC.getCorrection().getAsString() != "super") {
5344 if (SecondBestTC.getCorrection().getAsString() == "super")
5345 BestTC = SecondBestTC;
5346 else if ((*Consumer)["super"].front().isKeyword())
5347 BestTC = (*Consumer)["super"].front();
5349 // Don't correct to a keyword that's the same as the typo; the keyword
5350 // wasn't actually in scope.
5351 if (BestTC.getEditDistance() == 0 ||
5352 BestTC.getCorrection().getAsString() != "super")
5353 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
5355 BestTC.setCorrectionRange(SS, TypoName);
5356 return BestTC;
5359 // Record the failure's location if needed and return an empty correction. If
5360 // this was an unqualified lookup and we believe the callback object did not
5361 // filter out possible corrections, also cache the failure for the typo.
5362 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
5365 TypoExpr *Sema::CorrectTypoDelayed(
5366 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
5367 Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
5368 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
5369 DeclContext *MemberContext, bool EnteringContext,
5370 const ObjCObjectPointerType *OPT) {
5371 auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
5372 MemberContext, EnteringContext,
5373 OPT, Mode == CTK_ErrorRecovery);
5375 // Give the external sema source a chance to correct the typo.
5376 TypoCorrection ExternalTypo;
5377 if (ExternalSource && Consumer) {
5378 ExternalTypo = ExternalSource->CorrectTypo(
5379 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
5380 MemberContext, EnteringContext, OPT);
5381 if (ExternalTypo)
5382 Consumer->addCorrection(ExternalTypo);
5385 if (!Consumer || Consumer->empty())
5386 return nullptr;
5388 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5389 // is not more that about a third of the length of the typo's identifier.
5390 unsigned ED = Consumer->getBestEditDistance(true);
5391 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
5392 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
5393 return nullptr;
5394 ExprEvalContexts.back().NumTypos++;
5395 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
5396 TypoName.getLoc());
5399 void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
5400 if (!CDecl) return;
5402 if (isKeyword())
5403 CorrectionDecls.clear();
5405 CorrectionDecls.push_back(CDecl);
5407 if (!CorrectionName)
5408 CorrectionName = CDecl->getDeclName();
5411 std::string TypoCorrection::getAsString(const LangOptions &LO) const {
5412 if (CorrectionNameSpec) {
5413 std::string tmpBuffer;
5414 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
5415 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
5416 PrefixOStream << CorrectionName;
5417 return PrefixOStream.str();
5420 return CorrectionName.getAsString();
5423 bool CorrectionCandidateCallback::ValidateCandidate(
5424 const TypoCorrection &candidate) {
5425 if (!candidate.isResolved())
5426 return true;
5428 if (candidate.isKeyword())
5429 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
5430 WantRemainingKeywords || WantObjCSuper;
5432 bool HasNonType = false;
5433 bool HasStaticMethod = false;
5434 bool HasNonStaticMethod = false;
5435 for (Decl *D : candidate) {
5436 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
5437 D = FTD->getTemplatedDecl();
5438 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
5439 if (Method->isStatic())
5440 HasStaticMethod = true;
5441 else
5442 HasNonStaticMethod = true;
5444 if (!isa<TypeDecl>(D))
5445 HasNonType = true;
5448 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
5449 !candidate.getCorrectionSpecifier())
5450 return false;
5452 return WantTypeSpecifiers || HasNonType;
5455 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
5456 bool HasExplicitTemplateArgs,
5457 MemberExpr *ME)
5458 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
5459 CurContext(SemaRef.CurContext), MemberFn(ME) {
5460 WantTypeSpecifiers = false;
5461 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
5462 !HasExplicitTemplateArgs && NumArgs == 1;
5463 WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
5464 WantRemainingKeywords = false;
5467 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
5468 if (!candidate.getCorrectionDecl())
5469 return candidate.isKeyword();
5471 for (auto *C : candidate) {
5472 FunctionDecl *FD = nullptr;
5473 NamedDecl *ND = C->getUnderlyingDecl();
5474 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
5475 FD = FTD->getTemplatedDecl();
5476 if (!HasExplicitTemplateArgs && !FD) {
5477 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
5478 // If the Decl is neither a function nor a template function,
5479 // determine if it is a pointer or reference to a function. If so,
5480 // check against the number of arguments expected for the pointee.
5481 QualType ValType = cast<ValueDecl>(ND)->getType();
5482 if (ValType.isNull())
5483 continue;
5484 if (ValType->isAnyPointerType() || ValType->isReferenceType())
5485 ValType = ValType->getPointeeType();
5486 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
5487 if (FPT->getNumParams() == NumArgs)
5488 return true;
5492 // A typo for a function-style cast can look like a function call in C++.
5493 if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
5494 : isa<TypeDecl>(ND)) &&
5495 CurContext->getParentASTContext().getLangOpts().CPlusPlus)
5496 // Only a class or class template can take two or more arguments.
5497 return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
5499 // Skip the current candidate if it is not a FunctionDecl or does not accept
5500 // the current number of arguments.
5501 if (!FD || !(FD->getNumParams() >= NumArgs &&
5502 FD->getMinRequiredArguments() <= NumArgs))
5503 continue;
5505 // If the current candidate is a non-static C++ method, skip the candidate
5506 // unless the method being corrected--or the current DeclContext, if the
5507 // function being corrected is not a method--is a method in the same class
5508 // or a descendent class of the candidate's parent class.
5509 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
5510 if (MemberFn || !MD->isStatic()) {
5511 const auto *CurMD =
5512 MemberFn
5513 ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl())
5514 : dyn_cast_if_present<CXXMethodDecl>(CurContext);
5515 const CXXRecordDecl *CurRD =
5516 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
5517 const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
5518 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
5519 continue;
5522 return true;
5524 return false;
5527 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5528 const PartialDiagnostic &TypoDiag,
5529 bool ErrorRecovery) {
5530 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
5531 ErrorRecovery);
5534 /// Find which declaration we should import to provide the definition of
5535 /// the given declaration.
5536 static const NamedDecl *getDefinitionToImport(const NamedDecl *D) {
5537 if (const auto *VD = dyn_cast<VarDecl>(D))
5538 return VD->getDefinition();
5539 if (const auto *FD = dyn_cast<FunctionDecl>(D))
5540 return FD->getDefinition();
5541 if (const auto *TD = dyn_cast<TagDecl>(D))
5542 return TD->getDefinition();
5543 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D))
5544 return ID->getDefinition();
5545 if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D))
5546 return PD->getDefinition();
5547 if (const auto *TD = dyn_cast<TemplateDecl>(D))
5548 if (const NamedDecl *TTD = TD->getTemplatedDecl())
5549 return getDefinitionToImport(TTD);
5550 return nullptr;
5553 void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl,
5554 MissingImportKind MIK, bool Recover) {
5555 // Suggest importing a module providing the definition of this entity, if
5556 // possible.
5557 const NamedDecl *Def = getDefinitionToImport(Decl);
5558 if (!Def)
5559 Def = Decl;
5561 Module *Owner = getOwningModule(Def);
5562 assert(Owner && "definition of hidden declaration is not in a module");
5564 llvm::SmallVector<Module*, 8> OwningModules;
5565 OwningModules.push_back(Owner);
5566 auto Merged = Context.getModulesWithMergedDefinition(Def);
5567 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
5569 diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
5570 Recover);
5573 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5574 /// suggesting the addition of a #include of the specified file.
5575 static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E,
5576 llvm::StringRef IncludingFile) {
5577 bool IsAngled = false;
5578 auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5579 E, IncludingFile, &IsAngled);
5580 return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"');
5583 void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl,
5584 SourceLocation DeclLoc,
5585 ArrayRef<Module *> Modules,
5586 MissingImportKind MIK, bool Recover) {
5587 assert(!Modules.empty());
5589 // See https://github.com/llvm/llvm-project/issues/73893. It is generally
5590 // confusing than helpful to show the namespace is not visible.
5591 if (isa<NamespaceDecl>(Decl))
5592 return;
5594 auto NotePrevious = [&] {
5595 // FIXME: Suppress the note backtrace even under
5596 // -fdiagnostics-show-note-include-stack. We don't care how this
5597 // declaration was previously reached.
5598 Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
5601 // Weed out duplicates from module list.
5602 llvm::SmallVector<Module*, 8> UniqueModules;
5603 llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
5604 for (auto *M : Modules) {
5605 if (M->isExplicitGlobalModule() || M->isPrivateModule())
5606 continue;
5607 if (UniqueModuleSet.insert(M).second)
5608 UniqueModules.push_back(M);
5611 // Try to find a suitable header-name to #include.
5612 std::string HeaderName;
5613 if (OptionalFileEntryRef Header =
5614 PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5615 if (const FileEntry *FE =
5616 SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
5617 HeaderName =
5618 getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName());
5621 // If we have a #include we should suggest, or if all definition locations
5622 // were in global module fragments, don't suggest an import.
5623 if (!HeaderName.empty() || UniqueModules.empty()) {
5624 // FIXME: Find a smart place to suggest inserting a #include, and add
5625 // a FixItHint there.
5626 Diag(UseLoc, diag::err_module_unimported_use_header)
5627 << (int)MIK << Decl << !HeaderName.empty() << HeaderName;
5628 // Produce a note showing where the entity was declared.
5629 NotePrevious();
5630 if (Recover)
5631 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5632 return;
5635 Modules = UniqueModules;
5637 auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string {
5638 if (M->isModuleMapModule())
5639 return M->getFullModuleName();
5641 if (M->isImplicitGlobalModule())
5642 M = M->getTopLevelModule();
5644 // If the current module unit is in the same module with M, it is OK to show
5645 // the partition name. Otherwise, it'll be sufficient to show the primary
5646 // module name.
5647 if (getASTContext().isInSameModule(M, getCurrentModule()))
5648 return M->getTopLevelModuleName().str();
5649 else
5650 return M->getPrimaryModuleInterfaceName().str();
5653 if (Modules.size() > 1) {
5654 std::string ModuleList;
5655 unsigned N = 0;
5656 for (const auto *M : Modules) {
5657 ModuleList += "\n ";
5658 if (++N == 5 && N != Modules.size()) {
5659 ModuleList += "[...]";
5660 break;
5662 ModuleList += GetModuleNameForDiagnostic(M);
5665 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5666 << (int)MIK << Decl << ModuleList;
5667 } else {
5668 // FIXME: Add a FixItHint that imports the corresponding module.
5669 Diag(UseLoc, diag::err_module_unimported_use)
5670 << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]);
5673 NotePrevious();
5675 // Try to recover by implicitly importing this module.
5676 if (Recover)
5677 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5680 void Sema::diagnoseTypo(const TypoCorrection &Correction,
5681 const PartialDiagnostic &TypoDiag,
5682 const PartialDiagnostic &PrevNote,
5683 bool ErrorRecovery) {
5684 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5685 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5686 FixItHint FixTypo = FixItHint::CreateReplacement(
5687 Correction.getCorrectionRange(), CorrectedStr);
5689 // Maybe we're just missing a module import.
5690 if (Correction.requiresImport()) {
5691 NamedDecl *Decl = Correction.getFoundDecl();
5692 assert(Decl && "import required but no declaration to import");
5694 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5695 MissingImportKind::Declaration, ErrorRecovery);
5696 return;
5699 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5700 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5702 NamedDecl *ChosenDecl =
5703 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5705 // For builtin functions which aren't declared anywhere in source,
5706 // don't emit the "declared here" note.
5707 if (const auto *FD = dyn_cast_if_present<FunctionDecl>(ChosenDecl);
5708 FD && FD->getBuiltinID() &&
5709 PrevNote.getDiagID() == diag::note_previous_decl &&
5710 Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) {
5711 ChosenDecl = nullptr;
5714 if (PrevNote.getDiagID() && ChosenDecl)
5715 Diag(ChosenDecl->getLocation(), PrevNote)
5716 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5718 // Add any extra diagnostics.
5719 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5720 Diag(Correction.getCorrectionRange().getBegin(), PD);
5723 TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5724 TypoDiagnosticGenerator TDG,
5725 TypoRecoveryCallback TRC,
5726 SourceLocation TypoLoc) {
5727 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
5728 auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
5729 auto &State = DelayedTypos[TE];
5730 State.Consumer = std::move(TCC);
5731 State.DiagHandler = std::move(TDG);
5732 State.RecoveryHandler = std::move(TRC);
5733 if (TE)
5734 TypoExprs.push_back(TE);
5735 return TE;
5738 const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5739 auto Entry = DelayedTypos.find(TE);
5740 assert(Entry != DelayedTypos.end() &&
5741 "Failed to get the state for a TypoExpr!");
5742 return Entry->second;
5745 void Sema::clearDelayedTypo(TypoExpr *TE) {
5746 DelayedTypos.erase(TE);
5749 void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5750 DeclarationNameInfo Name(II, IILoc);
5751 LookupResult R(*this, Name, LookupAnyName,
5752 RedeclarationKind::NotForRedeclaration);
5753 R.suppressDiagnostics();
5754 R.setHideTags(false);
5755 LookupName(R, S);
5756 R.dump();
5759 void Sema::ActOnPragmaDump(Expr *E) {
5760 E->dump();
5763 RedeclarationKind Sema::forRedeclarationInCurContext() const {
5764 // A declaration with an owning module for linkage can never link against
5765 // anything that is not visible. We don't need to check linkage here; if
5766 // the context has internal linkage, redeclaration lookup won't find things
5767 // from other TUs, and we can't safely compute linkage yet in general.
5768 if (cast<Decl>(CurContext)->getOwningModuleForLinkage())
5769 return RedeclarationKind::ForVisibleRedeclaration;
5770 return RedeclarationKind::ForExternalRedeclaration;