1 //===--- SemaOpenMP.cpp - Semantic Analysis for OpenMP constructs ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements semantic analysis for OpenMP directives and
12 //===----------------------------------------------------------------------===//
14 #include "clang/Sema/SemaOpenMP.h"
16 #include "TreeTransform.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclOpenMP.h"
23 #include "clang/AST/DynamicRecursiveASTVisitor.h"
24 #include "clang/AST/OpenMPClause.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/StmtOpenMP.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/OpenMPKinds.h"
30 #include "clang/Basic/PartialDiagnostic.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Sema/EnterExpressionEvaluationContext.h"
33 #include "clang/Sema/Initialization.h"
34 #include "clang/Sema/Lookup.h"
35 #include "clang/Sema/ParsedAttr.h"
36 #include "clang/Sema/Scope.h"
37 #include "clang/Sema/ScopeInfo.h"
38 #include "clang/Sema/Sema.h"
39 #include "llvm/ADT/IndexedMap.h"
40 #include "llvm/ADT/PointerEmbeddedInt.h"
41 #include "llvm/ADT/STLExtras.h"
42 #include "llvm/ADT/Sequence.h"
43 #include "llvm/ADT/SetVector.h"
44 #include "llvm/ADT/SmallSet.h"
45 #include "llvm/ADT/StringExtras.h"
46 #include "llvm/Frontend/OpenMP/OMPAssume.h"
47 #include "llvm/Frontend/OpenMP/OMPConstants.h"
48 #include "llvm/IR/Assumptions.h"
51 using namespace clang
;
52 using namespace llvm::omp
;
54 //===----------------------------------------------------------------------===//
55 // Stack of data-sharing attributes for variables
56 //===----------------------------------------------------------------------===//
58 static const Expr
*checkMapClauseExpressionBase(
59 Sema
&SemaRef
, Expr
*E
,
60 OMPClauseMappableExprCommon::MappableExprComponentList
&CurComponents
,
61 OpenMPClauseKind CKind
, OpenMPDirectiveKind DKind
, bool NoDiagnose
);
64 /// Default data sharing attributes, which can be applied to directive.
65 enum DefaultDataSharingAttributes
{
66 DSA_unspecified
= 0, /// Data sharing attribute not specified.
67 DSA_none
= 1 << 0, /// Default data sharing attribute 'none'.
68 DSA_shared
= 1 << 1, /// Default data sharing attribute 'shared'.
69 DSA_private
= 1 << 2, /// Default data sharing attribute 'private'.
70 DSA_firstprivate
= 1 << 3, /// Default data sharing attribute 'firstprivate'.
73 /// Stack for tracking declarations used in OpenMP directives and
74 /// clauses and their data-sharing attributes.
78 OpenMPDirectiveKind DKind
= OMPD_unknown
;
79 OpenMPClauseKind CKind
= OMPC_unknown
;
80 unsigned Modifier
= 0;
81 const Expr
*RefExpr
= nullptr;
82 DeclRefExpr
*PrivateCopy
= nullptr;
83 SourceLocation ImplicitDSALoc
;
84 bool AppliedToPointee
= false;
85 DSAVarData() = default;
86 DSAVarData(OpenMPDirectiveKind DKind
, OpenMPClauseKind CKind
,
87 const Expr
*RefExpr
, DeclRefExpr
*PrivateCopy
,
88 SourceLocation ImplicitDSALoc
, unsigned Modifier
,
89 bool AppliedToPointee
)
90 : DKind(DKind
), CKind(CKind
), Modifier(Modifier
), RefExpr(RefExpr
),
91 PrivateCopy(PrivateCopy
), ImplicitDSALoc(ImplicitDSALoc
),
92 AppliedToPointee(AppliedToPointee
) {}
94 using OperatorOffsetTy
=
95 llvm::SmallVector
<std::pair
<Expr
*, OverloadedOperatorKind
>, 4>;
96 using DoacrossClauseMapTy
= llvm::DenseMap
<OMPClause
*, OperatorOffsetTy
>;
97 /// Kind of the declaration used in the uses_allocators clauses.
98 enum class UsesAllocatorsDeclKind
{
99 /// Predefined allocator
101 /// User-defined allocator
102 UserDefinedAllocator
,
103 /// The declaration that represent allocator trait
109 OpenMPClauseKind Attributes
= OMPC_unknown
;
110 unsigned Modifier
= 0;
111 /// Pointer to a reference expression and a flag which shows that the
112 /// variable is marked as lastprivate(true) or not (false).
113 llvm::PointerIntPair
<const Expr
*, 1, bool> RefExpr
;
114 DeclRefExpr
*PrivateCopy
= nullptr;
115 /// true if the attribute is applied to the pointee, not the variable
117 bool AppliedToPointee
= false;
119 using DeclSAMapTy
= llvm::SmallDenseMap
<const ValueDecl
*, DSAInfo
, 8>;
120 using UsedRefMapTy
= llvm::SmallDenseMap
<const ValueDecl
*, const Expr
*, 8>;
121 using LCDeclInfo
= std::pair
<unsigned, VarDecl
*>;
122 using LoopControlVariablesMapTy
=
123 llvm::SmallDenseMap
<const ValueDecl
*, LCDeclInfo
, 8>;
124 /// Struct that associates a component with the clause kind where they are
126 struct MappedExprComponentTy
{
127 OMPClauseMappableExprCommon::MappableExprComponentLists Components
;
128 OpenMPClauseKind Kind
= OMPC_unknown
;
130 using MappedExprComponentsTy
=
131 llvm::DenseMap
<const ValueDecl
*, MappedExprComponentTy
>;
132 using CriticalsWithHintsTy
=
133 llvm::StringMap
<std::pair
<const OMPCriticalDirective
*, llvm::APSInt
>>;
134 struct ReductionData
{
135 using BOKPtrType
= llvm::PointerEmbeddedInt
<BinaryOperatorKind
, 16>;
136 SourceRange ReductionRange
;
137 llvm::PointerUnion
<const Expr
*, BOKPtrType
> ReductionOp
;
138 ReductionData() = default;
139 void set(BinaryOperatorKind BO
, SourceRange RR
) {
143 void set(const Expr
*RefExpr
, SourceRange RR
) {
145 ReductionOp
= RefExpr
;
148 using DeclReductionMapTy
=
149 llvm::SmallDenseMap
<const ValueDecl
*, ReductionData
, 4>;
150 struct DefaultmapInfo
{
151 OpenMPDefaultmapClauseModifier ImplicitBehavior
=
152 OMPC_DEFAULTMAP_MODIFIER_unknown
;
154 DefaultmapInfo() = default;
155 DefaultmapInfo(OpenMPDefaultmapClauseModifier M
, SourceLocation Loc
)
156 : ImplicitBehavior(M
), SLoc(Loc
) {}
159 struct SharingMapTy
{
160 DeclSAMapTy SharingMap
;
161 DeclReductionMapTy ReductionMap
;
162 UsedRefMapTy AlignedMap
;
163 UsedRefMapTy NontemporalMap
;
164 MappedExprComponentsTy MappedExprComponents
;
165 LoopControlVariablesMapTy LCVMap
;
166 DefaultDataSharingAttributes DefaultAttr
= DSA_unspecified
;
167 SourceLocation DefaultAttrLoc
;
168 DefaultmapInfo DefaultmapMap
[OMPC_DEFAULTMAP_unknown
+ 1];
169 OpenMPDirectiveKind Directive
= OMPD_unknown
;
170 DeclarationNameInfo DirectiveName
;
171 Scope
*CurScope
= nullptr;
172 DeclContext
*Context
= nullptr;
173 SourceLocation ConstructLoc
;
174 /// Set of 'depend' clauses with 'sink|source' dependence kind. Required to
175 /// get the data (loop counters etc.) about enclosing loop-based construct.
176 /// This data is required during codegen.
177 DoacrossClauseMapTy DoacrossDepends
;
178 /// First argument (Expr *) contains optional argument of the
179 /// 'ordered' clause, the second one is true if the regions has 'ordered'
180 /// clause, false otherwise.
181 std::optional
<std::pair
<const Expr
*, OMPOrderedClause
*>> OrderedRegion
;
182 bool RegionHasOrderConcurrent
= false;
183 unsigned AssociatedLoops
= 1;
184 bool HasMutipleLoops
= false;
185 const Decl
*PossiblyLoopCounter
= nullptr;
186 bool NowaitRegion
= false;
187 bool UntiedRegion
= false;
188 bool CancelRegion
= false;
189 bool LoopStart
= false;
190 bool BodyComplete
= false;
191 SourceLocation PrevScanLocation
;
192 SourceLocation PrevOrderedLocation
;
193 SourceLocation InnerTeamsRegionLoc
;
194 /// Reference to the taskgroup task_reduction reference expression.
195 Expr
*TaskgroupReductionRef
= nullptr;
196 llvm::DenseSet
<QualType
> MappedClassesQualTypes
;
197 SmallVector
<Expr
*, 4> InnerUsedAllocators
;
198 llvm::DenseSet
<CanonicalDeclPtr
<Decl
>> ImplicitTaskFirstprivates
;
199 /// List of globals marked as declare target link in this target region
200 /// (isOpenMPTargetExecutionDirective(Directive) == true).
201 llvm::SmallVector
<DeclRefExpr
*, 4> DeclareTargetLinkVarDecls
;
202 /// List of decls used in inclusive/exclusive clauses of the scan directive.
203 llvm::DenseSet
<CanonicalDeclPtr
<Decl
>> UsedInScanDirective
;
204 llvm::DenseMap
<CanonicalDeclPtr
<const Decl
>, UsesAllocatorsDeclKind
>
206 /// Data is required on creating capture fields for implicit
207 /// default first|private clause.
208 struct ImplicitDefaultFDInfoTy
{
210 const FieldDecl
*FD
= nullptr;
211 /// Nesting stack level
212 size_t StackLevel
= 0;
213 /// Capture variable decl.
214 VarDecl
*VD
= nullptr;
215 ImplicitDefaultFDInfoTy(const FieldDecl
*FD
, size_t StackLevel
,
217 : FD(FD
), StackLevel(StackLevel
), VD(VD
) {}
219 /// List of captured fields
220 llvm::SmallVector
<ImplicitDefaultFDInfoTy
, 8>
221 ImplicitDefaultFirstprivateFDs
;
222 Expr
*DeclareMapperVar
= nullptr;
223 SmallVector
<VarDecl
*, 16> IteratorVarDecls
;
224 SharingMapTy(OpenMPDirectiveKind DKind
, DeclarationNameInfo Name
,
225 Scope
*CurScope
, SourceLocation Loc
)
226 : Directive(DKind
), DirectiveName(Name
), CurScope(CurScope
),
228 SharingMapTy() = default;
231 using StackTy
= SmallVector
<SharingMapTy
, 4>;
233 /// Stack of used declaration and their data-sharing attributes.
234 DeclSAMapTy Threadprivates
;
235 const FunctionScopeInfo
*CurrentNonCapturingFunctionScope
= nullptr;
236 SmallVector
<std::pair
<StackTy
, const FunctionScopeInfo
*>, 4> Stack
;
237 /// true, if check for DSA must be from parent directive, false, if
238 /// from current directive.
239 OpenMPClauseKind ClauseKindMode
= OMPC_unknown
;
241 bool ForceCapturing
= false;
242 /// true if all the variables in the target executable directives must be
243 /// captured by reference.
244 bool ForceCaptureByReferenceInTargetExecutable
= false;
245 CriticalsWithHintsTy Criticals
;
246 unsigned IgnoredStackElements
= 0;
248 /// Iterators over the stack iterate in order from innermost to outermost
250 using const_iterator
= StackTy::const_reverse_iterator
;
251 const_iterator
begin() const {
252 return Stack
.empty() ? const_iterator()
253 : Stack
.back().first
.rbegin() + IgnoredStackElements
;
255 const_iterator
end() const {
256 return Stack
.empty() ? const_iterator() : Stack
.back().first
.rend();
258 using iterator
= StackTy::reverse_iterator
;
260 return Stack
.empty() ? iterator()
261 : Stack
.back().first
.rbegin() + IgnoredStackElements
;
264 return Stack
.empty() ? iterator() : Stack
.back().first
.rend();
267 // Convenience operations to get at the elements of the stack.
269 bool isStackEmpty() const {
270 return Stack
.empty() ||
271 Stack
.back().second
!= CurrentNonCapturingFunctionScope
||
272 Stack
.back().first
.size() <= IgnoredStackElements
;
274 size_t getStackSize() const {
275 return isStackEmpty() ? 0
276 : Stack
.back().first
.size() - IgnoredStackElements
;
279 SharingMapTy
*getTopOfStackOrNull() {
280 size_t Size
= getStackSize();
283 return &Stack
.back().first
[Size
- 1];
285 const SharingMapTy
*getTopOfStackOrNull() const {
286 return const_cast<DSAStackTy
&>(*this).getTopOfStackOrNull();
288 SharingMapTy
&getTopOfStack() {
289 assert(!isStackEmpty() && "no current directive");
290 return *getTopOfStackOrNull();
292 const SharingMapTy
&getTopOfStack() const {
293 return const_cast<DSAStackTy
&>(*this).getTopOfStack();
296 SharingMapTy
*getSecondOnStackOrNull() {
297 size_t Size
= getStackSize();
300 return &Stack
.back().first
[Size
- 2];
302 const SharingMapTy
*getSecondOnStackOrNull() const {
303 return const_cast<DSAStackTy
&>(*this).getSecondOnStackOrNull();
306 /// Get the stack element at a certain level (previously returned by
307 /// \c getNestingLevel).
309 /// Note that nesting levels count from outermost to innermost, and this is
310 /// the reverse of our iteration order where new inner levels are pushed at
311 /// the front of the stack.
312 SharingMapTy
&getStackElemAtLevel(unsigned Level
) {
313 assert(Level
< getStackSize() && "no such stack element");
314 return Stack
.back().first
[Level
];
316 const SharingMapTy
&getStackElemAtLevel(unsigned Level
) const {
317 return const_cast<DSAStackTy
&>(*this).getStackElemAtLevel(Level
);
320 DSAVarData
getDSA(const_iterator
&Iter
, ValueDecl
*D
) const;
322 /// Checks if the variable is a local for OpenMP region.
323 bool isOpenMPLocal(VarDecl
*D
, const_iterator Iter
) const;
325 /// Vector of previously declared requires directives
326 SmallVector
<const OMPRequiresDecl
*, 2> RequiresDecls
;
327 /// omp_allocator_handle_t type.
328 QualType OMPAllocatorHandleT
;
329 /// omp_depend_t type.
331 /// omp_event_handle_t type.
332 QualType OMPEventHandleT
;
333 /// omp_alloctrait_t type.
334 QualType OMPAlloctraitT
;
335 /// Expression for the predefined allocators.
336 Expr
*OMPPredefinedAllocators
[OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
] = {
338 /// Vector of previously encountered target directives
339 SmallVector
<SourceLocation
, 2> TargetLocations
;
340 SourceLocation AtomicLocation
;
341 /// Vector of declare variant construct traits.
342 SmallVector
<llvm::omp::TraitProperty
, 8> ConstructTraits
;
345 explicit DSAStackTy(Sema
&S
) : SemaRef(S
) {}
347 /// Sets omp_allocator_handle_t type.
348 void setOMPAllocatorHandleT(QualType Ty
) { OMPAllocatorHandleT
= Ty
; }
349 /// Gets omp_allocator_handle_t type.
350 QualType
getOMPAllocatorHandleT() const { return OMPAllocatorHandleT
; }
351 /// Sets omp_alloctrait_t type.
352 void setOMPAlloctraitT(QualType Ty
) { OMPAlloctraitT
= Ty
; }
353 /// Gets omp_alloctrait_t type.
354 QualType
getOMPAlloctraitT() const { return OMPAlloctraitT
; }
355 /// Sets the given default allocator.
356 void setAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
,
358 OMPPredefinedAllocators
[AllocatorKind
] = Allocator
;
360 /// Returns the specified default allocator.
361 Expr
*getAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
) const {
362 return OMPPredefinedAllocators
[AllocatorKind
];
364 /// Sets omp_depend_t type.
365 void setOMPDependT(QualType Ty
) { OMPDependT
= Ty
; }
366 /// Gets omp_depend_t type.
367 QualType
getOMPDependT() const { return OMPDependT
; }
369 /// Sets omp_event_handle_t type.
370 void setOMPEventHandleT(QualType Ty
) { OMPEventHandleT
= Ty
; }
371 /// Gets omp_event_handle_t type.
372 QualType
getOMPEventHandleT() const { return OMPEventHandleT
; }
374 bool isClauseParsingMode() const { return ClauseKindMode
!= OMPC_unknown
; }
375 OpenMPClauseKind
getClauseParsingMode() const {
376 assert(isClauseParsingMode() && "Must be in clause parsing mode.");
377 return ClauseKindMode
;
379 void setClauseParsingMode(OpenMPClauseKind K
) { ClauseKindMode
= K
; }
381 bool isBodyComplete() const {
382 const SharingMapTy
*Top
= getTopOfStackOrNull();
383 return Top
&& Top
->BodyComplete
;
385 void setBodyComplete() { getTopOfStack().BodyComplete
= true; }
387 bool isForceVarCapturing() const { return ForceCapturing
; }
388 void setForceVarCapturing(bool V
) { ForceCapturing
= V
; }
390 void setForceCaptureByReferenceInTargetExecutable(bool V
) {
391 ForceCaptureByReferenceInTargetExecutable
= V
;
393 bool isForceCaptureByReferenceInTargetExecutable() const {
394 return ForceCaptureByReferenceInTargetExecutable
;
397 void push(OpenMPDirectiveKind DKind
, const DeclarationNameInfo
&DirName
,
398 Scope
*CurScope
, SourceLocation Loc
) {
399 assert(!IgnoredStackElements
&&
400 "cannot change stack while ignoring elements");
402 Stack
.back().second
!= CurrentNonCapturingFunctionScope
)
403 Stack
.emplace_back(StackTy(), CurrentNonCapturingFunctionScope
);
404 Stack
.back().first
.emplace_back(DKind
, DirName
, CurScope
, Loc
);
405 Stack
.back().first
.back().DefaultAttrLoc
= Loc
;
409 assert(!IgnoredStackElements
&&
410 "cannot change stack while ignoring elements");
411 assert(!Stack
.back().first
.empty() &&
412 "Data-sharing attributes stack is empty!");
413 Stack
.back().first
.pop_back();
416 /// RAII object to temporarily leave the scope of a directive when we want to
417 /// logically operate in its parent.
418 class ParentDirectiveScope
{
423 ParentDirectiveScope(DSAStackTy
&Self
, bool Activate
)
424 : Self(Self
), Active(false) {
428 ~ParentDirectiveScope() { disable(); }
431 --Self
.IgnoredStackElements
;
437 ++Self
.IgnoredStackElements
;
443 /// Marks that we're started loop parsing.
445 assert(isOpenMPLoopDirective(getCurrentDirective()) &&
446 "Expected loop-based directive.");
447 getTopOfStack().LoopStart
= true;
449 /// Start capturing of the variables in the loop context.
451 assert(isOpenMPLoopDirective(getCurrentDirective()) &&
452 "Expected loop-based directive.");
453 getTopOfStack().LoopStart
= false;
455 /// true, if variables are captured, false otherwise.
456 bool isLoopStarted() const {
457 assert(isOpenMPLoopDirective(getCurrentDirective()) &&
458 "Expected loop-based directive.");
459 return !getTopOfStack().LoopStart
;
461 /// Marks (or clears) declaration as possibly loop counter.
462 void resetPossibleLoopCounter(const Decl
*D
= nullptr) {
463 getTopOfStack().PossiblyLoopCounter
= D
? D
->getCanonicalDecl() : D
;
465 /// Gets the possible loop counter decl.
466 const Decl
*getPossiblyLoopCounter() const {
467 return getTopOfStack().PossiblyLoopCounter
;
469 /// Start new OpenMP region stack in new non-capturing function.
470 void pushFunction() {
471 assert(!IgnoredStackElements
&&
472 "cannot change stack while ignoring elements");
473 const FunctionScopeInfo
*CurFnScope
= SemaRef
.getCurFunction();
474 assert(!isa
<CapturingScopeInfo
>(CurFnScope
));
475 CurrentNonCapturingFunctionScope
= CurFnScope
;
477 /// Pop region stack for non-capturing function.
478 void popFunction(const FunctionScopeInfo
*OldFSI
) {
479 assert(!IgnoredStackElements
&&
480 "cannot change stack while ignoring elements");
481 if (!Stack
.empty() && Stack
.back().second
== OldFSI
) {
482 assert(Stack
.back().first
.empty());
485 CurrentNonCapturingFunctionScope
= nullptr;
486 for (const FunctionScopeInfo
*FSI
: llvm::reverse(SemaRef
.FunctionScopes
)) {
487 if (!isa
<CapturingScopeInfo
>(FSI
)) {
488 CurrentNonCapturingFunctionScope
= FSI
;
494 void addCriticalWithHint(const OMPCriticalDirective
*D
, llvm::APSInt Hint
) {
495 Criticals
.try_emplace(D
->getDirectiveName().getAsString(), D
, Hint
);
497 const std::pair
<const OMPCriticalDirective
*, llvm::APSInt
>
498 getCriticalWithHint(const DeclarationNameInfo
&Name
) const {
499 auto I
= Criticals
.find(Name
.getAsString());
500 if (I
!= Criticals
.end())
502 return std::make_pair(nullptr, llvm::APSInt());
504 /// If 'aligned' declaration for given variable \a D was not seen yet,
505 /// add it and return NULL; otherwise return previous occurrence's expression
507 const Expr
*addUniqueAligned(const ValueDecl
*D
, const Expr
*NewDE
);
508 /// If 'nontemporal' declaration for given variable \a D was not seen yet,
509 /// add it and return NULL; otherwise return previous occurrence's expression
511 const Expr
*addUniqueNontemporal(const ValueDecl
*D
, const Expr
*NewDE
);
513 /// Register specified variable as loop control variable.
514 void addLoopControlVariable(const ValueDecl
*D
, VarDecl
*Capture
);
515 /// Check if the specified variable is a loop control variable for
517 /// \return The index of the loop control variable in the list of associated
518 /// for-loops (from outer to inner).
519 const LCDeclInfo
isLoopControlVariable(const ValueDecl
*D
) const;
520 /// Check if the specified variable is a loop control variable for
522 /// \return The index of the loop control variable in the list of associated
523 /// for-loops (from outer to inner).
524 const LCDeclInfo
isParentLoopControlVariable(const ValueDecl
*D
) const;
525 /// Check if the specified variable is a loop control variable for
527 /// \return The index of the loop control variable in the list of associated
528 /// for-loops (from outer to inner).
529 const LCDeclInfo
isLoopControlVariable(const ValueDecl
*D
,
530 unsigned Level
) const;
531 /// Get the loop control variable for the I-th loop (or nullptr) in
532 /// parent directive.
533 const ValueDecl
*getParentLoopControlVariable(unsigned I
) const;
535 /// Marks the specified decl \p D as used in scan directive.
536 void markDeclAsUsedInScanDirective(ValueDecl
*D
) {
537 if (SharingMapTy
*Stack
= getSecondOnStackOrNull())
538 Stack
->UsedInScanDirective
.insert(D
);
541 /// Checks if the specified declaration was used in the inner scan directive.
542 bool isUsedInScanDirective(ValueDecl
*D
) const {
543 if (const SharingMapTy
*Stack
= getTopOfStackOrNull())
544 return Stack
->UsedInScanDirective
.contains(D
);
548 /// Adds explicit data sharing attribute to the specified declaration.
549 void addDSA(const ValueDecl
*D
, const Expr
*E
, OpenMPClauseKind A
,
550 DeclRefExpr
*PrivateCopy
= nullptr, unsigned Modifier
= 0,
551 bool AppliedToPointee
= false);
553 /// Adds additional information for the reduction items with the reduction id
554 /// represented as an operator.
555 void addTaskgroupReductionData(const ValueDecl
*D
, SourceRange SR
,
556 BinaryOperatorKind BOK
);
557 /// Adds additional information for the reduction items with the reduction id
558 /// represented as reduction identifier.
559 void addTaskgroupReductionData(const ValueDecl
*D
, SourceRange SR
,
560 const Expr
*ReductionRef
);
561 /// Returns the location and reduction operation from the innermost parent
562 /// region for the given \p D.
564 getTopMostTaskgroupReductionData(const ValueDecl
*D
, SourceRange
&SR
,
565 BinaryOperatorKind
&BOK
,
566 Expr
*&TaskgroupDescriptor
) const;
567 /// Returns the location and reduction operation from the innermost parent
568 /// region for the given \p D.
570 getTopMostTaskgroupReductionData(const ValueDecl
*D
, SourceRange
&SR
,
571 const Expr
*&ReductionRef
,
572 Expr
*&TaskgroupDescriptor
) const;
573 /// Return reduction reference expression for the current taskgroup or
574 /// parallel/worksharing directives with task reductions.
575 Expr
*getTaskgroupReductionRef() const {
576 assert((getTopOfStack().Directive
== OMPD_taskgroup
||
577 ((isOpenMPParallelDirective(getTopOfStack().Directive
) ||
578 isOpenMPWorksharingDirective(getTopOfStack().Directive
)) &&
579 !isOpenMPSimdDirective(getTopOfStack().Directive
))) &&
580 "taskgroup reference expression requested for non taskgroup or "
581 "parallel/worksharing directive.");
582 return getTopOfStack().TaskgroupReductionRef
;
584 /// Checks if the given \p VD declaration is actually a taskgroup reduction
585 /// descriptor variable at the \p Level of OpenMP regions.
586 bool isTaskgroupReductionRef(const ValueDecl
*VD
, unsigned Level
) const {
587 return getStackElemAtLevel(Level
).TaskgroupReductionRef
&&
588 cast
<DeclRefExpr
>(getStackElemAtLevel(Level
).TaskgroupReductionRef
)
592 /// Returns data sharing attributes from top of the stack for the
593 /// specified declaration.
594 const DSAVarData
getTopDSA(ValueDecl
*D
, bool FromParent
);
595 /// Returns data-sharing attributes for the specified declaration.
596 const DSAVarData
getImplicitDSA(ValueDecl
*D
, bool FromParent
) const;
597 /// Returns data-sharing attributes for the specified declaration.
598 const DSAVarData
getImplicitDSA(ValueDecl
*D
, unsigned Level
) const;
599 /// Checks if the specified variables has data-sharing attributes which
600 /// match specified \a CPred predicate in any directive which matches \a DPred
604 const llvm::function_ref
<bool(OpenMPClauseKind
, bool,
605 DefaultDataSharingAttributes
)>
607 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
608 bool FromParent
) const;
609 /// Checks if the specified variables has data-sharing attributes which
610 /// match specified \a CPred predicate in any innermost directive which
611 /// matches \a DPred predicate.
613 hasInnermostDSA(ValueDecl
*D
,
614 const llvm::function_ref
<bool(OpenMPClauseKind
, bool)> CPred
,
615 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
616 bool FromParent
) const;
617 /// Checks if the specified variables has explicit data-sharing
618 /// attributes which match specified \a CPred predicate at the specified
621 hasExplicitDSA(const ValueDecl
*D
,
622 const llvm::function_ref
<bool(OpenMPClauseKind
, bool)> CPred
,
623 unsigned Level
, bool NotLastprivate
= false) const;
625 /// Returns true if the directive at level \Level matches in the
626 /// specified \a DPred predicate.
627 bool hasExplicitDirective(
628 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
629 unsigned Level
) const;
631 /// Finds a directive which matches specified \a DPred predicate.
633 const llvm::function_ref
<bool(
634 OpenMPDirectiveKind
, const DeclarationNameInfo
&, SourceLocation
)>
636 bool FromParent
) const;
638 /// Returns currently analyzed directive.
639 OpenMPDirectiveKind
getCurrentDirective() const {
640 const SharingMapTy
*Top
= getTopOfStackOrNull();
641 return Top
? Top
->Directive
: OMPD_unknown
;
643 /// Returns directive kind at specified level.
644 OpenMPDirectiveKind
getDirective(unsigned Level
) const {
645 assert(!isStackEmpty() && "No directive at specified level.");
646 return getStackElemAtLevel(Level
).Directive
;
648 /// Returns the capture region at the specified level.
649 OpenMPDirectiveKind
getCaptureRegion(unsigned Level
,
650 unsigned OpenMPCaptureLevel
) const {
651 SmallVector
<OpenMPDirectiveKind
, 4> CaptureRegions
;
652 getOpenMPCaptureRegions(CaptureRegions
, getDirective(Level
));
653 return CaptureRegions
[OpenMPCaptureLevel
];
655 /// Returns parent directive.
656 OpenMPDirectiveKind
getParentDirective() const {
657 const SharingMapTy
*Parent
= getSecondOnStackOrNull();
658 return Parent
? Parent
->Directive
: OMPD_unknown
;
661 /// Add requires decl to internal vector
662 void addRequiresDecl(OMPRequiresDecl
*RD
) { RequiresDecls
.push_back(RD
); }
664 /// Checks if the defined 'requires' directive has specified type of clause.
665 template <typename ClauseType
> bool hasRequiresDeclWithClause() const {
666 return llvm::any_of(RequiresDecls
, [](const OMPRequiresDecl
*D
) {
667 return llvm::any_of(D
->clauselists(), [](const OMPClause
*C
) {
668 return isa
<ClauseType
>(C
);
673 /// Checks for a duplicate clause amongst previously declared requires
675 bool hasDuplicateRequiresClause(ArrayRef
<OMPClause
*> ClauseList
) const {
676 bool IsDuplicate
= false;
677 for (OMPClause
*CNew
: ClauseList
) {
678 for (const OMPRequiresDecl
*D
: RequiresDecls
) {
679 for (const OMPClause
*CPrev
: D
->clauselists()) {
680 if (CNew
->getClauseKind() == CPrev
->getClauseKind()) {
681 SemaRef
.Diag(CNew
->getBeginLoc(),
682 diag::err_omp_requires_clause_redeclaration
)
683 << getOpenMPClauseName(CNew
->getClauseKind());
684 SemaRef
.Diag(CPrev
->getBeginLoc(),
685 diag::note_omp_requires_previous_clause
)
686 << getOpenMPClauseName(CPrev
->getClauseKind());
695 /// Add location of previously encountered target to internal vector
696 void addTargetDirLocation(SourceLocation LocStart
) {
697 TargetLocations
.push_back(LocStart
);
700 /// Add location for the first encountered atomic directive.
701 void addAtomicDirectiveLoc(SourceLocation Loc
) {
702 if (AtomicLocation
.isInvalid())
703 AtomicLocation
= Loc
;
706 /// Returns the location of the first encountered atomic directive in the
708 SourceLocation
getAtomicDirectiveLoc() const { return AtomicLocation
; }
710 // Return previously encountered target region locations.
711 ArrayRef
<SourceLocation
> getEncounteredTargetLocs() const {
712 return TargetLocations
;
715 /// Set default data sharing attribute to none.
716 void setDefaultDSANone(SourceLocation Loc
) {
717 getTopOfStack().DefaultAttr
= DSA_none
;
718 getTopOfStack().DefaultAttrLoc
= Loc
;
720 /// Set default data sharing attribute to shared.
721 void setDefaultDSAShared(SourceLocation Loc
) {
722 getTopOfStack().DefaultAttr
= DSA_shared
;
723 getTopOfStack().DefaultAttrLoc
= Loc
;
725 /// Set default data sharing attribute to private.
726 void setDefaultDSAPrivate(SourceLocation Loc
) {
727 getTopOfStack().DefaultAttr
= DSA_private
;
728 getTopOfStack().DefaultAttrLoc
= Loc
;
730 /// Set default data sharing attribute to firstprivate.
731 void setDefaultDSAFirstPrivate(SourceLocation Loc
) {
732 getTopOfStack().DefaultAttr
= DSA_firstprivate
;
733 getTopOfStack().DefaultAttrLoc
= Loc
;
735 /// Set default data mapping attribute to Modifier:Kind
736 void setDefaultDMAAttr(OpenMPDefaultmapClauseModifier M
,
737 OpenMPDefaultmapClauseKind Kind
, SourceLocation Loc
) {
738 DefaultmapInfo
&DMI
= getTopOfStack().DefaultmapMap
[Kind
];
739 DMI
.ImplicitBehavior
= M
;
742 /// Check whether the implicit-behavior has been set in defaultmap
743 bool checkDefaultmapCategory(OpenMPDefaultmapClauseKind VariableCategory
) {
744 if (VariableCategory
== OMPC_DEFAULTMAP_unknown
)
745 return getTopOfStack()
746 .DefaultmapMap
[OMPC_DEFAULTMAP_aggregate
]
747 .ImplicitBehavior
!= OMPC_DEFAULTMAP_MODIFIER_unknown
||
749 .DefaultmapMap
[OMPC_DEFAULTMAP_scalar
]
750 .ImplicitBehavior
!= OMPC_DEFAULTMAP_MODIFIER_unknown
||
752 .DefaultmapMap
[OMPC_DEFAULTMAP_pointer
]
753 .ImplicitBehavior
!= OMPC_DEFAULTMAP_MODIFIER_unknown
;
754 return getTopOfStack().DefaultmapMap
[VariableCategory
].ImplicitBehavior
!=
755 OMPC_DEFAULTMAP_MODIFIER_unknown
;
758 ArrayRef
<llvm::omp::TraitProperty
> getConstructTraits() {
759 return ConstructTraits
;
761 void handleConstructTrait(ArrayRef
<llvm::omp::TraitProperty
> Traits
,
764 ConstructTraits
.append(Traits
.begin(), Traits
.end());
766 for (llvm::omp::TraitProperty Trait
: llvm::reverse(Traits
)) {
767 llvm::omp::TraitProperty Top
= ConstructTraits
.pop_back_val();
768 assert(Top
== Trait
&& "Something left a trait on the stack!");
774 DefaultDataSharingAttributes
getDefaultDSA(unsigned Level
) const {
775 return getStackSize() <= Level
? DSA_unspecified
776 : getStackElemAtLevel(Level
).DefaultAttr
;
778 DefaultDataSharingAttributes
getDefaultDSA() const {
779 return isStackEmpty() ? DSA_unspecified
: getTopOfStack().DefaultAttr
;
781 SourceLocation
getDefaultDSALocation() const {
782 return isStackEmpty() ? SourceLocation() : getTopOfStack().DefaultAttrLoc
;
784 OpenMPDefaultmapClauseModifier
785 getDefaultmapModifier(OpenMPDefaultmapClauseKind Kind
) const {
786 return isStackEmpty()
787 ? OMPC_DEFAULTMAP_MODIFIER_unknown
788 : getTopOfStack().DefaultmapMap
[Kind
].ImplicitBehavior
;
790 OpenMPDefaultmapClauseModifier
791 getDefaultmapModifierAtLevel(unsigned Level
,
792 OpenMPDefaultmapClauseKind Kind
) const {
793 return getStackElemAtLevel(Level
).DefaultmapMap
[Kind
].ImplicitBehavior
;
795 bool isDefaultmapCapturedByRef(unsigned Level
,
796 OpenMPDefaultmapClauseKind Kind
) const {
797 OpenMPDefaultmapClauseModifier M
=
798 getDefaultmapModifierAtLevel(Level
, Kind
);
799 if (Kind
== OMPC_DEFAULTMAP_scalar
|| Kind
== OMPC_DEFAULTMAP_pointer
) {
800 return (M
== OMPC_DEFAULTMAP_MODIFIER_alloc
) ||
801 (M
== OMPC_DEFAULTMAP_MODIFIER_to
) ||
802 (M
== OMPC_DEFAULTMAP_MODIFIER_from
) ||
803 (M
== OMPC_DEFAULTMAP_MODIFIER_tofrom
) ||
804 (M
== OMPC_DEFAULTMAP_MODIFIER_present
);
808 static bool mustBeFirstprivateBase(OpenMPDefaultmapClauseModifier M
,
809 OpenMPDefaultmapClauseKind Kind
) {
811 case OMPC_DEFAULTMAP_scalar
:
812 case OMPC_DEFAULTMAP_pointer
:
813 return (M
== OMPC_DEFAULTMAP_MODIFIER_unknown
) ||
814 (M
== OMPC_DEFAULTMAP_MODIFIER_firstprivate
) ||
815 (M
== OMPC_DEFAULTMAP_MODIFIER_default
);
816 case OMPC_DEFAULTMAP_aggregate
:
817 return M
== OMPC_DEFAULTMAP_MODIFIER_firstprivate
;
821 llvm_unreachable("Unexpected OpenMPDefaultmapClauseKind enum");
823 bool mustBeFirstprivateAtLevel(unsigned Level
,
824 OpenMPDefaultmapClauseKind Kind
) const {
825 OpenMPDefaultmapClauseModifier M
=
826 getDefaultmapModifierAtLevel(Level
, Kind
);
827 return mustBeFirstprivateBase(M
, Kind
);
829 bool mustBeFirstprivate(OpenMPDefaultmapClauseKind Kind
) const {
830 OpenMPDefaultmapClauseModifier M
= getDefaultmapModifier(Kind
);
831 return mustBeFirstprivateBase(M
, Kind
);
834 /// Checks if the specified variable is a threadprivate.
835 bool isThreadPrivate(VarDecl
*D
) {
836 const DSAVarData DVar
= getTopDSA(D
, false);
837 return isOpenMPThreadPrivate(DVar
.CKind
);
840 /// Marks current region as ordered (it has an 'ordered' clause).
841 void setOrderedRegion(bool IsOrdered
, const Expr
*Param
,
842 OMPOrderedClause
*Clause
) {
844 getTopOfStack().OrderedRegion
.emplace(Param
, Clause
);
846 getTopOfStack().OrderedRegion
.reset();
848 /// Returns true, if region is ordered (has associated 'ordered' clause),
849 /// false - otherwise.
850 bool isOrderedRegion() const {
851 if (const SharingMapTy
*Top
= getTopOfStackOrNull())
852 return Top
->OrderedRegion
.has_value();
855 /// Returns optional parameter for the ordered region.
856 std::pair
<const Expr
*, OMPOrderedClause
*> getOrderedRegionParam() const {
857 if (const SharingMapTy
*Top
= getTopOfStackOrNull())
858 if (Top
->OrderedRegion
)
859 return *Top
->OrderedRegion
;
860 return std::make_pair(nullptr, nullptr);
862 /// Returns true, if parent region is ordered (has associated
863 /// 'ordered' clause), false - otherwise.
864 bool isParentOrderedRegion() const {
865 if (const SharingMapTy
*Parent
= getSecondOnStackOrNull())
866 return Parent
->OrderedRegion
.has_value();
869 /// Returns optional parameter for the ordered region.
870 std::pair
<const Expr
*, OMPOrderedClause
*>
871 getParentOrderedRegionParam() const {
872 if (const SharingMapTy
*Parent
= getSecondOnStackOrNull())
873 if (Parent
->OrderedRegion
)
874 return *Parent
->OrderedRegion
;
875 return std::make_pair(nullptr, nullptr);
877 /// Marks current region as having an 'order' clause.
878 void setRegionHasOrderConcurrent(bool HasOrderConcurrent
) {
879 getTopOfStack().RegionHasOrderConcurrent
= HasOrderConcurrent
;
881 /// Returns true, if parent region is order (has associated
882 /// 'order' clause), false - otherwise.
883 bool isParentOrderConcurrent() const {
884 if (const SharingMapTy
*Parent
= getSecondOnStackOrNull())
885 return Parent
->RegionHasOrderConcurrent
;
888 /// Marks current region as nowait (it has a 'nowait' clause).
889 void setNowaitRegion(bool IsNowait
= true) {
890 getTopOfStack().NowaitRegion
= IsNowait
;
892 /// Returns true, if parent region is nowait (has associated
893 /// 'nowait' clause), false - otherwise.
894 bool isParentNowaitRegion() const {
895 if (const SharingMapTy
*Parent
= getSecondOnStackOrNull())
896 return Parent
->NowaitRegion
;
899 /// Marks current region as untied (it has a 'untied' clause).
900 void setUntiedRegion(bool IsUntied
= true) {
901 getTopOfStack().UntiedRegion
= IsUntied
;
903 /// Return true if current region is untied.
904 bool isUntiedRegion() const {
905 const SharingMapTy
*Top
= getTopOfStackOrNull();
906 return Top
? Top
->UntiedRegion
: false;
908 /// Marks parent region as cancel region.
909 void setParentCancelRegion(bool Cancel
= true) {
910 if (SharingMapTy
*Parent
= getSecondOnStackOrNull())
911 Parent
->CancelRegion
|= Cancel
;
913 /// Return true if current region has inner cancel construct.
914 bool isCancelRegion() const {
915 const SharingMapTy
*Top
= getTopOfStackOrNull();
916 return Top
? Top
->CancelRegion
: false;
919 /// Mark that parent region already has scan directive.
920 void setParentHasScanDirective(SourceLocation Loc
) {
921 if (SharingMapTy
*Parent
= getSecondOnStackOrNull())
922 Parent
->PrevScanLocation
= Loc
;
924 /// Return true if current region has inner cancel construct.
925 bool doesParentHasScanDirective() const {
926 const SharingMapTy
*Top
= getSecondOnStackOrNull();
927 return Top
? Top
->PrevScanLocation
.isValid() : false;
929 /// Return true if current region has inner cancel construct.
930 SourceLocation
getParentScanDirectiveLoc() const {
931 const SharingMapTy
*Top
= getSecondOnStackOrNull();
932 return Top
? Top
->PrevScanLocation
: SourceLocation();
934 /// Mark that parent region already has ordered directive.
935 void setParentHasOrderedDirective(SourceLocation Loc
) {
936 if (SharingMapTy
*Parent
= getSecondOnStackOrNull())
937 Parent
->PrevOrderedLocation
= Loc
;
939 /// Return true if current region has inner ordered construct.
940 bool doesParentHasOrderedDirective() const {
941 const SharingMapTy
*Top
= getSecondOnStackOrNull();
942 return Top
? Top
->PrevOrderedLocation
.isValid() : false;
944 /// Returns the location of the previously specified ordered directive.
945 SourceLocation
getParentOrderedDirectiveLoc() const {
946 const SharingMapTy
*Top
= getSecondOnStackOrNull();
947 return Top
? Top
->PrevOrderedLocation
: SourceLocation();
950 /// Set collapse value for the region.
951 void setAssociatedLoops(unsigned Val
) {
952 getTopOfStack().AssociatedLoops
= Val
;
954 getTopOfStack().HasMutipleLoops
= true;
956 /// Return collapse value for region.
957 unsigned getAssociatedLoops() const {
958 const SharingMapTy
*Top
= getTopOfStackOrNull();
959 return Top
? Top
->AssociatedLoops
: 0;
961 /// Returns true if the construct is associated with multiple loops.
962 bool hasMutipleLoops() const {
963 const SharingMapTy
*Top
= getTopOfStackOrNull();
964 return Top
? Top
->HasMutipleLoops
: false;
967 /// Marks current target region as one with closely nested teams
969 void setParentTeamsRegionLoc(SourceLocation TeamsRegionLoc
) {
970 if (SharingMapTy
*Parent
= getSecondOnStackOrNull())
971 Parent
->InnerTeamsRegionLoc
= TeamsRegionLoc
;
973 /// Returns true, if current region has closely nested teams region.
974 bool hasInnerTeamsRegion() const {
975 return getInnerTeamsRegionLoc().isValid();
977 /// Returns location of the nested teams region (if any).
978 SourceLocation
getInnerTeamsRegionLoc() const {
979 const SharingMapTy
*Top
= getTopOfStackOrNull();
980 return Top
? Top
->InnerTeamsRegionLoc
: SourceLocation();
983 Scope
*getCurScope() const {
984 const SharingMapTy
*Top
= getTopOfStackOrNull();
985 return Top
? Top
->CurScope
: nullptr;
987 void setContext(DeclContext
*DC
) { getTopOfStack().Context
= DC
; }
988 SourceLocation
getConstructLoc() const {
989 const SharingMapTy
*Top
= getTopOfStackOrNull();
990 return Top
? Top
->ConstructLoc
: SourceLocation();
993 /// Do the check specified in \a Check to all component lists and return true
994 /// if any issue is found.
995 bool checkMappableExprComponentListsForDecl(
996 const ValueDecl
*VD
, bool CurrentRegionOnly
,
997 const llvm::function_ref
<
998 bool(OMPClauseMappableExprCommon::MappableExprComponentListRef
,
1009 if (CurrentRegionOnly
)
1012 std::advance(SI
, 1);
1014 for (; SI
!= SE
; ++SI
) {
1015 auto MI
= SI
->MappedExprComponents
.find(VD
);
1016 if (MI
!= SI
->MappedExprComponents
.end())
1017 for (OMPClauseMappableExprCommon::MappableExprComponentListRef L
:
1018 MI
->second
.Components
)
1019 if (Check(L
, MI
->second
.Kind
))
1025 /// Do the check specified in \a Check to all component lists at a given level
1026 /// and return true if any issue is found.
1027 bool checkMappableExprComponentListsForDeclAtLevel(
1028 const ValueDecl
*VD
, unsigned Level
,
1029 const llvm::function_ref
<
1030 bool(OMPClauseMappableExprCommon::MappableExprComponentListRef
,
1033 if (getStackSize() <= Level
)
1036 const SharingMapTy
&StackElem
= getStackElemAtLevel(Level
);
1037 auto MI
= StackElem
.MappedExprComponents
.find(VD
);
1038 if (MI
!= StackElem
.MappedExprComponents
.end())
1039 for (OMPClauseMappableExprCommon::MappableExprComponentListRef L
:
1040 MI
->second
.Components
)
1041 if (Check(L
, MI
->second
.Kind
))
1046 /// Create a new mappable expression component list associated with a given
1047 /// declaration and initialize it with the provided list of components.
1048 void addMappableExpressionComponents(
1049 const ValueDecl
*VD
,
1050 OMPClauseMappableExprCommon::MappableExprComponentListRef Components
,
1051 OpenMPClauseKind WhereFoundClauseKind
) {
1052 MappedExprComponentTy
&MEC
= getTopOfStack().MappedExprComponents
[VD
];
1053 // Create new entry and append the new components there.
1054 MEC
.Components
.resize(MEC
.Components
.size() + 1);
1055 MEC
.Components
.back().append(Components
.begin(), Components
.end());
1056 MEC
.Kind
= WhereFoundClauseKind
;
1059 unsigned getNestingLevel() const {
1060 assert(!isStackEmpty());
1061 return getStackSize() - 1;
1063 void addDoacrossDependClause(OMPClause
*C
, const OperatorOffsetTy
&OpsOffs
) {
1064 SharingMapTy
*Parent
= getSecondOnStackOrNull();
1065 assert(Parent
&& isOpenMPWorksharingDirective(Parent
->Directive
));
1066 Parent
->DoacrossDepends
.try_emplace(C
, OpsOffs
);
1068 llvm::iterator_range
<DoacrossClauseMapTy::const_iterator
>
1069 getDoacrossDependClauses() const {
1070 const SharingMapTy
&StackElem
= getTopOfStack();
1071 if (isOpenMPWorksharingDirective(StackElem
.Directive
)) {
1072 const DoacrossClauseMapTy
&Ref
= StackElem
.DoacrossDepends
;
1073 return llvm::make_range(Ref
.begin(), Ref
.end());
1075 return llvm::make_range(StackElem
.DoacrossDepends
.end(),
1076 StackElem
.DoacrossDepends
.end());
1079 // Store types of classes which have been explicitly mapped
1080 void addMappedClassesQualTypes(QualType QT
) {
1081 SharingMapTy
&StackElem
= getTopOfStack();
1082 StackElem
.MappedClassesQualTypes
.insert(QT
);
1085 // Return set of mapped classes types
1086 bool isClassPreviouslyMapped(QualType QT
) const {
1087 const SharingMapTy
&StackElem
= getTopOfStack();
1088 return StackElem
.MappedClassesQualTypes
.contains(QT
);
1091 /// Adds global declare target to the parent target region.
1092 void addToParentTargetRegionLinkGlobals(DeclRefExpr
*E
) {
1093 assert(*OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
1094 E
->getDecl()) == OMPDeclareTargetDeclAttr::MT_Link
&&
1095 "Expected declare target link global.");
1096 for (auto &Elem
: *this) {
1097 if (isOpenMPTargetExecutionDirective(Elem
.Directive
)) {
1098 Elem
.DeclareTargetLinkVarDecls
.push_back(E
);
1104 /// Returns the list of globals with declare target link if current directive
1106 ArrayRef
<DeclRefExpr
*> getLinkGlobals() const {
1107 assert(isOpenMPTargetExecutionDirective(getCurrentDirective()) &&
1108 "Expected target executable directive.");
1109 return getTopOfStack().DeclareTargetLinkVarDecls
;
1112 /// Adds list of allocators expressions.
1113 void addInnerAllocatorExpr(Expr
*E
) {
1114 getTopOfStack().InnerUsedAllocators
.push_back(E
);
1116 /// Return list of used allocators.
1117 ArrayRef
<Expr
*> getInnerAllocators() const {
1118 return getTopOfStack().InnerUsedAllocators
;
1120 /// Marks the declaration as implicitly firstprivate nin the task-based
1122 void addImplicitTaskFirstprivate(unsigned Level
, Decl
*D
) {
1123 getStackElemAtLevel(Level
).ImplicitTaskFirstprivates
.insert(D
);
1125 /// Checks if the decl is implicitly firstprivate in the task-based region.
1126 bool isImplicitTaskFirstprivate(Decl
*D
) const {
1127 return getTopOfStack().ImplicitTaskFirstprivates
.contains(D
);
1130 /// Marks decl as used in uses_allocators clause as the allocator.
1131 void addUsesAllocatorsDecl(const Decl
*D
, UsesAllocatorsDeclKind Kind
) {
1132 getTopOfStack().UsesAllocatorsDecls
.try_emplace(D
, Kind
);
1134 /// Checks if specified decl is used in uses allocator clause as the
1136 std::optional
<UsesAllocatorsDeclKind
>
1137 isUsesAllocatorsDecl(unsigned Level
, const Decl
*D
) const {
1138 const SharingMapTy
&StackElem
= getTopOfStack();
1139 auto I
= StackElem
.UsesAllocatorsDecls
.find(D
);
1140 if (I
== StackElem
.UsesAllocatorsDecls
.end())
1141 return std::nullopt
;
1142 return I
->getSecond();
1144 std::optional
<UsesAllocatorsDeclKind
>
1145 isUsesAllocatorsDecl(const Decl
*D
) const {
1146 const SharingMapTy
&StackElem
= getTopOfStack();
1147 auto I
= StackElem
.UsesAllocatorsDecls
.find(D
);
1148 if (I
== StackElem
.UsesAllocatorsDecls
.end())
1149 return std::nullopt
;
1150 return I
->getSecond();
1153 void addDeclareMapperVarRef(Expr
*Ref
) {
1154 SharingMapTy
&StackElem
= getTopOfStack();
1155 StackElem
.DeclareMapperVar
= Ref
;
1157 const Expr
*getDeclareMapperVarRef() const {
1158 const SharingMapTy
*Top
= getTopOfStackOrNull();
1159 return Top
? Top
->DeclareMapperVar
: nullptr;
1162 /// Add a new iterator variable.
1163 void addIteratorVarDecl(VarDecl
*VD
) {
1164 SharingMapTy
&StackElem
= getTopOfStack();
1165 StackElem
.IteratorVarDecls
.push_back(VD
->getCanonicalDecl());
1167 /// Check if variable declaration is an iterator VarDecl.
1168 bool isIteratorVarDecl(const VarDecl
*VD
) const {
1169 const SharingMapTy
*Top
= getTopOfStackOrNull();
1173 return llvm::is_contained(Top
->IteratorVarDecls
, VD
->getCanonicalDecl());
1175 /// get captured field from ImplicitDefaultFirstprivateFDs
1176 VarDecl
*getImplicitFDCapExprDecl(const FieldDecl
*FD
) const {
1177 const_iterator I
= begin();
1178 const_iterator EndI
= end();
1179 size_t StackLevel
= getStackSize();
1180 for (; I
!= EndI
; ++I
) {
1181 if (I
->DefaultAttr
== DSA_firstprivate
|| I
->DefaultAttr
== DSA_private
)
1185 assert((StackLevel
> 0 && I
!= EndI
) || (StackLevel
== 0 && I
== EndI
));
1188 for (const auto &IFD
: I
->ImplicitDefaultFirstprivateFDs
)
1189 if (IFD
.FD
== FD
&& IFD
.StackLevel
== StackLevel
)
1193 /// Check if capture decl is field captured in ImplicitDefaultFirstprivateFDs
1194 bool isImplicitDefaultFirstprivateFD(VarDecl
*VD
) const {
1195 const_iterator I
= begin();
1196 const_iterator EndI
= end();
1197 for (; I
!= EndI
; ++I
)
1198 if (I
->DefaultAttr
== DSA_firstprivate
|| I
->DefaultAttr
== DSA_private
)
1202 for (const auto &IFD
: I
->ImplicitDefaultFirstprivateFDs
)
1207 /// Store capture FD info in ImplicitDefaultFirstprivateFDs
1208 void addImplicitDefaultFirstprivateFD(const FieldDecl
*FD
, VarDecl
*VD
) {
1209 iterator I
= begin();
1210 const_iterator EndI
= end();
1211 size_t StackLevel
= getStackSize();
1212 for (; I
!= EndI
; ++I
) {
1213 if (I
->DefaultAttr
== DSA_private
|| I
->DefaultAttr
== DSA_firstprivate
) {
1214 I
->ImplicitDefaultFirstprivateFDs
.emplace_back(FD
, StackLevel
, VD
);
1219 assert((StackLevel
> 0 && I
!= EndI
) || (StackLevel
== 0 && I
== EndI
));
1223 bool isImplicitTaskingRegion(OpenMPDirectiveKind DKind
) {
1224 return isOpenMPParallelDirective(DKind
) || isOpenMPTeamsDirective(DKind
);
1227 bool isImplicitOrExplicitTaskingRegion(OpenMPDirectiveKind DKind
) {
1228 return isImplicitTaskingRegion(DKind
) || isOpenMPTaskingDirective(DKind
) ||
1229 DKind
== OMPD_unknown
;
1234 static const Expr
*getExprAsWritten(const Expr
*E
) {
1235 if (const auto *FE
= dyn_cast
<FullExpr
>(E
))
1236 E
= FE
->getSubExpr();
1238 if (const auto *MTE
= dyn_cast
<MaterializeTemporaryExpr
>(E
))
1239 E
= MTE
->getSubExpr();
1241 while (const auto *Binder
= dyn_cast
<CXXBindTemporaryExpr
>(E
))
1242 E
= Binder
->getSubExpr();
1244 if (const auto *ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
1245 E
= ICE
->getSubExprAsWritten();
1246 return E
->IgnoreParens();
1249 static Expr
*getExprAsWritten(Expr
*E
) {
1250 return const_cast<Expr
*>(getExprAsWritten(const_cast<const Expr
*>(E
)));
1253 static const ValueDecl
*getCanonicalDecl(const ValueDecl
*D
) {
1254 if (const auto *CED
= dyn_cast
<OMPCapturedExprDecl
>(D
))
1255 if (const auto *ME
= dyn_cast
<MemberExpr
>(getExprAsWritten(CED
->getInit())))
1256 D
= ME
->getMemberDecl();
1258 D
= cast
<ValueDecl
>(D
->getCanonicalDecl());
1262 static ValueDecl
*getCanonicalDecl(ValueDecl
*D
) {
1263 return const_cast<ValueDecl
*>(
1264 getCanonicalDecl(const_cast<const ValueDecl
*>(D
)));
1267 DSAStackTy::DSAVarData
DSAStackTy::getDSA(const_iterator
&Iter
,
1268 ValueDecl
*D
) const {
1269 D
= getCanonicalDecl(D
);
1270 auto *VD
= dyn_cast
<VarDecl
>(D
);
1271 const auto *FD
= dyn_cast
<FieldDecl
>(D
);
1273 if (Iter
== end()) {
1274 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1275 // in a region but not in construct]
1276 // File-scope or namespace-scope variables referenced in called routines
1277 // in the region are shared unless they appear in a threadprivate
1279 if (VD
&& !VD
->isFunctionOrMethodVarDecl() && !isa
<ParmVarDecl
>(VD
))
1280 DVar
.CKind
= OMPC_shared
;
1282 // OpenMP [2.9.1.2, Data-sharing Attribute Rules for Variables Referenced
1283 // in a region but not in construct]
1284 // Variables with static storage duration that are declared in called
1285 // routines in the region are shared.
1286 if (VD
&& VD
->hasGlobalStorage())
1287 DVar
.CKind
= OMPC_shared
;
1289 // Non-static data members are shared by default.
1291 DVar
.CKind
= OMPC_shared
;
1296 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1297 // in a Construct, C/C++, predetermined, p.1]
1298 // Variables with automatic storage duration that are declared in a scope
1299 // inside the construct are private.
1300 if (VD
&& isOpenMPLocal(VD
, Iter
) && VD
->isLocalVarDecl() &&
1301 (VD
->getStorageClass() == SC_Auto
|| VD
->getStorageClass() == SC_None
)) {
1302 DVar
.CKind
= OMPC_private
;
1306 DVar
.DKind
= Iter
->Directive
;
1307 // Explicitly specified attributes and local variables with predetermined
1309 if (Iter
->SharingMap
.count(D
)) {
1310 const DSAInfo
&Data
= Iter
->SharingMap
.lookup(D
);
1311 DVar
.RefExpr
= Data
.RefExpr
.getPointer();
1312 DVar
.PrivateCopy
= Data
.PrivateCopy
;
1313 DVar
.CKind
= Data
.Attributes
;
1314 DVar
.ImplicitDSALoc
= Iter
->DefaultAttrLoc
;
1315 DVar
.Modifier
= Data
.Modifier
;
1316 DVar
.AppliedToPointee
= Data
.AppliedToPointee
;
1320 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1321 // in a Construct, C/C++, implicitly determined, p.1]
1322 // In a parallel or task construct, the data-sharing attributes of these
1323 // variables are determined by the default clause, if present.
1324 switch (Iter
->DefaultAttr
) {
1326 DVar
.CKind
= OMPC_shared
;
1327 DVar
.ImplicitDSALoc
= Iter
->DefaultAttrLoc
;
1331 case DSA_firstprivate
:
1332 if (VD
&& VD
->getStorageDuration() == SD_Static
&&
1333 VD
->getDeclContext()->isFileContext()) {
1334 DVar
.CKind
= OMPC_unknown
;
1336 DVar
.CKind
= OMPC_firstprivate
;
1338 DVar
.ImplicitDSALoc
= Iter
->DefaultAttrLoc
;
1341 // each variable with static storage duration that is declared
1342 // in a namespace or global scope and referenced in the construct,
1343 // and that does not have a predetermined data-sharing attribute
1344 if (VD
&& VD
->getStorageDuration() == SD_Static
&&
1345 VD
->getDeclContext()->isFileContext()) {
1346 DVar
.CKind
= OMPC_unknown
;
1348 DVar
.CKind
= OMPC_private
;
1350 DVar
.ImplicitDSALoc
= Iter
->DefaultAttrLoc
;
1352 case DSA_unspecified
:
1353 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1354 // in a Construct, implicitly determined, p.2]
1355 // In a parallel construct, if no default clause is present, these
1356 // variables are shared.
1357 DVar
.ImplicitDSALoc
= Iter
->DefaultAttrLoc
;
1358 if ((isOpenMPParallelDirective(DVar
.DKind
) &&
1359 !isOpenMPTaskLoopDirective(DVar
.DKind
)) ||
1360 isOpenMPTeamsDirective(DVar
.DKind
)) {
1361 DVar
.CKind
= OMPC_shared
;
1365 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1366 // in a Construct, implicitly determined, p.4]
1367 // In a task construct, if no default clause is present, a variable that in
1368 // the enclosing context is determined to be shared by all implicit tasks
1369 // bound to the current team is shared.
1370 if (isOpenMPTaskingDirective(DVar
.DKind
)) {
1371 DSAVarData DVarTemp
;
1372 const_iterator I
= Iter
, E
= end();
1375 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables
1376 // Referenced in a Construct, implicitly determined, p.6]
1377 // In a task construct, if no default clause is present, a variable
1378 // whose data-sharing attribute is not determined by the rules above is
1380 DVarTemp
= getDSA(I
, D
);
1381 if (DVarTemp
.CKind
!= OMPC_shared
) {
1382 DVar
.RefExpr
= nullptr;
1383 DVar
.CKind
= OMPC_firstprivate
;
1386 } while (I
!= E
&& !isImplicitTaskingRegion(I
->Directive
));
1388 (DVarTemp
.CKind
== OMPC_unknown
) ? OMPC_firstprivate
: OMPC_shared
;
1392 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1393 // in a Construct, implicitly determined, p.3]
1394 // For constructs other than task, if no default clause is present, these
1395 // variables inherit their data-sharing attributes from the enclosing
1397 return getDSA(++Iter
, D
);
1400 const Expr
*DSAStackTy::addUniqueAligned(const ValueDecl
*D
,
1401 const Expr
*NewDE
) {
1402 assert(!isStackEmpty() && "Data sharing attributes stack is empty");
1403 D
= getCanonicalDecl(D
);
1404 SharingMapTy
&StackElem
= getTopOfStack();
1405 auto [It
, Inserted
] = StackElem
.AlignedMap
.try_emplace(D
, NewDE
);
1407 assert(NewDE
&& "Unexpected nullptr expr to be added into aligned map");
1410 assert(It
->second
&& "Unexpected nullptr expr in the aligned map");
1414 const Expr
*DSAStackTy::addUniqueNontemporal(const ValueDecl
*D
,
1415 const Expr
*NewDE
) {
1416 assert(!isStackEmpty() && "Data sharing attributes stack is empty");
1417 D
= getCanonicalDecl(D
);
1418 SharingMapTy
&StackElem
= getTopOfStack();
1419 auto [It
, Inserted
] = StackElem
.NontemporalMap
.try_emplace(D
, NewDE
);
1421 assert(NewDE
&& "Unexpected nullptr expr to be added into aligned map");
1424 assert(It
->second
&& "Unexpected nullptr expr in the aligned map");
1428 void DSAStackTy::addLoopControlVariable(const ValueDecl
*D
, VarDecl
*Capture
) {
1429 assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1430 D
= getCanonicalDecl(D
);
1431 SharingMapTy
&StackElem
= getTopOfStack();
1432 StackElem
.LCVMap
.try_emplace(
1433 D
, LCDeclInfo(StackElem
.LCVMap
.size() + 1, Capture
));
1436 const DSAStackTy::LCDeclInfo
1437 DSAStackTy::isLoopControlVariable(const ValueDecl
*D
) const {
1438 assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1439 D
= getCanonicalDecl(D
);
1440 const SharingMapTy
&StackElem
= getTopOfStack();
1441 auto It
= StackElem
.LCVMap
.find(D
);
1442 if (It
!= StackElem
.LCVMap
.end())
1444 return {0, nullptr};
1447 const DSAStackTy::LCDeclInfo
1448 DSAStackTy::isLoopControlVariable(const ValueDecl
*D
, unsigned Level
) const {
1449 assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1450 D
= getCanonicalDecl(D
);
1451 for (unsigned I
= Level
+ 1; I
> 0; --I
) {
1452 const SharingMapTy
&StackElem
= getStackElemAtLevel(I
- 1);
1453 auto It
= StackElem
.LCVMap
.find(D
);
1454 if (It
!= StackElem
.LCVMap
.end())
1457 return {0, nullptr};
1460 const DSAStackTy::LCDeclInfo
1461 DSAStackTy::isParentLoopControlVariable(const ValueDecl
*D
) const {
1462 const SharingMapTy
*Parent
= getSecondOnStackOrNull();
1463 assert(Parent
&& "Data-sharing attributes stack is empty");
1464 D
= getCanonicalDecl(D
);
1465 auto It
= Parent
->LCVMap
.find(D
);
1466 if (It
!= Parent
->LCVMap
.end())
1468 return {0, nullptr};
1471 const ValueDecl
*DSAStackTy::getParentLoopControlVariable(unsigned I
) const {
1472 const SharingMapTy
*Parent
= getSecondOnStackOrNull();
1473 assert(Parent
&& "Data-sharing attributes stack is empty");
1474 if (Parent
->LCVMap
.size() < I
)
1476 for (const auto &Pair
: Parent
->LCVMap
)
1477 if (Pair
.second
.first
== I
)
1482 void DSAStackTy::addDSA(const ValueDecl
*D
, const Expr
*E
, OpenMPClauseKind A
,
1483 DeclRefExpr
*PrivateCopy
, unsigned Modifier
,
1484 bool AppliedToPointee
) {
1485 D
= getCanonicalDecl(D
);
1486 if (A
== OMPC_threadprivate
) {
1487 DSAInfo
&Data
= Threadprivates
[D
];
1488 Data
.Attributes
= A
;
1489 Data
.RefExpr
.setPointer(E
);
1490 Data
.PrivateCopy
= nullptr;
1491 Data
.Modifier
= Modifier
;
1493 DSAInfo
&Data
= getTopOfStack().SharingMap
[D
];
1494 assert(Data
.Attributes
== OMPC_unknown
|| (A
== Data
.Attributes
) ||
1495 (A
== OMPC_firstprivate
&& Data
.Attributes
== OMPC_lastprivate
) ||
1496 (A
== OMPC_lastprivate
&& Data
.Attributes
== OMPC_firstprivate
) ||
1497 (isLoopControlVariable(D
).first
&& A
== OMPC_private
));
1498 Data
.Modifier
= Modifier
;
1499 if (A
== OMPC_lastprivate
&& Data
.Attributes
== OMPC_firstprivate
) {
1500 Data
.RefExpr
.setInt(/*IntVal=*/true);
1503 const bool IsLastprivate
=
1504 A
== OMPC_lastprivate
|| Data
.Attributes
== OMPC_lastprivate
;
1505 Data
.Attributes
= A
;
1506 Data
.RefExpr
.setPointerAndInt(E
, IsLastprivate
);
1507 Data
.PrivateCopy
= PrivateCopy
;
1508 Data
.AppliedToPointee
= AppliedToPointee
;
1510 DSAInfo
&Data
= getTopOfStack().SharingMap
[PrivateCopy
->getDecl()];
1511 Data
.Modifier
= Modifier
;
1512 Data
.Attributes
= A
;
1513 Data
.RefExpr
.setPointerAndInt(PrivateCopy
, IsLastprivate
);
1514 Data
.PrivateCopy
= nullptr;
1515 Data
.AppliedToPointee
= AppliedToPointee
;
1520 /// Build a variable declaration for OpenMP loop iteration variable.
1521 static VarDecl
*buildVarDecl(Sema
&SemaRef
, SourceLocation Loc
, QualType Type
,
1522 StringRef Name
, const AttrVec
*Attrs
= nullptr,
1523 DeclRefExpr
*OrigRef
= nullptr) {
1524 DeclContext
*DC
= SemaRef
.CurContext
;
1525 IdentifierInfo
*II
= &SemaRef
.PP
.getIdentifierTable().get(Name
);
1526 TypeSourceInfo
*TInfo
= SemaRef
.Context
.getTrivialTypeSourceInfo(Type
, Loc
);
1528 VarDecl::Create(SemaRef
.Context
, DC
, Loc
, Loc
, II
, Type
, TInfo
, SC_None
);
1530 for (specific_attr_iterator
<AlignedAttr
> I(Attrs
->begin()), E(Attrs
->end());
1534 Decl
->setImplicit();
1537 OMPReferencedVarAttr::CreateImplicit(SemaRef
.Context
, OrigRef
));
1542 static DeclRefExpr
*buildDeclRefExpr(Sema
&S
, VarDecl
*D
, QualType Ty
,
1544 bool RefersToCapture
= false) {
1546 D
->markUsed(S
.Context
);
1547 return DeclRefExpr::Create(S
.getASTContext(), NestedNameSpecifierLoc(),
1548 SourceLocation(), D
, RefersToCapture
, Loc
, Ty
,
1552 void DSAStackTy::addTaskgroupReductionData(const ValueDecl
*D
, SourceRange SR
,
1553 BinaryOperatorKind BOK
) {
1554 D
= getCanonicalDecl(D
);
1555 assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1557 getTopOfStack().SharingMap
[D
].Attributes
== OMPC_reduction
&&
1558 "Additional reduction info may be specified only for reduction items.");
1559 ReductionData
&ReductionData
= getTopOfStack().ReductionMap
[D
];
1560 assert(ReductionData
.ReductionRange
.isInvalid() &&
1561 (getTopOfStack().Directive
== OMPD_taskgroup
||
1562 ((isOpenMPParallelDirective(getTopOfStack().Directive
) ||
1563 isOpenMPWorksharingDirective(getTopOfStack().Directive
)) &&
1564 !isOpenMPSimdDirective(getTopOfStack().Directive
))) &&
1565 "Additional reduction info may be specified only once for reduction "
1567 ReductionData
.set(BOK
, SR
);
1568 Expr
*&TaskgroupReductionRef
= getTopOfStack().TaskgroupReductionRef
;
1569 if (!TaskgroupReductionRef
) {
1570 VarDecl
*VD
= buildVarDecl(SemaRef
, SR
.getBegin(),
1571 SemaRef
.Context
.VoidPtrTy
, ".task_red.");
1572 TaskgroupReductionRef
=
1573 buildDeclRefExpr(SemaRef
, VD
, SemaRef
.Context
.VoidPtrTy
, SR
.getBegin());
1577 void DSAStackTy::addTaskgroupReductionData(const ValueDecl
*D
, SourceRange SR
,
1578 const Expr
*ReductionRef
) {
1579 D
= getCanonicalDecl(D
);
1580 assert(!isStackEmpty() && "Data-sharing attributes stack is empty");
1582 getTopOfStack().SharingMap
[D
].Attributes
== OMPC_reduction
&&
1583 "Additional reduction info may be specified only for reduction items.");
1584 ReductionData
&ReductionData
= getTopOfStack().ReductionMap
[D
];
1585 assert(ReductionData
.ReductionRange
.isInvalid() &&
1586 (getTopOfStack().Directive
== OMPD_taskgroup
||
1587 ((isOpenMPParallelDirective(getTopOfStack().Directive
) ||
1588 isOpenMPWorksharingDirective(getTopOfStack().Directive
)) &&
1589 !isOpenMPSimdDirective(getTopOfStack().Directive
))) &&
1590 "Additional reduction info may be specified only once for reduction "
1592 ReductionData
.set(ReductionRef
, SR
);
1593 Expr
*&TaskgroupReductionRef
= getTopOfStack().TaskgroupReductionRef
;
1594 if (!TaskgroupReductionRef
) {
1595 VarDecl
*VD
= buildVarDecl(SemaRef
, SR
.getBegin(),
1596 SemaRef
.Context
.VoidPtrTy
, ".task_red.");
1597 TaskgroupReductionRef
=
1598 buildDeclRefExpr(SemaRef
, VD
, SemaRef
.Context
.VoidPtrTy
, SR
.getBegin());
1602 const DSAStackTy::DSAVarData
DSAStackTy::getTopMostTaskgroupReductionData(
1603 const ValueDecl
*D
, SourceRange
&SR
, BinaryOperatorKind
&BOK
,
1604 Expr
*&TaskgroupDescriptor
) const {
1605 D
= getCanonicalDecl(D
);
1606 assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
1607 for (const_iterator I
= begin() + 1, E
= end(); I
!= E
; ++I
) {
1608 const DSAInfo
&Data
= I
->SharingMap
.lookup(D
);
1609 if (Data
.Attributes
!= OMPC_reduction
||
1610 Data
.Modifier
!= OMPC_REDUCTION_task
)
1612 const ReductionData
&ReductionData
= I
->ReductionMap
.lookup(D
);
1613 if (!ReductionData
.ReductionOp
||
1614 isa
<const Expr
*>(ReductionData
.ReductionOp
))
1615 return DSAVarData();
1616 SR
= ReductionData
.ReductionRange
;
1617 BOK
= cast
<ReductionData::BOKPtrType
>(ReductionData
.ReductionOp
);
1618 assert(I
->TaskgroupReductionRef
&& "taskgroup reduction reference "
1619 "expression for the descriptor is not "
1621 TaskgroupDescriptor
= I
->TaskgroupReductionRef
;
1622 return DSAVarData(I
->Directive
, OMPC_reduction
, Data
.RefExpr
.getPointer(),
1623 Data
.PrivateCopy
, I
->DefaultAttrLoc
, OMPC_REDUCTION_task
,
1624 /*AppliedToPointee=*/false);
1626 return DSAVarData();
1629 const DSAStackTy::DSAVarData
DSAStackTy::getTopMostTaskgroupReductionData(
1630 const ValueDecl
*D
, SourceRange
&SR
, const Expr
*&ReductionRef
,
1631 Expr
*&TaskgroupDescriptor
) const {
1632 D
= getCanonicalDecl(D
);
1633 assert(!isStackEmpty() && "Data-sharing attributes stack is empty.");
1634 for (const_iterator I
= begin() + 1, E
= end(); I
!= E
; ++I
) {
1635 const DSAInfo
&Data
= I
->SharingMap
.lookup(D
);
1636 if (Data
.Attributes
!= OMPC_reduction
||
1637 Data
.Modifier
!= OMPC_REDUCTION_task
)
1639 const ReductionData
&ReductionData
= I
->ReductionMap
.lookup(D
);
1640 if (!ReductionData
.ReductionOp
||
1641 !isa
<const Expr
*>(ReductionData
.ReductionOp
))
1642 return DSAVarData();
1643 SR
= ReductionData
.ReductionRange
;
1644 ReductionRef
= cast
<const Expr
*>(ReductionData
.ReductionOp
);
1645 assert(I
->TaskgroupReductionRef
&& "taskgroup reduction reference "
1646 "expression for the descriptor is not "
1648 TaskgroupDescriptor
= I
->TaskgroupReductionRef
;
1649 return DSAVarData(I
->Directive
, OMPC_reduction
, Data
.RefExpr
.getPointer(),
1650 Data
.PrivateCopy
, I
->DefaultAttrLoc
, OMPC_REDUCTION_task
,
1651 /*AppliedToPointee=*/false);
1653 return DSAVarData();
1656 bool DSAStackTy::isOpenMPLocal(VarDecl
*D
, const_iterator I
) const {
1657 D
= D
->getCanonicalDecl();
1658 for (const_iterator E
= end(); I
!= E
; ++I
) {
1659 if (isImplicitOrExplicitTaskingRegion(I
->Directive
) ||
1660 isOpenMPTargetExecutionDirective(I
->Directive
)) {
1662 Scope
*TopScope
= I
->CurScope
->getParent();
1663 Scope
*CurScope
= getCurScope();
1664 while (CurScope
&& CurScope
!= TopScope
&& !CurScope
->isDeclScope(D
))
1665 CurScope
= CurScope
->getParent();
1666 return CurScope
!= TopScope
;
1668 for (DeclContext
*DC
= D
->getDeclContext(); DC
; DC
= DC
->getParent())
1669 if (I
->Context
== DC
)
1677 static bool isConstNotMutableType(Sema
&SemaRef
, QualType Type
,
1678 bool AcceptIfMutable
= true,
1679 bool *IsClassType
= nullptr) {
1680 ASTContext
&Context
= SemaRef
.getASTContext();
1681 Type
= Type
.getNonReferenceType().getCanonicalType();
1682 bool IsConstant
= Type
.isConstant(Context
);
1683 Type
= Context
.getBaseElementType(Type
);
1684 const CXXRecordDecl
*RD
= AcceptIfMutable
&& SemaRef
.getLangOpts().CPlusPlus
1685 ? Type
->getAsCXXRecordDecl()
1687 if (const auto *CTSD
= dyn_cast_or_null
<ClassTemplateSpecializationDecl
>(RD
))
1688 if (const ClassTemplateDecl
*CTD
= CTSD
->getSpecializedTemplate())
1689 RD
= CTD
->getTemplatedDecl();
1692 return IsConstant
&& !(SemaRef
.getLangOpts().CPlusPlus
&& RD
&&
1693 RD
->hasDefinition() && RD
->hasMutableFields());
1696 static bool rejectConstNotMutableType(Sema
&SemaRef
, const ValueDecl
*D
,
1697 QualType Type
, OpenMPClauseKind CKind
,
1698 SourceLocation ELoc
,
1699 bool AcceptIfMutable
= true,
1700 bool ListItemNotVar
= false) {
1701 ASTContext
&Context
= SemaRef
.getASTContext();
1703 if (isConstNotMutableType(SemaRef
, Type
, AcceptIfMutable
, &IsClassType
)) {
1704 unsigned Diag
= ListItemNotVar
? diag::err_omp_const_list_item
1705 : IsClassType
? diag::err_omp_const_not_mutable_variable
1706 : diag::err_omp_const_variable
;
1707 SemaRef
.Diag(ELoc
, Diag
) << getOpenMPClauseName(CKind
);
1708 if (!ListItemNotVar
&& D
) {
1709 const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
1710 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(Context
) ==
1711 VarDecl::DeclarationOnly
;
1712 SemaRef
.Diag(D
->getLocation(),
1713 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
1721 const DSAStackTy::DSAVarData
DSAStackTy::getTopDSA(ValueDecl
*D
,
1723 D
= getCanonicalDecl(D
);
1726 auto *VD
= dyn_cast
<VarDecl
>(D
);
1727 auto TI
= Threadprivates
.find(D
);
1728 if (TI
!= Threadprivates
.end()) {
1729 DVar
.RefExpr
= TI
->getSecond().RefExpr
.getPointer();
1730 DVar
.CKind
= OMPC_threadprivate
;
1731 DVar
.Modifier
= TI
->getSecond().Modifier
;
1734 if (VD
&& VD
->hasAttr
<OMPThreadPrivateDeclAttr
>()) {
1735 DVar
.RefExpr
= buildDeclRefExpr(
1736 SemaRef
, VD
, D
->getType().getNonReferenceType(),
1737 VD
->getAttr
<OMPThreadPrivateDeclAttr
>()->getLocation());
1738 DVar
.CKind
= OMPC_threadprivate
;
1739 addDSA(D
, DVar
.RefExpr
, OMPC_threadprivate
);
1742 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1743 // in a Construct, C/C++, predetermined, p.1]
1744 // Variables appearing in threadprivate directives are threadprivate.
1745 if ((VD
&& VD
->getTLSKind() != VarDecl::TLS_None
&&
1746 !(VD
->hasAttr
<OMPThreadPrivateDeclAttr
>() &&
1747 SemaRef
.getLangOpts().OpenMPUseTLS
&&
1748 SemaRef
.getASTContext().getTargetInfo().isTLSSupported())) ||
1749 (VD
&& VD
->getStorageClass() == SC_Register
&&
1750 VD
->hasAttr
<AsmLabelAttr
>() && !VD
->isLocalVarDecl())) {
1751 DVar
.RefExpr
= buildDeclRefExpr(
1752 SemaRef
, VD
, D
->getType().getNonReferenceType(), D
->getLocation());
1753 DVar
.CKind
= OMPC_threadprivate
;
1754 addDSA(D
, DVar
.RefExpr
, OMPC_threadprivate
);
1757 if (SemaRef
.getLangOpts().OpenMPCUDAMode
&& VD
&&
1758 VD
->isLocalVarDeclOrParm() && !isStackEmpty() &&
1759 !isLoopControlVariable(D
).first
) {
1760 const_iterator IterTarget
=
1761 std::find_if(begin(), end(), [](const SharingMapTy
&Data
) {
1762 return isOpenMPTargetExecutionDirective(Data
.Directive
);
1764 if (IterTarget
!= end()) {
1765 const_iterator ParentIterTarget
= IterTarget
+ 1;
1766 for (const_iterator Iter
= begin(); Iter
!= ParentIterTarget
; ++Iter
) {
1767 if (isOpenMPLocal(VD
, Iter
)) {
1769 buildDeclRefExpr(SemaRef
, VD
, D
->getType().getNonReferenceType(),
1771 DVar
.CKind
= OMPC_threadprivate
;
1775 if (!isClauseParsingMode() || IterTarget
!= begin()) {
1776 auto DSAIter
= IterTarget
->SharingMap
.find(D
);
1777 if (DSAIter
!= IterTarget
->SharingMap
.end() &&
1778 isOpenMPPrivate(DSAIter
->getSecond().Attributes
)) {
1779 DVar
.RefExpr
= DSAIter
->getSecond().RefExpr
.getPointer();
1780 DVar
.CKind
= OMPC_threadprivate
;
1783 const_iterator End
= end();
1784 if (!SemaRef
.OpenMP().isOpenMPCapturedByRef(
1785 D
, std::distance(ParentIterTarget
, End
),
1786 /*OpenMPCaptureLevel=*/0)) {
1788 buildDeclRefExpr(SemaRef
, VD
, D
->getType().getNonReferenceType(),
1789 IterTarget
->ConstructLoc
);
1790 DVar
.CKind
= OMPC_threadprivate
;
1798 // Not in OpenMP execution region and top scope was already checked.
1801 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1802 // in a Construct, C/C++, predetermined, p.4]
1803 // Static data members are shared.
1804 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1805 // in a Construct, C/C++, predetermined, p.7]
1806 // Variables with static storage duration that are declared in a scope
1807 // inside the construct are shared.
1808 if (VD
&& VD
->isStaticDataMember()) {
1809 // Check for explicitly specified attributes.
1810 const_iterator I
= begin();
1811 const_iterator EndI
= end();
1812 if (FromParent
&& I
!= EndI
)
1815 auto It
= I
->SharingMap
.find(D
);
1816 if (It
!= I
->SharingMap
.end()) {
1817 const DSAInfo
&Data
= It
->getSecond();
1818 DVar
.RefExpr
= Data
.RefExpr
.getPointer();
1819 DVar
.PrivateCopy
= Data
.PrivateCopy
;
1820 DVar
.CKind
= Data
.Attributes
;
1821 DVar
.ImplicitDSALoc
= I
->DefaultAttrLoc
;
1822 DVar
.DKind
= I
->Directive
;
1823 DVar
.Modifier
= Data
.Modifier
;
1824 DVar
.AppliedToPointee
= Data
.AppliedToPointee
;
1829 DVar
.CKind
= OMPC_shared
;
1833 auto &&MatchesAlways
= [](OpenMPDirectiveKind
) { return true; };
1834 // The predetermined shared attribute for const-qualified types having no
1835 // mutable members was removed after OpenMP 3.1.
1836 if (SemaRef
.LangOpts
.OpenMP
<= 31) {
1837 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
1838 // in a Construct, C/C++, predetermined, p.6]
1839 // Variables with const qualified type having no mutable member are
1841 if (isConstNotMutableType(SemaRef
, D
->getType())) {
1842 // Variables with const-qualified type having no mutable member may be
1843 // listed in a firstprivate clause, even if they are static data members.
1844 DSAVarData DVarTemp
= hasInnermostDSA(
1846 [](OpenMPClauseKind C
, bool) {
1847 return C
== OMPC_firstprivate
|| C
== OMPC_shared
;
1849 MatchesAlways
, FromParent
);
1850 if (DVarTemp
.CKind
!= OMPC_unknown
&& DVarTemp
.RefExpr
)
1853 DVar
.CKind
= OMPC_shared
;
1858 // Explicitly specified attributes and local variables with predetermined
1860 const_iterator I
= begin();
1861 const_iterator EndI
= end();
1862 if (FromParent
&& I
!= EndI
)
1866 auto It
= I
->SharingMap
.find(D
);
1867 if (It
!= I
->SharingMap
.end()) {
1868 const DSAInfo
&Data
= It
->getSecond();
1869 DVar
.RefExpr
= Data
.RefExpr
.getPointer();
1870 DVar
.PrivateCopy
= Data
.PrivateCopy
;
1871 DVar
.CKind
= Data
.Attributes
;
1872 DVar
.ImplicitDSALoc
= I
->DefaultAttrLoc
;
1873 DVar
.DKind
= I
->Directive
;
1874 DVar
.Modifier
= Data
.Modifier
;
1875 DVar
.AppliedToPointee
= Data
.AppliedToPointee
;
1881 const DSAStackTy::DSAVarData
DSAStackTy::getImplicitDSA(ValueDecl
*D
,
1882 bool FromParent
) const {
1883 if (isStackEmpty()) {
1885 return getDSA(I
, D
);
1887 D
= getCanonicalDecl(D
);
1888 const_iterator StartI
= begin();
1889 const_iterator EndI
= end();
1890 if (FromParent
&& StartI
!= EndI
)
1892 return getDSA(StartI
, D
);
1895 const DSAStackTy::DSAVarData
DSAStackTy::getImplicitDSA(ValueDecl
*D
,
1896 unsigned Level
) const {
1897 if (getStackSize() <= Level
)
1898 return DSAVarData();
1899 D
= getCanonicalDecl(D
);
1900 const_iterator StartI
= std::next(begin(), getStackSize() - 1 - Level
);
1901 return getDSA(StartI
, D
);
1904 const DSAStackTy::DSAVarData
1905 DSAStackTy::hasDSA(ValueDecl
*D
,
1906 const llvm::function_ref
<bool(OpenMPClauseKind
, bool,
1907 DefaultDataSharingAttributes
)>
1909 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
1910 bool FromParent
) const {
1913 D
= getCanonicalDecl(D
);
1914 const_iterator I
= begin();
1915 const_iterator EndI
= end();
1916 if (FromParent
&& I
!= EndI
)
1918 for (; I
!= EndI
; ++I
) {
1919 if (!DPred(I
->Directive
) &&
1920 !isImplicitOrExplicitTaskingRegion(I
->Directive
))
1922 const_iterator NewI
= I
;
1923 DSAVarData DVar
= getDSA(NewI
, D
);
1924 if (I
== NewI
&& CPred(DVar
.CKind
, DVar
.AppliedToPointee
, I
->DefaultAttr
))
1930 const DSAStackTy::DSAVarData
DSAStackTy::hasInnermostDSA(
1931 ValueDecl
*D
, const llvm::function_ref
<bool(OpenMPClauseKind
, bool)> CPred
,
1932 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
1933 bool FromParent
) const {
1936 D
= getCanonicalDecl(D
);
1937 const_iterator StartI
= begin();
1938 const_iterator EndI
= end();
1939 if (FromParent
&& StartI
!= EndI
)
1941 if (StartI
== EndI
|| !DPred(StartI
->Directive
))
1943 const_iterator NewI
= StartI
;
1944 DSAVarData DVar
= getDSA(NewI
, D
);
1945 return (NewI
== StartI
&& CPred(DVar
.CKind
, DVar
.AppliedToPointee
))
1950 bool DSAStackTy::hasExplicitDSA(
1952 const llvm::function_ref
<bool(OpenMPClauseKind
, bool)> CPred
,
1953 unsigned Level
, bool NotLastprivate
) const {
1954 if (getStackSize() <= Level
)
1956 D
= getCanonicalDecl(D
);
1957 const SharingMapTy
&StackElem
= getStackElemAtLevel(Level
);
1958 auto I
= StackElem
.SharingMap
.find(D
);
1959 if (I
!= StackElem
.SharingMap
.end() && I
->getSecond().RefExpr
.getPointer() &&
1960 CPred(I
->getSecond().Attributes
, I
->getSecond().AppliedToPointee
) &&
1961 (!NotLastprivate
|| !I
->getSecond().RefExpr
.getInt()))
1963 // Check predetermined rules for the loop control variables.
1964 auto LI
= StackElem
.LCVMap
.find(D
);
1965 if (LI
!= StackElem
.LCVMap
.end())
1966 return CPred(OMPC_private
, /*AppliedToPointee=*/false);
1970 bool DSAStackTy::hasExplicitDirective(
1971 const llvm::function_ref
<bool(OpenMPDirectiveKind
)> DPred
,
1972 unsigned Level
) const {
1973 if (getStackSize() <= Level
)
1975 const SharingMapTy
&StackElem
= getStackElemAtLevel(Level
);
1976 return DPred(StackElem
.Directive
);
1979 bool DSAStackTy::hasDirective(
1980 const llvm::function_ref
<bool(OpenMPDirectiveKind
,
1981 const DeclarationNameInfo
&, SourceLocation
)>
1983 bool FromParent
) const {
1984 // We look only in the enclosing region.
1985 size_t Skip
= FromParent
? 2 : 1;
1986 for (const_iterator I
= begin() + std::min(Skip
, getStackSize()), E
= end();
1988 if (DPred(I
->Directive
, I
->DirectiveName
, I
->ConstructLoc
))
1994 void SemaOpenMP::InitDataSharingAttributesStack() {
1995 VarDataSharingAttributesStack
= new DSAStackTy(SemaRef
);
1998 #define DSAStack static_cast<DSAStackTy *>(VarDataSharingAttributesStack)
2000 void SemaOpenMP::pushOpenMPFunctionRegion() { DSAStack
->pushFunction(); }
2002 void SemaOpenMP::popOpenMPFunctionRegion(const FunctionScopeInfo
*OldFSI
) {
2003 DSAStack
->popFunction(OldFSI
);
2006 static bool isOpenMPDeviceDelayedContext(Sema
&S
) {
2007 assert(S
.LangOpts
.OpenMP
&& S
.LangOpts
.OpenMPIsTargetDevice
&&
2008 "Expected OpenMP device compilation.");
2009 return !S
.OpenMP().isInOpenMPTargetExecutionDirective();
2013 /// Status of the function emission on the host/device.
2014 enum class FunctionEmissionStatus
{
2019 } // anonymous namespace
2021 SemaBase::SemaDiagnosticBuilder
2022 SemaOpenMP::diagIfOpenMPDeviceCode(SourceLocation Loc
, unsigned DiagID
,
2023 const FunctionDecl
*FD
) {
2024 assert(getLangOpts().OpenMP
&& getLangOpts().OpenMPIsTargetDevice
&&
2025 "Expected OpenMP device compilation.");
2027 SemaDiagnosticBuilder::Kind Kind
= SemaDiagnosticBuilder::K_Nop
;
2029 Sema::FunctionEmissionStatus FES
= SemaRef
.getEmissionStatus(FD
);
2031 case Sema::FunctionEmissionStatus::Emitted
:
2032 Kind
= SemaDiagnosticBuilder::K_Immediate
;
2034 case Sema::FunctionEmissionStatus::Unknown
:
2035 // TODO: We should always delay diagnostics here in case a target
2036 // region is in a function we do not emit. However, as the
2037 // current diagnostics are associated with the function containing
2038 // the target region and we do not emit that one, we would miss out
2039 // on diagnostics for the target region itself. We need to anchor
2040 // the diagnostics with the new generated function *or* ensure we
2041 // emit diagnostics associated with the surrounding function.
2042 Kind
= isOpenMPDeviceDelayedContext(SemaRef
)
2043 ? SemaDiagnosticBuilder::K_Deferred
2044 : SemaDiagnosticBuilder::K_Immediate
;
2046 case Sema::FunctionEmissionStatus::TemplateDiscarded
:
2047 case Sema::FunctionEmissionStatus::OMPDiscarded
:
2048 Kind
= SemaDiagnosticBuilder::K_Nop
;
2050 case Sema::FunctionEmissionStatus::CUDADiscarded
:
2051 llvm_unreachable("CUDADiscarded unexpected in OpenMP device compilation");
2056 return SemaDiagnosticBuilder(Kind
, Loc
, DiagID
, FD
, SemaRef
);
2059 SemaBase::SemaDiagnosticBuilder
2060 SemaOpenMP::diagIfOpenMPHostCode(SourceLocation Loc
, unsigned DiagID
,
2061 const FunctionDecl
*FD
) {
2062 assert(getLangOpts().OpenMP
&& !getLangOpts().OpenMPIsTargetDevice
&&
2063 "Expected OpenMP host compilation.");
2065 SemaDiagnosticBuilder::Kind Kind
= SemaDiagnosticBuilder::K_Nop
;
2067 Sema::FunctionEmissionStatus FES
= SemaRef
.getEmissionStatus(FD
);
2069 case Sema::FunctionEmissionStatus::Emitted
:
2070 Kind
= SemaDiagnosticBuilder::K_Immediate
;
2072 case Sema::FunctionEmissionStatus::Unknown
:
2073 Kind
= SemaDiagnosticBuilder::K_Deferred
;
2075 case Sema::FunctionEmissionStatus::TemplateDiscarded
:
2076 case Sema::FunctionEmissionStatus::OMPDiscarded
:
2077 case Sema::FunctionEmissionStatus::CUDADiscarded
:
2078 Kind
= SemaDiagnosticBuilder::K_Nop
;
2083 return SemaDiagnosticBuilder(Kind
, Loc
, DiagID
, FD
, SemaRef
);
2086 static OpenMPDefaultmapClauseKind
2087 getVariableCategoryFromDecl(const LangOptions
&LO
, const ValueDecl
*VD
) {
2088 if (LO
.OpenMP
<= 45) {
2089 if (VD
->getType().getNonReferenceType()->isScalarType())
2090 return OMPC_DEFAULTMAP_scalar
;
2091 return OMPC_DEFAULTMAP_aggregate
;
2093 if (VD
->getType().getNonReferenceType()->isAnyPointerType())
2094 return OMPC_DEFAULTMAP_pointer
;
2095 if (VD
->getType().getNonReferenceType()->isScalarType())
2096 return OMPC_DEFAULTMAP_scalar
;
2097 return OMPC_DEFAULTMAP_aggregate
;
2100 bool SemaOpenMP::isOpenMPCapturedByRef(const ValueDecl
*D
, unsigned Level
,
2101 unsigned OpenMPCaptureLevel
) const {
2102 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2104 ASTContext
&Ctx
= getASTContext();
2105 bool IsByRef
= true;
2107 // Find the directive that is associated with the provided scope.
2108 D
= cast
<ValueDecl
>(D
->getCanonicalDecl());
2109 QualType Ty
= D
->getType();
2111 bool IsVariableUsedInMapClause
= false;
2112 if (DSAStack
->hasExplicitDirective(isOpenMPTargetExecutionDirective
, Level
)) {
2113 // This table summarizes how a given variable should be passed to the device
2114 // given its type and the clauses where it appears. This table is based on
2115 // the description in OpenMP 4.5 [2.10.4, target Construct] and
2116 // OpenMP 4.5 [2.15.5, Data-mapping Attribute Rules and Clauses].
2118 // =========================================================================
2119 // | type | defaultmap | pvt | first | is_device_ptr | map | res. |
2120 // | |(tofrom:scalar)| | pvt | |has_dv_adr| |
2121 // =========================================================================
2122 // | scl | | | | - | | bycopy|
2123 // | scl | | - | x | - | - | bycopy|
2124 // | scl | | x | - | - | - | null |
2125 // | scl | x | | | - | | byref |
2126 // | scl | x | - | x | - | - | bycopy|
2127 // | scl | x | x | - | - | - | null |
2128 // | scl | | - | - | - | x | byref |
2129 // | scl | x | - | - | - | x | byref |
2131 // | agg | n.a. | | | - | | byref |
2132 // | agg | n.a. | - | x | - | - | byref |
2133 // | agg | n.a. | x | - | - | - | null |
2134 // | agg | n.a. | - | - | - | x | byref |
2135 // | agg | n.a. | - | - | - | x[] | byref |
2137 // | ptr | n.a. | | | - | | bycopy|
2138 // | ptr | n.a. | - | x | - | - | bycopy|
2139 // | ptr | n.a. | x | - | - | - | null |
2140 // | ptr | n.a. | - | - | - | x | byref |
2141 // | ptr | n.a. | - | - | - | x[] | bycopy|
2142 // | ptr | n.a. | - | - | x | | bycopy|
2143 // | ptr | n.a. | - | - | x | x | bycopy|
2144 // | ptr | n.a. | - | - | x | x[] | bycopy|
2145 // =========================================================================
2151 // - - invalid in this combination
2152 // [] - mapped with an array section
2153 // byref - should be mapped by reference
2154 // byval - should be mapped by value
2155 // null - initialize a local variable to null on the device
2158 // - All scalar declarations that show up in a map clause have to be passed
2159 // by reference, because they may have been mapped in the enclosing data
2161 // - If the scalar value does not fit the size of uintptr, it has to be
2162 // passed by reference, regardless the result in the table above.
2163 // - For pointers mapped by value that have either an implicit map or an
2164 // array section, the runtime library may pass the NULL value to the
2165 // device instead of the value passed to it by the compiler.
2167 if (Ty
->isReferenceType())
2168 Ty
= Ty
->castAs
<ReferenceType
>()->getPointeeType();
2170 // Locate map clauses and see if the variable being captured is referred to
2171 // in any of those clauses. Here we only care about variables, not fields,
2172 // because fields are part of aggregates.
2173 bool IsVariableAssociatedWithSection
= false;
2175 DSAStack
->checkMappableExprComponentListsForDeclAtLevel(
2177 [&IsVariableUsedInMapClause
, &IsVariableAssociatedWithSection
,
2178 D
](OMPClauseMappableExprCommon::MappableExprComponentListRef
2180 OpenMPClauseKind WhereFoundClauseKind
) {
2181 // Both map and has_device_addr clauses information influences how a
2182 // variable is captured. E.g. is_device_ptr does not require changing
2183 // the default behavior.
2184 if (WhereFoundClauseKind
!= OMPC_map
&&
2185 WhereFoundClauseKind
!= OMPC_has_device_addr
)
2188 auto EI
= MapExprComponents
.rbegin();
2189 auto EE
= MapExprComponents
.rend();
2191 assert(EI
!= EE
&& "Invalid map expression!");
2193 if (isa
<DeclRefExpr
>(EI
->getAssociatedExpression()))
2194 IsVariableUsedInMapClause
|= EI
->getAssociatedDeclaration() == D
;
2199 auto Last
= std::prev(EE
);
2201 dyn_cast
<UnaryOperator
>(Last
->getAssociatedExpression());
2202 if ((UO
&& UO
->getOpcode() == UO_Deref
) ||
2203 isa
<ArraySubscriptExpr
>(Last
->getAssociatedExpression()) ||
2204 isa
<ArraySectionExpr
>(Last
->getAssociatedExpression()) ||
2205 isa
<MemberExpr
>(EI
->getAssociatedExpression()) ||
2206 isa
<OMPArrayShapingExpr
>(Last
->getAssociatedExpression())) {
2207 IsVariableAssociatedWithSection
= true;
2208 // There is nothing more we need to know about this variable.
2212 // Keep looking for more map info.
2216 if (IsVariableUsedInMapClause
) {
2217 // If variable is identified in a map clause it is always captured by
2218 // reference except if it is a pointer that is dereferenced somehow.
2219 IsByRef
= !(Ty
->isPointerType() && IsVariableAssociatedWithSection
);
2221 // By default, all the data that has a scalar type is mapped by copy
2222 // (except for reduction variables).
2223 // Defaultmap scalar is mutual exclusive to defaultmap pointer
2224 IsByRef
= (DSAStack
->isForceCaptureByReferenceInTargetExecutable() &&
2225 !Ty
->isAnyPointerType()) ||
2226 !Ty
->isScalarType() ||
2227 DSAStack
->isDefaultmapCapturedByRef(
2228 Level
, getVariableCategoryFromDecl(getLangOpts(), D
)) ||
2229 DSAStack
->hasExplicitDSA(
2231 [](OpenMPClauseKind K
, bool AppliedToPointee
) {
2232 return K
== OMPC_reduction
&& !AppliedToPointee
;
2238 if (IsByRef
&& Ty
.getNonReferenceType()->isScalarType()) {
2240 ((IsVariableUsedInMapClause
&&
2241 DSAStack
->getCaptureRegion(Level
, OpenMPCaptureLevel
) ==
2243 !(DSAStack
->hasExplicitDSA(
2245 [](OpenMPClauseKind K
, bool AppliedToPointee
) -> bool {
2246 return K
== OMPC_firstprivate
||
2247 (K
== OMPC_reduction
&& AppliedToPointee
);
2249 Level
, /*NotLastprivate=*/true) ||
2250 DSAStack
->isUsesAllocatorsDecl(Level
, D
))) &&
2251 // If the variable is artificial and must be captured by value - try to
2252 // capture by value.
2253 !(isa
<OMPCapturedExprDecl
>(D
) && !D
->hasAttr
<OMPCaptureNoInitAttr
>() &&
2254 !cast
<OMPCapturedExprDecl
>(D
)->getInit()->isGLValue()) &&
2255 // If the variable is implicitly firstprivate and scalar - capture by
2257 !((DSAStack
->getDefaultDSA() == DSA_firstprivate
||
2258 DSAStack
->getDefaultDSA() == DSA_private
) &&
2259 !DSAStack
->hasExplicitDSA(
2260 D
, [](OpenMPClauseKind K
, bool) { return K
!= OMPC_unknown
; },
2262 !DSAStack
->isLoopControlVariable(D
, Level
).first
);
2265 // When passing data by copy, we need to make sure it fits the uintptr size
2266 // and alignment, because the runtime library only deals with uintptr types.
2267 // If it does not fit the uintptr size, we need to pass the data by reference
2269 if (!IsByRef
&& (Ctx
.getTypeSizeInChars(Ty
) >
2270 Ctx
.getTypeSizeInChars(Ctx
.getUIntPtrType()) ||
2271 Ctx
.getAlignOfGlobalVarInChars(Ty
, dyn_cast
<VarDecl
>(D
)) >
2272 Ctx
.getTypeAlignInChars(Ctx
.getUIntPtrType()))) {
2279 unsigned SemaOpenMP::getOpenMPNestingLevel() const {
2280 assert(getLangOpts().OpenMP
);
2281 return DSAStack
->getNestingLevel();
2284 bool SemaOpenMP::isInOpenMPTaskUntiedContext() const {
2285 return isOpenMPTaskingDirective(DSAStack
->getCurrentDirective()) &&
2286 DSAStack
->isUntiedRegion();
2289 bool SemaOpenMP::isInOpenMPTargetExecutionDirective() const {
2290 return (isOpenMPTargetExecutionDirective(DSAStack
->getCurrentDirective()) &&
2291 !DSAStack
->isClauseParsingMode()) ||
2292 DSAStack
->hasDirective(
2293 [](OpenMPDirectiveKind K
, const DeclarationNameInfo
&,
2294 SourceLocation
) -> bool {
2295 return isOpenMPTargetExecutionDirective(K
);
2300 bool SemaOpenMP::isOpenMPRebuildMemberExpr(ValueDecl
*D
) {
2301 // Only rebuild for Field.
2302 if (!dyn_cast
<FieldDecl
>(D
))
2304 DSAStackTy::DSAVarData DVarPrivate
= DSAStack
->hasDSA(
2306 [](OpenMPClauseKind C
, bool AppliedToPointee
,
2307 DefaultDataSharingAttributes DefaultAttr
) {
2308 return isOpenMPPrivate(C
) && !AppliedToPointee
&&
2309 (DefaultAttr
== DSA_firstprivate
|| DefaultAttr
== DSA_private
);
2311 [](OpenMPDirectiveKind
) { return true; },
2312 DSAStack
->isClauseParsingMode());
2313 if (DVarPrivate
.CKind
!= OMPC_unknown
)
2318 static OMPCapturedExprDecl
*buildCaptureDecl(Sema
&S
, IdentifierInfo
*Id
,
2319 Expr
*CaptureExpr
, bool WithInit
,
2320 DeclContext
*CurContext
,
2323 VarDecl
*SemaOpenMP::isOpenMPCapturedDecl(ValueDecl
*D
, bool CheckScopeInfo
,
2325 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2326 D
= getCanonicalDecl(D
);
2328 auto *VD
= dyn_cast
<VarDecl
>(D
);
2329 // Do not capture constexpr variables.
2330 if (VD
&& VD
->isConstexpr())
2333 // If we want to determine whether the variable should be captured from the
2334 // perspective of the current capturing scope, and we've already left all the
2335 // capturing scopes of the top directive on the stack, check from the
2336 // perspective of its parent directive (if any) instead.
2337 DSAStackTy::ParentDirectiveScope
InParentDirectiveRAII(
2338 *DSAStack
, CheckScopeInfo
&& DSAStack
->isBodyComplete());
2340 // If we are attempting to capture a global variable in a directive with
2341 // 'target' we return true so that this global is also mapped to the device.
2343 if (VD
&& !VD
->hasLocalStorage() &&
2344 (SemaRef
.getCurCapturedRegion() || SemaRef
.getCurBlock() ||
2345 SemaRef
.getCurLambda())) {
2346 if (isInOpenMPTargetExecutionDirective()) {
2347 DSAStackTy::DSAVarData DVarTop
=
2348 DSAStack
->getTopDSA(D
, DSAStack
->isClauseParsingMode());
2349 if (DVarTop
.CKind
!= OMPC_unknown
&& DVarTop
.RefExpr
)
2351 // If the declaration is enclosed in a 'declare target' directive,
2352 // then it should not be captured.
2354 if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
))
2356 CapturedRegionScopeInfo
*CSI
= nullptr;
2357 for (FunctionScopeInfo
*FSI
: llvm::drop_begin(
2358 llvm::reverse(SemaRef
.FunctionScopes
),
2359 CheckScopeInfo
? (SemaRef
.FunctionScopes
.size() - (StopAt
+ 1))
2361 if (!isa
<CapturingScopeInfo
>(FSI
))
2363 if (auto *RSI
= dyn_cast
<CapturedRegionScopeInfo
>(FSI
))
2364 if (RSI
->CapRegionKind
== CR_OpenMP
) {
2369 assert(CSI
&& "Failed to find CapturedRegionScopeInfo");
2370 SmallVector
<OpenMPDirectiveKind
, 4> Regions
;
2371 getOpenMPCaptureRegions(Regions
,
2372 DSAStack
->getDirective(CSI
->OpenMPLevel
));
2373 if (Regions
[CSI
->OpenMPCaptureLevel
] != OMPD_task
)
2376 if (isInOpenMPDeclareTargetContext()) {
2377 // Try to mark variable as declare target if it is used in capturing
2379 if (getLangOpts().OpenMP
<= 45 &&
2380 !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
))
2381 checkDeclIsAllowedInOpenMPTarget(nullptr, VD
);
2386 if (CheckScopeInfo
) {
2387 bool OpenMPFound
= false;
2388 for (unsigned I
= StopAt
+ 1; I
> 0; --I
) {
2389 FunctionScopeInfo
*FSI
= SemaRef
.FunctionScopes
[I
- 1];
2390 if (!isa
<CapturingScopeInfo
>(FSI
))
2392 if (auto *RSI
= dyn_cast
<CapturedRegionScopeInfo
>(FSI
))
2393 if (RSI
->CapRegionKind
== CR_OpenMP
) {
2402 if (DSAStack
->getCurrentDirective() != OMPD_unknown
&&
2403 (!DSAStack
->isClauseParsingMode() ||
2404 DSAStack
->getParentDirective() != OMPD_unknown
)) {
2405 auto &&Info
= DSAStack
->isLoopControlVariable(D
);
2407 (VD
&& VD
->hasLocalStorage() &&
2408 isImplicitOrExplicitTaskingRegion(DSAStack
->getCurrentDirective())) ||
2409 (VD
&& DSAStack
->isForceVarCapturing()))
2410 return VD
? VD
: Info
.second
;
2411 DSAStackTy::DSAVarData DVarTop
=
2412 DSAStack
->getTopDSA(D
, DSAStack
->isClauseParsingMode());
2413 if (DVarTop
.CKind
!= OMPC_unknown
&& isOpenMPPrivate(DVarTop
.CKind
) &&
2414 (!VD
|| VD
->hasLocalStorage() || !DVarTop
.AppliedToPointee
))
2415 return VD
? VD
: cast
<VarDecl
>(DVarTop
.PrivateCopy
->getDecl());
2416 // Threadprivate variables must not be captured.
2417 if (isOpenMPThreadPrivate(DVarTop
.CKind
))
2419 // The variable is not private or it is the variable in the directive with
2420 // default(none) clause and not used in any clause.
2421 DSAStackTy::DSAVarData DVarPrivate
= DSAStack
->hasDSA(
2423 [](OpenMPClauseKind C
, bool AppliedToPointee
, bool) {
2424 return isOpenMPPrivate(C
) && !AppliedToPointee
;
2426 [](OpenMPDirectiveKind
) { return true; },
2427 DSAStack
->isClauseParsingMode());
2428 // Global shared must not be captured.
2429 if (VD
&& !VD
->hasLocalStorage() && DVarPrivate
.CKind
== OMPC_unknown
&&
2430 ((DSAStack
->getDefaultDSA() != DSA_none
&&
2431 DSAStack
->getDefaultDSA() != DSA_private
&&
2432 DSAStack
->getDefaultDSA() != DSA_firstprivate
) ||
2433 DVarTop
.CKind
== OMPC_shared
))
2435 auto *FD
= dyn_cast
<FieldDecl
>(D
);
2436 if (DVarPrivate
.CKind
!= OMPC_unknown
&& !VD
&& FD
&&
2437 !DVarPrivate
.PrivateCopy
) {
2438 DSAStackTy::DSAVarData DVarPrivate
= DSAStack
->hasDSA(
2440 [](OpenMPClauseKind C
, bool AppliedToPointee
,
2441 DefaultDataSharingAttributes DefaultAttr
) {
2442 return isOpenMPPrivate(C
) && !AppliedToPointee
&&
2443 (DefaultAttr
== DSA_firstprivate
||
2444 DefaultAttr
== DSA_private
);
2446 [](OpenMPDirectiveKind
) { return true; },
2447 DSAStack
->isClauseParsingMode());
2448 if (DVarPrivate
.CKind
== OMPC_unknown
)
2451 VarDecl
*VD
= DSAStack
->getImplicitFDCapExprDecl(FD
);
2454 if (SemaRef
.getCurrentThisType().isNull())
2456 Expr
*ThisExpr
= SemaRef
.BuildCXXThisExpr(SourceLocation(),
2457 SemaRef
.getCurrentThisType(),
2458 /*IsImplicit=*/true);
2459 const CXXScopeSpec CS
= CXXScopeSpec();
2460 Expr
*ME
= SemaRef
.BuildMemberExpr(
2461 ThisExpr
, /*IsArrow=*/true, SourceLocation(),
2462 NestedNameSpecifierLoc(), SourceLocation(), FD
,
2463 DeclAccessPair::make(FD
, FD
->getAccess()),
2464 /*HadMultipleCandidates=*/false, DeclarationNameInfo(), FD
->getType(),
2465 VK_LValue
, OK_Ordinary
);
2466 OMPCapturedExprDecl
*CD
= buildCaptureDecl(
2467 SemaRef
, FD
->getIdentifier(), ME
, DVarPrivate
.CKind
!= OMPC_private
,
2468 SemaRef
.CurContext
->getParent(), /*AsExpression=*/false);
2469 DeclRefExpr
*VDPrivateRefExpr
= buildDeclRefExpr(
2470 SemaRef
, CD
, CD
->getType().getNonReferenceType(), SourceLocation());
2471 VD
= cast
<VarDecl
>(VDPrivateRefExpr
->getDecl());
2472 DSAStack
->addImplicitDefaultFirstprivateFD(FD
, VD
);
2475 if (DVarPrivate
.CKind
!= OMPC_unknown
||
2476 (VD
&& (DSAStack
->getDefaultDSA() == DSA_none
||
2477 DSAStack
->getDefaultDSA() == DSA_private
||
2478 DSAStack
->getDefaultDSA() == DSA_firstprivate
)))
2479 return VD
? VD
: cast
<VarDecl
>(DVarPrivate
.PrivateCopy
->getDecl());
2484 void SemaOpenMP::adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex
,
2485 unsigned Level
) const {
2486 FunctionScopesIndex
-= getOpenMPCaptureLevels(DSAStack
->getDirective(Level
));
2489 void SemaOpenMP::startOpenMPLoop() {
2490 assert(getLangOpts().OpenMP
&& "OpenMP must be enabled.");
2491 if (isOpenMPLoopDirective(DSAStack
->getCurrentDirective()))
2492 DSAStack
->loopInit();
2495 void SemaOpenMP::startOpenMPCXXRangeFor() {
2496 assert(getLangOpts().OpenMP
&& "OpenMP must be enabled.");
2497 if (isOpenMPLoopDirective(DSAStack
->getCurrentDirective())) {
2498 DSAStack
->resetPossibleLoopCounter();
2499 DSAStack
->loopStart();
2503 OpenMPClauseKind
SemaOpenMP::isOpenMPPrivateDecl(ValueDecl
*D
, unsigned Level
,
2504 unsigned CapLevel
) const {
2505 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2506 if (DSAStack
->getCurrentDirective() != OMPD_unknown
&&
2507 (!DSAStack
->isClauseParsingMode() ||
2508 DSAStack
->getParentDirective() != OMPD_unknown
)) {
2509 DSAStackTy::DSAVarData DVarPrivate
= DSAStack
->hasDSA(
2511 [](OpenMPClauseKind C
, bool AppliedToPointee
,
2512 DefaultDataSharingAttributes DefaultAttr
) {
2513 return isOpenMPPrivate(C
) && !AppliedToPointee
&&
2514 DefaultAttr
== DSA_private
;
2516 [](OpenMPDirectiveKind
) { return true; },
2517 DSAStack
->isClauseParsingMode());
2518 if (DVarPrivate
.CKind
== OMPC_private
&& isa
<OMPCapturedExprDecl
>(D
) &&
2519 DSAStack
->isImplicitDefaultFirstprivateFD(cast
<VarDecl
>(D
)) &&
2520 !DSAStack
->isLoopControlVariable(D
).first
)
2521 return OMPC_private
;
2523 if (DSAStack
->hasExplicitDirective(isOpenMPTaskingDirective
, Level
)) {
2524 bool IsTriviallyCopyable
=
2525 D
->getType().getNonReferenceType().isTriviallyCopyableType(
2528 .getNonReferenceType()
2530 ->getAsCXXRecordDecl();
2531 OpenMPDirectiveKind DKind
= DSAStack
->getDirective(Level
);
2532 SmallVector
<OpenMPDirectiveKind
, 4> CaptureRegions
;
2533 getOpenMPCaptureRegions(CaptureRegions
, DKind
);
2534 if (isOpenMPTaskingDirective(CaptureRegions
[CapLevel
]) &&
2535 (IsTriviallyCopyable
||
2536 !isOpenMPTaskLoopDirective(CaptureRegions
[CapLevel
]))) {
2537 if (DSAStack
->hasExplicitDSA(
2539 [](OpenMPClauseKind K
, bool) { return K
== OMPC_firstprivate
; },
2540 Level
, /*NotLastprivate=*/true))
2541 return OMPC_firstprivate
;
2542 DSAStackTy::DSAVarData DVar
= DSAStack
->getImplicitDSA(D
, Level
);
2543 if (DVar
.CKind
!= OMPC_shared
&&
2544 !DSAStack
->isLoopControlVariable(D
, Level
).first
&& !DVar
.RefExpr
) {
2545 DSAStack
->addImplicitTaskFirstprivate(Level
, D
);
2546 return OMPC_firstprivate
;
2550 if (isOpenMPLoopDirective(DSAStack
->getCurrentDirective()) &&
2551 !isOpenMPLoopTransformationDirective(DSAStack
->getCurrentDirective())) {
2552 if (DSAStack
->getAssociatedLoops() > 0 && !DSAStack
->isLoopStarted()) {
2553 DSAStack
->resetPossibleLoopCounter(D
);
2554 DSAStack
->loopStart();
2555 return OMPC_private
;
2557 if ((DSAStack
->getPossiblyLoopCounter() == D
->getCanonicalDecl() ||
2558 DSAStack
->isLoopControlVariable(D
).first
) &&
2559 !DSAStack
->hasExplicitDSA(
2560 D
, [](OpenMPClauseKind K
, bool) { return K
!= OMPC_private
; },
2562 !isOpenMPSimdDirective(DSAStack
->getCurrentDirective()))
2563 return OMPC_private
;
2565 if (const auto *VD
= dyn_cast
<VarDecl
>(D
)) {
2566 if (DSAStack
->isThreadPrivate(const_cast<VarDecl
*>(VD
)) &&
2567 DSAStack
->isForceVarCapturing() &&
2568 !DSAStack
->hasExplicitDSA(
2569 D
, [](OpenMPClauseKind K
, bool) { return K
== OMPC_copyin
; },
2571 return OMPC_private
;
2573 // User-defined allocators are private since they must be defined in the
2574 // context of target region.
2575 if (DSAStack
->hasExplicitDirective(isOpenMPTargetExecutionDirective
, Level
) &&
2576 DSAStack
->isUsesAllocatorsDecl(Level
, D
).value_or(
2577 DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait
) ==
2578 DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator
)
2579 return OMPC_private
;
2580 return (DSAStack
->hasExplicitDSA(
2581 D
, [](OpenMPClauseKind K
, bool) { return K
== OMPC_private
; },
2583 (DSAStack
->isClauseParsingMode() &&
2584 DSAStack
->getClauseParsingMode() == OMPC_private
) ||
2585 // Consider taskgroup reduction descriptor variable a private
2586 // to avoid possible capture in the region.
2587 (DSAStack
->hasExplicitDirective(
2588 [](OpenMPDirectiveKind K
) {
2589 return K
== OMPD_taskgroup
||
2590 ((isOpenMPParallelDirective(K
) ||
2591 isOpenMPWorksharingDirective(K
)) &&
2592 !isOpenMPSimdDirective(K
));
2595 DSAStack
->isTaskgroupReductionRef(D
, Level
)))
2600 void SemaOpenMP::setOpenMPCaptureKind(FieldDecl
*FD
, const ValueDecl
*D
,
2602 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2603 D
= getCanonicalDecl(D
);
2604 OpenMPClauseKind OMPC
= OMPC_unknown
;
2605 for (unsigned I
= DSAStack
->getNestingLevel() + 1; I
> Level
; --I
) {
2606 const unsigned NewLevel
= I
- 1;
2607 if (DSAStack
->hasExplicitDSA(
2609 [&OMPC
](const OpenMPClauseKind K
, bool AppliedToPointee
) {
2610 if (isOpenMPPrivate(K
) && !AppliedToPointee
) {
2618 if (DSAStack
->checkMappableExprComponentListsForDeclAtLevel(
2620 [](OMPClauseMappableExprCommon::MappableExprComponentListRef
,
2621 OpenMPClauseKind
) { return true; })) {
2625 if (DSAStack
->hasExplicitDirective(isOpenMPTargetExecutionDirective
,
2628 if (DSAStack
->mustBeFirstprivateAtLevel(
2629 NewLevel
, getVariableCategoryFromDecl(getLangOpts(), D
)))
2630 OMPC
= OMPC_firstprivate
;
2634 if (OMPC
!= OMPC_unknown
)
2636 OMPCaptureKindAttr::CreateImplicit(getASTContext(), unsigned(OMPC
)));
2639 bool SemaOpenMP::isOpenMPTargetCapturedDecl(const ValueDecl
*D
, unsigned Level
,
2640 unsigned CaptureLevel
) const {
2641 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2642 // Return true if the current level is no longer enclosed in a target region.
2644 SmallVector
<OpenMPDirectiveKind
, 4> Regions
;
2645 getOpenMPCaptureRegions(Regions
, DSAStack
->getDirective(Level
));
2646 const auto *VD
= dyn_cast
<VarDecl
>(D
);
2647 return VD
&& !VD
->hasLocalStorage() &&
2648 DSAStack
->hasExplicitDirective(isOpenMPTargetExecutionDirective
,
2650 Regions
[CaptureLevel
] != OMPD_task
;
2653 bool SemaOpenMP::isOpenMPGlobalCapturedDecl(ValueDecl
*D
, unsigned Level
,
2654 unsigned CaptureLevel
) const {
2655 assert(getLangOpts().OpenMP
&& "OpenMP is not allowed");
2656 // Return true if the current level is no longer enclosed in a target region.
2658 if (const auto *VD
= dyn_cast
<VarDecl
>(D
)) {
2659 if (!VD
->hasLocalStorage()) {
2660 if (isInOpenMPTargetExecutionDirective())
2662 DSAStackTy::DSAVarData TopDVar
=
2663 DSAStack
->getTopDSA(D
, /*FromParent=*/false);
2664 unsigned NumLevels
=
2665 getOpenMPCaptureLevels(DSAStack
->getDirective(Level
));
2667 // non-file scope static variable with default(firstprivate)
2668 // should be global captured.
2669 return (NumLevels
== CaptureLevel
+ 1 &&
2670 (TopDVar
.CKind
!= OMPC_shared
||
2671 DSAStack
->getDefaultDSA() == DSA_firstprivate
));
2674 DSAStackTy::DSAVarData DVar
= DSAStack
->getImplicitDSA(D
, Level
);
2675 if (DVar
.CKind
!= OMPC_shared
)
2677 } while (Level
> 0);
2683 void SemaOpenMP::DestroyDataSharingAttributesStack() { delete DSAStack
; }
2685 void SemaOpenMP::ActOnOpenMPBeginDeclareVariant(SourceLocation Loc
,
2687 OMPDeclareVariantScopes
.push_back(OMPDeclareVariantScope(TI
));
2690 void SemaOpenMP::ActOnOpenMPEndDeclareVariant() {
2691 assert(isInOpenMPDeclareVariantScope() &&
2692 "Not in OpenMP declare variant scope!");
2694 OMPDeclareVariantScopes
.pop_back();
2697 void SemaOpenMP::finalizeOpenMPDelayedAnalysis(const FunctionDecl
*Caller
,
2698 const FunctionDecl
*Callee
,
2699 SourceLocation Loc
) {
2700 assert(getLangOpts().OpenMP
&& "Expected OpenMP compilation mode.");
2701 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
2702 OMPDeclareTargetDeclAttr::getDeviceType(Caller
->getMostRecentDecl());
2703 // Ignore host functions during device analysis.
2704 if (getLangOpts().OpenMPIsTargetDevice
&&
2705 (!DevTy
|| *DevTy
== OMPDeclareTargetDeclAttr::DT_Host
))
2707 // Ignore nohost functions during host analysis.
2708 if (!getLangOpts().OpenMPIsTargetDevice
&& DevTy
&&
2709 *DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
)
2711 const FunctionDecl
*FD
= Callee
->getMostRecentDecl();
2712 DevTy
= OMPDeclareTargetDeclAttr::getDeviceType(FD
);
2713 if (getLangOpts().OpenMPIsTargetDevice
&& DevTy
&&
2714 *DevTy
== OMPDeclareTargetDeclAttr::DT_Host
) {
2715 // Diagnose host function called during device codegen.
2716 StringRef HostDevTy
=
2717 getOpenMPSimpleClauseTypeName(OMPC_device_type
, OMPC_DEVICE_TYPE_host
);
2718 Diag(Loc
, diag::err_omp_wrong_device_function_call
) << HostDevTy
<< 0;
2719 Diag(*OMPDeclareTargetDeclAttr::getLocation(FD
),
2720 diag::note_omp_marked_device_type_here
)
2724 if (!getLangOpts().OpenMPIsTargetDevice
&&
2725 !getLangOpts().OpenMPOffloadMandatory
&& DevTy
&&
2726 *DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
) {
2727 // In OpenMP 5.2 or later, if the function has a host variant then allow
2728 // that to be called instead
2729 auto &&HasHostAttr
= [](const FunctionDecl
*Callee
) {
2730 for (OMPDeclareVariantAttr
*A
:
2731 Callee
->specific_attrs
<OMPDeclareVariantAttr
>()) {
2732 auto *DeclRefVariant
= cast
<DeclRefExpr
>(A
->getVariantFuncRef());
2733 auto *VariantFD
= cast
<FunctionDecl
>(DeclRefVariant
->getDecl());
2734 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
2735 OMPDeclareTargetDeclAttr::getDeviceType(
2736 VariantFD
->getMostRecentDecl());
2737 if (!DevTy
|| *DevTy
== OMPDeclareTargetDeclAttr::DT_Host
)
2742 if (getLangOpts().OpenMP
>= 52 &&
2743 Callee
->hasAttr
<OMPDeclareVariantAttr
>() && HasHostAttr(Callee
))
2745 // Diagnose nohost function called during host codegen.
2746 StringRef NoHostDevTy
= getOpenMPSimpleClauseTypeName(
2747 OMPC_device_type
, OMPC_DEVICE_TYPE_nohost
);
2748 Diag(Loc
, diag::err_omp_wrong_device_function_call
) << NoHostDevTy
<< 1;
2749 Diag(*OMPDeclareTargetDeclAttr::getLocation(FD
),
2750 diag::note_omp_marked_device_type_here
)
2755 void SemaOpenMP::StartOpenMPDSABlock(OpenMPDirectiveKind DKind
,
2756 const DeclarationNameInfo
&DirName
,
2757 Scope
*CurScope
, SourceLocation Loc
) {
2758 DSAStack
->push(DKind
, DirName
, CurScope
, Loc
);
2759 SemaRef
.PushExpressionEvaluationContext(
2760 Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
2763 void SemaOpenMP::StartOpenMPClause(OpenMPClauseKind K
) {
2764 DSAStack
->setClauseParsingMode(K
);
2767 void SemaOpenMP::EndOpenMPClause() {
2768 DSAStack
->setClauseParsingMode(/*K=*/OMPC_unknown
);
2769 SemaRef
.CleanupVarDeclMarking();
2772 static std::pair
<ValueDecl
*, bool>
2773 getPrivateItem(Sema
&S
, Expr
*&RefExpr
, SourceLocation
&ELoc
,
2774 SourceRange
&ERange
, bool AllowArraySection
= false,
2775 StringRef DiagType
= "");
2777 /// Check consistency of the reduction clauses.
2778 static void checkReductionClauses(Sema
&S
, DSAStackTy
*Stack
,
2779 ArrayRef
<OMPClause
*> Clauses
) {
2780 bool InscanFound
= false;
2781 SourceLocation InscanLoc
;
2782 // OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions.
2783 // A reduction clause without the inscan reduction-modifier may not appear on
2784 // a construct on which a reduction clause with the inscan reduction-modifier
2786 for (OMPClause
*C
: Clauses
) {
2787 if (C
->getClauseKind() != OMPC_reduction
)
2789 auto *RC
= cast
<OMPReductionClause
>(C
);
2790 if (RC
->getModifier() == OMPC_REDUCTION_inscan
) {
2792 InscanLoc
= RC
->getModifierLoc();
2795 if (RC
->getModifier() == OMPC_REDUCTION_task
) {
2796 // OpenMP 5.0, 2.19.5.4 reduction Clause.
2797 // A reduction clause with the task reduction-modifier may only appear on
2798 // a parallel construct, a worksharing construct or a combined or
2799 // composite construct for which any of the aforementioned constructs is a
2800 // constituent construct and simd or loop are not constituent constructs.
2801 OpenMPDirectiveKind CurDir
= Stack
->getCurrentDirective();
2802 if (!(isOpenMPParallelDirective(CurDir
) ||
2803 isOpenMPWorksharingDirective(CurDir
)) ||
2804 isOpenMPSimdDirective(CurDir
))
2805 S
.Diag(RC
->getModifierLoc(),
2806 diag::err_omp_reduction_task_not_parallel_or_worksharing
);
2811 for (OMPClause
*C
: Clauses
) {
2812 if (C
->getClauseKind() != OMPC_reduction
)
2814 auto *RC
= cast
<OMPReductionClause
>(C
);
2815 if (RC
->getModifier() != OMPC_REDUCTION_inscan
) {
2816 S
.Diag(RC
->getModifier() == OMPC_REDUCTION_unknown
2818 : RC
->getModifierLoc(),
2819 diag::err_omp_inscan_reduction_expected
);
2820 S
.Diag(InscanLoc
, diag::note_omp_previous_inscan_reduction
);
2823 for (Expr
*Ref
: RC
->varlist()) {
2824 assert(Ref
&& "NULL expr in OpenMP nontemporal clause.");
2825 SourceLocation ELoc
;
2827 Expr
*SimpleRefExpr
= Ref
;
2828 auto Res
= getPrivateItem(S
, SimpleRefExpr
, ELoc
, ERange
,
2829 /*AllowArraySection=*/true);
2830 ValueDecl
*D
= Res
.first
;
2833 if (!Stack
->isUsedInScanDirective(getCanonicalDecl(D
))) {
2834 S
.Diag(Ref
->getExprLoc(),
2835 diag::err_omp_reduction_not_inclusive_exclusive
)
2836 << Ref
->getSourceRange();
2843 static void checkAllocateClauses(Sema
&S
, DSAStackTy
*Stack
,
2844 ArrayRef
<OMPClause
*> Clauses
);
2845 static DeclRefExpr
*buildCapture(Sema
&S
, ValueDecl
*D
, Expr
*CaptureExpr
,
2848 static void reportOriginalDsa(Sema
&SemaRef
, const DSAStackTy
*Stack
,
2850 const DSAStackTy::DSAVarData
&DVar
,
2851 bool IsLoopIterVar
= false);
2853 void SemaOpenMP::EndOpenMPDSABlock(Stmt
*CurDirective
) {
2854 // OpenMP [2.14.3.5, Restrictions, C/C++, p.1]
2855 // A variable of class type (or array thereof) that appears in a lastprivate
2856 // clause requires an accessible, unambiguous default constructor for the
2857 // class type, unless the list item is also specified in a firstprivate
2860 auto FinalizeLastprivate
= [&](OMPLastprivateClause
*Clause
) {
2861 SmallVector
<Expr
*, 8> PrivateCopies
;
2862 for (Expr
*DE
: Clause
->varlist()) {
2863 if (DE
->isValueDependent() || DE
->isTypeDependent()) {
2864 PrivateCopies
.push_back(nullptr);
2867 auto *DRE
= cast
<DeclRefExpr
>(DE
->IgnoreParens());
2868 auto *VD
= cast
<VarDecl
>(DRE
->getDecl());
2869 QualType Type
= VD
->getType().getNonReferenceType();
2870 const DSAStackTy::DSAVarData DVar
=
2871 DSAStack
->getTopDSA(VD
, /*FromParent=*/false);
2872 if (DVar
.CKind
!= OMPC_lastprivate
) {
2873 // The variable is also a firstprivate, so initialization sequence
2874 // for private copy is generated already.
2875 PrivateCopies
.push_back(nullptr);
2878 // Generate helper private variable and initialize it with the
2879 // default value. The address of the original variable is replaced
2880 // by the address of the new private variable in CodeGen. This new
2881 // variable is not added to IdResolver, so the code in the OpenMP
2882 // region uses original variable for proper diagnostics.
2883 VarDecl
*VDPrivate
= buildVarDecl(
2884 SemaRef
, DE
->getExprLoc(), Type
.getUnqualifiedType(), VD
->getName(),
2885 VD
->hasAttrs() ? &VD
->getAttrs() : nullptr, DRE
);
2886 SemaRef
.ActOnUninitializedDecl(VDPrivate
);
2887 if (VDPrivate
->isInvalidDecl()) {
2888 PrivateCopies
.push_back(nullptr);
2891 PrivateCopies
.push_back(buildDeclRefExpr(
2892 SemaRef
, VDPrivate
, DE
->getType(), DE
->getExprLoc()));
2894 Clause
->setPrivateCopies(PrivateCopies
);
2897 auto FinalizeNontemporal
= [&](OMPNontemporalClause
*Clause
) {
2898 // Finalize nontemporal clause by handling private copies, if any.
2899 SmallVector
<Expr
*, 8> PrivateRefs
;
2900 for (Expr
*RefExpr
: Clause
->varlist()) {
2901 assert(RefExpr
&& "NULL expr in OpenMP nontemporal clause.");
2902 SourceLocation ELoc
;
2904 Expr
*SimpleRefExpr
= RefExpr
;
2905 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
2907 // It will be analyzed later.
2908 PrivateRefs
.push_back(RefExpr
);
2909 ValueDecl
*D
= Res
.first
;
2913 const DSAStackTy::DSAVarData DVar
=
2914 DSAStack
->getTopDSA(D
, /*FromParent=*/false);
2915 PrivateRefs
.push_back(DVar
.PrivateCopy
? DVar
.PrivateCopy
2918 Clause
->setPrivateRefs(PrivateRefs
);
2921 auto FinalizeAllocators
= [&](OMPUsesAllocatorsClause
*Clause
) {
2922 for (unsigned I
= 0, E
= Clause
->getNumberOfAllocators(); I
< E
; ++I
) {
2923 OMPUsesAllocatorsClause::Data D
= Clause
->getAllocatorData(I
);
2924 auto *DRE
= dyn_cast
<DeclRefExpr
>(D
.Allocator
->IgnoreParenImpCasts());
2927 ValueDecl
*VD
= DRE
->getDecl();
2928 if (!VD
|| !isa
<VarDecl
>(VD
))
2930 DSAStackTy::DSAVarData DVar
=
2931 DSAStack
->getTopDSA(VD
, /*FromParent=*/false);
2932 // OpenMP [2.12.5, target Construct]
2933 // Memory allocators that appear in a uses_allocators clause cannot
2934 // appear in other data-sharing attribute clauses or data-mapping
2935 // attribute clauses in the same construct.
2936 Expr
*MapExpr
= nullptr;
2938 DSAStack
->checkMappableExprComponentListsForDecl(
2939 VD
, /*CurrentRegionOnly=*/true,
2941 OMPClauseMappableExprCommon::MappableExprComponentListRef
2943 OpenMPClauseKind C
) {
2944 auto MI
= MapExprComponents
.rbegin();
2945 auto ME
= MapExprComponents
.rend();
2947 MI
->getAssociatedDeclaration()->getCanonicalDecl() ==
2948 VD
->getCanonicalDecl()) {
2949 MapExpr
= MI
->getAssociatedExpression();
2954 Diag(D
.Allocator
->getExprLoc(), diag::err_omp_allocator_used_in_clauses
)
2955 << D
.Allocator
->getSourceRange();
2957 reportOriginalDsa(SemaRef
, DSAStack
, VD
, DVar
);
2959 Diag(MapExpr
->getExprLoc(), diag::note_used_here
)
2960 << MapExpr
->getSourceRange();
2965 if (const auto *D
= dyn_cast_or_null
<OMPExecutableDirective
>(CurDirective
)) {
2966 for (OMPClause
*C
: D
->clauses()) {
2967 if (auto *Clause
= dyn_cast
<OMPLastprivateClause
>(C
)) {
2968 FinalizeLastprivate(Clause
);
2969 } else if (auto *Clause
= dyn_cast
<OMPNontemporalClause
>(C
)) {
2970 FinalizeNontemporal(Clause
);
2971 } else if (auto *Clause
= dyn_cast
<OMPUsesAllocatorsClause
>(C
)) {
2972 FinalizeAllocators(Clause
);
2975 // Check allocate clauses.
2976 if (!SemaRef
.CurContext
->isDependentContext())
2977 checkAllocateClauses(SemaRef
, DSAStack
, D
->clauses());
2978 checkReductionClauses(SemaRef
, DSAStack
, D
->clauses());
2982 SemaRef
.DiscardCleanupsInEvaluationContext();
2983 SemaRef
.PopExpressionEvaluationContext();
2986 static bool FinishOpenMPLinearClause(OMPLinearClause
&Clause
, DeclRefExpr
*IV
,
2987 Expr
*NumIterations
, Sema
&SemaRef
,
2988 Scope
*S
, DSAStackTy
*Stack
);
2990 static bool finishLinearClauses(Sema
&SemaRef
, ArrayRef
<OMPClause
*> Clauses
,
2991 OMPLoopBasedDirective::HelperExprs
&B
,
2992 DSAStackTy
*Stack
) {
2993 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
2994 "loop exprs were not built");
2996 if (SemaRef
.CurContext
->isDependentContext())
2999 // Finalize the clauses that need pre-built expressions for CodeGen.
3000 for (OMPClause
*C
: Clauses
) {
3001 auto *LC
= dyn_cast
<OMPLinearClause
>(C
);
3004 if (FinishOpenMPLinearClause(*LC
, cast
<DeclRefExpr
>(B
.IterationVarRef
),
3005 B
.NumIterations
, SemaRef
,
3006 SemaRef
.getCurScope(), Stack
))
3015 class VarDeclFilterCCC final
: public CorrectionCandidateCallback
{
3020 explicit VarDeclFilterCCC(Sema
&S
) : SemaRef(S
) {}
3021 bool ValidateCandidate(const TypoCorrection
&Candidate
) override
{
3022 NamedDecl
*ND
= Candidate
.getCorrectionDecl();
3023 if (const auto *VD
= dyn_cast_or_null
<VarDecl
>(ND
)) {
3024 return VD
->hasGlobalStorage() &&
3025 SemaRef
.isDeclInScope(ND
, SemaRef
.getCurLexicalContext(),
3026 SemaRef
.getCurScope());
3031 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
3032 return std::make_unique
<VarDeclFilterCCC
>(*this);
3036 class VarOrFuncDeclFilterCCC final
: public CorrectionCandidateCallback
{
3041 explicit VarOrFuncDeclFilterCCC(Sema
&S
) : SemaRef(S
) {}
3042 bool ValidateCandidate(const TypoCorrection
&Candidate
) override
{
3043 NamedDecl
*ND
= Candidate
.getCorrectionDecl();
3044 if (ND
&& ((isa
<VarDecl
>(ND
) && ND
->getKind() == Decl::Var
) ||
3045 isa
<FunctionDecl
>(ND
))) {
3046 return SemaRef
.isDeclInScope(ND
, SemaRef
.getCurLexicalContext(),
3047 SemaRef
.getCurScope());
3052 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
3053 return std::make_unique
<VarOrFuncDeclFilterCCC
>(*this);
3059 ExprResult
SemaOpenMP::ActOnOpenMPIdExpression(Scope
*CurScope
,
3060 CXXScopeSpec
&ScopeSpec
,
3061 const DeclarationNameInfo
&Id
,
3062 OpenMPDirectiveKind Kind
) {
3063 ASTContext
&Context
= getASTContext();
3064 LookupResult
Lookup(SemaRef
, Id
, Sema::LookupOrdinaryName
);
3065 SemaRef
.LookupParsedName(Lookup
, CurScope
, &ScopeSpec
,
3066 /*ObjectType=*/QualType(),
3067 /*AllowBuiltinCreation=*/true);
3069 if (Lookup
.isAmbiguous())
3073 if (!Lookup
.isSingleResult()) {
3074 VarDeclFilterCCC
CCC(SemaRef
);
3075 if (TypoCorrection Corrected
=
3076 SemaRef
.CorrectTypo(Id
, Sema::LookupOrdinaryName
, CurScope
, nullptr,
3077 CCC
, Sema::CTK_ErrorRecovery
)) {
3078 SemaRef
.diagnoseTypo(
3080 SemaRef
.PDiag(Lookup
.empty() ? diag::err_undeclared_var_use_suggest
3081 : diag::err_omp_expected_var_arg_suggest
)
3083 VD
= Corrected
.getCorrectionDeclAs
<VarDecl
>();
3085 Diag(Id
.getLoc(), Lookup
.empty() ? diag::err_undeclared_var_use
3086 : diag::err_omp_expected_var_arg
)
3090 } else if (!(VD
= Lookup
.getAsSingle
<VarDecl
>())) {
3091 Diag(Id
.getLoc(), diag::err_omp_expected_var_arg
) << Id
.getName();
3092 Diag(Lookup
.getFoundDecl()->getLocation(), diag::note_declared_at
);
3095 Lookup
.suppressDiagnostics();
3097 // OpenMP [2.9.2, Syntax, C/C++]
3098 // Variables must be file-scope, namespace-scope, or static block-scope.
3099 if (Kind
== OMPD_threadprivate
&& !VD
->hasGlobalStorage()) {
3100 Diag(Id
.getLoc(), diag::err_omp_global_var_arg
)
3101 << getOpenMPDirectiveName(Kind
) << !VD
->isStaticLocal();
3103 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3104 Diag(VD
->getLocation(),
3105 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3110 VarDecl
*CanonicalVD
= VD
->getCanonicalDecl();
3111 NamedDecl
*ND
= CanonicalVD
;
3112 // OpenMP [2.9.2, Restrictions, C/C++, p.2]
3113 // A threadprivate directive for file-scope variables must appear outside
3114 // any definition or declaration.
3115 if (CanonicalVD
->getDeclContext()->isTranslationUnit() &&
3116 !SemaRef
.getCurLexicalContext()->isTranslationUnit()) {
3117 Diag(Id
.getLoc(), diag::err_omp_var_scope
)
3118 << getOpenMPDirectiveName(Kind
) << VD
;
3120 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3121 Diag(VD
->getLocation(),
3122 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3126 // OpenMP [2.9.2, Restrictions, C/C++, p.3]
3127 // A threadprivate directive for static class member variables must appear
3128 // in the class definition, in the same scope in which the member
3129 // variables are declared.
3130 if (CanonicalVD
->isStaticDataMember() &&
3131 !CanonicalVD
->getDeclContext()->Equals(SemaRef
.getCurLexicalContext())) {
3132 Diag(Id
.getLoc(), diag::err_omp_var_scope
)
3133 << getOpenMPDirectiveName(Kind
) << VD
;
3135 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3136 Diag(VD
->getLocation(),
3137 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3141 // OpenMP [2.9.2, Restrictions, C/C++, p.4]
3142 // A threadprivate directive for namespace-scope variables must appear
3143 // outside any definition or declaration other than the namespace
3144 // definition itself.
3145 if (CanonicalVD
->getDeclContext()->isNamespace() &&
3146 (!SemaRef
.getCurLexicalContext()->isFileContext() ||
3147 !SemaRef
.getCurLexicalContext()->Encloses(
3148 CanonicalVD
->getDeclContext()))) {
3149 Diag(Id
.getLoc(), diag::err_omp_var_scope
)
3150 << getOpenMPDirectiveName(Kind
) << VD
;
3152 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3153 Diag(VD
->getLocation(),
3154 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3158 // OpenMP [2.9.2, Restrictions, C/C++, p.6]
3159 // A threadprivate directive for static block-scope variables must appear
3160 // in the scope of the variable and not in a nested scope.
3161 if (CanonicalVD
->isLocalVarDecl() && CurScope
&&
3162 !SemaRef
.isDeclInScope(ND
, SemaRef
.getCurLexicalContext(), CurScope
)) {
3163 Diag(Id
.getLoc(), diag::err_omp_var_scope
)
3164 << getOpenMPDirectiveName(Kind
) << VD
;
3166 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3167 Diag(VD
->getLocation(),
3168 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3173 // OpenMP [2.9.2, Restrictions, C/C++, p.2-6]
3174 // A threadprivate directive must lexically precede all references to any
3175 // of the variables in its list.
3176 if (Kind
== OMPD_threadprivate
&& VD
->isUsed() &&
3177 !DSAStack
->isThreadPrivate(VD
)) {
3178 Diag(Id
.getLoc(), diag::err_omp_var_used
)
3179 << getOpenMPDirectiveName(Kind
) << VD
;
3183 QualType ExprType
= VD
->getType().getNonReferenceType();
3184 return DeclRefExpr::Create(Context
, NestedNameSpecifierLoc(),
3185 SourceLocation(), VD
,
3186 /*RefersToEnclosingVariableOrCapture=*/false,
3187 Id
.getLoc(), ExprType
, VK_LValue
);
3190 SemaOpenMP::DeclGroupPtrTy
3191 SemaOpenMP::ActOnOpenMPThreadprivateDirective(SourceLocation Loc
,
3192 ArrayRef
<Expr
*> VarList
) {
3193 if (OMPThreadPrivateDecl
*D
= CheckOMPThreadPrivateDecl(Loc
, VarList
)) {
3194 SemaRef
.CurContext
->addDecl(D
);
3195 return DeclGroupPtrTy::make(DeclGroupRef(D
));
3201 class LocalVarRefChecker final
3202 : public ConstStmtVisitor
<LocalVarRefChecker
, bool> {
3206 bool VisitDeclRefExpr(const DeclRefExpr
*E
) {
3207 if (const auto *VD
= dyn_cast
<VarDecl
>(E
->getDecl())) {
3208 if (VD
->hasLocalStorage()) {
3209 SemaRef
.Diag(E
->getBeginLoc(),
3210 diag::err_omp_local_var_in_threadprivate_init
)
3211 << E
->getSourceRange();
3212 SemaRef
.Diag(VD
->getLocation(), diag::note_defined_here
)
3213 << VD
<< VD
->getSourceRange();
3219 bool VisitStmt(const Stmt
*S
) {
3220 for (const Stmt
*Child
: S
->children()) {
3221 if (Child
&& Visit(Child
))
3226 explicit LocalVarRefChecker(Sema
&SemaRef
) : SemaRef(SemaRef
) {}
3230 OMPThreadPrivateDecl
*
3231 SemaOpenMP::CheckOMPThreadPrivateDecl(SourceLocation Loc
,
3232 ArrayRef
<Expr
*> VarList
) {
3233 ASTContext
&Context
= getASTContext();
3234 SmallVector
<Expr
*, 8> Vars
;
3235 for (Expr
*RefExpr
: VarList
) {
3236 auto *DE
= cast
<DeclRefExpr
>(RefExpr
);
3237 auto *VD
= cast
<VarDecl
>(DE
->getDecl());
3238 SourceLocation ILoc
= DE
->getExprLoc();
3240 // Mark variable as used.
3241 VD
->setReferenced();
3242 VD
->markUsed(Context
);
3244 QualType QType
= VD
->getType();
3245 if (QType
->isDependentType() || QType
->isInstantiationDependentType()) {
3246 // It will be analyzed later.
3251 // OpenMP [2.9.2, Restrictions, C/C++, p.10]
3252 // A threadprivate variable must not have an incomplete type.
3253 if (SemaRef
.RequireCompleteType(
3254 ILoc
, VD
->getType(), diag::err_omp_threadprivate_incomplete_type
)) {
3258 // OpenMP [2.9.2, Restrictions, C/C++, p.10]
3259 // A threadprivate variable must not have a reference type.
3260 if (VD
->getType()->isReferenceType()) {
3261 Diag(ILoc
, diag::err_omp_ref_type_arg
)
3262 << getOpenMPDirectiveName(OMPD_threadprivate
) << VD
->getType();
3264 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3265 Diag(VD
->getLocation(),
3266 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3271 // Check if this is a TLS variable. If TLS is not being supported, produce
3272 // the corresponding diagnostic.
3273 if ((VD
->getTLSKind() != VarDecl::TLS_None
&&
3274 !(VD
->hasAttr
<OMPThreadPrivateDeclAttr
>() &&
3275 getLangOpts().OpenMPUseTLS
&&
3276 getASTContext().getTargetInfo().isTLSSupported())) ||
3277 (VD
->getStorageClass() == SC_Register
&& VD
->hasAttr
<AsmLabelAttr
>() &&
3278 !VD
->isLocalVarDecl())) {
3279 Diag(ILoc
, diag::err_omp_var_thread_local
)
3280 << VD
<< ((VD
->getTLSKind() != VarDecl::TLS_None
) ? 0 : 1);
3282 VD
->isThisDeclarationADefinition(Context
) == VarDecl::DeclarationOnly
;
3283 Diag(VD
->getLocation(),
3284 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3289 // Check if initial value of threadprivate variable reference variable with
3290 // local storage (it is not supported by runtime).
3291 if (const Expr
*Init
= VD
->getAnyInitializer()) {
3292 LocalVarRefChecker
Checker(SemaRef
);
3293 if (Checker
.Visit(Init
))
3297 Vars
.push_back(RefExpr
);
3298 DSAStack
->addDSA(VD
, DE
, OMPC_threadprivate
);
3299 VD
->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit(
3300 Context
, SourceRange(Loc
, Loc
)));
3301 if (ASTMutationListener
*ML
= Context
.getASTMutationListener())
3302 ML
->DeclarationMarkedOpenMPThreadPrivate(VD
);
3304 OMPThreadPrivateDecl
*D
= nullptr;
3305 if (!Vars
.empty()) {
3306 D
= OMPThreadPrivateDecl::Create(Context
, SemaRef
.getCurLexicalContext(),
3308 D
->setAccess(AS_public
);
3313 static OMPAllocateDeclAttr::AllocatorTypeTy
3314 getAllocatorKind(Sema
&S
, DSAStackTy
*Stack
, Expr
*Allocator
) {
3316 return OMPAllocateDeclAttr::OMPNullMemAlloc
;
3317 if (Allocator
->isTypeDependent() || Allocator
->isValueDependent() ||
3318 Allocator
->isInstantiationDependent() ||
3319 Allocator
->containsUnexpandedParameterPack())
3320 return OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
;
3321 auto AllocatorKindRes
= OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
;
3322 llvm::FoldingSetNodeID AEId
;
3323 const Expr
*AE
= Allocator
->IgnoreParenImpCasts();
3324 AE
->IgnoreImpCasts()->Profile(AEId
, S
.getASTContext(), /*Canonical=*/true);
3325 for (int I
= 0; I
< OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
; ++I
) {
3326 auto AllocatorKind
= static_cast<OMPAllocateDeclAttr::AllocatorTypeTy
>(I
);
3327 const Expr
*DefAllocator
= Stack
->getAllocator(AllocatorKind
);
3328 llvm::FoldingSetNodeID DAEId
;
3329 DefAllocator
->IgnoreImpCasts()->Profile(DAEId
, S
.getASTContext(),
3330 /*Canonical=*/true);
3331 if (AEId
== DAEId
) {
3332 AllocatorKindRes
= AllocatorKind
;
3336 return AllocatorKindRes
;
3339 static bool checkPreviousOMPAllocateAttribute(
3340 Sema
&S
, DSAStackTy
*Stack
, Expr
*RefExpr
, VarDecl
*VD
,
3341 OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
, Expr
*Allocator
) {
3342 if (!VD
->hasAttr
<OMPAllocateDeclAttr
>())
3344 const auto *A
= VD
->getAttr
<OMPAllocateDeclAttr
>();
3345 Expr
*PrevAllocator
= A
->getAllocator();
3346 OMPAllocateDeclAttr::AllocatorTypeTy PrevAllocatorKind
=
3347 getAllocatorKind(S
, Stack
, PrevAllocator
);
3348 bool AllocatorsMatch
= AllocatorKind
== PrevAllocatorKind
;
3349 if (AllocatorsMatch
&&
3350 AllocatorKind
== OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
&&
3351 Allocator
&& PrevAllocator
) {
3352 const Expr
*AE
= Allocator
->IgnoreParenImpCasts();
3353 const Expr
*PAE
= PrevAllocator
->IgnoreParenImpCasts();
3354 llvm::FoldingSetNodeID AEId
, PAEId
;
3355 AE
->Profile(AEId
, S
.Context
, /*Canonical=*/true);
3356 PAE
->Profile(PAEId
, S
.Context
, /*Canonical=*/true);
3357 AllocatorsMatch
= AEId
== PAEId
;
3359 if (!AllocatorsMatch
) {
3360 SmallString
<256> AllocatorBuffer
;
3361 llvm::raw_svector_ostream
AllocatorStream(AllocatorBuffer
);
3363 Allocator
->printPretty(AllocatorStream
, nullptr, S
.getPrintingPolicy());
3364 SmallString
<256> PrevAllocatorBuffer
;
3365 llvm::raw_svector_ostream
PrevAllocatorStream(PrevAllocatorBuffer
);
3367 PrevAllocator
->printPretty(PrevAllocatorStream
, nullptr,
3368 S
.getPrintingPolicy());
3370 SourceLocation AllocatorLoc
=
3371 Allocator
? Allocator
->getExprLoc() : RefExpr
->getExprLoc();
3372 SourceRange AllocatorRange
=
3373 Allocator
? Allocator
->getSourceRange() : RefExpr
->getSourceRange();
3374 SourceLocation PrevAllocatorLoc
=
3375 PrevAllocator
? PrevAllocator
->getExprLoc() : A
->getLocation();
3376 SourceRange PrevAllocatorRange
=
3377 PrevAllocator
? PrevAllocator
->getSourceRange() : A
->getRange();
3378 S
.Diag(AllocatorLoc
, diag::warn_omp_used_different_allocator
)
3379 << (Allocator
? 1 : 0) << AllocatorStream
.str()
3380 << (PrevAllocator
? 1 : 0) << PrevAllocatorStream
.str()
3382 S
.Diag(PrevAllocatorLoc
, diag::note_omp_previous_allocator
)
3383 << PrevAllocatorRange
;
3390 applyOMPAllocateAttribute(Sema
&S
, VarDecl
*VD
,
3391 OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
,
3392 Expr
*Allocator
, Expr
*Alignment
, SourceRange SR
) {
3393 if (VD
->hasAttr
<OMPAllocateDeclAttr
>())
3396 (Alignment
->isTypeDependent() || Alignment
->isValueDependent() ||
3397 Alignment
->isInstantiationDependent() ||
3398 Alignment
->containsUnexpandedParameterPack()))
3399 // Apply later when we have a usable value.
3402 (Allocator
->isTypeDependent() || Allocator
->isValueDependent() ||
3403 Allocator
->isInstantiationDependent() ||
3404 Allocator
->containsUnexpandedParameterPack()))
3406 auto *A
= OMPAllocateDeclAttr::CreateImplicit(S
.Context
, AllocatorKind
,
3407 Allocator
, Alignment
, SR
);
3409 if (ASTMutationListener
*ML
= S
.Context
.getASTMutationListener())
3410 ML
->DeclarationMarkedOpenMPAllocate(VD
, A
);
3413 SemaOpenMP::DeclGroupPtrTy
SemaOpenMP::ActOnOpenMPAllocateDirective(
3414 SourceLocation Loc
, ArrayRef
<Expr
*> VarList
, ArrayRef
<OMPClause
*> Clauses
,
3415 DeclContext
*Owner
) {
3416 assert(Clauses
.size() <= 2 && "Expected at most two clauses.");
3417 Expr
*Alignment
= nullptr;
3418 Expr
*Allocator
= nullptr;
3419 if (Clauses
.empty()) {
3420 // OpenMP 5.0, 2.11.3 allocate Directive, Restrictions.
3421 // allocate directives that appear in a target region must specify an
3422 // allocator clause unless a requires directive with the dynamic_allocators
3423 // clause is present in the same compilation unit.
3424 if (getLangOpts().OpenMPIsTargetDevice
&&
3425 !DSAStack
->hasRequiresDeclWithClause
<OMPDynamicAllocatorsClause
>())
3426 SemaRef
.targetDiag(Loc
, diag::err_expected_allocator_clause
);
3428 for (const OMPClause
*C
: Clauses
)
3429 if (const auto *AC
= dyn_cast
<OMPAllocatorClause
>(C
))
3430 Allocator
= AC
->getAllocator();
3431 else if (const auto *AC
= dyn_cast
<OMPAlignClause
>(C
))
3432 Alignment
= AC
->getAlignment();
3434 llvm_unreachable("Unexpected clause on allocate directive");
3436 OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
=
3437 getAllocatorKind(SemaRef
, DSAStack
, Allocator
);
3438 SmallVector
<Expr
*, 8> Vars
;
3439 for (Expr
*RefExpr
: VarList
) {
3440 auto *DE
= cast
<DeclRefExpr
>(RefExpr
);
3441 auto *VD
= cast
<VarDecl
>(DE
->getDecl());
3443 // Check if this is a TLS variable or global register.
3444 if (VD
->getTLSKind() != VarDecl::TLS_None
||
3445 VD
->hasAttr
<OMPThreadPrivateDeclAttr
>() ||
3446 (VD
->getStorageClass() == SC_Register
&& VD
->hasAttr
<AsmLabelAttr
>() &&
3447 !VD
->isLocalVarDecl()))
3450 // If the used several times in the allocate directive, the same allocator
3452 if (checkPreviousOMPAllocateAttribute(SemaRef
, DSAStack
, RefExpr
, VD
,
3453 AllocatorKind
, Allocator
))
3456 // OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++
3457 // If a list item has a static storage type, the allocator expression in the
3458 // allocator clause must be a constant expression that evaluates to one of
3459 // the predefined memory allocator values.
3460 if (Allocator
&& VD
->hasGlobalStorage()) {
3461 if (AllocatorKind
== OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
) {
3462 Diag(Allocator
->getExprLoc(),
3463 diag::err_omp_expected_predefined_allocator
)
3464 << Allocator
->getSourceRange();
3465 bool IsDecl
= VD
->isThisDeclarationADefinition(getASTContext()) ==
3466 VarDecl::DeclarationOnly
;
3467 Diag(VD
->getLocation(),
3468 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
3474 Vars
.push_back(RefExpr
);
3475 applyOMPAllocateAttribute(SemaRef
, VD
, AllocatorKind
, Allocator
, Alignment
,
3476 DE
->getSourceRange());
3481 Owner
= SemaRef
.getCurLexicalContext();
3482 auto *D
= OMPAllocateDecl::Create(getASTContext(), Owner
, Loc
, Vars
, Clauses
);
3483 D
->setAccess(AS_public
);
3485 return DeclGroupPtrTy::make(DeclGroupRef(D
));
3488 SemaOpenMP::DeclGroupPtrTy
3489 SemaOpenMP::ActOnOpenMPRequiresDirective(SourceLocation Loc
,
3490 ArrayRef
<OMPClause
*> ClauseList
) {
3491 OMPRequiresDecl
*D
= nullptr;
3492 if (!SemaRef
.CurContext
->isFileContext()) {
3493 Diag(Loc
, diag::err_omp_invalid_scope
) << "requires";
3495 D
= CheckOMPRequiresDecl(Loc
, ClauseList
);
3497 SemaRef
.CurContext
->addDecl(D
);
3498 DSAStack
->addRequiresDecl(D
);
3501 return DeclGroupPtrTy::make(DeclGroupRef(D
));
3504 void SemaOpenMP::ActOnOpenMPAssumesDirective(SourceLocation Loc
,
3505 OpenMPDirectiveKind DKind
,
3506 ArrayRef
<std::string
> Assumptions
,
3507 bool SkippedClauses
) {
3508 if (!SkippedClauses
&& Assumptions
.empty())
3509 Diag(Loc
, diag::err_omp_no_clause_for_directive
)
3510 << llvm::omp::getAllAssumeClauseOptions()
3511 << llvm::omp::getOpenMPDirectiveName(DKind
);
3514 OMPAssumeAttr::Create(getASTContext(), llvm::join(Assumptions
, ","), Loc
);
3515 if (DKind
== llvm::omp::Directive::OMPD_begin_assumes
) {
3516 OMPAssumeScoped
.push_back(AA
);
3520 // Global assumes without assumption clauses are ignored.
3521 if (Assumptions
.empty())
3524 assert(DKind
== llvm::omp::Directive::OMPD_assumes
&&
3525 "Unexpected omp assumption directive!");
3526 OMPAssumeGlobal
.push_back(AA
);
3528 // The OMPAssumeGlobal scope above will take care of new declarations but
3529 // we also want to apply the assumption to existing ones, e.g., to
3530 // declarations in included headers. To this end, we traverse all existing
3531 // declaration contexts and annotate function declarations here.
3532 SmallVector
<DeclContext
*, 8> DeclContexts
;
3533 auto *Ctx
= SemaRef
.CurContext
;
3534 while (Ctx
->getLexicalParent())
3535 Ctx
= Ctx
->getLexicalParent();
3536 DeclContexts
.push_back(Ctx
);
3537 while (!DeclContexts
.empty()) {
3538 DeclContext
*DC
= DeclContexts
.pop_back_val();
3539 for (auto *SubDC
: DC
->decls()) {
3540 if (SubDC
->isInvalidDecl())
3542 if (auto *CTD
= dyn_cast
<ClassTemplateDecl
>(SubDC
)) {
3543 DeclContexts
.push_back(CTD
->getTemplatedDecl());
3544 llvm::append_range(DeclContexts
, CTD
->specializations());
3547 if (auto *DC
= dyn_cast
<DeclContext
>(SubDC
))
3548 DeclContexts
.push_back(DC
);
3549 if (auto *F
= dyn_cast
<FunctionDecl
>(SubDC
)) {
3557 void SemaOpenMP::ActOnOpenMPEndAssumesDirective() {
3558 assert(isInOpenMPAssumeScope() && "Not in OpenMP assumes scope!");
3559 OMPAssumeScoped
.pop_back();
3562 StmtResult
SemaOpenMP::ActOnOpenMPAssumeDirective(ArrayRef
<OMPClause
*> Clauses
,
3564 SourceLocation StartLoc
,
3565 SourceLocation EndLoc
) {
3569 return OMPAssumeDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
3574 SemaOpenMP::CheckOMPRequiresDecl(SourceLocation Loc
,
3575 ArrayRef
<OMPClause
*> ClauseList
) {
3576 /// For target specific clauses, the requires directive cannot be
3577 /// specified after the handling of any of the target regions in the
3578 /// current compilation unit.
3579 ArrayRef
<SourceLocation
> TargetLocations
=
3580 DSAStack
->getEncounteredTargetLocs();
3581 SourceLocation AtomicLoc
= DSAStack
->getAtomicDirectiveLoc();
3582 if (!TargetLocations
.empty() || !AtomicLoc
.isInvalid()) {
3583 for (const OMPClause
*CNew
: ClauseList
) {
3584 // Check if any of the requires clauses affect target regions.
3585 if (isa
<OMPUnifiedSharedMemoryClause
>(CNew
) ||
3586 isa
<OMPUnifiedAddressClause
>(CNew
) ||
3587 isa
<OMPReverseOffloadClause
>(CNew
) ||
3588 isa
<OMPDynamicAllocatorsClause
>(CNew
)) {
3589 Diag(Loc
, diag::err_omp_directive_before_requires
)
3590 << "target" << getOpenMPClauseName(CNew
->getClauseKind());
3591 for (SourceLocation TargetLoc
: TargetLocations
) {
3592 Diag(TargetLoc
, diag::note_omp_requires_encountered_directive
)
3595 } else if (!AtomicLoc
.isInvalid() &&
3596 isa
<OMPAtomicDefaultMemOrderClause
>(CNew
)) {
3597 Diag(Loc
, diag::err_omp_directive_before_requires
)
3598 << "atomic" << getOpenMPClauseName(CNew
->getClauseKind());
3599 Diag(AtomicLoc
, diag::note_omp_requires_encountered_directive
)
3605 if (!DSAStack
->hasDuplicateRequiresClause(ClauseList
))
3606 return OMPRequiresDecl::Create(
3607 getASTContext(), SemaRef
.getCurLexicalContext(), Loc
, ClauseList
);
3611 static void reportOriginalDsa(Sema
&SemaRef
, const DSAStackTy
*Stack
,
3613 const DSAStackTy::DSAVarData
&DVar
,
3614 bool IsLoopIterVar
) {
3616 SemaRef
.Diag(DVar
.RefExpr
->getExprLoc(), diag::note_omp_explicit_dsa
)
3617 << getOpenMPClauseName(DVar
.CKind
);
3621 PDSA_StaticMemberShared
,
3622 PDSA_StaticLocalVarShared
,
3623 PDSA_LoopIterVarPrivate
,
3624 PDSA_LoopIterVarLinear
,
3625 PDSA_LoopIterVarLastprivate
,
3626 PDSA_ConstVarShared
,
3627 PDSA_GlobalVarShared
,
3628 PDSA_TaskVarFirstprivate
,
3629 PDSA_LocalVarPrivate
,
3631 } Reason
= PDSA_Implicit
;
3632 bool ReportHint
= false;
3633 auto ReportLoc
= D
->getLocation();
3634 auto *VD
= dyn_cast
<VarDecl
>(D
);
3635 if (IsLoopIterVar
) {
3636 if (DVar
.CKind
== OMPC_private
)
3637 Reason
= PDSA_LoopIterVarPrivate
;
3638 else if (DVar
.CKind
== OMPC_lastprivate
)
3639 Reason
= PDSA_LoopIterVarLastprivate
;
3641 Reason
= PDSA_LoopIterVarLinear
;
3642 } else if (isOpenMPTaskingDirective(DVar
.DKind
) &&
3643 DVar
.CKind
== OMPC_firstprivate
) {
3644 Reason
= PDSA_TaskVarFirstprivate
;
3645 ReportLoc
= DVar
.ImplicitDSALoc
;
3646 } else if (VD
&& VD
->isStaticLocal())
3647 Reason
= PDSA_StaticLocalVarShared
;
3648 else if (VD
&& VD
->isStaticDataMember())
3649 Reason
= PDSA_StaticMemberShared
;
3650 else if (VD
&& VD
->isFileVarDecl())
3651 Reason
= PDSA_GlobalVarShared
;
3652 else if (D
->getType().isConstant(SemaRef
.getASTContext()))
3653 Reason
= PDSA_ConstVarShared
;
3654 else if (VD
&& VD
->isLocalVarDecl() && DVar
.CKind
== OMPC_private
) {
3656 Reason
= PDSA_LocalVarPrivate
;
3658 if (Reason
!= PDSA_Implicit
) {
3659 SemaRef
.Diag(ReportLoc
, diag::note_omp_predetermined_dsa
)
3660 << Reason
<< ReportHint
3661 << getOpenMPDirectiveName(Stack
->getCurrentDirective());
3662 } else if (DVar
.ImplicitDSALoc
.isValid()) {
3663 SemaRef
.Diag(DVar
.ImplicitDSALoc
, diag::note_omp_implicit_dsa
)
3664 << getOpenMPClauseName(DVar
.CKind
);
3668 static OpenMPMapClauseKind
3669 getMapClauseKindFromModifier(OpenMPDefaultmapClauseModifier M
,
3670 bool IsAggregateOrDeclareTarget
) {
3671 OpenMPMapClauseKind Kind
= OMPC_MAP_unknown
;
3673 case OMPC_DEFAULTMAP_MODIFIER_alloc
:
3674 Kind
= OMPC_MAP_alloc
;
3676 case OMPC_DEFAULTMAP_MODIFIER_to
:
3679 case OMPC_DEFAULTMAP_MODIFIER_from
:
3680 Kind
= OMPC_MAP_from
;
3682 case OMPC_DEFAULTMAP_MODIFIER_tofrom
:
3683 Kind
= OMPC_MAP_tofrom
;
3685 case OMPC_DEFAULTMAP_MODIFIER_present
:
3686 // OpenMP 5.1 [2.21.7.3] defaultmap clause, Description]
3687 // If implicit-behavior is present, each variable referenced in the
3688 // construct in the category specified by variable-category is treated as if
3689 // it had been listed in a map clause with the map-type of alloc and
3690 // map-type-modifier of present.
3691 Kind
= OMPC_MAP_alloc
;
3693 case OMPC_DEFAULTMAP_MODIFIER_firstprivate
:
3694 case OMPC_DEFAULTMAP_MODIFIER_last
:
3695 llvm_unreachable("Unexpected defaultmap implicit behavior");
3696 case OMPC_DEFAULTMAP_MODIFIER_none
:
3697 case OMPC_DEFAULTMAP_MODIFIER_default
:
3698 case OMPC_DEFAULTMAP_MODIFIER_unknown
:
3699 // IsAggregateOrDeclareTarget could be true if:
3700 // 1. the implicit behavior for aggregate is tofrom
3701 // 2. it's a declare target link
3702 if (IsAggregateOrDeclareTarget
) {
3703 Kind
= OMPC_MAP_tofrom
;
3706 llvm_unreachable("Unexpected defaultmap implicit behavior");
3708 assert(Kind
!= OMPC_MAP_unknown
&& "Expect map kind to be known");
3713 struct VariableImplicitInfo
{
3714 static const unsigned MapKindNum
= OMPC_MAP_unknown
;
3715 static const unsigned DefaultmapKindNum
= OMPC_DEFAULTMAP_unknown
+ 1;
3717 llvm::SetVector
<Expr
*> Privates
;
3718 llvm::SetVector
<Expr
*> Firstprivates
;
3719 llvm::SetVector
<Expr
*> Mappings
[DefaultmapKindNum
][MapKindNum
];
3720 llvm::SmallVector
<OpenMPMapModifierKind
, NumberOfOMPMapClauseModifiers
>
3721 MapModifiers
[DefaultmapKindNum
];
3724 class DSAAttrChecker final
: public StmtVisitor
<DSAAttrChecker
, void> {
3727 OpenMPDirectiveKind DKind
= OMPD_unknown
;
3728 bool ErrorFound
= false;
3729 bool TryCaptureCXXThisMembers
= false;
3730 CapturedStmt
*CS
= nullptr;
3732 VariableImplicitInfo ImpInfo
;
3733 SemaOpenMP::VarsWithInheritedDSAType VarsWithInheritedDSA
;
3734 llvm::SmallDenseSet
<const ValueDecl
*, 4> ImplicitDeclarations
;
3736 void VisitSubCaptures(OMPExecutableDirective
*S
) {
3737 // Check implicitly captured variables.
3738 if (!S
->hasAssociatedStmt() || !S
->getAssociatedStmt())
3740 if (S
->getDirectiveKind() == OMPD_atomic
||
3741 S
->getDirectiveKind() == OMPD_critical
||
3742 S
->getDirectiveKind() == OMPD_section
||
3743 S
->getDirectiveKind() == OMPD_master
||
3744 S
->getDirectiveKind() == OMPD_masked
||
3745 S
->getDirectiveKind() == OMPD_scope
||
3746 S
->getDirectiveKind() == OMPD_assume
||
3747 isOpenMPLoopTransformationDirective(S
->getDirectiveKind())) {
3748 Visit(S
->getAssociatedStmt());
3751 visitSubCaptures(S
->getInnermostCapturedStmt());
3752 // Try to capture inner this->member references to generate correct mappings
3754 if (TryCaptureCXXThisMembers
||
3755 (isOpenMPTargetExecutionDirective(DKind
) &&
3756 llvm::any_of(S
->getInnermostCapturedStmt()->captures(),
3757 [](const CapturedStmt::Capture
&C
) {
3758 return C
.capturesThis();
3760 bool SavedTryCaptureCXXThisMembers
= TryCaptureCXXThisMembers
;
3761 TryCaptureCXXThisMembers
= true;
3762 Visit(S
->getInnermostCapturedStmt()->getCapturedStmt());
3763 TryCaptureCXXThisMembers
= SavedTryCaptureCXXThisMembers
;
3765 // In tasks firstprivates are not captured anymore, need to analyze them
3767 if (isOpenMPTaskingDirective(S
->getDirectiveKind()) &&
3768 !isOpenMPTaskLoopDirective(S
->getDirectiveKind())) {
3769 for (OMPClause
*C
: S
->clauses())
3770 if (auto *FC
= dyn_cast
<OMPFirstprivateClause
>(C
)) {
3771 for (Expr
*Ref
: FC
->varlist())
3778 void VisitDeclRefExpr(DeclRefExpr
*E
) {
3779 if (TryCaptureCXXThisMembers
|| E
->isTypeDependent() ||
3780 E
->isValueDependent() || E
->containsUnexpandedParameterPack() ||
3781 E
->isInstantiationDependent() ||
3782 E
->isNonOdrUse() == clang::NOUR_Unevaluated
)
3784 if (auto *VD
= dyn_cast
<VarDecl
>(E
->getDecl())) {
3785 // Check the datasharing rules for the expressions in the clauses.
3786 if (!CS
|| (isa
<OMPCapturedExprDecl
>(VD
) && !CS
->capturesVariable(VD
) &&
3787 !Stack
->getTopDSA(VD
, /*FromParent=*/false).RefExpr
&&
3788 !Stack
->isImplicitDefaultFirstprivateFD(VD
))) {
3789 if (auto *CED
= dyn_cast
<OMPCapturedExprDecl
>(VD
))
3790 if (!CED
->hasAttr
<OMPCaptureNoInitAttr
>()) {
3791 Visit(CED
->getInit());
3794 } else if (VD
->isImplicit() || isa
<OMPCapturedExprDecl
>(VD
))
3795 // Do not analyze internal variables and do not enclose them into
3796 // implicit clauses.
3797 if (!Stack
->isImplicitDefaultFirstprivateFD(VD
))
3799 VD
= VD
->getCanonicalDecl();
3800 // Skip internally declared variables.
3801 if (VD
->hasLocalStorage() && CS
&& !CS
->capturesVariable(VD
) &&
3802 !Stack
->isImplicitDefaultFirstprivateFD(VD
) &&
3803 !Stack
->isImplicitTaskFirstprivate(VD
))
3805 // Skip allocators in uses_allocators clauses.
3806 if (Stack
->isUsesAllocatorsDecl(VD
))
3809 DSAStackTy::DSAVarData DVar
= Stack
->getTopDSA(VD
, /*FromParent=*/false);
3810 // Check if the variable has explicit DSA set and stop analysis if it so.
3811 if (DVar
.RefExpr
|| !ImplicitDeclarations
.insert(VD
).second
)
3814 // Skip internally declared static variables.
3815 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
3816 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
);
3817 if (VD
->hasGlobalStorage() && CS
&& !CS
->capturesVariable(VD
) &&
3818 (Stack
->hasRequiresDeclWithClause
<OMPUnifiedSharedMemoryClause
>() ||
3819 !Res
|| *Res
!= OMPDeclareTargetDeclAttr::MT_Link
) &&
3820 !Stack
->isImplicitDefaultFirstprivateFD(VD
) &&
3821 !Stack
->isImplicitTaskFirstprivate(VD
))
3824 SourceLocation ELoc
= E
->getExprLoc();
3825 // The default(none) clause requires that each variable that is referenced
3826 // in the construct, and does not have a predetermined data-sharing
3827 // attribute, must have its data-sharing attribute explicitly determined
3828 // by being listed in a data-sharing attribute clause.
3829 if (DVar
.CKind
== OMPC_unknown
&&
3830 (Stack
->getDefaultDSA() == DSA_none
||
3831 Stack
->getDefaultDSA() == DSA_private
||
3832 Stack
->getDefaultDSA() == DSA_firstprivate
) &&
3833 isImplicitOrExplicitTaskingRegion(DKind
) &&
3834 VarsWithInheritedDSA
.count(VD
) == 0) {
3835 bool InheritedDSA
= Stack
->getDefaultDSA() == DSA_none
;
3836 if (!InheritedDSA
&& (Stack
->getDefaultDSA() == DSA_firstprivate
||
3837 Stack
->getDefaultDSA() == DSA_private
)) {
3838 DSAStackTy::DSAVarData DVar
=
3839 Stack
->getImplicitDSA(VD
, /*FromParent=*/false);
3840 InheritedDSA
= DVar
.CKind
== OMPC_unknown
;
3843 VarsWithInheritedDSA
[VD
] = E
;
3844 if (Stack
->getDefaultDSA() == DSA_none
)
3848 // OpenMP 5.0 [2.19.7.2, defaultmap clause, Description]
3849 // If implicit-behavior is none, each variable referenced in the
3850 // construct that does not have a predetermined data-sharing attribute
3851 // and does not appear in a to or link clause on a declare target
3852 // directive must be listed in a data-mapping attribute clause, a
3853 // data-sharing attribute clause (including a data-sharing attribute
3854 // clause on a combined construct where target. is one of the
3855 // constituent constructs), or an is_device_ptr clause.
3856 OpenMPDefaultmapClauseKind ClauseKind
=
3857 getVariableCategoryFromDecl(SemaRef
.getLangOpts(), VD
);
3858 if (SemaRef
.getLangOpts().OpenMP
>= 50) {
3859 bool IsModifierNone
= Stack
->getDefaultmapModifier(ClauseKind
) ==
3860 OMPC_DEFAULTMAP_MODIFIER_none
;
3861 if (DVar
.CKind
== OMPC_unknown
&& IsModifierNone
&&
3862 VarsWithInheritedDSA
.count(VD
) == 0 && !Res
) {
3863 // Only check for data-mapping attribute and is_device_ptr here
3864 // since we have already make sure that the declaration does not
3865 // have a data-sharing attribute above
3866 if (!Stack
->checkMappableExprComponentListsForDecl(
3867 VD
, /*CurrentRegionOnly=*/true,
3868 [VD
](OMPClauseMappableExprCommon::MappableExprComponentListRef
3871 auto MI
= MapExprComponents
.rbegin();
3872 auto ME
= MapExprComponents
.rend();
3873 return MI
!= ME
&& MI
->getAssociatedDeclaration() == VD
;
3875 VarsWithInheritedDSA
[VD
] = E
;
3880 if (SemaRef
.getLangOpts().OpenMP
> 50) {
3881 bool IsModifierPresent
= Stack
->getDefaultmapModifier(ClauseKind
) ==
3882 OMPC_DEFAULTMAP_MODIFIER_present
;
3883 if (IsModifierPresent
) {
3884 if (!llvm::is_contained(ImpInfo
.MapModifiers
[ClauseKind
],
3885 OMPC_MAP_MODIFIER_present
)) {
3886 ImpInfo
.MapModifiers
[ClauseKind
].push_back(
3887 OMPC_MAP_MODIFIER_present
);
3892 if (isOpenMPTargetExecutionDirective(DKind
) &&
3893 !Stack
->isLoopControlVariable(VD
).first
) {
3894 if (!Stack
->checkMappableExprComponentListsForDecl(
3895 VD
, /*CurrentRegionOnly=*/true,
3896 [this](OMPClauseMappableExprCommon::MappableExprComponentListRef
3899 if (SemaRef
.LangOpts
.OpenMP
>= 50)
3900 return !StackComponents
.empty();
3901 // Variable is used if it has been marked as an array, array
3902 // section, array shaping or the variable itself.
3903 return StackComponents
.size() == 1 ||
3905 llvm::drop_begin(llvm::reverse(StackComponents
)),
3906 [](const OMPClauseMappableExprCommon::
3907 MappableComponent
&MC
) {
3908 return MC
.getAssociatedDeclaration() ==
3910 (isa
<ArraySectionExpr
>(
3911 MC
.getAssociatedExpression()) ||
3912 isa
<OMPArrayShapingExpr
>(
3913 MC
.getAssociatedExpression()) ||
3914 isa
<ArraySubscriptExpr
>(
3915 MC
.getAssociatedExpression()));
3918 bool IsFirstprivate
= false;
3919 // By default lambdas are captured as firstprivates.
3920 if (const auto *RD
=
3921 VD
->getType().getNonReferenceType()->getAsCXXRecordDecl())
3922 IsFirstprivate
= RD
->isLambda();
3924 IsFirstprivate
|| (Stack
->mustBeFirstprivate(ClauseKind
) && !Res
);
3925 if (IsFirstprivate
) {
3926 ImpInfo
.Firstprivates
.insert(E
);
3928 OpenMPDefaultmapClauseModifier M
=
3929 Stack
->getDefaultmapModifier(ClauseKind
);
3930 OpenMPMapClauseKind Kind
= getMapClauseKindFromModifier(
3931 M
, ClauseKind
== OMPC_DEFAULTMAP_aggregate
|| Res
);
3932 ImpInfo
.Mappings
[ClauseKind
][Kind
].insert(E
);
3938 // OpenMP [2.9.3.6, Restrictions, p.2]
3939 // A list item that appears in a reduction clause of the innermost
3940 // enclosing worksharing or parallel construct may not be accessed in an
3942 DVar
= Stack
->hasInnermostDSA(
3944 [](OpenMPClauseKind C
, bool AppliedToPointee
) {
3945 return C
== OMPC_reduction
&& !AppliedToPointee
;
3947 [](OpenMPDirectiveKind K
) {
3948 return isOpenMPParallelDirective(K
) ||
3949 isOpenMPWorksharingDirective(K
) || isOpenMPTeamsDirective(K
);
3951 /*FromParent=*/true);
3952 if (isOpenMPTaskingDirective(DKind
) && DVar
.CKind
== OMPC_reduction
) {
3954 SemaRef
.Diag(ELoc
, diag::err_omp_reduction_in_task
);
3955 reportOriginalDsa(SemaRef
, Stack
, VD
, DVar
);
3959 // Define implicit data-sharing attributes for task.
3960 DVar
= Stack
->getImplicitDSA(VD
, /*FromParent=*/false);
3961 if (((isOpenMPTaskingDirective(DKind
) && DVar
.CKind
!= OMPC_shared
) ||
3962 (((Stack
->getDefaultDSA() == DSA_firstprivate
&&
3963 DVar
.CKind
== OMPC_firstprivate
) ||
3964 (Stack
->getDefaultDSA() == DSA_private
&&
3965 DVar
.CKind
== OMPC_private
)) &&
3967 !Stack
->isLoopControlVariable(VD
).first
) {
3968 if (Stack
->getDefaultDSA() == DSA_private
)
3969 ImpInfo
.Privates
.insert(E
);
3971 ImpInfo
.Firstprivates
.insert(E
);
3975 // Store implicitly used globals with declare target link for parent
3977 if (!isOpenMPTargetExecutionDirective(DKind
) && Res
&&
3978 *Res
== OMPDeclareTargetDeclAttr::MT_Link
) {
3979 Stack
->addToParentTargetRegionLinkGlobals(E
);
3984 void VisitMemberExpr(MemberExpr
*E
) {
3985 if (E
->isTypeDependent() || E
->isValueDependent() ||
3986 E
->containsUnexpandedParameterPack() || E
->isInstantiationDependent())
3988 auto *FD
= dyn_cast
<FieldDecl
>(E
->getMemberDecl());
3989 if (auto *TE
= dyn_cast
<CXXThisExpr
>(E
->getBase()->IgnoreParenCasts())) {
3992 DSAStackTy::DSAVarData DVar
= Stack
->getTopDSA(FD
, /*FromParent=*/false);
3993 // Check if the variable has explicit DSA set and stop analysis if it
3995 if (DVar
.RefExpr
|| !ImplicitDeclarations
.insert(FD
).second
)
3998 if (isOpenMPTargetExecutionDirective(DKind
) &&
3999 !Stack
->isLoopControlVariable(FD
).first
&&
4000 !Stack
->checkMappableExprComponentListsForDecl(
4001 FD
, /*CurrentRegionOnly=*/true,
4002 [](OMPClauseMappableExprCommon::MappableExprComponentListRef
4005 return isa
<CXXThisExpr
>(
4007 StackComponents
.back().getAssociatedExpression())
4011 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
4012 // A bit-field cannot appear in a map clause.
4014 if (FD
->isBitField())
4017 // Check to see if the member expression is referencing a class that
4018 // has already been explicitly mapped
4019 if (Stack
->isClassPreviouslyMapped(TE
->getType()))
4022 OpenMPDefaultmapClauseModifier Modifier
=
4023 Stack
->getDefaultmapModifier(OMPC_DEFAULTMAP_aggregate
);
4024 OpenMPDefaultmapClauseKind ClauseKind
=
4025 getVariableCategoryFromDecl(SemaRef
.getLangOpts(), FD
);
4026 OpenMPMapClauseKind Kind
= getMapClauseKindFromModifier(
4027 Modifier
, /*IsAggregateOrDeclareTarget=*/true);
4028 ImpInfo
.Mappings
[ClauseKind
][Kind
].insert(E
);
4032 SourceLocation ELoc
= E
->getExprLoc();
4033 // OpenMP [2.9.3.6, Restrictions, p.2]
4034 // A list item that appears in a reduction clause of the innermost
4035 // enclosing worksharing or parallel construct may not be accessed in
4036 // an explicit task.
4037 DVar
= Stack
->hasInnermostDSA(
4039 [](OpenMPClauseKind C
, bool AppliedToPointee
) {
4040 return C
== OMPC_reduction
&& !AppliedToPointee
;
4042 [](OpenMPDirectiveKind K
) {
4043 return isOpenMPParallelDirective(K
) ||
4044 isOpenMPWorksharingDirective(K
) || isOpenMPTeamsDirective(K
);
4046 /*FromParent=*/true);
4047 if (isOpenMPTaskingDirective(DKind
) && DVar
.CKind
== OMPC_reduction
) {
4049 SemaRef
.Diag(ELoc
, diag::err_omp_reduction_in_task
);
4050 reportOriginalDsa(SemaRef
, Stack
, FD
, DVar
);
4054 // Define implicit data-sharing attributes for task.
4055 DVar
= Stack
->getImplicitDSA(FD
, /*FromParent=*/false);
4056 if (isOpenMPTaskingDirective(DKind
) && DVar
.CKind
!= OMPC_shared
&&
4057 !Stack
->isLoopControlVariable(FD
).first
) {
4058 // Check if there is a captured expression for the current field in the
4059 // region. Do not mark it as firstprivate unless there is no captured
4061 // TODO: try to make it firstprivate.
4062 if (DVar
.CKind
!= OMPC_unknown
)
4063 ImpInfo
.Firstprivates
.insert(E
);
4067 if (isOpenMPTargetExecutionDirective(DKind
)) {
4068 OMPClauseMappableExprCommon::MappableExprComponentList CurComponents
;
4069 if (!checkMapClauseExpressionBase(SemaRef
, E
, CurComponents
, OMPC_map
,
4070 DKind
, /*NoDiagnose=*/true))
4072 const auto *VD
= cast
<ValueDecl
>(
4073 CurComponents
.back().getAssociatedDeclaration()->getCanonicalDecl());
4074 if (!Stack
->checkMappableExprComponentListsForDecl(
4075 VD
, /*CurrentRegionOnly=*/true,
4077 OMPClauseMappableExprCommon::MappableExprComponentListRef
4080 auto CCI
= CurComponents
.rbegin();
4081 auto CCE
= CurComponents
.rend();
4082 for (const auto &SC
: llvm::reverse(StackComponents
)) {
4083 // Do both expressions have the same kind?
4084 if (CCI
->getAssociatedExpression()->getStmtClass() !=
4085 SC
.getAssociatedExpression()->getStmtClass())
4086 if (!((isa
<ArraySectionExpr
>(
4087 SC
.getAssociatedExpression()) ||
4088 isa
<OMPArrayShapingExpr
>(
4089 SC
.getAssociatedExpression())) &&
4090 isa
<ArraySubscriptExpr
>(
4091 CCI
->getAssociatedExpression())))
4094 const Decl
*CCD
= CCI
->getAssociatedDeclaration();
4095 const Decl
*SCD
= SC
.getAssociatedDeclaration();
4096 CCD
= CCD
? CCD
->getCanonicalDecl() : nullptr;
4097 SCD
= SCD
? SCD
->getCanonicalDecl() : nullptr;
4100 std::advance(CCI
, 1);
4106 Visit(E
->getBase());
4108 } else if (!TryCaptureCXXThisMembers
) {
4109 Visit(E
->getBase());
4112 void VisitOMPExecutableDirective(OMPExecutableDirective
*S
) {
4113 for (OMPClause
*C
: S
->clauses()) {
4114 // Skip analysis of arguments of private clauses for task|target
4116 if (isa_and_nonnull
<OMPPrivateClause
>(C
))
4118 // Skip analysis of arguments of implicitly defined firstprivate clause
4119 // for task|target directives.
4120 // Skip analysis of arguments of implicitly defined map clause for target
4122 if (C
&& !((isa
<OMPFirstprivateClause
>(C
) || isa
<OMPMapClause
>(C
)) &&
4123 C
->isImplicit() && !isOpenMPTaskingDirective(DKind
))) {
4124 for (Stmt
*CC
: C
->children()) {
4130 // Check implicitly captured variables.
4131 VisitSubCaptures(S
);
4134 void VisitOMPLoopTransformationDirective(OMPLoopTransformationDirective
*S
) {
4135 // Loop transformation directives do not introduce data sharing
4139 void VisitCallExpr(CallExpr
*S
) {
4140 for (Stmt
*C
: S
->arguments()) {
4142 // Check implicitly captured variables in the task-based directives to
4143 // check if they must be firstprivatized.
4147 if (Expr
*Callee
= S
->getCallee()) {
4148 auto *CI
= Callee
->IgnoreParenImpCasts();
4149 if (auto *CE
= dyn_cast
<MemberExpr
>(CI
))
4150 Visit(CE
->getBase());
4151 else if (auto *CE
= dyn_cast
<DeclRefExpr
>(CI
))
4155 void VisitStmt(Stmt
*S
) {
4156 for (Stmt
*C
: S
->children()) {
4158 // Check implicitly captured variables in the task-based directives to
4159 // check if they must be firstprivatized.
4165 void visitSubCaptures(CapturedStmt
*S
) {
4166 for (const CapturedStmt::Capture
&Cap
: S
->captures()) {
4167 if (!Cap
.capturesVariable() && !Cap
.capturesVariableByCopy())
4169 VarDecl
*VD
= Cap
.getCapturedVar();
4170 // Do not try to map the variable if it or its sub-component was mapped
4172 if (isOpenMPTargetExecutionDirective(DKind
) &&
4173 Stack
->checkMappableExprComponentListsForDecl(
4174 VD
, /*CurrentRegionOnly=*/true,
4175 [](OMPClauseMappableExprCommon::MappableExprComponentListRef
,
4176 OpenMPClauseKind
) { return true; }))
4178 DeclRefExpr
*DRE
= buildDeclRefExpr(
4179 SemaRef
, VD
, VD
->getType().getNonLValueExprType(SemaRef
.Context
),
4180 Cap
.getLocation(), /*RefersToCapture=*/true);
4184 bool isErrorFound() const { return ErrorFound
; }
4185 const VariableImplicitInfo
&getImplicitInfo() const { return ImpInfo
; }
4186 const SemaOpenMP::VarsWithInheritedDSAType
&getVarsWithInheritedDSA() const {
4187 return VarsWithInheritedDSA
;
4190 DSAAttrChecker(DSAStackTy
*S
, Sema
&SemaRef
, CapturedStmt
*CS
)
4191 : Stack(S
), SemaRef(SemaRef
), ErrorFound(false), CS(CS
) {
4192 DKind
= S
->getCurrentDirective();
4193 // Process declare target link variables for the target directives.
4194 if (isOpenMPTargetExecutionDirective(DKind
)) {
4195 for (DeclRefExpr
*E
: Stack
->getLinkGlobals())
4202 static void handleDeclareVariantConstructTrait(DSAStackTy
*Stack
,
4203 OpenMPDirectiveKind DKind
,
4205 SmallVector
<llvm::omp::TraitProperty
, 8> Traits
;
4206 if (isOpenMPTargetExecutionDirective(DKind
))
4207 Traits
.emplace_back(llvm::omp::TraitProperty::construct_target_target
);
4208 if (isOpenMPTeamsDirective(DKind
))
4209 Traits
.emplace_back(llvm::omp::TraitProperty::construct_teams_teams
);
4210 if (isOpenMPParallelDirective(DKind
))
4211 Traits
.emplace_back(llvm::omp::TraitProperty::construct_parallel_parallel
);
4212 if (isOpenMPWorksharingDirective(DKind
))
4213 Traits
.emplace_back(llvm::omp::TraitProperty::construct_for_for
);
4214 if (isOpenMPSimdDirective(DKind
))
4215 Traits
.emplace_back(llvm::omp::TraitProperty::construct_simd_simd
);
4216 Stack
->handleConstructTrait(Traits
, ScopeEntry
);
4219 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4220 getParallelRegionParams(Sema
&SemaRef
, bool LoopBoundSharing
) {
4221 ASTContext
&Context
= SemaRef
.getASTContext();
4222 QualType KmpInt32Ty
=
4223 Context
.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1).withConst();
4224 QualType KmpInt32PtrTy
=
4225 Context
.getPointerType(KmpInt32Ty
).withConst().withRestrict();
4226 SmallVector
<SemaOpenMP::CapturedParamNameType
> Params
{
4227 std::make_pair(".global_tid.", KmpInt32PtrTy
),
4228 std::make_pair(".bound_tid.", KmpInt32PtrTy
),
4230 if (LoopBoundSharing
) {
4231 QualType KmpSizeTy
= Context
.getSizeType().withConst();
4232 Params
.push_back(std::make_pair(".previous.lb.", KmpSizeTy
));
4233 Params
.push_back(std::make_pair(".previous.ub.", KmpSizeTy
));
4236 // __context with shared vars
4237 Params
.push_back(std::make_pair(StringRef(), QualType()));
4241 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4242 getTeamsRegionParams(Sema
&SemaRef
) {
4243 return getParallelRegionParams(SemaRef
, /*LoopBoundSharing=*/false);
4246 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4247 getTaskRegionParams(Sema
&SemaRef
) {
4248 ASTContext
&Context
= SemaRef
.getASTContext();
4249 QualType KmpInt32Ty
= Context
.getIntTypeForBitwidth(32, 1).withConst();
4250 QualType VoidPtrTy
= Context
.VoidPtrTy
.withConst().withRestrict();
4251 QualType KmpInt32PtrTy
=
4252 Context
.getPointerType(KmpInt32Ty
).withConst().withRestrict();
4253 QualType Args
[] = {VoidPtrTy
};
4254 FunctionProtoType::ExtProtoInfo EPI
;
4255 EPI
.Variadic
= true;
4256 QualType CopyFnType
= Context
.getFunctionType(Context
.VoidTy
, Args
, EPI
);
4257 SmallVector
<SemaOpenMP::CapturedParamNameType
> Params
{
4258 std::make_pair(".global_tid.", KmpInt32Ty
),
4259 std::make_pair(".part_id.", KmpInt32PtrTy
),
4260 std::make_pair(".privates.", VoidPtrTy
),
4263 Context
.getPointerType(CopyFnType
).withConst().withRestrict()),
4264 std::make_pair(".task_t.", Context
.VoidPtrTy
.withConst()),
4265 std::make_pair(StringRef(), QualType()) // __context with shared vars
4270 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4271 getTargetRegionParams(Sema
&SemaRef
) {
4272 ASTContext
&Context
= SemaRef
.getASTContext();
4273 SmallVector
<SemaOpenMP::CapturedParamNameType
> Params
;
4274 if (SemaRef
.getLangOpts().OpenMPIsTargetDevice
) {
4275 QualType VoidPtrTy
= Context
.VoidPtrTy
.withConst().withRestrict();
4276 Params
.push_back(std::make_pair(StringRef("dyn_ptr"), VoidPtrTy
));
4278 // __context with shared vars
4279 Params
.push_back(std::make_pair(StringRef(), QualType()));
4283 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4284 getUnknownRegionParams(Sema
&SemaRef
) {
4285 SmallVector
<SemaOpenMP::CapturedParamNameType
> Params
{
4286 std::make_pair(StringRef(), QualType()) // __context with shared vars
4291 static SmallVector
<SemaOpenMP::CapturedParamNameType
>
4292 getTaskloopRegionParams(Sema
&SemaRef
) {
4293 ASTContext
&Context
= SemaRef
.getASTContext();
4294 QualType KmpInt32Ty
=
4295 Context
.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1).withConst();
4296 QualType KmpUInt64Ty
=
4297 Context
.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0).withConst();
4298 QualType KmpInt64Ty
=
4299 Context
.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1).withConst();
4300 QualType VoidPtrTy
= Context
.VoidPtrTy
.withConst().withRestrict();
4301 QualType KmpInt32PtrTy
=
4302 Context
.getPointerType(KmpInt32Ty
).withConst().withRestrict();
4303 QualType Args
[] = {VoidPtrTy
};
4304 FunctionProtoType::ExtProtoInfo EPI
;
4305 EPI
.Variadic
= true;
4306 QualType CopyFnType
= Context
.getFunctionType(Context
.VoidTy
, Args
, EPI
);
4307 SmallVector
<SemaOpenMP::CapturedParamNameType
> Params
{
4308 std::make_pair(".global_tid.", KmpInt32Ty
),
4309 std::make_pair(".part_id.", KmpInt32PtrTy
),
4310 std::make_pair(".privates.", VoidPtrTy
),
4313 Context
.getPointerType(CopyFnType
).withConst().withRestrict()),
4314 std::make_pair(".task_t.", Context
.VoidPtrTy
.withConst()),
4315 std::make_pair(".lb.", KmpUInt64Ty
),
4316 std::make_pair(".ub.", KmpUInt64Ty
),
4317 std::make_pair(".st.", KmpInt64Ty
),
4318 std::make_pair(".liter.", KmpInt32Ty
),
4319 std::make_pair(".reductions.", VoidPtrTy
),
4320 std::make_pair(StringRef(), QualType()) // __context with shared vars
4325 static void processCapturedRegions(Sema
&SemaRef
, OpenMPDirectiveKind DKind
,
4326 Scope
*CurScope
, SourceLocation Loc
) {
4327 SmallVector
<OpenMPDirectiveKind
> Regions
;
4328 getOpenMPCaptureRegions(Regions
, DKind
);
4330 bool LoopBoundSharing
= isOpenMPLoopBoundSharingDirective(DKind
);
4332 auto MarkAsInlined
= [&](CapturedRegionScopeInfo
*CSI
) {
4333 CSI
->TheCapturedDecl
->addAttr(AlwaysInlineAttr::CreateImplicit(
4334 SemaRef
.getASTContext(), {}, AlwaysInlineAttr::Keyword_forceinline
));
4337 for (auto [Level
, RKind
] : llvm::enumerate(Regions
)) {
4339 // All region kinds that can be returned from `getOpenMPCaptureRegions`
4342 SemaRef
.ActOnCapturedRegionStart(
4343 Loc
, CurScope
, CR_OpenMP
,
4344 getParallelRegionParams(SemaRef
, LoopBoundSharing
), Level
);
4347 SemaRef
.ActOnCapturedRegionStart(Loc
, CurScope
, CR_OpenMP
,
4348 getTeamsRegionParams(SemaRef
), Level
);
4351 SemaRef
.ActOnCapturedRegionStart(Loc
, CurScope
, CR_OpenMP
,
4352 getTaskRegionParams(SemaRef
), Level
);
4353 // Mark this captured region as inlined, because we don't use outlined
4354 // function directly.
4355 MarkAsInlined(SemaRef
.getCurCapturedRegion());
4358 SemaRef
.ActOnCapturedRegionStart(Loc
, CurScope
, CR_OpenMP
,
4359 getTaskloopRegionParams(SemaRef
), Level
);
4360 // Mark this captured region as inlined, because we don't use outlined
4361 // function directly.
4362 MarkAsInlined(SemaRef
.getCurCapturedRegion());
4365 SemaRef
.ActOnCapturedRegionStart(Loc
, CurScope
, CR_OpenMP
,
4366 getTargetRegionParams(SemaRef
), Level
);
4369 SemaRef
.ActOnCapturedRegionStart(Loc
, CurScope
, CR_OpenMP
,
4370 getUnknownRegionParams(SemaRef
));
4372 case OMPD_metadirective
:
4375 llvm_unreachable("Unexpected capture region");
4380 void SemaOpenMP::ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind
,
4391 case OMPD_interchange
:
4395 processCapturedRegions(SemaRef
, DKind
, CurScope
,
4396 DSAStack
->getConstructLoc());
4400 DSAStack
->setContext(SemaRef
.CurContext
);
4401 handleDeclareVariantConstructTrait(DSAStack
, DKind
, /*ScopeEntry=*/true);
4404 int SemaOpenMP::getNumberOfConstructScopes(unsigned Level
) const {
4405 return getOpenMPCaptureLevels(DSAStack
->getDirective(Level
));
4408 int SemaOpenMP::getOpenMPCaptureLevels(OpenMPDirectiveKind DKind
) {
4409 SmallVector
<OpenMPDirectiveKind
, 4> CaptureRegions
;
4410 getOpenMPCaptureRegions(CaptureRegions
, DKind
);
4411 return CaptureRegions
.size();
4414 static OMPCapturedExprDecl
*buildCaptureDecl(Sema
&S
, IdentifierInfo
*Id
,
4415 Expr
*CaptureExpr
, bool WithInit
,
4416 DeclContext
*CurContext
,
4417 bool AsExpression
) {
4418 assert(CaptureExpr
);
4419 ASTContext
&C
= S
.getASTContext();
4420 Expr
*Init
= AsExpression
? CaptureExpr
: CaptureExpr
->IgnoreImpCasts();
4421 QualType Ty
= Init
->getType();
4422 if (CaptureExpr
->getObjectKind() == OK_Ordinary
&& CaptureExpr
->isGLValue()) {
4423 if (S
.getLangOpts().CPlusPlus
) {
4424 Ty
= C
.getLValueReferenceType(Ty
);
4426 Ty
= C
.getPointerType(Ty
);
4428 S
.CreateBuiltinUnaryOp(CaptureExpr
->getExprLoc(), UO_AddrOf
, Init
);
4429 if (!Res
.isUsable())
4435 auto *CED
= OMPCapturedExprDecl::Create(C
, CurContext
, Id
, Ty
,
4436 CaptureExpr
->getBeginLoc());
4438 CED
->addAttr(OMPCaptureNoInitAttr::CreateImplicit(C
));
4439 CurContext
->addHiddenDecl(CED
);
4440 Sema::TentativeAnalysisScope
Trap(S
);
4441 S
.AddInitializerToDecl(CED
, Init
, /*DirectInit=*/false);
4445 static DeclRefExpr
*buildCapture(Sema
&S
, ValueDecl
*D
, Expr
*CaptureExpr
,
4447 OMPCapturedExprDecl
*CD
;
4448 if (VarDecl
*VD
= S
.OpenMP().isOpenMPCapturedDecl(D
))
4449 CD
= cast
<OMPCapturedExprDecl
>(VD
);
4451 CD
= buildCaptureDecl(S
, D
->getIdentifier(), CaptureExpr
, WithInit
,
4453 /*AsExpression=*/false);
4454 return buildDeclRefExpr(S
, CD
, CD
->getType().getNonReferenceType(),
4455 CaptureExpr
->getExprLoc());
4458 static ExprResult
buildCapture(Sema
&S
, Expr
*CaptureExpr
, DeclRefExpr
*&Ref
,
4460 CaptureExpr
= S
.DefaultLvalueConversion(CaptureExpr
).get();
4462 OMPCapturedExprDecl
*CD
= buildCaptureDecl(
4463 S
, &S
.getASTContext().Idents
.get(Name
), CaptureExpr
,
4464 /*WithInit=*/true, S
.CurContext
, /*AsExpression=*/true);
4465 Ref
= buildDeclRefExpr(S
, CD
, CD
->getType().getNonReferenceType(),
4466 CaptureExpr
->getExprLoc());
4468 ExprResult Res
= Ref
;
4469 if (!S
.getLangOpts().CPlusPlus
&&
4470 CaptureExpr
->getObjectKind() == OK_Ordinary
&& CaptureExpr
->isGLValue() &&
4471 Ref
->getType()->isPointerType()) {
4472 Res
= S
.CreateBuiltinUnaryOp(CaptureExpr
->getExprLoc(), UO_Deref
, Ref
);
4473 if (!Res
.isUsable())
4476 return S
.DefaultLvalueConversion(Res
.get());
4480 // OpenMP directives parsed in this section are represented as a
4481 // CapturedStatement with an associated statement. If a syntax error
4482 // is detected during the parsing of the associated statement, the
4483 // compiler must abort processing and close the CapturedStatement.
4485 // Combined directives such as 'target parallel' have more than one
4486 // nested CapturedStatements. This RAII ensures that we unwind out
4487 // of all the nested CapturedStatements when an error is found.
4488 class CaptureRegionUnwinderRAII
{
4492 OpenMPDirectiveKind DKind
= OMPD_unknown
;
4495 CaptureRegionUnwinderRAII(Sema
&S
, bool &ErrorFound
,
4496 OpenMPDirectiveKind DKind
)
4497 : S(S
), ErrorFound(ErrorFound
), DKind(DKind
) {}
4498 ~CaptureRegionUnwinderRAII() {
4500 int ThisCaptureLevel
= S
.OpenMP().getOpenMPCaptureLevels(DKind
);
4501 while (--ThisCaptureLevel
>= 0)
4502 S
.ActOnCapturedRegionError();
4508 void SemaOpenMP::tryCaptureOpenMPLambdas(ValueDecl
*V
) {
4509 // Capture variables captured by reference in lambdas for target-based
4511 if (!SemaRef
.CurContext
->isDependentContext() &&
4512 (isOpenMPTargetExecutionDirective(DSAStack
->getCurrentDirective()) ||
4513 isOpenMPTargetDataManagementDirective(
4514 DSAStack
->getCurrentDirective()))) {
4515 QualType Type
= V
->getType();
4516 if (const auto *RD
= Type
.getCanonicalType()
4517 .getNonReferenceType()
4518 ->getAsCXXRecordDecl()) {
4519 bool SavedForceCaptureByReferenceInTargetExecutable
=
4520 DSAStack
->isForceCaptureByReferenceInTargetExecutable();
4521 DSAStack
->setForceCaptureByReferenceInTargetExecutable(
4523 if (RD
->isLambda()) {
4524 llvm::DenseMap
<const ValueDecl
*, FieldDecl
*> Captures
;
4525 FieldDecl
*ThisCapture
;
4526 RD
->getCaptureFields(Captures
, ThisCapture
);
4527 for (const LambdaCapture
&LC
: RD
->captures()) {
4528 if (LC
.getCaptureKind() == LCK_ByRef
) {
4529 VarDecl
*VD
= cast
<VarDecl
>(LC
.getCapturedVar());
4530 DeclContext
*VDC
= VD
->getDeclContext();
4531 if (!VDC
->Encloses(SemaRef
.CurContext
))
4533 SemaRef
.MarkVariableReferenced(LC
.getLocation(), VD
);
4534 } else if (LC
.getCaptureKind() == LCK_This
) {
4535 QualType ThisTy
= SemaRef
.getCurrentThisType();
4536 if (!ThisTy
.isNull() && getASTContext().typesAreCompatible(
4537 ThisTy
, ThisCapture
->getType()))
4538 SemaRef
.CheckCXXThisCapture(LC
.getLocation());
4542 DSAStack
->setForceCaptureByReferenceInTargetExecutable(
4543 SavedForceCaptureByReferenceInTargetExecutable
);
4548 static bool checkOrderedOrderSpecified(Sema
&S
,
4549 const ArrayRef
<OMPClause
*> Clauses
) {
4550 const OMPOrderedClause
*Ordered
= nullptr;
4551 const OMPOrderClause
*Order
= nullptr;
4553 for (const OMPClause
*Clause
: Clauses
) {
4554 if (Clause
->getClauseKind() == OMPC_ordered
)
4555 Ordered
= cast
<OMPOrderedClause
>(Clause
);
4556 else if (Clause
->getClauseKind() == OMPC_order
) {
4557 Order
= cast
<OMPOrderClause
>(Clause
);
4558 if (Order
->getKind() != OMPC_ORDER_concurrent
)
4561 if (Ordered
&& Order
)
4565 if (Ordered
&& Order
) {
4566 S
.Diag(Order
->getKindKwLoc(),
4567 diag::err_omp_simple_clause_incompatible_with_ordered
)
4568 << getOpenMPClauseName(OMPC_order
)
4569 << getOpenMPSimpleClauseTypeName(OMPC_order
, OMPC_ORDER_concurrent
)
4570 << SourceRange(Order
->getBeginLoc(), Order
->getEndLoc());
4571 S
.Diag(Ordered
->getBeginLoc(), diag::note_omp_ordered_param
)
4572 << 0 << SourceRange(Ordered
->getBeginLoc(), Ordered
->getEndLoc());
4578 StmtResult
SemaOpenMP::ActOnOpenMPRegionEnd(StmtResult S
,
4579 ArrayRef
<OMPClause
*> Clauses
) {
4580 handleDeclareVariantConstructTrait(DSAStack
, DSAStack
->getCurrentDirective(),
4581 /*ScopeEntry=*/false);
4582 if (!isOpenMPCapturingDirective(DSAStack
->getCurrentDirective()))
4585 bool ErrorFound
= false;
4586 CaptureRegionUnwinderRAII
CaptureRegionUnwinder(
4587 SemaRef
, ErrorFound
, DSAStack
->getCurrentDirective());
4588 if (!S
.isUsable()) {
4593 SmallVector
<OpenMPDirectiveKind
, 4> CaptureRegions
;
4594 getOpenMPCaptureRegions(CaptureRegions
, DSAStack
->getCurrentDirective());
4595 OMPOrderedClause
*OC
= nullptr;
4596 OMPScheduleClause
*SC
= nullptr;
4597 SmallVector
<const OMPLinearClause
*, 4> LCs
;
4598 SmallVector
<const OMPClauseWithPreInit
*, 4> PICs
;
4599 // This is required for proper codegen.
4600 for (OMPClause
*Clause
: Clauses
) {
4601 if (!getLangOpts().OpenMPSimd
&&
4602 (isOpenMPTaskingDirective(DSAStack
->getCurrentDirective()) ||
4603 DSAStack
->getCurrentDirective() == OMPD_target
) &&
4604 Clause
->getClauseKind() == OMPC_in_reduction
) {
4605 // Capture taskgroup task_reduction descriptors inside the tasking regions
4606 // with the corresponding in_reduction items.
4607 auto *IRC
= cast
<OMPInReductionClause
>(Clause
);
4608 for (Expr
*E
: IRC
->taskgroup_descriptors())
4610 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4612 if (isOpenMPPrivate(Clause
->getClauseKind()) ||
4613 Clause
->getClauseKind() == OMPC_copyprivate
||
4614 (getLangOpts().OpenMPUseTLS
&&
4615 getASTContext().getTargetInfo().isTLSSupported() &&
4616 Clause
->getClauseKind() == OMPC_copyin
)) {
4617 DSAStack
->setForceVarCapturing(Clause
->getClauseKind() == OMPC_copyin
);
4618 // Mark all variables in private list clauses as used in inner region.
4619 for (Stmt
*VarRef
: Clause
->children()) {
4620 if (auto *E
= cast_or_null
<Expr
>(VarRef
)) {
4621 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4624 DSAStack
->setForceVarCapturing(/*V=*/false);
4625 } else if (CaptureRegions
.size() > 1 ||
4626 CaptureRegions
.back() != OMPD_unknown
) {
4627 if (auto *C
= OMPClauseWithPreInit::get(Clause
))
4629 if (auto *C
= OMPClauseWithPostUpdate::get(Clause
)) {
4630 if (Expr
*E
= C
->getPostUpdateExpr())
4631 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4634 if (Clause
->getClauseKind() == OMPC_schedule
)
4635 SC
= cast
<OMPScheduleClause
>(Clause
);
4636 else if (Clause
->getClauseKind() == OMPC_ordered
)
4637 OC
= cast
<OMPOrderedClause
>(Clause
);
4638 else if (Clause
->getClauseKind() == OMPC_linear
)
4639 LCs
.push_back(cast
<OMPLinearClause
>(Clause
));
4641 // Capture allocator expressions if used.
4642 for (Expr
*E
: DSAStack
->getInnerAllocators())
4643 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4644 // OpenMP, 2.7.1 Loop Construct, Restrictions
4645 // The nonmonotonic modifier cannot be specified if an ordered clause is
4648 (SC
->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic
||
4649 SC
->getSecondScheduleModifier() ==
4650 OMPC_SCHEDULE_MODIFIER_nonmonotonic
) &&
4652 Diag(SC
->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic
4653 ? SC
->getFirstScheduleModifierLoc()
4654 : SC
->getSecondScheduleModifierLoc(),
4655 diag::err_omp_simple_clause_incompatible_with_ordered
)
4656 << getOpenMPClauseName(OMPC_schedule
)
4657 << getOpenMPSimpleClauseTypeName(OMPC_schedule
,
4658 OMPC_SCHEDULE_MODIFIER_nonmonotonic
)
4659 << SourceRange(OC
->getBeginLoc(), OC
->getEndLoc());
4662 // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Restrictions.
4663 // If an order(concurrent) clause is present, an ordered clause may not appear
4664 // on the same directive.
4665 if (checkOrderedOrderSpecified(SemaRef
, Clauses
))
4667 if (!LCs
.empty() && OC
&& OC
->getNumForLoops()) {
4668 for (const OMPLinearClause
*C
: LCs
) {
4669 Diag(C
->getBeginLoc(), diag::err_omp_linear_ordered
)
4670 << SourceRange(OC
->getBeginLoc(), OC
->getEndLoc());
4674 if (isOpenMPWorksharingDirective(DSAStack
->getCurrentDirective()) &&
4675 isOpenMPSimdDirective(DSAStack
->getCurrentDirective()) && OC
&&
4676 OC
->getNumForLoops()) {
4677 Diag(OC
->getBeginLoc(), diag::err_omp_ordered_simd
)
4678 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
4685 unsigned CompletedRegions
= 0;
4686 for (OpenMPDirectiveKind ThisCaptureRegion
: llvm::reverse(CaptureRegions
)) {
4687 // Mark all variables in private list clauses as used in inner region.
4688 // Required for proper codegen of combined directives.
4689 // TODO: add processing for other clauses.
4690 if (ThisCaptureRegion
!= OMPD_unknown
) {
4691 for (const clang::OMPClauseWithPreInit
*C
: PICs
) {
4692 OpenMPDirectiveKind CaptureRegion
= C
->getCaptureRegion();
4693 // Find the particular capture region for the clause if the
4694 // directive is a combined one with multiple capture regions.
4695 // If the directive is not a combined one, the capture region
4696 // associated with the clause is OMPD_unknown and is generated
4698 if (CaptureRegion
== ThisCaptureRegion
||
4699 CaptureRegion
== OMPD_unknown
) {
4700 if (auto *DS
= cast_or_null
<DeclStmt
>(C
->getPreInitStmt())) {
4701 for (Decl
*D
: DS
->decls())
4702 SemaRef
.MarkVariableReferenced(D
->getLocation(),
4708 if (ThisCaptureRegion
== OMPD_target
) {
4709 // Capture allocator traits in the target region. They are used implicitly
4710 // and, thus, are not captured by default.
4711 for (OMPClause
*C
: Clauses
) {
4712 if (const auto *UAC
= dyn_cast
<OMPUsesAllocatorsClause
>(C
)) {
4713 for (unsigned I
= 0, End
= UAC
->getNumberOfAllocators(); I
< End
;
4715 OMPUsesAllocatorsClause::Data D
= UAC
->getAllocatorData(I
);
4716 if (Expr
*E
= D
.AllocatorTraits
)
4717 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4723 if (ThisCaptureRegion
== OMPD_parallel
) {
4724 // Capture temp arrays for inscan reductions and locals in aligned
4726 for (OMPClause
*C
: Clauses
) {
4727 if (auto *RC
= dyn_cast
<OMPReductionClause
>(C
)) {
4728 if (RC
->getModifier() != OMPC_REDUCTION_inscan
)
4730 for (Expr
*E
: RC
->copy_array_temps())
4732 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4734 if (auto *AC
= dyn_cast
<OMPAlignedClause
>(C
)) {
4735 for (Expr
*E
: AC
->varlist())
4736 SemaRef
.MarkDeclarationsReferencedInExpr(E
);
4740 if (++CompletedRegions
== CaptureRegions
.size())
4741 DSAStack
->setBodyComplete();
4742 SR
= SemaRef
.ActOnCapturedRegionEnd(SR
.get());
4747 static bool checkCancelRegion(Sema
&SemaRef
, OpenMPDirectiveKind CurrentRegion
,
4748 OpenMPDirectiveKind CancelRegion
,
4749 SourceLocation StartLoc
) {
4750 // CancelRegion is only needed for cancel and cancellation_point.
4751 if (CurrentRegion
!= OMPD_cancel
&& CurrentRegion
!= OMPD_cancellation_point
)
4754 if (CancelRegion
== OMPD_parallel
|| CancelRegion
== OMPD_for
||
4755 CancelRegion
== OMPD_sections
|| CancelRegion
== OMPD_taskgroup
)
4758 SemaRef
.Diag(StartLoc
, diag::err_omp_wrong_cancel_region
)
4759 << getOpenMPDirectiveName(CancelRegion
);
4763 static bool checkNestingOfRegions(Sema
&SemaRef
, const DSAStackTy
*Stack
,
4764 OpenMPDirectiveKind CurrentRegion
,
4765 const DeclarationNameInfo
&CurrentName
,
4766 OpenMPDirectiveKind CancelRegion
,
4767 OpenMPBindClauseKind BindKind
,
4768 SourceLocation StartLoc
) {
4769 if (!Stack
->getCurScope())
4772 OpenMPDirectiveKind ParentRegion
= Stack
->getParentDirective();
4773 OpenMPDirectiveKind OffendingRegion
= ParentRegion
;
4774 bool NestingProhibited
= false;
4775 bool CloseNesting
= true;
4776 bool OrphanSeen
= false;
4779 ShouldBeInParallelRegion
,
4780 ShouldBeInOrderedRegion
,
4781 ShouldBeInTargetRegion
,
4782 ShouldBeInTeamsRegion
,
4783 ShouldBeInLoopSimdRegion
,
4784 } Recommend
= NoRecommend
;
4786 SmallVector
<OpenMPDirectiveKind
, 4> LeafOrComposite
;
4787 ArrayRef
<OpenMPDirectiveKind
> ParentLOC
=
4788 getLeafOrCompositeConstructs(ParentRegion
, LeafOrComposite
);
4789 OpenMPDirectiveKind EnclosingConstruct
= ParentLOC
.back();
4791 if (SemaRef
.LangOpts
.OpenMP
>= 51 && Stack
->isParentOrderConcurrent() &&
4792 CurrentRegion
!= OMPD_simd
&& CurrentRegion
!= OMPD_loop
&&
4793 CurrentRegion
!= OMPD_parallel
&&
4794 !isOpenMPCombinedParallelADirective(CurrentRegion
)) {
4795 SemaRef
.Diag(StartLoc
, diag::err_omp_prohibited_region_order
)
4796 << getOpenMPDirectiveName(CurrentRegion
);
4799 if (isOpenMPSimdDirective(ParentRegion
) &&
4800 ((SemaRef
.LangOpts
.OpenMP
<= 45 && CurrentRegion
!= OMPD_ordered
) ||
4801 (SemaRef
.LangOpts
.OpenMP
>= 50 && CurrentRegion
!= OMPD_ordered
&&
4802 CurrentRegion
!= OMPD_simd
&& CurrentRegion
!= OMPD_atomic
&&
4803 CurrentRegion
!= OMPD_scan
))) {
4804 // OpenMP [2.16, Nesting of Regions]
4805 // OpenMP constructs may not be nested inside a simd region.
4806 // OpenMP [2.8.1,simd Construct, Restrictions]
4807 // An ordered construct with the simd clause is the only OpenMP
4808 // construct that can appear in the simd region.
4809 // Allowing a SIMD construct nested in another SIMD construct is an
4810 // extension. The OpenMP 4.5 spec does not allow it. Issue a warning
4812 // OpenMP 5.0 [2.9.3.1, simd Construct, Restrictions]
4813 // The only OpenMP constructs that can be encountered during execution of
4814 // a simd region are the atomic construct, the loop construct, the simd
4815 // construct and the ordered construct with the simd clause.
4816 SemaRef
.Diag(StartLoc
, (CurrentRegion
!= OMPD_simd
)
4817 ? diag::err_omp_prohibited_region_simd
4818 : diag::warn_omp_nesting_simd
)
4819 << (SemaRef
.LangOpts
.OpenMP
>= 50 ? 1 : 0);
4820 return CurrentRegion
!= OMPD_simd
;
4822 if (EnclosingConstruct
== OMPD_atomic
) {
4823 // OpenMP [2.16, Nesting of Regions]
4824 // OpenMP constructs may not be nested inside an atomic region.
4825 SemaRef
.Diag(StartLoc
, diag::err_omp_prohibited_region_atomic
);
4828 if (CurrentRegion
== OMPD_section
) {
4829 // OpenMP [2.7.2, sections Construct, Restrictions]
4830 // Orphaned section directives are prohibited. That is, the section
4831 // directives must appear within the sections construct and must not be
4832 // encountered elsewhere in the sections region.
4833 if (EnclosingConstruct
!= OMPD_sections
) {
4834 SemaRef
.Diag(StartLoc
, diag::err_omp_orphaned_section_directive
)
4835 << (ParentRegion
!= OMPD_unknown
)
4836 << getOpenMPDirectiveName(ParentRegion
);
4841 // Allow some constructs (except teams and cancellation constructs) to be
4842 // orphaned (they could be used in functions, called from OpenMP regions
4843 // with the required preconditions).
4844 if (ParentRegion
== OMPD_unknown
&&
4845 !isOpenMPNestingTeamsDirective(CurrentRegion
) &&
4846 CurrentRegion
!= OMPD_cancellation_point
&&
4847 CurrentRegion
!= OMPD_cancel
&& CurrentRegion
!= OMPD_scan
)
4849 // Checks needed for mapping "loop" construct. Please check mapLoopConstruct
4850 // for a detailed explanation
4851 if (SemaRef
.LangOpts
.OpenMP
>= 50 && CurrentRegion
== OMPD_loop
&&
4852 (BindKind
== OMPC_BIND_parallel
|| BindKind
== OMPC_BIND_teams
) &&
4853 (isOpenMPWorksharingDirective(ParentRegion
) ||
4854 EnclosingConstruct
== OMPD_loop
)) {
4855 int ErrorMsgNumber
= (BindKind
== OMPC_BIND_parallel
) ? 1 : 4;
4856 SemaRef
.Diag(StartLoc
, diag::err_omp_prohibited_region
)
4857 << true << getOpenMPDirectiveName(ParentRegion
) << ErrorMsgNumber
4858 << getOpenMPDirectiveName(CurrentRegion
);
4861 if (CurrentRegion
== OMPD_cancellation_point
||
4862 CurrentRegion
== OMPD_cancel
) {
4863 // OpenMP [2.16, Nesting of Regions]
4864 // A cancellation point construct for which construct-type-clause is
4865 // taskgroup must be nested inside a task construct. A cancellation
4866 // point construct for which construct-type-clause is not taskgroup must
4867 // be closely nested inside an OpenMP construct that matches the type
4868 // specified in construct-type-clause.
4869 // A cancel construct for which construct-type-clause is taskgroup must be
4870 // nested inside a task construct. A cancel construct for which
4871 // construct-type-clause is not taskgroup must be closely nested inside an
4872 // OpenMP construct that matches the type specified in
4873 // construct-type-clause.
4874 ArrayRef
<OpenMPDirectiveKind
> Leafs
= getLeafConstructsOrSelf(ParentRegion
);
4875 if (CancelRegion
== OMPD_taskgroup
) {
4876 NestingProhibited
= EnclosingConstruct
!= OMPD_task
&&
4877 (SemaRef
.getLangOpts().OpenMP
< 50 ||
4878 EnclosingConstruct
!= OMPD_taskloop
);
4879 } else if (CancelRegion
== OMPD_sections
) {
4880 NestingProhibited
= EnclosingConstruct
!= OMPD_section
&&
4881 EnclosingConstruct
!= OMPD_sections
;
4883 NestingProhibited
= CancelRegion
!= Leafs
.back();
4885 OrphanSeen
= ParentRegion
== OMPD_unknown
;
4886 } else if (CurrentRegion
== OMPD_master
|| CurrentRegion
== OMPD_masked
) {
4887 // OpenMP 5.1 [2.22, Nesting of Regions]
4888 // A masked region may not be closely nested inside a worksharing, loop,
4889 // atomic, task, or taskloop region.
4890 NestingProhibited
= isOpenMPWorksharingDirective(ParentRegion
) ||
4891 isOpenMPGenericLoopDirective(ParentRegion
) ||
4892 isOpenMPTaskingDirective(ParentRegion
);
4893 } else if (CurrentRegion
== OMPD_critical
&& CurrentName
.getName()) {
4894 // OpenMP [2.16, Nesting of Regions]
4895 // A critical region may not be nested (closely or otherwise) inside a
4896 // critical region with the same name. Note that this restriction is not
4897 // sufficient to prevent deadlock.
4898 SourceLocation PreviousCriticalLoc
;
4899 bool DeadLock
= Stack
->hasDirective(
4900 [CurrentName
, &PreviousCriticalLoc
](OpenMPDirectiveKind K
,
4901 const DeclarationNameInfo
&DNI
,
4902 SourceLocation Loc
) {
4903 if (K
== OMPD_critical
&& DNI
.getName() == CurrentName
.getName()) {
4904 PreviousCriticalLoc
= Loc
;
4909 false /* skip top directive */);
4911 SemaRef
.Diag(StartLoc
, diag::err_omp_prohibited_region_critical_same_name
)
4912 << CurrentName
.getName();
4913 if (PreviousCriticalLoc
.isValid())
4914 SemaRef
.Diag(PreviousCriticalLoc
,
4915 diag::note_omp_previous_critical_region
);
4918 } else if (CurrentRegion
== OMPD_barrier
|| CurrentRegion
== OMPD_scope
) {
4919 // OpenMP 5.1 [2.22, Nesting of Regions]
4920 // A scope region may not be closely nested inside a worksharing, loop,
4921 // task, taskloop, critical, ordered, atomic, or masked region.
4922 // OpenMP 5.1 [2.22, Nesting of Regions]
4923 // A barrier region may not be closely nested inside a worksharing, loop,
4924 // task, taskloop, critical, ordered, atomic, or masked region.
4925 NestingProhibited
= isOpenMPWorksharingDirective(ParentRegion
) ||
4926 isOpenMPGenericLoopDirective(ParentRegion
) ||
4927 isOpenMPTaskingDirective(ParentRegion
) ||
4928 llvm::is_contained({OMPD_masked
, OMPD_master
,
4929 OMPD_critical
, OMPD_ordered
},
4930 EnclosingConstruct
);
4931 } else if (isOpenMPWorksharingDirective(CurrentRegion
) &&
4932 !isOpenMPParallelDirective(CurrentRegion
) &&
4933 !isOpenMPTeamsDirective(CurrentRegion
)) {
4934 // OpenMP 5.1 [2.22, Nesting of Regions]
4935 // A loop region that binds to a parallel region or a worksharing region
4936 // may not be closely nested inside a worksharing, loop, task, taskloop,
4937 // critical, ordered, atomic, or masked region.
4938 NestingProhibited
= isOpenMPWorksharingDirective(ParentRegion
) ||
4939 isOpenMPGenericLoopDirective(ParentRegion
) ||
4940 isOpenMPTaskingDirective(ParentRegion
) ||
4941 llvm::is_contained({OMPD_masked
, OMPD_master
,
4942 OMPD_critical
, OMPD_ordered
},
4943 EnclosingConstruct
);
4944 Recommend
= ShouldBeInParallelRegion
;
4945 } else if (CurrentRegion
== OMPD_ordered
) {
4946 // OpenMP [2.16, Nesting of Regions]
4947 // An ordered region may not be closely nested inside a critical,
4948 // atomic, or explicit task region.
4949 // An ordered region must be closely nested inside a loop region (or
4950 // parallel loop region) with an ordered clause.
4951 // OpenMP [2.8.1,simd Construct, Restrictions]
4952 // An ordered construct with the simd clause is the only OpenMP construct
4953 // that can appear in the simd region.
4954 NestingProhibited
= EnclosingConstruct
== OMPD_critical
||
4955 isOpenMPTaskingDirective(ParentRegion
) ||
4956 !(isOpenMPSimdDirective(ParentRegion
) ||
4957 Stack
->isParentOrderedRegion());
4958 Recommend
= ShouldBeInOrderedRegion
;
4959 } else if (isOpenMPNestingTeamsDirective(CurrentRegion
)) {
4960 // OpenMP [2.16, Nesting of Regions]
4961 // If specified, a teams construct must be contained within a target
4964 (SemaRef
.LangOpts
.OpenMP
<= 45 && EnclosingConstruct
!= OMPD_target
) ||
4965 (SemaRef
.LangOpts
.OpenMP
>= 50 && EnclosingConstruct
!= OMPD_unknown
&&
4966 EnclosingConstruct
!= OMPD_target
);
4967 OrphanSeen
= ParentRegion
== OMPD_unknown
;
4968 Recommend
= ShouldBeInTargetRegion
;
4969 } else if (CurrentRegion
== OMPD_scan
) {
4970 if (SemaRef
.LangOpts
.OpenMP
>= 50) {
4971 // OpenMP spec 5.0 and 5.1 require scan to be directly enclosed by for,
4972 // simd, or for simd. This has to take into account combined directives.
4973 // In 5.2 this seems to be implied by the fact that the specified
4974 // separated constructs are do, for, and simd.
4975 NestingProhibited
= !llvm::is_contained(
4976 {OMPD_for
, OMPD_simd
, OMPD_for_simd
}, EnclosingConstruct
);
4978 NestingProhibited
= true;
4980 OrphanSeen
= ParentRegion
== OMPD_unknown
;
4981 Recommend
= ShouldBeInLoopSimdRegion
;
4983 if (!NestingProhibited
&& !isOpenMPTargetExecutionDirective(CurrentRegion
) &&
4984 !isOpenMPTargetDataManagementDirective(CurrentRegion
) &&
4985 EnclosingConstruct
== OMPD_teams
) {
4986 // OpenMP [5.1, 2.22, Nesting of Regions]
4987 // distribute, distribute simd, distribute parallel worksharing-loop,
4988 // distribute parallel worksharing-loop SIMD, loop, parallel regions,
4989 // including any parallel regions arising from combined constructs,
4990 // omp_get_num_teams() regions, and omp_get_team_num() regions are the
4991 // only OpenMP regions that may be strictly nested inside the teams
4994 // As an extension, we permit atomic within teams as well.
4995 NestingProhibited
= !isOpenMPParallelDirective(CurrentRegion
) &&
4996 !isOpenMPDistributeDirective(CurrentRegion
) &&
4997 CurrentRegion
!= OMPD_loop
&&
4998 !(SemaRef
.getLangOpts().OpenMPExtensions
&&
4999 CurrentRegion
== OMPD_atomic
);
5000 Recommend
= ShouldBeInParallelRegion
;
5002 if (!NestingProhibited
&& CurrentRegion
== OMPD_loop
) {
5003 // OpenMP [5.1, 2.11.7, loop Construct, Restrictions]
5004 // If the bind clause is present on the loop construct and binding is
5005 // teams then the corresponding loop region must be strictly nested inside
5008 BindKind
== OMPC_BIND_teams
&& EnclosingConstruct
!= OMPD_teams
;
5009 Recommend
= ShouldBeInTeamsRegion
;
5011 if (!NestingProhibited
&& isOpenMPNestingDistributeDirective(CurrentRegion
)) {
5012 // OpenMP 4.5 [2.17 Nesting of Regions]
5013 // The region associated with the distribute construct must be strictly
5014 // nested inside a teams region
5015 NestingProhibited
= EnclosingConstruct
!= OMPD_teams
;
5016 Recommend
= ShouldBeInTeamsRegion
;
5018 if (!NestingProhibited
&&
5019 (isOpenMPTargetExecutionDirective(CurrentRegion
) ||
5020 isOpenMPTargetDataManagementDirective(CurrentRegion
))) {
5021 // OpenMP 4.5 [2.17 Nesting of Regions]
5022 // If a target, target update, target data, target enter data, or
5023 // target exit data construct is encountered during execution of a
5024 // target region, the behavior is unspecified.
5025 NestingProhibited
= Stack
->hasDirective(
5026 [&OffendingRegion
](OpenMPDirectiveKind K
, const DeclarationNameInfo
&,
5028 if (isOpenMPTargetExecutionDirective(K
)) {
5029 OffendingRegion
= K
;
5034 false /* don't skip top directive */);
5035 CloseNesting
= false;
5037 if (NestingProhibited
) {
5039 SemaRef
.Diag(StartLoc
, diag::err_omp_orphaned_device_directive
)
5040 << getOpenMPDirectiveName(CurrentRegion
) << Recommend
;
5042 SemaRef
.Diag(StartLoc
, diag::err_omp_prohibited_region
)
5043 << CloseNesting
<< getOpenMPDirectiveName(OffendingRegion
)
5044 << Recommend
<< getOpenMPDirectiveName(CurrentRegion
);
5051 struct Kind2Unsigned
{
5052 using argument_type
= OpenMPDirectiveKind
;
5053 unsigned operator()(argument_type DK
) { return unsigned(DK
); }
5055 static bool checkIfClauses(Sema
&S
, OpenMPDirectiveKind Kind
,
5056 ArrayRef
<OMPClause
*> Clauses
,
5057 ArrayRef
<OpenMPDirectiveKind
> AllowedNameModifiers
) {
5058 bool ErrorFound
= false;
5059 unsigned NamedModifiersNumber
= 0;
5060 llvm::IndexedMap
<const OMPIfClause
*, Kind2Unsigned
> FoundNameModifiers
;
5061 FoundNameModifiers
.resize(llvm::omp::Directive_enumSize
+ 1);
5062 SmallVector
<SourceLocation
, 4> NameModifierLoc
;
5063 for (const OMPClause
*C
: Clauses
) {
5064 if (const auto *IC
= dyn_cast_or_null
<OMPIfClause
>(C
)) {
5065 // At most one if clause without a directive-name-modifier can appear on
5067 OpenMPDirectiveKind CurNM
= IC
->getNameModifier();
5068 if (FoundNameModifiers
[CurNM
]) {
5069 S
.Diag(C
->getBeginLoc(), diag::err_omp_more_one_clause
)
5070 << getOpenMPDirectiveName(Kind
) << getOpenMPClauseName(OMPC_if
)
5071 << (CurNM
!= OMPD_unknown
) << getOpenMPDirectiveName(CurNM
);
5073 } else if (CurNM
!= OMPD_unknown
) {
5074 NameModifierLoc
.push_back(IC
->getNameModifierLoc());
5075 ++NamedModifiersNumber
;
5077 FoundNameModifiers
[CurNM
] = IC
;
5078 if (CurNM
== OMPD_unknown
)
5080 // Check if the specified name modifier is allowed for the current
5082 // At most one if clause with the particular directive-name-modifier can
5083 // appear on the directive.
5084 if (!llvm::is_contained(AllowedNameModifiers
, CurNM
)) {
5085 S
.Diag(IC
->getNameModifierLoc(),
5086 diag::err_omp_wrong_if_directive_name_modifier
)
5087 << getOpenMPDirectiveName(CurNM
) << getOpenMPDirectiveName(Kind
);
5092 // If any if clause on the directive includes a directive-name-modifier then
5093 // all if clauses on the directive must include a directive-name-modifier.
5094 if (FoundNameModifiers
[OMPD_unknown
] && NamedModifiersNumber
> 0) {
5095 if (NamedModifiersNumber
== AllowedNameModifiers
.size()) {
5096 S
.Diag(FoundNameModifiers
[OMPD_unknown
]->getBeginLoc(),
5097 diag::err_omp_no_more_if_clause
);
5100 std::string
Sep(", ");
5101 unsigned AllowedCnt
= 0;
5102 unsigned TotalAllowedNum
=
5103 AllowedNameModifiers
.size() - NamedModifiersNumber
;
5104 for (unsigned Cnt
= 0, End
= AllowedNameModifiers
.size(); Cnt
< End
;
5106 OpenMPDirectiveKind NM
= AllowedNameModifiers
[Cnt
];
5107 if (!FoundNameModifiers
[NM
]) {
5109 Values
+= getOpenMPDirectiveName(NM
);
5111 if (AllowedCnt
+ 2 == TotalAllowedNum
)
5113 else if (AllowedCnt
+ 1 != TotalAllowedNum
)
5118 S
.Diag(FoundNameModifiers
[OMPD_unknown
]->getCondition()->getBeginLoc(),
5119 diag::err_omp_unnamed_if_clause
)
5120 << (TotalAllowedNum
> 1) << Values
;
5122 for (SourceLocation Loc
: NameModifierLoc
) {
5123 S
.Diag(Loc
, diag::note_omp_previous_named_if_clause
);
5130 static std::pair
<ValueDecl
*, bool> getPrivateItem(Sema
&S
, Expr
*&RefExpr
,
5131 SourceLocation
&ELoc
,
5132 SourceRange
&ERange
,
5133 bool AllowArraySection
,
5134 StringRef DiagType
) {
5135 if (RefExpr
->isTypeDependent() || RefExpr
->isValueDependent() ||
5136 RefExpr
->containsUnexpandedParameterPack())
5137 return std::make_pair(nullptr, true);
5139 // OpenMP [3.1, C/C++]
5140 // A list item is a variable name.
5141 // OpenMP [2.9.3.3, Restrictions, p.1]
5142 // A variable that is part of another variable (as an array or
5143 // structure element) cannot appear in a private clause.
5144 RefExpr
= RefExpr
->IgnoreParens();
5149 } IsArrayExpr
= NoArrayExpr
;
5150 if (AllowArraySection
) {
5151 if (auto *ASE
= dyn_cast_or_null
<ArraySubscriptExpr
>(RefExpr
)) {
5152 Expr
*Base
= ASE
->getBase()->IgnoreParenImpCasts();
5153 while (auto *TempASE
= dyn_cast
<ArraySubscriptExpr
>(Base
))
5154 Base
= TempASE
->getBase()->IgnoreParenImpCasts();
5156 IsArrayExpr
= ArraySubscript
;
5157 } else if (auto *OASE
= dyn_cast_or_null
<ArraySectionExpr
>(RefExpr
)) {
5158 Expr
*Base
= OASE
->getBase()->IgnoreParenImpCasts();
5159 while (auto *TempOASE
= dyn_cast
<ArraySectionExpr
>(Base
))
5160 Base
= TempOASE
->getBase()->IgnoreParenImpCasts();
5161 while (auto *TempASE
= dyn_cast
<ArraySubscriptExpr
>(Base
))
5162 Base
= TempASE
->getBase()->IgnoreParenImpCasts();
5164 IsArrayExpr
= OMPArraySection
;
5167 ELoc
= RefExpr
->getExprLoc();
5168 ERange
= RefExpr
->getSourceRange();
5169 RefExpr
= RefExpr
->IgnoreParenImpCasts();
5170 auto *DE
= dyn_cast_or_null
<DeclRefExpr
>(RefExpr
);
5171 auto *ME
= dyn_cast_or_null
<MemberExpr
>(RefExpr
);
5172 if ((!DE
|| !isa
<VarDecl
>(DE
->getDecl())) &&
5173 (S
.getCurrentThisType().isNull() || !ME
||
5174 !isa
<CXXThisExpr
>(ME
->getBase()->IgnoreParenImpCasts()) ||
5175 !isa
<FieldDecl
>(ME
->getMemberDecl()))) {
5176 if (IsArrayExpr
!= NoArrayExpr
) {
5177 S
.Diag(ELoc
, diag::err_omp_expected_base_var_name
)
5178 << IsArrayExpr
<< ERange
;
5179 } else if (!DiagType
.empty()) {
5180 unsigned DiagSelect
= S
.getLangOpts().CPlusPlus
5181 ? (S
.getCurrentThisType().isNull() ? 1 : 2)
5183 S
.Diag(ELoc
, diag::err_omp_expected_var_name_member_expr_with_type
)
5184 << DiagSelect
<< DiagType
<< ERange
;
5188 ? diag::err_omp_expected_var_name_member_expr_or_array_item
5189 : diag::err_omp_expected_var_name_member_expr
)
5190 << (S
.getCurrentThisType().isNull() ? 0 : 1) << ERange
;
5192 return std::make_pair(nullptr, false);
5194 return std::make_pair(
5195 getCanonicalDecl(DE
? DE
->getDecl() : ME
->getMemberDecl()), false);
5199 /// Checks if the allocator is used in uses_allocators clause to be allowed in
5201 class AllocatorChecker final
: public ConstStmtVisitor
<AllocatorChecker
, bool> {
5202 DSAStackTy
*S
= nullptr;
5205 bool VisitDeclRefExpr(const DeclRefExpr
*E
) {
5206 return S
->isUsesAllocatorsDecl(E
->getDecl())
5207 .value_or(DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait
) ==
5208 DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait
;
5210 bool VisitStmt(const Stmt
*S
) {
5211 for (const Stmt
*Child
: S
->children()) {
5212 if (Child
&& Visit(Child
))
5217 explicit AllocatorChecker(DSAStackTy
*S
) : S(S
) {}
5221 static void checkAllocateClauses(Sema
&S
, DSAStackTy
*Stack
,
5222 ArrayRef
<OMPClause
*> Clauses
) {
5223 assert(!S
.CurContext
->isDependentContext() &&
5224 "Expected non-dependent context.");
5225 auto AllocateRange
=
5226 llvm::make_filter_range(Clauses
, OMPAllocateClause::classof
);
5227 llvm::DenseMap
<CanonicalDeclPtr
<Decl
>, CanonicalDeclPtr
<VarDecl
>> DeclToCopy
;
5228 auto PrivateRange
= llvm::make_filter_range(Clauses
, [](const OMPClause
*C
) {
5229 return isOpenMPPrivate(C
->getClauseKind());
5231 for (OMPClause
*Cl
: PrivateRange
) {
5232 MutableArrayRef
<Expr
*>::iterator I
, It
, Et
;
5233 if (Cl
->getClauseKind() == OMPC_private
) {
5234 auto *PC
= cast
<OMPPrivateClause
>(Cl
);
5235 I
= PC
->private_copies().begin();
5236 It
= PC
->varlist_begin();
5237 Et
= PC
->varlist_end();
5238 } else if (Cl
->getClauseKind() == OMPC_firstprivate
) {
5239 auto *PC
= cast
<OMPFirstprivateClause
>(Cl
);
5240 I
= PC
->private_copies().begin();
5241 It
= PC
->varlist_begin();
5242 Et
= PC
->varlist_end();
5243 } else if (Cl
->getClauseKind() == OMPC_lastprivate
) {
5244 auto *PC
= cast
<OMPLastprivateClause
>(Cl
);
5245 I
= PC
->private_copies().begin();
5246 It
= PC
->varlist_begin();
5247 Et
= PC
->varlist_end();
5248 } else if (Cl
->getClauseKind() == OMPC_linear
) {
5249 auto *PC
= cast
<OMPLinearClause
>(Cl
);
5250 I
= PC
->privates().begin();
5251 It
= PC
->varlist_begin();
5252 Et
= PC
->varlist_end();
5253 } else if (Cl
->getClauseKind() == OMPC_reduction
) {
5254 auto *PC
= cast
<OMPReductionClause
>(Cl
);
5255 I
= PC
->privates().begin();
5256 It
= PC
->varlist_begin();
5257 Et
= PC
->varlist_end();
5258 } else if (Cl
->getClauseKind() == OMPC_task_reduction
) {
5259 auto *PC
= cast
<OMPTaskReductionClause
>(Cl
);
5260 I
= PC
->privates().begin();
5261 It
= PC
->varlist_begin();
5262 Et
= PC
->varlist_end();
5263 } else if (Cl
->getClauseKind() == OMPC_in_reduction
) {
5264 auto *PC
= cast
<OMPInReductionClause
>(Cl
);
5265 I
= PC
->privates().begin();
5266 It
= PC
->varlist_begin();
5267 Et
= PC
->varlist_end();
5269 llvm_unreachable("Expected private clause.");
5271 for (Expr
*E
: llvm::make_range(It
, Et
)) {
5276 SourceLocation ELoc
;
5278 Expr
*SimpleRefExpr
= E
;
5279 auto Res
= getPrivateItem(S
, SimpleRefExpr
, ELoc
, ERange
,
5280 /*AllowArraySection=*/true);
5281 DeclToCopy
.try_emplace(Res
.first
,
5282 cast
<VarDecl
>(cast
<DeclRefExpr
>(*I
)->getDecl()));
5286 for (OMPClause
*C
: AllocateRange
) {
5287 auto *AC
= cast
<OMPAllocateClause
>(C
);
5288 if (S
.getLangOpts().OpenMP
>= 50 &&
5289 !Stack
->hasRequiresDeclWithClause
<OMPDynamicAllocatorsClause
>() &&
5290 isOpenMPTargetExecutionDirective(Stack
->getCurrentDirective()) &&
5291 AC
->getAllocator()) {
5292 Expr
*Allocator
= AC
->getAllocator();
5293 // OpenMP, 2.12.5 target Construct
5294 // Memory allocators that do not appear in a uses_allocators clause cannot
5295 // appear as an allocator in an allocate clause or be used in the target
5296 // region unless a requires directive with the dynamic_allocators clause
5297 // is present in the same compilation unit.
5298 AllocatorChecker
Checker(Stack
);
5299 if (Checker
.Visit(Allocator
))
5300 S
.Diag(Allocator
->getExprLoc(),
5301 diag::err_omp_allocator_not_in_uses_allocators
)
5302 << Allocator
->getSourceRange();
5304 OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind
=
5305 getAllocatorKind(S
, Stack
, AC
->getAllocator());
5306 // OpenMP, 2.11.4 allocate Clause, Restrictions.
5307 // For task, taskloop or target directives, allocation requests to memory
5308 // allocators with the trait access set to thread result in unspecified
5310 if (AllocatorKind
== OMPAllocateDeclAttr::OMPThreadMemAlloc
&&
5311 (isOpenMPTaskingDirective(Stack
->getCurrentDirective()) ||
5312 isOpenMPTargetExecutionDirective(Stack
->getCurrentDirective()))) {
5313 S
.Diag(AC
->getAllocator()->getExprLoc(),
5314 diag::warn_omp_allocate_thread_on_task_target_directive
)
5315 << getOpenMPDirectiveName(Stack
->getCurrentDirective());
5317 for (Expr
*E
: AC
->varlist()) {
5318 SourceLocation ELoc
;
5320 Expr
*SimpleRefExpr
= E
;
5321 auto Res
= getPrivateItem(S
, SimpleRefExpr
, ELoc
, ERange
);
5322 ValueDecl
*VD
= Res
.first
;
5323 DSAStackTy::DSAVarData Data
= Stack
->getTopDSA(VD
, /*FromParent=*/false);
5324 if (!isOpenMPPrivate(Data
.CKind
)) {
5325 S
.Diag(E
->getExprLoc(),
5326 diag::err_omp_expected_private_copy_for_allocate
);
5329 VarDecl
*PrivateVD
= DeclToCopy
[VD
];
5330 if (checkPreviousOMPAllocateAttribute(S
, Stack
, E
, PrivateVD
,
5331 AllocatorKind
, AC
->getAllocator()))
5333 // Placeholder until allocate clause supports align modifier.
5334 Expr
*Alignment
= nullptr;
5335 applyOMPAllocateAttribute(S
, PrivateVD
, AllocatorKind
, AC
->getAllocator(),
5336 Alignment
, E
->getSourceRange());
5342 /// Rewrite statements and expressions for Sema \p Actions CurContext.
5344 /// Used to wrap already parsed statements/expressions into a new CapturedStmt
5345 /// context. DeclRefExpr used inside the new context are changed to refer to the
5346 /// captured variable instead.
5347 class CaptureVars
: public TreeTransform
<CaptureVars
> {
5348 using BaseTransform
= TreeTransform
<CaptureVars
>;
5351 CaptureVars(Sema
&Actions
) : BaseTransform(Actions
) {}
5353 bool AlwaysRebuild() { return true; }
5357 static VarDecl
*precomputeExpr(Sema
&Actions
,
5358 SmallVectorImpl
<Stmt
*> &BodyStmts
, Expr
*E
,
5360 Expr
*NewE
= AssertSuccess(CaptureVars(Actions
).TransformExpr(E
));
5361 VarDecl
*NewVar
= buildVarDecl(Actions
, {}, NewE
->getType(), Name
, nullptr,
5362 dyn_cast
<DeclRefExpr
>(E
->IgnoreImplicit()));
5363 auto *NewDeclStmt
= cast
<DeclStmt
>(AssertSuccess(
5364 Actions
.ActOnDeclStmt(Actions
.ConvertDeclToDeclGroup(NewVar
), {}, {})));
5365 Actions
.AddInitializerToDecl(NewDeclStmt
->getSingleDecl(), NewE
, false);
5366 BodyStmts
.push_back(NewDeclStmt
);
5370 /// Create a closure that computes the number of iterations of a loop.
5372 /// \param Actions The Sema object.
5373 /// \param LogicalTy Type for the logical iteration number.
5374 /// \param Rel Comparison operator of the loop condition.
5375 /// \param StartExpr Value of the loop counter at the first iteration.
5376 /// \param StopExpr Expression the loop counter is compared against in the loop
5377 /// condition. \param StepExpr Amount of increment after each iteration.
5379 /// \return Closure (CapturedStmt) of the distance calculation.
5380 static CapturedStmt
*buildDistanceFunc(Sema
&Actions
, QualType LogicalTy
,
5381 BinaryOperator::Opcode Rel
,
5382 Expr
*StartExpr
, Expr
*StopExpr
,
5384 ASTContext
&Ctx
= Actions
.getASTContext();
5385 TypeSourceInfo
*LogicalTSI
= Ctx
.getTrivialTypeSourceInfo(LogicalTy
);
5387 // Captured regions currently don't support return values, we use an
5388 // out-parameter instead. All inputs are implicit captures.
5389 // TODO: Instead of capturing each DeclRefExpr occurring in
5390 // StartExpr/StopExpr/Step, these could also be passed as a value capture.
5391 QualType ResultTy
= Ctx
.getLValueReferenceType(LogicalTy
);
5392 Sema::CapturedParamNameType Params
[] = {{"Distance", ResultTy
},
5393 {StringRef(), QualType()}};
5394 Actions
.ActOnCapturedRegionStart({}, nullptr, CR_Default
, Params
);
5398 Sema::CompoundScopeRAII
CompoundScope(Actions
);
5399 CapturedDecl
*CS
= cast
<CapturedDecl
>(Actions
.CurContext
);
5401 // Get the LValue expression for the result.
5402 ImplicitParamDecl
*DistParam
= CS
->getParam(0);
5403 DeclRefExpr
*DistRef
= Actions
.BuildDeclRefExpr(
5404 DistParam
, LogicalTy
, VK_LValue
, {}, nullptr, nullptr, {}, nullptr);
5406 SmallVector
<Stmt
*, 4> BodyStmts
;
5408 // Capture all referenced variable references.
5409 // TODO: Instead of computing NewStart/NewStop/NewStep inside the
5410 // CapturedStmt, we could compute them before and capture the result, to be
5411 // used jointly with the LoopVar function.
5412 VarDecl
*NewStart
= precomputeExpr(Actions
, BodyStmts
, StartExpr
, ".start");
5413 VarDecl
*NewStop
= precomputeExpr(Actions
, BodyStmts
, StopExpr
, ".stop");
5414 VarDecl
*NewStep
= precomputeExpr(Actions
, BodyStmts
, StepExpr
, ".step");
5415 auto BuildVarRef
= [&](VarDecl
*VD
) {
5416 return buildDeclRefExpr(Actions
, VD
, VD
->getType(), {});
5419 IntegerLiteral
*Zero
= IntegerLiteral::Create(
5420 Ctx
, llvm::APInt(Ctx
.getIntWidth(LogicalTy
), 0), LogicalTy
, {});
5421 IntegerLiteral
*One
= IntegerLiteral::Create(
5422 Ctx
, llvm::APInt(Ctx
.getIntWidth(LogicalTy
), 1), LogicalTy
, {});
5425 // When using a != comparison, the increment can be +1 or -1. This can be
5426 // dynamic at runtime, so we need to check for the direction.
5427 Expr
*IsNegStep
= AssertSuccess(
5428 Actions
.BuildBinOp(nullptr, {}, BO_LT
, BuildVarRef(NewStep
), Zero
));
5430 // Positive increment.
5431 Expr
*ForwardRange
= AssertSuccess(Actions
.BuildBinOp(
5432 nullptr, {}, BO_Sub
, BuildVarRef(NewStop
), BuildVarRef(NewStart
)));
5433 ForwardRange
= AssertSuccess(
5434 Actions
.BuildCStyleCastExpr({}, LogicalTSI
, {}, ForwardRange
));
5435 Expr
*ForwardDist
= AssertSuccess(Actions
.BuildBinOp(
5436 nullptr, {}, BO_Div
, ForwardRange
, BuildVarRef(NewStep
)));
5438 // Negative increment.
5439 Expr
*BackwardRange
= AssertSuccess(Actions
.BuildBinOp(
5440 nullptr, {}, BO_Sub
, BuildVarRef(NewStart
), BuildVarRef(NewStop
)));
5441 BackwardRange
= AssertSuccess(
5442 Actions
.BuildCStyleCastExpr({}, LogicalTSI
, {}, BackwardRange
));
5443 Expr
*NegIncAmount
= AssertSuccess(
5444 Actions
.BuildUnaryOp(nullptr, {}, UO_Minus
, BuildVarRef(NewStep
)));
5445 Expr
*BackwardDist
= AssertSuccess(
5446 Actions
.BuildBinOp(nullptr, {}, BO_Div
, BackwardRange
, NegIncAmount
));
5448 // Use the appropriate case.
5449 Dist
= AssertSuccess(Actions
.ActOnConditionalOp(
5450 {}, {}, IsNegStep
, BackwardDist
, ForwardDist
));
5452 assert((Rel
== BO_LT
|| Rel
== BO_LE
|| Rel
== BO_GE
|| Rel
== BO_GT
) &&
5453 "Expected one of these relational operators");
5455 // We can derive the direction from any other comparison operator. It is
5456 // non well-formed OpenMP if Step increments/decrements in the other
5457 // directions. Whether at least the first iteration passes the loop
5459 Expr
*HasAnyIteration
= AssertSuccess(Actions
.BuildBinOp(
5460 nullptr, {}, Rel
, BuildVarRef(NewStart
), BuildVarRef(NewStop
)));
5462 // Compute the range between first and last counter value.
5464 if (Rel
== BO_GE
|| Rel
== BO_GT
)
5465 Range
= AssertSuccess(Actions
.BuildBinOp(
5466 nullptr, {}, BO_Sub
, BuildVarRef(NewStart
), BuildVarRef(NewStop
)));
5468 Range
= AssertSuccess(Actions
.BuildBinOp(
5469 nullptr, {}, BO_Sub
, BuildVarRef(NewStop
), BuildVarRef(NewStart
)));
5471 // Ensure unsigned range space.
5473 AssertSuccess(Actions
.BuildCStyleCastExpr({}, LogicalTSI
, {}, Range
));
5475 if (Rel
== BO_LE
|| Rel
== BO_GE
) {
5476 // Add one to the range if the relational operator is inclusive.
5478 AssertSuccess(Actions
.BuildBinOp(nullptr, {}, BO_Add
, Range
, One
));
5481 // Divide by the absolute step amount. If the range is not a multiple of
5482 // the step size, rounding-up the effective upper bound ensures that the
5483 // last iteration is included.
5484 // Note that the rounding-up may cause an overflow in a temporary that
5485 // could be avoided, but would have occurred in a C-style for-loop as
5487 Expr
*Divisor
= BuildVarRef(NewStep
);
5488 if (Rel
== BO_GE
|| Rel
== BO_GT
)
5490 AssertSuccess(Actions
.BuildUnaryOp(nullptr, {}, UO_Minus
, Divisor
));
5491 Expr
*DivisorMinusOne
=
5492 AssertSuccess(Actions
.BuildBinOp(nullptr, {}, BO_Sub
, Divisor
, One
));
5493 Expr
*RangeRoundUp
= AssertSuccess(
5494 Actions
.BuildBinOp(nullptr, {}, BO_Add
, Range
, DivisorMinusOne
));
5495 Dist
= AssertSuccess(
5496 Actions
.BuildBinOp(nullptr, {}, BO_Div
, RangeRoundUp
, Divisor
));
5498 // If there is not at least one iteration, the range contains garbage. Fix
5499 // to zero in this case.
5500 Dist
= AssertSuccess(
5501 Actions
.ActOnConditionalOp({}, {}, HasAnyIteration
, Dist
, Zero
));
5504 // Assign the result to the out-parameter.
5505 Stmt
*ResultAssign
= AssertSuccess(Actions
.BuildBinOp(
5506 Actions
.getCurScope(), {}, BO_Assign
, DistRef
, Dist
));
5507 BodyStmts
.push_back(ResultAssign
);
5509 Body
= AssertSuccess(Actions
.ActOnCompoundStmt({}, {}, BodyStmts
, false));
5512 return cast
<CapturedStmt
>(
5513 AssertSuccess(Actions
.ActOnCapturedRegionEnd(Body
)));
5516 /// Create a closure that computes the loop variable from the logical iteration
5519 /// \param Actions The Sema object.
5520 /// \param LoopVarTy Type for the loop variable used for result value.
5521 /// \param LogicalTy Type for the logical iteration number.
5522 /// \param StartExpr Value of the loop counter at the first iteration.
5523 /// \param Step Amount of increment after each iteration.
5524 /// \param Deref Whether the loop variable is a dereference of the loop
5525 /// counter variable.
5527 /// \return Closure (CapturedStmt) of the loop value calculation.
5528 static CapturedStmt
*buildLoopVarFunc(Sema
&Actions
, QualType LoopVarTy
,
5530 DeclRefExpr
*StartExpr
, Expr
*Step
,
5532 ASTContext
&Ctx
= Actions
.getASTContext();
5534 // Pass the result as an out-parameter. Passing as return value would require
5535 // the OpenMPIRBuilder to know additional C/C++ semantics, such as how to
5536 // invoke a copy constructor.
5537 QualType TargetParamTy
= Ctx
.getLValueReferenceType(LoopVarTy
);
5538 SemaOpenMP::CapturedParamNameType Params
[] = {{"LoopVar", TargetParamTy
},
5539 {"Logical", LogicalTy
},
5540 {StringRef(), QualType()}};
5541 Actions
.ActOnCapturedRegionStart({}, nullptr, CR_Default
, Params
);
5543 // Capture the initial iterator which represents the LoopVar value at the
5544 // zero's logical iteration. Since the original ForStmt/CXXForRangeStmt update
5545 // it in every iteration, capture it by value before it is modified.
5546 VarDecl
*StartVar
= cast
<VarDecl
>(StartExpr
->getDecl());
5547 bool Invalid
= Actions
.tryCaptureVariable(StartVar
, {},
5548 Sema::TryCapture_ExplicitByVal
, {});
5550 assert(!Invalid
&& "Expecting capture-by-value to work.");
5554 Sema::CompoundScopeRAII
CompoundScope(Actions
);
5555 auto *CS
= cast
<CapturedDecl
>(Actions
.CurContext
);
5557 ImplicitParamDecl
*TargetParam
= CS
->getParam(0);
5558 DeclRefExpr
*TargetRef
= Actions
.BuildDeclRefExpr(
5559 TargetParam
, LoopVarTy
, VK_LValue
, {}, nullptr, nullptr, {}, nullptr);
5560 ImplicitParamDecl
*IndvarParam
= CS
->getParam(1);
5561 DeclRefExpr
*LogicalRef
= Actions
.BuildDeclRefExpr(
5562 IndvarParam
, LogicalTy
, VK_LValue
, {}, nullptr, nullptr, {}, nullptr);
5564 // Capture the Start expression.
5565 CaptureVars
Recap(Actions
);
5566 Expr
*NewStart
= AssertSuccess(Recap
.TransformExpr(StartExpr
));
5567 Expr
*NewStep
= AssertSuccess(Recap
.TransformExpr(Step
));
5569 Expr
*Skip
= AssertSuccess(
5570 Actions
.BuildBinOp(nullptr, {}, BO_Mul
, NewStep
, LogicalRef
));
5571 // TODO: Explicitly cast to the iterator's difference_type instead of
5572 // relying on implicit conversion.
5574 AssertSuccess(Actions
.BuildBinOp(nullptr, {}, BO_Add
, NewStart
, Skip
));
5577 // For range-based for-loops convert the loop counter value to a concrete
5578 // loop variable value by dereferencing the iterator.
5580 AssertSuccess(Actions
.BuildUnaryOp(nullptr, {}, UO_Deref
, Advanced
));
5583 // Assign the result to the output parameter.
5584 Body
= AssertSuccess(Actions
.BuildBinOp(Actions
.getCurScope(), {},
5585 BO_Assign
, TargetRef
, Advanced
));
5587 return cast
<CapturedStmt
>(
5588 AssertSuccess(Actions
.ActOnCapturedRegionEnd(Body
)));
5591 StmtResult
SemaOpenMP::ActOnOpenMPCanonicalLoop(Stmt
*AStmt
) {
5592 ASTContext
&Ctx
= getASTContext();
5594 // Extract the common elements of ForStmt and CXXForRangeStmt:
5595 // Loop variable, repeat condition, increment
5597 VarDecl
*LIVDecl
, *LUVDecl
;
5598 if (auto *For
= dyn_cast
<ForStmt
>(AStmt
)) {
5599 Stmt
*Init
= For
->getInit();
5600 if (auto *LCVarDeclStmt
= dyn_cast
<DeclStmt
>(Init
)) {
5601 // For statement declares loop variable.
5602 LIVDecl
= cast
<VarDecl
>(LCVarDeclStmt
->getSingleDecl());
5603 } else if (auto *LCAssign
= dyn_cast
<BinaryOperator
>(Init
)) {
5604 // For statement reuses variable.
5605 assert(LCAssign
->getOpcode() == BO_Assign
&&
5606 "init part must be a loop variable assignment");
5607 auto *CounterRef
= cast
<DeclRefExpr
>(LCAssign
->getLHS());
5608 LIVDecl
= cast
<VarDecl
>(CounterRef
->getDecl());
5610 llvm_unreachable("Cannot determine loop variable");
5613 Cond
= For
->getCond();
5614 Inc
= For
->getInc();
5615 } else if (auto *RangeFor
= dyn_cast
<CXXForRangeStmt
>(AStmt
)) {
5616 DeclStmt
*BeginStmt
= RangeFor
->getBeginStmt();
5617 LIVDecl
= cast
<VarDecl
>(BeginStmt
->getSingleDecl());
5618 LUVDecl
= RangeFor
->getLoopVariable();
5620 Cond
= RangeFor
->getCond();
5621 Inc
= RangeFor
->getInc();
5623 llvm_unreachable("unhandled kind of loop");
5625 QualType CounterTy
= LIVDecl
->getType();
5626 QualType LVTy
= LUVDecl
->getType();
5628 // Analyze the loop condition.
5630 BinaryOperator::Opcode CondRel
;
5631 Cond
= Cond
->IgnoreImplicit();
5632 if (auto *CondBinExpr
= dyn_cast
<BinaryOperator
>(Cond
)) {
5633 LHS
= CondBinExpr
->getLHS();
5634 RHS
= CondBinExpr
->getRHS();
5635 CondRel
= CondBinExpr
->getOpcode();
5636 } else if (auto *CondCXXOp
= dyn_cast
<CXXOperatorCallExpr
>(Cond
)) {
5637 assert(CondCXXOp
->getNumArgs() == 2 && "Comparison should have 2 operands");
5638 LHS
= CondCXXOp
->getArg(0);
5639 RHS
= CondCXXOp
->getArg(1);
5640 switch (CondCXXOp
->getOperator()) {
5641 case OO_ExclaimEqual
:
5653 case OO_GreaterEqual
:
5657 llvm_unreachable("unexpected iterator operator");
5660 llvm_unreachable("unexpected loop condition");
5662 // Normalize such that the loop counter is on the LHS.
5663 if (!isa
<DeclRefExpr
>(LHS
->IgnoreImplicit()) ||
5664 cast
<DeclRefExpr
>(LHS
->IgnoreImplicit())->getDecl() != LIVDecl
) {
5665 std::swap(LHS
, RHS
);
5666 CondRel
= BinaryOperator::reverseComparisonOp(CondRel
);
5668 auto *CounterRef
= cast
<DeclRefExpr
>(LHS
->IgnoreImplicit());
5670 // Decide the bit width for the logical iteration counter. By default use the
5671 // unsigned ptrdiff_t integer size (for iterators and pointers).
5672 // TODO: For iterators, use iterator::difference_type,
5673 // std::iterator_traits<>::difference_type or decltype(it - end).
5674 QualType LogicalTy
= Ctx
.getUnsignedPointerDiffType();
5675 if (CounterTy
->isIntegerType()) {
5676 unsigned BitWidth
= Ctx
.getIntWidth(CounterTy
);
5677 LogicalTy
= Ctx
.getIntTypeForBitwidth(BitWidth
, false);
5680 // Analyze the loop increment.
5682 if (auto *IncUn
= dyn_cast
<UnaryOperator
>(Inc
)) {
5684 switch (IncUn
->getOpcode()) {
5694 llvm_unreachable("unhandled unary increment operator");
5696 Step
= IntegerLiteral::Create(
5698 llvm::APInt(Ctx
.getIntWidth(LogicalTy
), Direction
, /*isSigned=*/true),
5700 } else if (auto *IncBin
= dyn_cast
<BinaryOperator
>(Inc
)) {
5701 if (IncBin
->getOpcode() == BO_AddAssign
) {
5702 Step
= IncBin
->getRHS();
5703 } else if (IncBin
->getOpcode() == BO_SubAssign
) {
5704 Step
= AssertSuccess(
5705 SemaRef
.BuildUnaryOp(nullptr, {}, UO_Minus
, IncBin
->getRHS()));
5707 llvm_unreachable("unhandled binary increment operator");
5708 } else if (auto *CondCXXOp
= dyn_cast
<CXXOperatorCallExpr
>(Inc
)) {
5709 switch (CondCXXOp
->getOperator()) {
5711 Step
= IntegerLiteral::Create(
5712 Ctx
, llvm::APInt(Ctx
.getIntWidth(LogicalTy
), 1), LogicalTy
, {});
5715 Step
= IntegerLiteral::Create(
5716 Ctx
, llvm::APInt(Ctx
.getIntWidth(LogicalTy
), -1), LogicalTy
, {});
5719 Step
= CondCXXOp
->getArg(1);
5722 Step
= AssertSuccess(
5723 SemaRef
.BuildUnaryOp(nullptr, {}, UO_Minus
, CondCXXOp
->getArg(1)));
5726 llvm_unreachable("unhandled overloaded increment operator");
5729 llvm_unreachable("unknown increment expression");
5731 CapturedStmt
*DistanceFunc
=
5732 buildDistanceFunc(SemaRef
, LogicalTy
, CondRel
, LHS
, RHS
, Step
);
5733 CapturedStmt
*LoopVarFunc
= buildLoopVarFunc(
5734 SemaRef
, LVTy
, LogicalTy
, CounterRef
, Step
, isa
<CXXForRangeStmt
>(AStmt
));
5735 DeclRefExpr
*LVRef
=
5736 SemaRef
.BuildDeclRefExpr(LUVDecl
, LUVDecl
->getType(), VK_LValue
, {},
5737 nullptr, nullptr, {}, nullptr);
5738 return OMPCanonicalLoop::create(getASTContext(), AStmt
, DistanceFunc
,
5739 LoopVarFunc
, LVRef
);
5742 StmtResult
SemaOpenMP::ActOnOpenMPLoopnest(Stmt
*AStmt
) {
5743 // Handle a literal loop.
5744 if (isa
<ForStmt
>(AStmt
) || isa
<CXXForRangeStmt
>(AStmt
))
5745 return ActOnOpenMPCanonicalLoop(AStmt
);
5747 // If not a literal loop, it must be the result of a loop transformation.
5748 OMPExecutableDirective
*LoopTransform
= cast
<OMPExecutableDirective
>(AStmt
);
5750 isOpenMPLoopTransformationDirective(LoopTransform
->getDirectiveKind()) &&
5751 "Loop transformation directive expected");
5752 return LoopTransform
;
5755 static ExprResult
buildUserDefinedMapperRef(Sema
&SemaRef
, Scope
*S
,
5756 CXXScopeSpec
&MapperIdScopeSpec
,
5757 const DeclarationNameInfo
&MapperId
,
5759 Expr
*UnresolvedMapper
);
5761 /// Perform DFS through the structure/class data members trying to find
5762 /// member(s) with user-defined 'default' mapper and generate implicit map
5763 /// clauses for such members with the found 'default' mapper.
5765 processImplicitMapsWithDefaultMappers(Sema
&S
, DSAStackTy
*Stack
,
5766 SmallVectorImpl
<OMPClause
*> &Clauses
) {
5767 // Check for the default mapper for data members.
5768 if (S
.getLangOpts().OpenMP
< 50)
5770 SmallVector
<OMPClause
*, 4> ImplicitMaps
;
5771 for (int Cnt
= 0, EndCnt
= Clauses
.size(); Cnt
< EndCnt
; ++Cnt
) {
5772 auto *C
= dyn_cast
<OMPMapClause
>(Clauses
[Cnt
]);
5775 SmallVector
<Expr
*, 4> SubExprs
;
5776 auto *MI
= C
->mapperlist_begin();
5777 for (auto I
= C
->varlist_begin(), End
= C
->varlist_end(); I
!= End
;
5779 // Expression is mapped using mapper - skip it.
5783 // Expression is dependent - skip it, build the mapper when it gets
5785 if (E
->isTypeDependent() || E
->isValueDependent() ||
5786 E
->containsUnexpandedParameterPack())
5788 // Array section - need to check for the mapping of the array section
5790 QualType CanonType
= E
->getType().getCanonicalType();
5791 if (CanonType
->isSpecificBuiltinType(BuiltinType::ArraySection
)) {
5792 const auto *OASE
= cast
<ArraySectionExpr
>(E
->IgnoreParenImpCasts());
5794 ArraySectionExpr::getBaseOriginalType(OASE
->getBase());
5796 if (const auto *ATy
= BaseType
->getAsArrayTypeUnsafe())
5797 ElemType
= ATy
->getElementType();
5799 ElemType
= BaseType
->getPointeeType();
5800 CanonType
= ElemType
;
5803 // DFS over data members in structures/classes.
5804 SmallVector
<std::pair
<QualType
, FieldDecl
*>, 4> Types(
5805 1, {CanonType
, nullptr});
5806 llvm::DenseMap
<const Type
*, Expr
*> Visited
;
5807 SmallVector
<std::pair
<FieldDecl
*, unsigned>, 4> ParentChain(
5809 while (!Types
.empty()) {
5812 std::tie(BaseType
, CurFD
) = Types
.pop_back_val();
5813 while (ParentChain
.back().second
== 0)
5814 ParentChain
.pop_back();
5815 --ParentChain
.back().second
;
5816 if (BaseType
.isNull())
5818 // Only structs/classes are allowed to have mappers.
5819 const RecordDecl
*RD
= BaseType
.getCanonicalType()->getAsRecordDecl();
5822 auto It
= Visited
.find(BaseType
.getTypePtr());
5823 if (It
== Visited
.end()) {
5824 // Try to find the associated user-defined mapper.
5825 CXXScopeSpec MapperIdScopeSpec
;
5826 DeclarationNameInfo DefaultMapperId
;
5827 DefaultMapperId
.setName(S
.Context
.DeclarationNames
.getIdentifier(
5828 &S
.Context
.Idents
.get("default")));
5829 DefaultMapperId
.setLoc(E
->getExprLoc());
5830 ExprResult ER
= buildUserDefinedMapperRef(
5831 S
, Stack
->getCurScope(), MapperIdScopeSpec
, DefaultMapperId
,
5832 BaseType
, /*UnresolvedMapper=*/nullptr);
5835 It
= Visited
.try_emplace(BaseType
.getTypePtr(), ER
.get()).first
;
5837 // Found default mapper.
5839 auto *OE
= new (S
.Context
) OpaqueValueExpr(E
->getExprLoc(), CanonType
,
5840 VK_LValue
, OK_Ordinary
, E
);
5841 OE
->setIsUnique(/*V=*/true);
5842 Expr
*BaseExpr
= OE
;
5843 for (const auto &P
: ParentChain
) {
5845 BaseExpr
= S
.BuildMemberExpr(
5846 BaseExpr
, /*IsArrow=*/false, E
->getExprLoc(),
5847 NestedNameSpecifierLoc(), SourceLocation(), P
.first
,
5848 DeclAccessPair::make(P
.first
, P
.first
->getAccess()),
5849 /*HadMultipleCandidates=*/false, DeclarationNameInfo(),
5850 P
.first
->getType(), VK_LValue
, OK_Ordinary
);
5851 BaseExpr
= S
.DefaultLvalueConversion(BaseExpr
).get();
5855 BaseExpr
= S
.BuildMemberExpr(
5856 BaseExpr
, /*IsArrow=*/false, E
->getExprLoc(),
5857 NestedNameSpecifierLoc(), SourceLocation(), CurFD
,
5858 DeclAccessPair::make(CurFD
, CurFD
->getAccess()),
5859 /*HadMultipleCandidates=*/false, DeclarationNameInfo(),
5860 CurFD
->getType(), VK_LValue
, OK_Ordinary
);
5861 SubExprs
.push_back(BaseExpr
);
5864 // Check for the "default" mapper for data members.
5865 bool FirstIter
= true;
5866 for (FieldDecl
*FD
: RD
->fields()) {
5869 QualType FieldTy
= FD
->getType();
5870 if (FieldTy
.isNull() ||
5871 !(FieldTy
->isStructureOrClassType() || FieldTy
->isUnionType()))
5875 ParentChain
.emplace_back(CurFD
, 1);
5877 ++ParentChain
.back().second
;
5879 Types
.emplace_back(FieldTy
, FD
);
5883 if (SubExprs
.empty())
5885 CXXScopeSpec MapperIdScopeSpec
;
5886 DeclarationNameInfo MapperId
;
5887 if (OMPClause
*NewClause
= S
.OpenMP().ActOnOpenMPMapClause(
5888 nullptr, C
->getMapTypeModifiers(), C
->getMapTypeModifiersLoc(),
5889 MapperIdScopeSpec
, MapperId
, C
->getMapType(),
5890 /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
5891 SubExprs
, OMPVarListLocTy()))
5892 Clauses
.push_back(NewClause
);
5897 /// A 'teams loop' with a nested 'loop bind(parallel)' or generic function
5898 /// call in the associated loop-nest cannot be a 'parallel for'.
5899 class TeamsLoopChecker final
: public ConstStmtVisitor
<TeamsLoopChecker
> {
5903 bool teamsLoopCanBeParallelFor() const { return TeamsLoopCanBeParallelFor
; }
5905 // Is there a nested OpenMP loop bind(parallel)
5906 void VisitOMPExecutableDirective(const OMPExecutableDirective
*D
) {
5907 if (D
->getDirectiveKind() == llvm::omp::Directive::OMPD_loop
) {
5908 if (const auto *C
= D
->getSingleClause
<OMPBindClause
>())
5909 if (C
->getBindKind() == OMPC_BIND_parallel
) {
5910 TeamsLoopCanBeParallelFor
= false;
5911 // No need to continue visiting any more
5915 for (const Stmt
*Child
: D
->children())
5920 void VisitCallExpr(const CallExpr
*C
) {
5921 // Function calls inhibit parallel loop translation of 'target teams loop'
5922 // unless the assume-no-nested-parallelism flag has been specified.
5923 // OpenMP API runtime library calls do not inhibit parallel loop
5924 // translation, regardless of the assume-no-nested-parallelism.
5925 bool IsOpenMPAPI
= false;
5926 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(C
->getCalleeDecl());
5928 std::string Name
= FD
->getNameInfo().getAsString();
5929 IsOpenMPAPI
= Name
.find("omp_") == 0;
5931 TeamsLoopCanBeParallelFor
=
5932 IsOpenMPAPI
|| SemaRef
.getLangOpts().OpenMPNoNestedParallelism
;
5933 if (!TeamsLoopCanBeParallelFor
)
5936 for (const Stmt
*Child
: C
->children())
5941 void VisitCapturedStmt(const CapturedStmt
*S
) {
5944 Visit(S
->getCapturedDecl()->getBody());
5947 void VisitStmt(const Stmt
*S
) {
5950 for (const Stmt
*Child
: S
->children())
5954 explicit TeamsLoopChecker(Sema
&SemaRef
)
5955 : SemaRef(SemaRef
), TeamsLoopCanBeParallelFor(true) {}
5958 bool TeamsLoopCanBeParallelFor
;
5962 static bool teamsLoopCanBeParallelFor(Stmt
*AStmt
, Sema
&SemaRef
) {
5963 TeamsLoopChecker
Checker(SemaRef
);
5964 Checker
.Visit(AStmt
);
5965 return Checker
.teamsLoopCanBeParallelFor();
5968 StmtResult
SemaOpenMP::ActOnOpenMPExecutableDirective(
5969 OpenMPDirectiveKind Kind
, const DeclarationNameInfo
&DirName
,
5970 OpenMPDirectiveKind CancelRegion
, ArrayRef
<OMPClause
*> Clauses
,
5971 Stmt
*AStmt
, SourceLocation StartLoc
, SourceLocation EndLoc
) {
5972 assert(isOpenMPExecutableDirective(Kind
) && "Unexpected directive category");
5974 StmtResult Res
= StmtError();
5975 OpenMPBindClauseKind BindKind
= OMPC_BIND_unknown
;
5976 llvm::SmallVector
<OMPClause
*, 8> ClausesWithImplicit
;
5978 if (const OMPBindClause
*BC
=
5979 OMPExecutableDirective::getSingleClause
<OMPBindClause
>(Clauses
))
5980 BindKind
= BC
->getBindKind();
5982 if (Kind
== OMPD_loop
&& BindKind
== OMPC_BIND_unknown
) {
5983 const OpenMPDirectiveKind ParentDirective
= DSAStack
->getParentDirective();
5985 // Setting the enclosing teams or parallel construct for the loop
5986 // directive without bind clause.
5987 // [5.0:129:25-28] If the bind clause is not present on the construct and
5988 // the loop construct is closely nested inside a teams or parallel
5989 // construct, the binding region is the corresponding teams or parallel
5990 // region. If none of those conditions hold, the binding region is not
5992 BindKind
= OMPC_BIND_thread
; // Default bind(thread) if binding is unknown
5993 ArrayRef
<OpenMPDirectiveKind
> ParentLeafs
=
5994 getLeafConstructsOrSelf(ParentDirective
);
5996 if (ParentDirective
== OMPD_unknown
) {
5997 Diag(DSAStack
->getDefaultDSALocation(),
5998 diag::err_omp_bind_required_on_loop
);
5999 } else if (ParentLeafs
.back() == OMPD_parallel
) {
6000 BindKind
= OMPC_BIND_parallel
;
6001 } else if (ParentLeafs
.back() == OMPD_teams
) {
6002 BindKind
= OMPC_BIND_teams
;
6005 assert(BindKind
!= OMPC_BIND_unknown
&& "Expecting BindKind");
6008 ActOnOpenMPBindClause(BindKind
, SourceLocation(), SourceLocation(),
6009 SourceLocation(), SourceLocation());
6010 ClausesWithImplicit
.push_back(C
);
6013 // Diagnose "loop bind(teams)" with "reduction".
6014 if (Kind
== OMPD_loop
&& BindKind
== OMPC_BIND_teams
) {
6015 for (OMPClause
*C
: Clauses
) {
6016 if (C
->getClauseKind() == OMPC_reduction
)
6017 Diag(DSAStack
->getDefaultDSALocation(),
6018 diag::err_omp_loop_reduction_clause
);
6022 // First check CancelRegion which is then used in checkNestingOfRegions.
6023 if (checkCancelRegion(SemaRef
, Kind
, CancelRegion
, StartLoc
) ||
6024 checkNestingOfRegions(SemaRef
, DSAStack
, Kind
, DirName
, CancelRegion
,
6025 BindKind
, StartLoc
)) {
6029 // Report affected OpenMP target offloading behavior when in HIP lang-mode.
6030 if (getLangOpts().HIP
&& (isOpenMPTargetExecutionDirective(Kind
) ||
6031 isOpenMPTargetDataManagementDirective(Kind
)))
6032 Diag(StartLoc
, diag::warn_hip_omp_target_directives
);
6034 VarsWithInheritedDSAType VarsWithInheritedDSA
;
6035 bool ErrorFound
= false;
6036 ClausesWithImplicit
.append(Clauses
.begin(), Clauses
.end());
6038 if (AStmt
&& !SemaRef
.CurContext
->isDependentContext() &&
6039 isOpenMPCapturingDirective(Kind
)) {
6040 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
6042 // Check default data sharing attributes for referenced variables.
6043 DSAAttrChecker
DSAChecker(DSAStack
, SemaRef
, cast
<CapturedStmt
>(AStmt
));
6044 int ThisCaptureLevel
= getOpenMPCaptureLevels(Kind
);
6046 while (--ThisCaptureLevel
>= 0)
6047 S
= cast
<CapturedStmt
>(S
)->getCapturedStmt();
6048 DSAChecker
.Visit(S
);
6049 if (!isOpenMPTargetDataManagementDirective(Kind
) &&
6050 !isOpenMPTaskingDirective(Kind
)) {
6051 // Visit subcaptures to generate implicit clauses for captured vars.
6052 auto *CS
= cast
<CapturedStmt
>(AStmt
);
6053 SmallVector
<OpenMPDirectiveKind
, 4> CaptureRegions
;
6054 getOpenMPCaptureRegions(CaptureRegions
, Kind
);
6055 // Ignore outer tasking regions for target directives.
6056 if (CaptureRegions
.size() > 1 && CaptureRegions
.front() == OMPD_task
)
6057 CS
= cast
<CapturedStmt
>(CS
->getCapturedStmt());
6058 DSAChecker
.visitSubCaptures(CS
);
6060 if (DSAChecker
.isErrorFound())
6062 // Generate list of implicitly defined firstprivate variables.
6063 VarsWithInheritedDSA
= DSAChecker
.getVarsWithInheritedDSA();
6064 VariableImplicitInfo ImpInfo
= DSAChecker
.getImplicitInfo();
6066 SmallVector
<SourceLocation
, NumberOfOMPMapClauseModifiers
>
6067 ImplicitMapModifiersLoc
[VariableImplicitInfo::DefaultmapKindNum
];
6068 // Get the original location of present modifier from Defaultmap clause.
6069 SourceLocation PresentModifierLocs
[VariableImplicitInfo::DefaultmapKindNum
];
6070 for (OMPClause
*C
: Clauses
) {
6071 if (auto *DMC
= dyn_cast
<OMPDefaultmapClause
>(C
))
6072 if (DMC
->getDefaultmapModifier() == OMPC_DEFAULTMAP_MODIFIER_present
)
6073 PresentModifierLocs
[DMC
->getDefaultmapKind()] =
6074 DMC
->getDefaultmapModifierLoc();
6077 for (OpenMPDefaultmapClauseKind K
:
6078 llvm::enum_seq_inclusive
<OpenMPDefaultmapClauseKind
>(
6079 OpenMPDefaultmapClauseKind(), OMPC_DEFAULTMAP_unknown
)) {
6080 std::fill_n(std::back_inserter(ImplicitMapModifiersLoc
[K
]),
6081 ImpInfo
.MapModifiers
[K
].size(), PresentModifierLocs
[K
]);
6083 // Mark taskgroup task_reduction descriptors as implicitly firstprivate.
6084 for (OMPClause
*C
: Clauses
) {
6085 if (auto *IRC
= dyn_cast
<OMPInReductionClause
>(C
)) {
6086 for (Expr
*E
: IRC
->taskgroup_descriptors())
6088 ImpInfo
.Firstprivates
.insert(E
);
6090 // OpenMP 5.0, 2.10.1 task Construct
6091 // [detach clause]... The event-handle will be considered as if it was
6092 // specified on a firstprivate clause.
6093 if (auto *DC
= dyn_cast
<OMPDetachClause
>(C
))
6094 ImpInfo
.Firstprivates
.insert(DC
->getEventHandler());
6096 if (!ImpInfo
.Firstprivates
.empty()) {
6097 if (OMPClause
*Implicit
= ActOnOpenMPFirstprivateClause(
6098 ImpInfo
.Firstprivates
.getArrayRef(), SourceLocation(),
6099 SourceLocation(), SourceLocation())) {
6100 ClausesWithImplicit
.push_back(Implicit
);
6101 ErrorFound
= cast
<OMPFirstprivateClause
>(Implicit
)->varlist_size() !=
6102 ImpInfo
.Firstprivates
.size();
6107 if (!ImpInfo
.Privates
.empty()) {
6108 if (OMPClause
*Implicit
= ActOnOpenMPPrivateClause(
6109 ImpInfo
.Privates
.getArrayRef(), SourceLocation(),
6110 SourceLocation(), SourceLocation())) {
6111 ClausesWithImplicit
.push_back(Implicit
);
6112 ErrorFound
= cast
<OMPPrivateClause
>(Implicit
)->varlist_size() !=
6113 ImpInfo
.Privates
.size();
6118 // OpenMP 5.0 [2.19.7]
6119 // If a list item appears in a reduction, lastprivate or linear
6120 // clause on a combined target construct then it is treated as
6121 // if it also appears in a map clause with a map-type of tofrom
6122 if (getLangOpts().OpenMP
>= 50 && Kind
!= OMPD_target
&&
6123 isOpenMPTargetExecutionDirective(Kind
)) {
6124 SmallVector
<Expr
*, 4> ImplicitExprs
;
6125 for (OMPClause
*C
: Clauses
) {
6126 if (auto *RC
= dyn_cast
<OMPReductionClause
>(C
))
6127 for (Expr
*E
: RC
->varlist())
6128 if (!isa
<DeclRefExpr
>(E
->IgnoreParenImpCasts()))
6129 ImplicitExprs
.emplace_back(E
);
6131 if (!ImplicitExprs
.empty()) {
6132 ArrayRef
<Expr
*> Exprs
= ImplicitExprs
;
6133 CXXScopeSpec MapperIdScopeSpec
;
6134 DeclarationNameInfo MapperId
;
6135 if (OMPClause
*Implicit
= ActOnOpenMPMapClause(
6136 nullptr, OMPC_MAP_MODIFIER_unknown
, SourceLocation(),
6137 MapperIdScopeSpec
, MapperId
, OMPC_MAP_tofrom
,
6138 /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(),
6139 Exprs
, OMPVarListLocTy(), /*NoDiagnose=*/true))
6140 ClausesWithImplicit
.emplace_back(Implicit
);
6143 for (unsigned I
= 0; I
< VariableImplicitInfo::DefaultmapKindNum
; ++I
) {
6144 int ClauseKindCnt
= -1;
6145 for (unsigned J
= 0; J
< VariableImplicitInfo::MapKindNum
; ++J
) {
6146 ArrayRef
<Expr
*> ImplicitMap
= ImpInfo
.Mappings
[I
][J
].getArrayRef();
6148 if (ImplicitMap
.empty())
6150 CXXScopeSpec MapperIdScopeSpec
;
6151 DeclarationNameInfo MapperId
;
6152 auto K
= static_cast<OpenMPMapClauseKind
>(ClauseKindCnt
);
6153 if (OMPClause
*Implicit
= ActOnOpenMPMapClause(
6154 nullptr, ImpInfo
.MapModifiers
[I
], ImplicitMapModifiersLoc
[I
],
6155 MapperIdScopeSpec
, MapperId
, K
, /*IsMapTypeImplicit=*/true,
6156 SourceLocation(), SourceLocation(), ImplicitMap
,
6157 OMPVarListLocTy())) {
6158 ClausesWithImplicit
.emplace_back(Implicit
);
6159 ErrorFound
|= cast
<OMPMapClause
>(Implicit
)->varlist_size() !=
6166 // Build expressions for implicit maps of data members with 'default'
6168 if (getLangOpts().OpenMP
>= 50)
6169 processImplicitMapsWithDefaultMappers(SemaRef
, DSAStack
,
6170 ClausesWithImplicit
);
6175 Res
= ActOnOpenMPParallelDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6179 Res
= ActOnOpenMPSimdDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
,
6180 VarsWithInheritedDSA
);
6184 ActOnOpenMPTileDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
);
6187 Res
= ActOnOpenMPUnrollDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6191 assert(ClausesWithImplicit
.empty() &&
6192 "reverse directive does not support any clauses");
6193 Res
= ActOnOpenMPReverseDirective(AStmt
, StartLoc
, EndLoc
);
6195 case OMPD_interchange
:
6196 Res
= ActOnOpenMPInterchangeDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6200 Res
= ActOnOpenMPForDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
,
6201 VarsWithInheritedDSA
);
6204 Res
= ActOnOpenMPForSimdDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6205 EndLoc
, VarsWithInheritedDSA
);
6208 Res
= ActOnOpenMPSectionsDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6212 assert(ClausesWithImplicit
.empty() &&
6213 "No clauses are allowed for 'omp section' directive");
6214 Res
= ActOnOpenMPSectionDirective(AStmt
, StartLoc
, EndLoc
);
6217 Res
= ActOnOpenMPSingleDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6221 assert(ClausesWithImplicit
.empty() &&
6222 "No clauses are allowed for 'omp master' directive");
6223 Res
= ActOnOpenMPMasterDirective(AStmt
, StartLoc
, EndLoc
);
6226 Res
= ActOnOpenMPMaskedDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6230 Res
= ActOnOpenMPCriticalDirective(DirName
, ClausesWithImplicit
, AStmt
,
6233 case OMPD_parallel_for
:
6234 Res
= ActOnOpenMPParallelForDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6235 EndLoc
, VarsWithInheritedDSA
);
6237 case OMPD_parallel_for_simd
:
6238 Res
= ActOnOpenMPParallelForSimdDirective(
6239 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6243 ActOnOpenMPScopeDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
);
6245 case OMPD_parallel_master
:
6246 Res
= ActOnOpenMPParallelMasterDirective(ClausesWithImplicit
, AStmt
,
6249 case OMPD_parallel_masked
:
6250 Res
= ActOnOpenMPParallelMaskedDirective(ClausesWithImplicit
, AStmt
,
6253 case OMPD_parallel_sections
:
6254 Res
= ActOnOpenMPParallelSectionsDirective(ClausesWithImplicit
, AStmt
,
6259 ActOnOpenMPTaskDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
);
6261 case OMPD_taskyield
:
6262 assert(ClausesWithImplicit
.empty() &&
6263 "No clauses are allowed for 'omp taskyield' directive");
6264 assert(AStmt
== nullptr &&
6265 "No associated statement allowed for 'omp taskyield' directive");
6266 Res
= ActOnOpenMPTaskyieldDirective(StartLoc
, EndLoc
);
6269 assert(AStmt
== nullptr &&
6270 "No associated statement allowed for 'omp error' directive");
6271 Res
= ActOnOpenMPErrorDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6274 assert(ClausesWithImplicit
.empty() &&
6275 "No clauses are allowed for 'omp barrier' directive");
6276 assert(AStmt
== nullptr &&
6277 "No associated statement allowed for 'omp barrier' directive");
6278 Res
= ActOnOpenMPBarrierDirective(StartLoc
, EndLoc
);
6281 assert(AStmt
== nullptr &&
6282 "No associated statement allowed for 'omp taskwait' directive");
6283 Res
= ActOnOpenMPTaskwaitDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6285 case OMPD_taskgroup
:
6286 Res
= ActOnOpenMPTaskgroupDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6290 assert(AStmt
== nullptr &&
6291 "No associated statement allowed for 'omp flush' directive");
6292 Res
= ActOnOpenMPFlushDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6295 assert(AStmt
== nullptr &&
6296 "No associated statement allowed for 'omp depobj' directive");
6297 Res
= ActOnOpenMPDepobjDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6300 assert(AStmt
== nullptr &&
6301 "No associated statement allowed for 'omp scan' directive");
6302 Res
= ActOnOpenMPScanDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6305 Res
= ActOnOpenMPOrderedDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6309 Res
= ActOnOpenMPAtomicDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6314 ActOnOpenMPTeamsDirective(ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
);
6317 Res
= ActOnOpenMPTargetDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6320 case OMPD_target_parallel
:
6321 Res
= ActOnOpenMPTargetParallelDirective(ClausesWithImplicit
, AStmt
,
6324 case OMPD_target_parallel_for
:
6325 Res
= ActOnOpenMPTargetParallelForDirective(
6326 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6328 case OMPD_cancellation_point
:
6329 assert(ClausesWithImplicit
.empty() &&
6330 "No clauses are allowed for 'omp cancellation point' directive");
6331 assert(AStmt
== nullptr && "No associated statement allowed for 'omp "
6332 "cancellation point' directive");
6333 Res
= ActOnOpenMPCancellationPointDirective(StartLoc
, EndLoc
, CancelRegion
);
6336 assert(AStmt
== nullptr &&
6337 "No associated statement allowed for 'omp cancel' directive");
6338 Res
= ActOnOpenMPCancelDirective(ClausesWithImplicit
, StartLoc
, EndLoc
,
6341 case OMPD_target_data
:
6342 Res
= ActOnOpenMPTargetDataDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6345 case OMPD_target_enter_data
:
6346 Res
= ActOnOpenMPTargetEnterDataDirective(ClausesWithImplicit
, StartLoc
,
6349 case OMPD_target_exit_data
:
6350 Res
= ActOnOpenMPTargetExitDataDirective(ClausesWithImplicit
, StartLoc
,
6354 Res
= ActOnOpenMPTaskLoopDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6355 EndLoc
, VarsWithInheritedDSA
);
6357 case OMPD_taskloop_simd
:
6358 Res
= ActOnOpenMPTaskLoopSimdDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6359 EndLoc
, VarsWithInheritedDSA
);
6361 case OMPD_master_taskloop
:
6362 Res
= ActOnOpenMPMasterTaskLoopDirective(
6363 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6365 case OMPD_masked_taskloop
:
6366 Res
= ActOnOpenMPMaskedTaskLoopDirective(
6367 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6369 case OMPD_master_taskloop_simd
:
6370 Res
= ActOnOpenMPMasterTaskLoopSimdDirective(
6371 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6373 case OMPD_masked_taskloop_simd
:
6374 Res
= ActOnOpenMPMaskedTaskLoopSimdDirective(
6375 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6377 case OMPD_parallel_master_taskloop
:
6378 Res
= ActOnOpenMPParallelMasterTaskLoopDirective(
6379 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6381 case OMPD_parallel_masked_taskloop
:
6382 Res
= ActOnOpenMPParallelMaskedTaskLoopDirective(
6383 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6385 case OMPD_parallel_master_taskloop_simd
:
6386 Res
= ActOnOpenMPParallelMasterTaskLoopSimdDirective(
6387 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6389 case OMPD_parallel_masked_taskloop_simd
:
6390 Res
= ActOnOpenMPParallelMaskedTaskLoopSimdDirective(
6391 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6393 case OMPD_distribute
:
6394 Res
= ActOnOpenMPDistributeDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6395 EndLoc
, VarsWithInheritedDSA
);
6397 case OMPD_target_update
:
6398 Res
= ActOnOpenMPTargetUpdateDirective(ClausesWithImplicit
, StartLoc
,
6401 case OMPD_distribute_parallel_for
:
6402 Res
= ActOnOpenMPDistributeParallelForDirective(
6403 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6405 case OMPD_distribute_parallel_for_simd
:
6406 Res
= ActOnOpenMPDistributeParallelForSimdDirective(
6407 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6409 case OMPD_distribute_simd
:
6410 Res
= ActOnOpenMPDistributeSimdDirective(
6411 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6413 case OMPD_target_parallel_for_simd
:
6414 Res
= ActOnOpenMPTargetParallelForSimdDirective(
6415 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6417 case OMPD_target_simd
:
6418 Res
= ActOnOpenMPTargetSimdDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6419 EndLoc
, VarsWithInheritedDSA
);
6421 case OMPD_teams_distribute
:
6422 Res
= ActOnOpenMPTeamsDistributeDirective(
6423 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6425 case OMPD_teams_distribute_simd
:
6426 Res
= ActOnOpenMPTeamsDistributeSimdDirective(
6427 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6429 case OMPD_teams_distribute_parallel_for_simd
:
6430 Res
= ActOnOpenMPTeamsDistributeParallelForSimdDirective(
6431 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6433 case OMPD_teams_distribute_parallel_for
:
6434 Res
= ActOnOpenMPTeamsDistributeParallelForDirective(
6435 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6437 case OMPD_target_teams
:
6438 Res
= ActOnOpenMPTargetTeamsDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6441 case OMPD_target_teams_distribute
:
6442 Res
= ActOnOpenMPTargetTeamsDistributeDirective(
6443 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6445 case OMPD_target_teams_distribute_parallel_for
:
6446 Res
= ActOnOpenMPTargetTeamsDistributeParallelForDirective(
6447 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6449 case OMPD_target_teams_distribute_parallel_for_simd
:
6450 Res
= ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
6451 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6453 case OMPD_target_teams_distribute_simd
:
6454 Res
= ActOnOpenMPTargetTeamsDistributeSimdDirective(
6455 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6458 assert(AStmt
== nullptr &&
6459 "No associated statement allowed for 'omp interop' directive");
6460 Res
= ActOnOpenMPInteropDirective(ClausesWithImplicit
, StartLoc
, EndLoc
);
6463 Res
= ActOnOpenMPDispatchDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6467 Res
= ActOnOpenMPGenericLoopDirective(ClausesWithImplicit
, AStmt
, StartLoc
,
6468 EndLoc
, VarsWithInheritedDSA
);
6470 case OMPD_teams_loop
:
6471 Res
= ActOnOpenMPTeamsGenericLoopDirective(
6472 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6474 case OMPD_target_teams_loop
:
6475 Res
= ActOnOpenMPTargetTeamsGenericLoopDirective(
6476 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6478 case OMPD_parallel_loop
:
6479 Res
= ActOnOpenMPParallelGenericLoopDirective(
6480 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6482 case OMPD_target_parallel_loop
:
6483 Res
= ActOnOpenMPTargetParallelGenericLoopDirective(
6484 ClausesWithImplicit
, AStmt
, StartLoc
, EndLoc
, VarsWithInheritedDSA
);
6486 case OMPD_declare_target
:
6487 case OMPD_end_declare_target
:
6488 case OMPD_threadprivate
:
6490 case OMPD_declare_reduction
:
6491 case OMPD_declare_mapper
:
6492 case OMPD_declare_simd
:
6494 case OMPD_declare_variant
:
6495 case OMPD_begin_declare_variant
:
6496 case OMPD_end_declare_variant
:
6497 llvm_unreachable("OpenMP Directive is not allowed");
6500 llvm_unreachable("Unknown OpenMP directive");
6503 ErrorFound
= Res
.isInvalid() || ErrorFound
;
6505 // Check variables in the clauses if default(none) or
6506 // default(firstprivate) was specified.
6507 if (DSAStack
->getDefaultDSA() == DSA_none
||
6508 DSAStack
->getDefaultDSA() == DSA_private
||
6509 DSAStack
->getDefaultDSA() == DSA_firstprivate
) {
6510 DSAAttrChecker
DSAChecker(DSAStack
, SemaRef
, nullptr);
6511 for (OMPClause
*C
: Clauses
) {
6512 switch (C
->getClauseKind()) {
6513 case OMPC_num_threads
:
6514 case OMPC_dist_schedule
:
6515 // Do not analyze if no parent teams directive.
6516 if (isOpenMPTeamsDirective(Kind
))
6520 if (isOpenMPTeamsDirective(Kind
) &&
6521 cast
<OMPIfClause
>(C
)->getNameModifier() != OMPD_target
)
6523 if (isOpenMPParallelDirective(Kind
) &&
6524 isOpenMPTaskLoopDirective(Kind
) &&
6525 cast
<OMPIfClause
>(C
)->getNameModifier() != OMPD_parallel
)
6531 case OMPC_grainsize
:
6532 case OMPC_num_tasks
:
6535 case OMPC_novariants
:
6536 case OMPC_nocontext
:
6537 // Do not analyze if no parent parallel directive.
6538 if (isOpenMPParallelDirective(Kind
))
6543 case OMPC_num_teams
:
6544 case OMPC_thread_limit
:
6551 case OMPC_proc_bind
:
6553 case OMPC_firstprivate
:
6554 case OMPC_lastprivate
:
6556 case OMPC_reduction
:
6557 case OMPC_task_reduction
:
6558 case OMPC_in_reduction
:
6562 case OMPC_copyprivate
:
6565 case OMPC_mergeable
:
6582 case OMPC_defaultmap
:
6585 case OMPC_use_device_ptr
:
6586 case OMPC_use_device_addr
:
6587 case OMPC_is_device_ptr
:
6588 case OMPC_has_device_addr
:
6589 case OMPC_nontemporal
:
6592 case OMPC_inclusive
:
6593 case OMPC_exclusive
:
6594 case OMPC_uses_allocators
:
6599 case OMPC_allocator
:
6602 case OMPC_threadprivate
:
6605 case OMPC_unified_address
:
6606 case OMPC_unified_shared_memory
:
6607 case OMPC_reverse_offload
:
6608 case OMPC_dynamic_allocators
:
6609 case OMPC_atomic_default_mem_order
:
6610 case OMPC_device_type
:
6617 llvm_unreachable("Unexpected clause");
6619 for (Stmt
*CC
: C
->children()) {
6621 DSAChecker
.Visit(CC
);
6624 for (const auto &P
: DSAChecker
.getVarsWithInheritedDSA())
6625 VarsWithInheritedDSA
[P
.getFirst()] = P
.getSecond();
6627 for (const auto &P
: VarsWithInheritedDSA
) {
6628 if (P
.getFirst()->isImplicit() || isa
<OMPCapturedExprDecl
>(P
.getFirst()))
6631 if (DSAStack
->getDefaultDSA() == DSA_none
||
6632 DSAStack
->getDefaultDSA() == DSA_private
||
6633 DSAStack
->getDefaultDSA() == DSA_firstprivate
) {
6634 Diag(P
.second
->getExprLoc(), diag::err_omp_no_dsa_for_variable
)
6635 << P
.first
<< P
.second
->getSourceRange();
6636 Diag(DSAStack
->getDefaultDSALocation(), diag::note_omp_default_dsa_none
);
6637 } else if (getLangOpts().OpenMP
>= 50) {
6638 Diag(P
.second
->getExprLoc(),
6639 diag::err_omp_defaultmap_no_attr_for_variable
)
6640 << P
.first
<< P
.second
->getSourceRange();
6641 Diag(DSAStack
->getDefaultDSALocation(),
6642 diag::note_omp_defaultmap_attr_none
);
6646 llvm::SmallVector
<OpenMPDirectiveKind
, 4> AllowedNameModifiers
;
6647 for (OpenMPDirectiveKind D
: getLeafConstructsOrSelf(Kind
)) {
6648 if (isAllowedClauseForDirective(D
, OMPC_if
, getLangOpts().OpenMP
))
6649 AllowedNameModifiers
.push_back(D
);
6651 if (!AllowedNameModifiers
.empty())
6652 ErrorFound
= checkIfClauses(SemaRef
, Kind
, Clauses
, AllowedNameModifiers
) ||
6658 if (!SemaRef
.CurContext
->isDependentContext() &&
6659 isOpenMPTargetExecutionDirective(Kind
) &&
6660 !(DSAStack
->hasRequiresDeclWithClause
<OMPUnifiedSharedMemoryClause
>() ||
6661 DSAStack
->hasRequiresDeclWithClause
<OMPUnifiedAddressClause
>() ||
6662 DSAStack
->hasRequiresDeclWithClause
<OMPReverseOffloadClause
>() ||
6663 DSAStack
->hasRequiresDeclWithClause
<OMPDynamicAllocatorsClause
>())) {
6664 // Register target to DSA Stack.
6665 DSAStack
->addTargetDirLocation(StartLoc
);
6671 SemaOpenMP::DeclGroupPtrTy
SemaOpenMP::ActOnOpenMPDeclareSimdDirective(
6672 DeclGroupPtrTy DG
, OMPDeclareSimdDeclAttr::BranchStateTy BS
, Expr
*Simdlen
,
6673 ArrayRef
<Expr
*> Uniforms
, ArrayRef
<Expr
*> Aligneds
,
6674 ArrayRef
<Expr
*> Alignments
, ArrayRef
<Expr
*> Linears
,
6675 ArrayRef
<unsigned> LinModifiers
, ArrayRef
<Expr
*> Steps
, SourceRange SR
) {
6676 assert(Aligneds
.size() == Alignments
.size());
6677 assert(Linears
.size() == LinModifiers
.size());
6678 assert(Linears
.size() == Steps
.size());
6679 if (!DG
|| DG
.get().isNull())
6680 return DeclGroupPtrTy();
6682 const int SimdId
= 0;
6683 if (!DG
.get().isSingleDecl()) {
6684 Diag(SR
.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant
)
6688 Decl
*ADecl
= DG
.get().getSingleDecl();
6689 if (auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(ADecl
))
6690 ADecl
= FTD
->getTemplatedDecl();
6692 auto *FD
= dyn_cast
<FunctionDecl
>(ADecl
);
6694 Diag(ADecl
->getLocation(), diag::err_omp_function_expected
) << SimdId
;
6695 return DeclGroupPtrTy();
6698 // OpenMP [2.8.2, declare simd construct, Description]
6699 // The parameter of the simdlen clause must be a constant positive integer
6703 SL
= VerifyPositiveIntegerConstantInClause(Simdlen
, OMPC_simdlen
);
6704 // OpenMP [2.8.2, declare simd construct, Description]
6705 // The special this pointer can be used as if was one of the arguments to the
6706 // function in any of the linear, aligned, or uniform clauses.
6707 // The uniform clause declares one or more arguments to have an invariant
6708 // value for all concurrent invocations of the function in the execution of a
6709 // single SIMD loop.
6710 llvm::DenseMap
<const Decl
*, const Expr
*> UniformedArgs
;
6711 const Expr
*UniformedLinearThis
= nullptr;
6712 for (const Expr
*E
: Uniforms
) {
6713 E
= E
->IgnoreParenImpCasts();
6714 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
6715 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl()))
6716 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex() &&
6717 FD
->getParamDecl(PVD
->getFunctionScopeIndex())
6718 ->getCanonicalDecl() == PVD
->getCanonicalDecl()) {
6719 UniformedArgs
.try_emplace(PVD
->getCanonicalDecl(), E
);
6722 if (isa
<CXXThisExpr
>(E
)) {
6723 UniformedLinearThis
= E
;
6726 Diag(E
->getExprLoc(), diag::err_omp_param_or_this_in_clause
)
6727 << FD
->getDeclName() << (isa
<CXXMethodDecl
>(ADecl
) ? 1 : 0);
6729 // OpenMP [2.8.2, declare simd construct, Description]
6730 // The aligned clause declares that the object to which each list item points
6731 // is aligned to the number of bytes expressed in the optional parameter of
6732 // the aligned clause.
6733 // The special this pointer can be used as if was one of the arguments to the
6734 // function in any of the linear, aligned, or uniform clauses.
6735 // The type of list items appearing in the aligned clause must be array,
6736 // pointer, reference to array, or reference to pointer.
6737 llvm::DenseMap
<const Decl
*, const Expr
*> AlignedArgs
;
6738 const Expr
*AlignedThis
= nullptr;
6739 for (const Expr
*E
: Aligneds
) {
6740 E
= E
->IgnoreParenImpCasts();
6741 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
6742 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
6743 const VarDecl
*CanonPVD
= PVD
->getCanonicalDecl();
6744 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex() &&
6745 FD
->getParamDecl(PVD
->getFunctionScopeIndex())
6746 ->getCanonicalDecl() == CanonPVD
) {
6747 // OpenMP [2.8.1, simd construct, Restrictions]
6748 // A list-item cannot appear in more than one aligned clause.
6749 if (AlignedArgs
.count(CanonPVD
) > 0) {
6750 Diag(E
->getExprLoc(), diag::err_omp_used_in_clause_twice
)
6751 << 1 << getOpenMPClauseName(OMPC_aligned
)
6752 << E
->getSourceRange();
6753 Diag(AlignedArgs
[CanonPVD
]->getExprLoc(),
6754 diag::note_omp_explicit_dsa
)
6755 << getOpenMPClauseName(OMPC_aligned
);
6758 AlignedArgs
[CanonPVD
] = E
;
6759 QualType QTy
= PVD
->getType()
6760 .getNonReferenceType()
6761 .getUnqualifiedType()
6762 .getCanonicalType();
6763 const Type
*Ty
= QTy
.getTypePtrOrNull();
6764 if (!Ty
|| (!Ty
->isArrayType() && !Ty
->isPointerType())) {
6765 Diag(E
->getExprLoc(), diag::err_omp_aligned_expected_array_or_ptr
)
6766 << QTy
<< getLangOpts().CPlusPlus
<< E
->getSourceRange();
6767 Diag(PVD
->getLocation(), diag::note_previous_decl
) << PVD
;
6772 if (isa
<CXXThisExpr
>(E
)) {
6774 Diag(E
->getExprLoc(), diag::err_omp_used_in_clause_twice
)
6775 << 2 << getOpenMPClauseName(OMPC_aligned
) << E
->getSourceRange();
6776 Diag(AlignedThis
->getExprLoc(), diag::note_omp_explicit_dsa
)
6777 << getOpenMPClauseName(OMPC_aligned
);
6782 Diag(E
->getExprLoc(), diag::err_omp_param_or_this_in_clause
)
6783 << FD
->getDeclName() << (isa
<CXXMethodDecl
>(ADecl
) ? 1 : 0);
6785 // The optional parameter of the aligned clause, alignment, must be a constant
6786 // positive integer expression. If no optional parameter is specified,
6787 // implementation-defined default alignments for SIMD instructions on the
6788 // target platforms are assumed.
6789 SmallVector
<const Expr
*, 4> NewAligns
;
6790 for (Expr
*E
: Alignments
) {
6793 Align
= VerifyPositiveIntegerConstantInClause(E
, OMPC_aligned
);
6794 NewAligns
.push_back(Align
.get());
6796 // OpenMP [2.8.2, declare simd construct, Description]
6797 // The linear clause declares one or more list items to be private to a SIMD
6798 // lane and to have a linear relationship with respect to the iteration space
6800 // The special this pointer can be used as if was one of the arguments to the
6801 // function in any of the linear, aligned, or uniform clauses.
6802 // When a linear-step expression is specified in a linear clause it must be
6803 // either a constant integer expression or an integer-typed parameter that is
6804 // specified in a uniform clause on the directive.
6805 llvm::DenseMap
<const Decl
*, const Expr
*> LinearArgs
;
6806 const bool IsUniformedThis
= UniformedLinearThis
!= nullptr;
6807 auto MI
= LinModifiers
.begin();
6808 for (const Expr
*E
: Linears
) {
6809 auto LinKind
= static_cast<OpenMPLinearClauseKind
>(*MI
);
6811 E
= E
->IgnoreParenImpCasts();
6812 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
))
6813 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
6814 const VarDecl
*CanonPVD
= PVD
->getCanonicalDecl();
6815 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex() &&
6816 FD
->getParamDecl(PVD
->getFunctionScopeIndex())
6817 ->getCanonicalDecl() == CanonPVD
) {
6818 // OpenMP [2.15.3.7, linear Clause, Restrictions]
6819 // A list-item cannot appear in more than one linear clause.
6820 if (LinearArgs
.count(CanonPVD
) > 0) {
6821 Diag(E
->getExprLoc(), diag::err_omp_wrong_dsa
)
6822 << getOpenMPClauseName(OMPC_linear
)
6823 << getOpenMPClauseName(OMPC_linear
) << E
->getSourceRange();
6824 Diag(LinearArgs
[CanonPVD
]->getExprLoc(),
6825 diag::note_omp_explicit_dsa
)
6826 << getOpenMPClauseName(OMPC_linear
);
6829 // Each argument can appear in at most one uniform or linear clause.
6830 if (UniformedArgs
.count(CanonPVD
) > 0) {
6831 Diag(E
->getExprLoc(), diag::err_omp_wrong_dsa
)
6832 << getOpenMPClauseName(OMPC_linear
)
6833 << getOpenMPClauseName(OMPC_uniform
) << E
->getSourceRange();
6834 Diag(UniformedArgs
[CanonPVD
]->getExprLoc(),
6835 diag::note_omp_explicit_dsa
)
6836 << getOpenMPClauseName(OMPC_uniform
);
6839 LinearArgs
[CanonPVD
] = E
;
6840 if (E
->isValueDependent() || E
->isTypeDependent() ||
6841 E
->isInstantiationDependent() ||
6842 E
->containsUnexpandedParameterPack())
6844 (void)CheckOpenMPLinearDecl(CanonPVD
, E
->getExprLoc(), LinKind
,
6845 PVD
->getOriginalType(),
6846 /*IsDeclareSimd=*/true);
6850 if (isa
<CXXThisExpr
>(E
)) {
6851 if (UniformedLinearThis
) {
6852 Diag(E
->getExprLoc(), diag::err_omp_wrong_dsa
)
6853 << getOpenMPClauseName(OMPC_linear
)
6854 << getOpenMPClauseName(IsUniformedThis
? OMPC_uniform
: OMPC_linear
)
6855 << E
->getSourceRange();
6856 Diag(UniformedLinearThis
->getExprLoc(), diag::note_omp_explicit_dsa
)
6857 << getOpenMPClauseName(IsUniformedThis
? OMPC_uniform
6861 UniformedLinearThis
= E
;
6862 if (E
->isValueDependent() || E
->isTypeDependent() ||
6863 E
->isInstantiationDependent() || E
->containsUnexpandedParameterPack())
6865 (void)CheckOpenMPLinearDecl(/*D=*/nullptr, E
->getExprLoc(), LinKind
,
6866 E
->getType(), /*IsDeclareSimd=*/true);
6869 Diag(E
->getExprLoc(), diag::err_omp_param_or_this_in_clause
)
6870 << FD
->getDeclName() << (isa
<CXXMethodDecl
>(ADecl
) ? 1 : 0);
6872 Expr
*Step
= nullptr;
6873 Expr
*NewStep
= nullptr;
6874 SmallVector
<Expr
*, 4> NewSteps
;
6875 for (Expr
*E
: Steps
) {
6876 // Skip the same step expression, it was checked already.
6877 if (Step
== E
|| !E
) {
6878 NewSteps
.push_back(E
? NewStep
: nullptr);
6882 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(Step
))
6883 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
6884 const VarDecl
*CanonPVD
= PVD
->getCanonicalDecl();
6885 if (UniformedArgs
.count(CanonPVD
) == 0) {
6886 Diag(Step
->getExprLoc(), diag::err_omp_expected_uniform_param
)
6887 << Step
->getSourceRange();
6888 } else if (E
->isValueDependent() || E
->isTypeDependent() ||
6889 E
->isInstantiationDependent() ||
6890 E
->containsUnexpandedParameterPack() ||
6891 CanonPVD
->getType()->hasIntegerRepresentation()) {
6892 NewSteps
.push_back(Step
);
6894 Diag(Step
->getExprLoc(), diag::err_omp_expected_int_param
)
6895 << Step
->getSourceRange();
6900 if (Step
&& !Step
->isValueDependent() && !Step
->isTypeDependent() &&
6901 !Step
->isInstantiationDependent() &&
6902 !Step
->containsUnexpandedParameterPack()) {
6903 NewStep
= PerformOpenMPImplicitIntegerConversion(Step
->getExprLoc(), Step
)
6907 .VerifyIntegerConstantExpression(
6908 NewStep
, /*FIXME*/ Sema::AllowFold
)
6911 NewSteps
.push_back(NewStep
);
6913 auto *NewAttr
= OMPDeclareSimdDeclAttr::CreateImplicit(
6914 getASTContext(), BS
, SL
.get(), const_cast<Expr
**>(Uniforms
.data()),
6915 Uniforms
.size(), const_cast<Expr
**>(Aligneds
.data()), Aligneds
.size(),
6916 const_cast<Expr
**>(NewAligns
.data()), NewAligns
.size(),
6917 const_cast<Expr
**>(Linears
.data()), Linears
.size(),
6918 const_cast<unsigned *>(LinModifiers
.data()), LinModifiers
.size(),
6919 NewSteps
.data(), NewSteps
.size(), SR
);
6920 ADecl
->addAttr(NewAttr
);
6924 StmtResult
SemaOpenMP::ActOnOpenMPInformationalDirective(
6925 OpenMPDirectiveKind Kind
, const DeclarationNameInfo
&DirName
,
6926 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
6927 SourceLocation EndLoc
) {
6928 assert(isOpenMPInformationalDirective(Kind
) &&
6929 "Unexpected directive category");
6931 StmtResult Res
= StmtError();
6935 Res
= ActOnOpenMPAssumeDirective(Clauses
, AStmt
, StartLoc
, EndLoc
);
6938 llvm_unreachable("Unknown OpenMP directive");
6944 static void setPrototype(Sema
&S
, FunctionDecl
*FD
, FunctionDecl
*FDWithProto
,
6946 assert(NewType
->isFunctionProtoType() &&
6947 "Expected function type with prototype.");
6948 assert(FD
->getType()->isFunctionNoProtoType() &&
6949 "Expected function with type with no prototype.");
6950 assert(FDWithProto
->getType()->isFunctionProtoType() &&
6951 "Expected function with prototype.");
6952 // Synthesize parameters with the same types.
6953 FD
->setType(NewType
);
6954 SmallVector
<ParmVarDecl
*, 16> Params
;
6955 for (const ParmVarDecl
*P
: FDWithProto
->parameters()) {
6956 auto *Param
= ParmVarDecl::Create(S
.getASTContext(), FD
, SourceLocation(),
6957 SourceLocation(), nullptr, P
->getType(),
6958 /*TInfo=*/nullptr, SC_None
, nullptr);
6959 Param
->setScopeInfo(0, Params
.size());
6960 Param
->setImplicit();
6961 Params
.push_back(Param
);
6964 FD
->setParams(Params
);
6967 void SemaOpenMP::ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl
*D
) {
6968 if (D
->isInvalidDecl())
6970 FunctionDecl
*FD
= nullptr;
6971 if (auto *UTemplDecl
= dyn_cast
<FunctionTemplateDecl
>(D
))
6972 FD
= UTemplDecl
->getTemplatedDecl();
6974 FD
= cast
<FunctionDecl
>(D
);
6975 assert(FD
&& "Expected a function declaration!");
6977 // If we are instantiating templates we do *not* apply scoped assumptions but
6978 // only global ones. We apply scoped assumption to the template definition
6980 if (!SemaRef
.inTemplateInstantiation()) {
6981 for (OMPAssumeAttr
*AA
: OMPAssumeScoped
)
6984 for (OMPAssumeAttr
*AA
: OMPAssumeGlobal
)
6988 SemaOpenMP::OMPDeclareVariantScope::OMPDeclareVariantScope(OMPTraitInfo
&TI
)
6989 : TI(&TI
), NameSuffix(TI
.getMangledName()) {}
6991 void SemaOpenMP::ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6992 Scope
*S
, Declarator
&D
, MultiTemplateParamsArg TemplateParamLists
,
6993 SmallVectorImpl
<FunctionDecl
*> &Bases
) {
6994 if (!D
.getIdentifier())
6997 OMPDeclareVariantScope
&DVScope
= OMPDeclareVariantScopes
.back();
6999 // Template specialization is an extension, check if we do it.
7000 bool IsTemplated
= !TemplateParamLists
.empty();
7002 !DVScope
.TI
->isExtensionActive(
7003 llvm::omp::TraitProperty::implementation_extension_allow_templates
))
7006 const IdentifierInfo
*BaseII
= D
.getIdentifier();
7007 LookupResult
Lookup(SemaRef
, DeclarationName(BaseII
), D
.getIdentifierLoc(),
7008 Sema::LookupOrdinaryName
);
7009 SemaRef
.LookupParsedName(Lookup
, S
, &D
.getCXXScopeSpec(),
7010 /*ObjectType=*/QualType());
7012 TypeSourceInfo
*TInfo
= SemaRef
.GetTypeForDeclarator(D
);
7013 QualType FType
= TInfo
->getType();
7016 D
.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr
;
7018 D
.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Consteval
;
7020 for (auto *Candidate
: Lookup
) {
7021 auto *CandidateDecl
= Candidate
->getUnderlyingDecl();
7022 FunctionDecl
*UDecl
= nullptr;
7023 if (IsTemplated
&& isa
<FunctionTemplateDecl
>(CandidateDecl
)) {
7024 auto *FTD
= cast
<FunctionTemplateDecl
>(CandidateDecl
);
7025 if (FTD
->getTemplateParameters()->size() == TemplateParamLists
.size())
7026 UDecl
= FTD
->getTemplatedDecl();
7027 } else if (!IsTemplated
)
7028 UDecl
= dyn_cast
<FunctionDecl
>(CandidateDecl
);
7032 // Don't specialize constexpr/consteval functions with
7033 // non-constexpr/consteval functions.
7034 if (UDecl
->isConstexpr() && !IsConstexpr
)
7036 if (UDecl
->isConsteval() && !IsConsteval
)
7039 QualType UDeclTy
= UDecl
->getType();
7040 if (!UDeclTy
->isDependentType()) {
7041 QualType NewType
= getASTContext().mergeFunctionTypes(
7042 FType
, UDeclTy
, /*OfBlockPointer=*/false,
7043 /*Unqualified=*/false, /*AllowCXX=*/true);
7044 if (NewType
.isNull())
7049 Bases
.push_back(UDecl
);
7052 bool UseImplicitBase
= !DVScope
.TI
->isExtensionActive(
7053 llvm::omp::TraitProperty::implementation_extension_disable_implicit_base
);
7054 // If no base was found we create a declaration that we use as base.
7055 if (Bases
.empty() && UseImplicitBase
) {
7056 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration
);
7057 Decl
*BaseD
= SemaRef
.HandleDeclarator(S
, D
, TemplateParamLists
);
7058 BaseD
->setImplicit(true);
7059 if (auto *BaseTemplD
= dyn_cast
<FunctionTemplateDecl
>(BaseD
))
7060 Bases
.push_back(BaseTemplD
->getTemplatedDecl());
7062 Bases
.push_back(cast
<FunctionDecl
>(BaseD
));
7065 std::string MangledName
;
7066 MangledName
+= D
.getIdentifier()->getName();
7067 MangledName
+= getOpenMPVariantManglingSeparatorStr();
7068 MangledName
+= DVScope
.NameSuffix
;
7069 IdentifierInfo
&VariantII
= getASTContext().Idents
.get(MangledName
);
7071 VariantII
.setMangledOpenMPVariantName(true);
7072 D
.SetIdentifier(&VariantII
, D
.getBeginLoc());
7075 void SemaOpenMP::ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
7076 Decl
*D
, SmallVectorImpl
<FunctionDecl
*> &Bases
) {
7077 // Do not mark function as is used to prevent its emission if this is the
7078 // only place where it is used.
7079 EnterExpressionEvaluationContext
Unevaluated(
7080 SemaRef
, Sema::ExpressionEvaluationContext::Unevaluated
);
7082 FunctionDecl
*FD
= nullptr;
7083 if (auto *UTemplDecl
= dyn_cast
<FunctionTemplateDecl
>(D
))
7084 FD
= UTemplDecl
->getTemplatedDecl();
7086 FD
= cast
<FunctionDecl
>(D
);
7087 auto *VariantFuncRef
= DeclRefExpr::Create(
7088 getASTContext(), NestedNameSpecifierLoc(), SourceLocation(), FD
,
7089 /*RefersToEnclosingVariableOrCapture=*/false,
7090 /*NameLoc=*/FD
->getLocation(), FD
->getType(), ExprValueKind::VK_PRValue
);
7092 OMPDeclareVariantScope
&DVScope
= OMPDeclareVariantScopes
.back();
7093 auto *OMPDeclareVariantA
= OMPDeclareVariantAttr::CreateImplicit(
7094 getASTContext(), VariantFuncRef
, DVScope
.TI
,
7095 /*NothingArgs=*/nullptr, /*NothingArgsSize=*/0,
7096 /*NeedDevicePtrArgs=*/nullptr, /*NeedDevicePtrArgsSize=*/0,
7097 /*AppendArgs=*/nullptr, /*AppendArgsSize=*/0);
7098 for (FunctionDecl
*BaseFD
: Bases
)
7099 BaseFD
->addAttr(OMPDeclareVariantA
);
7102 ExprResult
SemaOpenMP::ActOnOpenMPCall(ExprResult Call
, Scope
*Scope
,
7103 SourceLocation LParenLoc
,
7104 MultiExprArg ArgExprs
,
7105 SourceLocation RParenLoc
,
7107 // The common case is a regular call we do not want to specialize at all. Try
7108 // to make that case fast by bailing early.
7109 CallExpr
*CE
= dyn_cast
<CallExpr
>(Call
.get());
7113 FunctionDecl
*CalleeFnDecl
= CE
->getDirectCallee();
7117 if (getLangOpts().OpenMP
>= 51 && CalleeFnDecl
->getIdentifier() &&
7118 CalleeFnDecl
->getName().starts_with_insensitive("omp_")) {
7119 // checking for any calls inside an Order region
7120 if (Scope
&& Scope
->isOpenMPOrderClauseScope())
7121 Diag(LParenLoc
, diag::err_omp_unexpected_call_to_omp_runtime_api
);
7124 if (!CalleeFnDecl
->hasAttr
<OMPDeclareVariantAttr
>())
7127 ASTContext
&Context
= getASTContext();
7128 std::function
<void(StringRef
)> DiagUnknownTrait
= [this,
7129 CE
](StringRef ISATrait
) {
7130 // TODO Track the selector locations in a way that is accessible here to
7131 // improve the diagnostic location.
7132 Diag(CE
->getBeginLoc(), diag::warn_unknown_declare_variant_isa_trait
)
7135 TargetOMPContext
OMPCtx(Context
, std::move(DiagUnknownTrait
),
7136 SemaRef
.getCurFunctionDecl(),
7137 DSAStack
->getConstructTraits());
7139 QualType CalleeFnType
= CalleeFnDecl
->getType();
7141 SmallVector
<Expr
*, 4> Exprs
;
7142 SmallVector
<VariantMatchInfo
, 4> VMIs
;
7143 while (CalleeFnDecl
) {
7144 for (OMPDeclareVariantAttr
*A
:
7145 CalleeFnDecl
->specific_attrs
<OMPDeclareVariantAttr
>()) {
7146 Expr
*VariantRef
= A
->getVariantFuncRef();
7148 VariantMatchInfo VMI
;
7149 OMPTraitInfo
&TI
= A
->getTraitInfo();
7150 TI
.getAsVariantMatchInfo(Context
, VMI
);
7151 if (!isVariantApplicableInContext(VMI
, OMPCtx
,
7152 /*DeviceSetOnly=*/false))
7155 VMIs
.push_back(VMI
);
7156 Exprs
.push_back(VariantRef
);
7159 CalleeFnDecl
= CalleeFnDecl
->getPreviousDecl();
7164 int BestIdx
= getBestVariantMatchForContext(VMIs
, OMPCtx
);
7167 Expr
*BestExpr
= cast
<DeclRefExpr
>(Exprs
[BestIdx
]);
7168 Decl
*BestDecl
= cast
<DeclRefExpr
>(BestExpr
)->getDecl();
7171 // Try to build a (member) call expression for the current best applicable
7172 // variant expression. We allow this to fail in which case we continue
7173 // with the next best variant expression. The fail case is part of the
7174 // implementation defined behavior in the OpenMP standard when it talks
7175 // about what differences in the function prototypes: "Any differences
7176 // that the specific OpenMP context requires in the prototype of the
7177 // variant from the base function prototype are implementation defined."
7178 // This wording is there to allow the specialized variant to have a
7179 // different type than the base function. This is intended and OK but if
7180 // we cannot create a call the difference is not in the "implementation
7181 // defined range" we allow.
7182 Sema::TentativeAnalysisScope
Trap(SemaRef
);
7184 if (auto *SpecializedMethod
= dyn_cast
<CXXMethodDecl
>(BestDecl
)) {
7185 auto *MemberCall
= dyn_cast
<CXXMemberCallExpr
>(CE
);
7186 BestExpr
= MemberExpr::CreateImplicit(
7187 Context
, MemberCall
->getImplicitObjectArgument(),
7188 /*IsArrow=*/false, SpecializedMethod
, Context
.BoundMemberTy
,
7189 MemberCall
->getValueKind(), MemberCall
->getObjectKind());
7191 NewCall
= SemaRef
.BuildCallExpr(Scope
, BestExpr
, LParenLoc
, ArgExprs
,
7192 RParenLoc
, ExecConfig
);
7193 if (NewCall
.isUsable()) {
7194 if (CallExpr
*NCE
= dyn_cast
<CallExpr
>(NewCall
.get())) {
7195 FunctionDecl
*NewCalleeFnDecl
= NCE
->getDirectCallee();
7196 QualType NewType
= getASTContext().mergeFunctionTypes(
7197 CalleeFnType
, NewCalleeFnDecl
->getType(),
7198 /*OfBlockPointer=*/false,
7199 /*Unqualified=*/false, /*AllowCXX=*/true);
7200 if (!NewType
.isNull())
7202 // Don't use the call if the function type was not compatible.
7208 VMIs
.erase(VMIs
.begin() + BestIdx
);
7209 Exprs
.erase(Exprs
.begin() + BestIdx
);
7210 } while (!VMIs
.empty());
7212 if (!NewCall
.isUsable())
7214 return PseudoObjectExpr::Create(getASTContext(), CE
, {NewCall
.get()}, 0);
7217 std::optional
<std::pair
<FunctionDecl
*, Expr
*>>
7218 SemaOpenMP::checkOpenMPDeclareVariantFunction(SemaOpenMP::DeclGroupPtrTy DG
,
7221 unsigned NumAppendArgs
,
7223 ASTContext
&Context
= getASTContext();
7224 if (!DG
|| DG
.get().isNull())
7225 return std::nullopt
;
7227 const int VariantId
= 1;
7228 // Must be applied only to single decl.
7229 if (!DG
.get().isSingleDecl()) {
7230 Diag(SR
.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant
)
7232 return std::nullopt
;
7234 Decl
*ADecl
= DG
.get().getSingleDecl();
7235 if (auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(ADecl
))
7236 ADecl
= FTD
->getTemplatedDecl();
7238 // Decl must be a function.
7239 auto *FD
= dyn_cast
<FunctionDecl
>(ADecl
);
7241 Diag(ADecl
->getLocation(), diag::err_omp_function_expected
)
7243 return std::nullopt
;
7246 auto &&HasMultiVersionAttributes
= [](const FunctionDecl
*FD
) {
7247 // The 'target' attribute needs to be separately checked because it does
7248 // not always signify a multiversion function declaration.
7249 return FD
->isMultiVersion() || FD
->hasAttr
<TargetAttr
>();
7251 // OpenMP is not compatible with multiversion function attributes.
7252 if (HasMultiVersionAttributes(FD
)) {
7253 Diag(FD
->getLocation(), diag::err_omp_declare_variant_incompat_attributes
)
7255 return std::nullopt
;
7258 // Allow #pragma omp declare variant only if the function is not used.
7259 if (FD
->isUsed(false))
7260 Diag(SR
.getBegin(), diag::warn_omp_declare_variant_after_used
)
7261 << FD
->getLocation();
7263 // Check if the function was emitted already.
7264 const FunctionDecl
*Definition
;
7265 if (!FD
->isThisDeclarationADefinition() && FD
->isDefined(Definition
) &&
7266 (getLangOpts().EmitAllDecls
|| Context
.DeclMustBeEmitted(Definition
)))
7267 Diag(SR
.getBegin(), diag::warn_omp_declare_variant_after_emitted
)
7268 << FD
->getLocation();
7270 // The VariantRef must point to function.
7272 Diag(SR
.getBegin(), diag::err_omp_function_expected
) << VariantId
;
7273 return std::nullopt
;
7276 auto ShouldDelayChecks
= [](Expr
*&E
, bool) {
7277 return E
&& (E
->isTypeDependent() || E
->isValueDependent() ||
7278 E
->containsUnexpandedParameterPack() ||
7279 E
->isInstantiationDependent());
7281 // Do not check templates, wait until instantiation.
7282 if (FD
->isDependentContext() || ShouldDelayChecks(VariantRef
, false) ||
7283 TI
.anyScoreOrCondition(ShouldDelayChecks
))
7284 return std::make_pair(FD
, VariantRef
);
7286 // Deal with non-constant score and user condition expressions.
7287 auto HandleNonConstantScoresAndConditions
= [this](Expr
*&E
,
7288 bool IsScore
) -> bool {
7289 if (!E
|| E
->isIntegerConstantExpr(getASTContext()))
7293 // We warn on non-constant scores and pretend they were not present.
7294 Diag(E
->getExprLoc(), diag::warn_omp_declare_variant_score_not_constant
)
7298 // We could replace a non-constant user condition with "false" but we
7299 // will soon need to handle these anyway for the dynamic version of
7300 // OpenMP context selectors.
7301 Diag(E
->getExprLoc(),
7302 diag::err_omp_declare_variant_user_condition_not_constant
)
7307 if (TI
.anyScoreOrCondition(HandleNonConstantScoresAndConditions
))
7308 return std::nullopt
;
7310 QualType AdjustedFnType
= FD
->getType();
7311 if (NumAppendArgs
) {
7312 const auto *PTy
= AdjustedFnType
->getAsAdjusted
<FunctionProtoType
>();
7314 Diag(FD
->getLocation(), diag::err_omp_declare_variant_prototype_required
)
7316 return std::nullopt
;
7318 // Adjust the function type to account for an extra omp_interop_t for each
7319 // specified in the append_args clause.
7320 const TypeDecl
*TD
= nullptr;
7321 LookupResult
Result(SemaRef
, &Context
.Idents
.get("omp_interop_t"),
7322 SR
.getBegin(), Sema::LookupOrdinaryName
);
7323 if (SemaRef
.LookupName(Result
, SemaRef
.getCurScope())) {
7324 NamedDecl
*ND
= Result
.getFoundDecl();
7325 TD
= dyn_cast_or_null
<TypeDecl
>(ND
);
7328 Diag(SR
.getBegin(), diag::err_omp_interop_type_not_found
) << SR
;
7329 return std::nullopt
;
7331 QualType InteropType
= Context
.getTypeDeclType(TD
);
7332 if (PTy
->isVariadic()) {
7333 Diag(FD
->getLocation(), diag::err_omp_append_args_with_varargs
) << SR
;
7334 return std::nullopt
;
7336 llvm::SmallVector
<QualType
, 8> Params
;
7337 Params
.append(PTy
->param_type_begin(), PTy
->param_type_end());
7338 Params
.insert(Params
.end(), NumAppendArgs
, InteropType
);
7339 AdjustedFnType
= Context
.getFunctionType(PTy
->getReturnType(), Params
,
7340 PTy
->getExtProtoInfo());
7343 // Convert VariantRef expression to the type of the original function to
7344 // resolve possible conflicts.
7345 ExprResult VariantRefCast
= VariantRef
;
7346 if (getLangOpts().CPlusPlus
) {
7348 auto *Method
= dyn_cast
<CXXMethodDecl
>(FD
);
7349 if (Method
&& !Method
->isStatic()) {
7350 const Type
*ClassType
=
7351 Context
.getTypeDeclType(Method
->getParent()).getTypePtr();
7352 FnPtrType
= Context
.getMemberPointerType(AdjustedFnType
, ClassType
);
7355 // Build addr_of unary op to correctly handle type checks for member
7357 Sema::TentativeAnalysisScope
Trap(SemaRef
);
7358 ER
= SemaRef
.CreateBuiltinUnaryOp(VariantRef
->getBeginLoc(), UO_AddrOf
,
7361 if (!ER
.isUsable()) {
7362 Diag(VariantRef
->getExprLoc(), diag::err_omp_function_expected
)
7363 << VariantId
<< VariantRef
->getSourceRange();
7364 return std::nullopt
;
7366 VariantRef
= ER
.get();
7368 FnPtrType
= Context
.getPointerType(AdjustedFnType
);
7370 QualType VarianPtrType
= Context
.getPointerType(VariantRef
->getType());
7371 if (VarianPtrType
.getUnqualifiedType() != FnPtrType
.getUnqualifiedType()) {
7372 ImplicitConversionSequence ICS
= SemaRef
.TryImplicitConversion(
7373 VariantRef
, FnPtrType
.getUnqualifiedType(),
7374 /*SuppressUserConversions=*/false, Sema::AllowedExplicit::None
,
7375 /*InOverloadResolution=*/false,
7377 /*AllowObjCWritebackConversion=*/false);
7378 if (ICS
.isFailure()) {
7379 Diag(VariantRef
->getExprLoc(),
7380 diag::err_omp_declare_variant_incompat_types
)
7381 << VariantRef
->getType()
7382 << ((Method
&& !Method
->isStatic()) ? FnPtrType
: FD
->getType())
7383 << (NumAppendArgs
? 1 : 0) << VariantRef
->getSourceRange();
7384 return std::nullopt
;
7386 VariantRefCast
= SemaRef
.PerformImplicitConversion(
7387 VariantRef
, FnPtrType
.getUnqualifiedType(),
7388 AssignmentAction::Converting
);
7389 if (!VariantRefCast
.isUsable())
7390 return std::nullopt
;
7392 // Drop previously built artificial addr_of unary op for member functions.
7393 if (Method
&& !Method
->isStatic()) {
7394 Expr
*PossibleAddrOfVariantRef
= VariantRefCast
.get();
7395 if (auto *UO
= dyn_cast
<UnaryOperator
>(
7396 PossibleAddrOfVariantRef
->IgnoreImplicit()))
7397 VariantRefCast
= UO
->getSubExpr();
7401 ExprResult ER
= SemaRef
.CheckPlaceholderExpr(VariantRefCast
.get());
7402 if (!ER
.isUsable() ||
7403 !ER
.get()->IgnoreParenImpCasts()->getType()->isFunctionType()) {
7404 Diag(VariantRef
->getExprLoc(), diag::err_omp_function_expected
)
7405 << VariantId
<< VariantRef
->getSourceRange();
7406 return std::nullopt
;
7409 // The VariantRef must point to function.
7410 auto *DRE
= dyn_cast
<DeclRefExpr
>(ER
.get()->IgnoreParenImpCasts());
7412 Diag(VariantRef
->getExprLoc(), diag::err_omp_function_expected
)
7413 << VariantId
<< VariantRef
->getSourceRange();
7414 return std::nullopt
;
7416 auto *NewFD
= dyn_cast_or_null
<FunctionDecl
>(DRE
->getDecl());
7418 Diag(VariantRef
->getExprLoc(), diag::err_omp_function_expected
)
7419 << VariantId
<< VariantRef
->getSourceRange();
7420 return std::nullopt
;
7423 if (FD
->getCanonicalDecl() == NewFD
->getCanonicalDecl()) {
7424 Diag(VariantRef
->getExprLoc(),
7425 diag::err_omp_declare_variant_same_base_function
)
7426 << VariantRef
->getSourceRange();
7427 return std::nullopt
;
7430 // Check if function types are compatible in C.
7431 if (!getLangOpts().CPlusPlus
) {
7433 Context
.mergeFunctionTypes(AdjustedFnType
, NewFD
->getType());
7434 if (NewType
.isNull()) {
7435 Diag(VariantRef
->getExprLoc(),
7436 diag::err_omp_declare_variant_incompat_types
)
7437 << NewFD
->getType() << FD
->getType() << (NumAppendArgs
? 1 : 0)
7438 << VariantRef
->getSourceRange();
7439 return std::nullopt
;
7441 if (NewType
->isFunctionProtoType()) {
7442 if (FD
->getType()->isFunctionNoProtoType())
7443 setPrototype(SemaRef
, FD
, NewFD
, NewType
);
7444 else if (NewFD
->getType()->isFunctionNoProtoType())
7445 setPrototype(SemaRef
, NewFD
, FD
, NewType
);
7449 // Check if variant function is not marked with declare variant directive.
7450 if (NewFD
->hasAttrs() && NewFD
->hasAttr
<OMPDeclareVariantAttr
>()) {
7451 Diag(VariantRef
->getExprLoc(),
7452 diag::warn_omp_declare_variant_marked_as_declare_variant
)
7453 << VariantRef
->getSourceRange();
7455 NewFD
->specific_attr_begin
<OMPDeclareVariantAttr
>()->getRange();
7456 Diag(SR
.getBegin(), diag::note_omp_marked_declare_variant_here
) << SR
;
7457 return std::nullopt
;
7460 enum DoesntSupport
{
7469 if (const auto *CXXFD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
7470 if (CXXFD
->isVirtual()) {
7471 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7473 return std::nullopt
;
7476 if (isa
<CXXConstructorDecl
>(FD
)) {
7477 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7479 return std::nullopt
;
7482 if (isa
<CXXDestructorDecl
>(FD
)) {
7483 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7485 return std::nullopt
;
7489 if (FD
->isDeleted()) {
7490 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7492 return std::nullopt
;
7495 if (FD
->isDefaulted()) {
7496 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7498 return std::nullopt
;
7501 if (FD
->isConstexpr()) {
7502 Diag(FD
->getLocation(), diag::err_omp_declare_variant_doesnt_support
)
7503 << (NewFD
->isConsteval() ? ConstevalFuncs
: ConstexprFuncs
);
7504 return std::nullopt
;
7507 // Check general compatibility.
7508 if (SemaRef
.areMultiversionVariantFunctionsCompatible(
7509 FD
, NewFD
, PartialDiagnostic::NullDiagnostic(),
7510 PartialDiagnosticAt(SourceLocation(),
7511 PartialDiagnostic::NullDiagnostic()),
7512 PartialDiagnosticAt(
7513 VariantRef
->getExprLoc(),
7514 SemaRef
.PDiag(diag::err_omp_declare_variant_doesnt_support
)),
7515 PartialDiagnosticAt(VariantRef
->getExprLoc(),
7516 SemaRef
.PDiag(diag::err_omp_declare_variant_diff
)
7517 << FD
->getLocation()),
7518 /*TemplatesSupported=*/true, /*ConstexprSupported=*/false,
7519 /*CLinkageMayDiffer=*/true))
7520 return std::nullopt
;
7521 return std::make_pair(FD
, cast
<Expr
>(DRE
));
7524 void SemaOpenMP::ActOnOpenMPDeclareVariantDirective(
7525 FunctionDecl
*FD
, Expr
*VariantRef
, OMPTraitInfo
&TI
,
7526 ArrayRef
<Expr
*> AdjustArgsNothing
,
7527 ArrayRef
<Expr
*> AdjustArgsNeedDevicePtr
,
7528 ArrayRef
<OMPInteropInfo
> AppendArgs
, SourceLocation AdjustArgsLoc
,
7529 SourceLocation AppendArgsLoc
, SourceRange SR
) {
7531 // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
7532 // An adjust_args clause or append_args clause can only be specified if the
7533 // dispatch selector of the construct selector set appears in the match
7536 SmallVector
<Expr
*, 8> AllAdjustArgs
;
7537 llvm::append_range(AllAdjustArgs
, AdjustArgsNothing
);
7538 llvm::append_range(AllAdjustArgs
, AdjustArgsNeedDevicePtr
);
7540 if (!AllAdjustArgs
.empty() || !AppendArgs
.empty()) {
7541 VariantMatchInfo VMI
;
7542 TI
.getAsVariantMatchInfo(getASTContext(), VMI
);
7543 if (!llvm::is_contained(
7544 VMI
.ConstructTraits
,
7545 llvm::omp::TraitProperty::construct_dispatch_dispatch
)) {
7546 if (!AllAdjustArgs
.empty())
7547 Diag(AdjustArgsLoc
, diag::err_omp_clause_requires_dispatch_construct
)
7548 << getOpenMPClauseName(OMPC_adjust_args
);
7549 if (!AppendArgs
.empty())
7550 Diag(AppendArgsLoc
, diag::err_omp_clause_requires_dispatch_construct
)
7551 << getOpenMPClauseName(OMPC_append_args
);
7556 // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions]
7557 // Each argument can only appear in a single adjust_args clause for each
7558 // declare variant directive.
7559 llvm::SmallPtrSet
<const VarDecl
*, 4> AdjustVars
;
7561 for (Expr
*E
: AllAdjustArgs
) {
7562 E
= E
->IgnoreParenImpCasts();
7563 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
7564 if (const auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl())) {
7565 const VarDecl
*CanonPVD
= PVD
->getCanonicalDecl();
7566 if (FD
->getNumParams() > PVD
->getFunctionScopeIndex() &&
7567 FD
->getParamDecl(PVD
->getFunctionScopeIndex())
7568 ->getCanonicalDecl() == CanonPVD
) {
7569 // It's a parameter of the function, check duplicates.
7570 if (!AdjustVars
.insert(CanonPVD
).second
) {
7571 Diag(DRE
->getLocation(), diag::err_omp_adjust_arg_multiple_clauses
)
7579 // Anything that is not a function parameter is an error.
7580 Diag(E
->getExprLoc(), diag::err_omp_param_or_this_in_clause
) << FD
<< 0;
7584 auto *NewAttr
= OMPDeclareVariantAttr::CreateImplicit(
7585 getASTContext(), VariantRef
, &TI
,
7586 const_cast<Expr
**>(AdjustArgsNothing
.data()), AdjustArgsNothing
.size(),
7587 const_cast<Expr
**>(AdjustArgsNeedDevicePtr
.data()),
7588 AdjustArgsNeedDevicePtr
.size(),
7589 const_cast<OMPInteropInfo
*>(AppendArgs
.data()), AppendArgs
.size(), SR
);
7590 FD
->addAttr(NewAttr
);
7593 static CapturedStmt
*
7594 setBranchProtectedScope(Sema
&SemaRef
, OpenMPDirectiveKind DKind
, Stmt
*AStmt
) {
7595 auto *CS
= dyn_cast
<CapturedStmt
>(AStmt
);
7596 assert(CS
&& "Captured statement expected");
7597 // 1.2.2 OpenMP Language Terminology
7598 // Structured block - An executable statement with a single entry at the
7599 // top and a single exit at the bottom.
7600 // The point of exit cannot be a branch out of the structured block.
7601 // longjmp() and throw() must not violate the entry/exit criteria.
7602 CS
->getCapturedDecl()->setNothrow();
7604 for (int ThisCaptureLevel
= SemaRef
.OpenMP().getOpenMPCaptureLevels(DKind
);
7605 ThisCaptureLevel
> 1; --ThisCaptureLevel
) {
7606 CS
= cast
<CapturedStmt
>(CS
->getCapturedStmt());
7607 // 1.2.2 OpenMP Language Terminology
7608 // Structured block - An executable statement with a single entry at the
7609 // top and a single exit at the bottom.
7610 // The point of exit cannot be a branch out of the structured block.
7611 // longjmp() and throw() must not violate the entry/exit criteria.
7612 CS
->getCapturedDecl()->setNothrow();
7614 SemaRef
.setFunctionHasBranchProtectedScope();
7619 SemaOpenMP::ActOnOpenMPParallelDirective(ArrayRef
<OMPClause
*> Clauses
,
7620 Stmt
*AStmt
, SourceLocation StartLoc
,
7621 SourceLocation EndLoc
) {
7625 setBranchProtectedScope(SemaRef
, OMPD_parallel
, AStmt
);
7627 return OMPParallelDirective::Create(
7628 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
7629 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
7633 /// Iteration space of a single for loop.
7634 struct LoopIterationSpace final
{
7635 /// True if the condition operator is the strict compare operator (<, > or
7637 bool IsStrictCompare
= false;
7638 /// Condition of the loop.
7639 Expr
*PreCond
= nullptr;
7640 /// This expression calculates the number of iterations in the loop.
7641 /// It is always possible to calculate it before starting the loop.
7642 Expr
*NumIterations
= nullptr;
7643 /// The loop counter variable.
7644 Expr
*CounterVar
= nullptr;
7645 /// Private loop counter variable.
7646 Expr
*PrivateCounterVar
= nullptr;
7647 /// This is initializer for the initial value of #CounterVar.
7648 Expr
*CounterInit
= nullptr;
7649 /// This is step for the #CounterVar used to generate its update:
7650 /// #CounterVar = #CounterInit + #CounterStep * CurrentIteration.
7651 Expr
*CounterStep
= nullptr;
7652 /// Should step be subtracted?
7653 bool Subtract
= false;
7654 /// Source range of the loop init.
7655 SourceRange InitSrcRange
;
7656 /// Source range of the loop condition.
7657 SourceRange CondSrcRange
;
7658 /// Source range of the loop increment.
7659 SourceRange IncSrcRange
;
7660 /// Minimum value that can have the loop control variable. Used to support
7661 /// non-rectangular loops. Applied only for LCV with the non-iterator types,
7662 /// since only such variables can be used in non-loop invariant expressions.
7663 Expr
*MinValue
= nullptr;
7664 /// Maximum value that can have the loop control variable. Used to support
7665 /// non-rectangular loops. Applied only for LCV with the non-iterator type,
7666 /// since only such variables can be used in non-loop invariant expressions.
7667 Expr
*MaxValue
= nullptr;
7668 /// true, if the lower bound depends on the outer loop control var.
7669 bool IsNonRectangularLB
= false;
7670 /// true, if the upper bound depends on the outer loop control var.
7671 bool IsNonRectangularUB
= false;
7672 /// Index of the loop this loop depends on and forms non-rectangular loop
7674 unsigned LoopDependentIdx
= 0;
7675 /// Final condition for the non-rectangular loop nest support. It is used to
7676 /// check that the number of iterations for this particular counter must be
7678 Expr
*FinalCondition
= nullptr;
7681 /// Scan an AST subtree, checking that no decls in the CollapsedLoopVarDecls
7682 /// set are referenced. Used for verifying loop nest structure before
7683 /// performing a loop collapse operation.
7684 class ForSubExprChecker
: public DynamicRecursiveASTVisitor
{
7685 const llvm::SmallPtrSetImpl
<const Decl
*> &CollapsedLoopVarDecls
;
7686 VarDecl
*ForbiddenVar
= nullptr;
7690 explicit ForSubExprChecker(
7691 const llvm::SmallPtrSetImpl
<const Decl
*> &CollapsedLoopVarDecls
)
7692 : CollapsedLoopVarDecls(CollapsedLoopVarDecls
) {
7693 // We want to visit implicit code, i.e. synthetic initialisation statements
7694 // created during range-for lowering.
7695 ShouldVisitImplicitCode
= true;
7698 bool VisitDeclRefExpr(DeclRefExpr
*E
) override
{
7699 ValueDecl
*VD
= E
->getDecl();
7700 if (!isa
<VarDecl
, BindingDecl
>(VD
))
7702 VarDecl
*V
= VD
->getPotentiallyDecomposedVarDecl();
7703 if (V
->getType()->isReferenceType()) {
7704 VarDecl
*VD
= V
->getDefinition();
7705 if (VD
->hasInit()) {
7706 Expr
*I
= VD
->getInit();
7707 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(I
);
7710 V
= DRE
->getDecl()->getPotentiallyDecomposedVarDecl();
7713 Decl
*Canon
= V
->getCanonicalDecl();
7714 if (CollapsedLoopVarDecls
.contains(Canon
)) {
7716 ErrLoc
= E
->getSourceRange();
7723 VarDecl
*getForbiddenVar() const { return ForbiddenVar
; }
7724 SourceRange
getErrRange() const { return ErrLoc
; }
7727 /// Helper class for checking canonical form of the OpenMP loops and
7728 /// extracting iteration space of each loop in the loop nest, that will be used
7729 /// for IR generation.
7730 class OpenMPIterationSpaceChecker
{
7731 /// Reference to Sema.
7733 /// Does the loop associated directive support non-rectangular loops?
7734 bool SupportsNonRectangular
;
7735 /// Data-sharing stack.
7737 /// A location for diagnostics (when there is no some better location).
7738 SourceLocation DefaultLoc
;
7739 /// A location for diagnostics (when increment is not compatible).
7740 SourceLocation ConditionLoc
;
7741 /// The set of variables declared within the (to be collapsed) loop nest.
7742 const llvm::SmallPtrSetImpl
<const Decl
*> &CollapsedLoopVarDecls
;
7743 /// A source location for referring to loop init later.
7744 SourceRange InitSrcRange
;
7745 /// A source location for referring to condition later.
7746 SourceRange ConditionSrcRange
;
7747 /// A source location for referring to increment later.
7748 SourceRange IncrementSrcRange
;
7750 ValueDecl
*LCDecl
= nullptr;
7751 /// Reference to loop variable.
7752 Expr
*LCRef
= nullptr;
7753 /// Lower bound (initializer for the var).
7757 /// Loop step (increment).
7758 Expr
*Step
= nullptr;
7759 /// This flag is true when condition is one of:
7764 /// This will have no value when the condition is !=
7765 std::optional
<bool> TestIsLessOp
;
7766 /// This flag is true when condition is strict ( < or > ).
7767 bool TestIsStrictOp
= false;
7768 /// This flag is true when step is subtracted on each iteration.
7769 bool SubtractStep
= false;
7770 /// The outer loop counter this loop depends on (if any).
7771 const ValueDecl
*DepDecl
= nullptr;
7772 /// Contains number of loop (starts from 1) on which loop counter init
7773 /// expression of this loop depends on.
7774 std::optional
<unsigned> InitDependOnLC
;
7775 /// Contains number of loop (starts from 1) on which loop counter condition
7776 /// expression of this loop depends on.
7777 std::optional
<unsigned> CondDependOnLC
;
7778 /// Checks if the provide statement depends on the loop counter.
7779 std::optional
<unsigned> doesDependOnLoopCounter(const Stmt
*S
,
7780 bool IsInitializer
);
7781 /// Original condition required for checking of the exit condition for
7782 /// non-rectangular loop.
7783 Expr
*Condition
= nullptr;
7786 OpenMPIterationSpaceChecker(
7787 Sema
&SemaRef
, bool SupportsNonRectangular
, DSAStackTy
&Stack
,
7788 SourceLocation DefaultLoc
,
7789 const llvm::SmallPtrSetImpl
<const Decl
*> &CollapsedLoopDecls
)
7790 : SemaRef(SemaRef
), SupportsNonRectangular(SupportsNonRectangular
),
7791 Stack(Stack
), DefaultLoc(DefaultLoc
), ConditionLoc(DefaultLoc
),
7792 CollapsedLoopVarDecls(CollapsedLoopDecls
) {}
7793 /// Check init-expr for canonical loop form and save loop counter
7794 /// variable - #Var and its initialization value - #LB.
7795 bool checkAndSetInit(Stmt
*S
, bool EmitDiags
= true);
7796 /// Check test-expr for canonical form, save upper-bound (#UB), flags
7797 /// for less/greater and for strict/non-strict comparison.
7798 bool checkAndSetCond(Expr
*S
);
7799 /// Check incr-expr for canonical loop form and return true if it
7800 /// does not conform, otherwise save loop step (#Step).
7801 bool checkAndSetInc(Expr
*S
);
7802 /// Return the loop counter variable.
7803 ValueDecl
*getLoopDecl() const { return LCDecl
; }
7804 /// Return the reference expression to loop counter variable.
7805 Expr
*getLoopDeclRefExpr() const { return LCRef
; }
7806 /// Source range of the loop init.
7807 SourceRange
getInitSrcRange() const { return InitSrcRange
; }
7808 /// Source range of the loop condition.
7809 SourceRange
getConditionSrcRange() const { return ConditionSrcRange
; }
7810 /// Source range of the loop increment.
7811 SourceRange
getIncrementSrcRange() const { return IncrementSrcRange
; }
7812 /// True if the step should be subtracted.
7813 bool shouldSubtractStep() const { return SubtractStep
; }
7814 /// True, if the compare operator is strict (<, > or !=).
7815 bool isStrictTestOp() const { return TestIsStrictOp
; }
7816 /// Build the expression to calculate the number of iterations.
7817 Expr
*buildNumIterations(
7818 Scope
*S
, ArrayRef
<LoopIterationSpace
> ResultIterSpaces
, bool LimitedType
,
7819 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const;
7820 /// Build the precondition expression for the loops.
7822 buildPreCond(Scope
*S
, Expr
*Cond
,
7823 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const;
7824 /// Build reference expression to the counter be used for codegen.
7826 buildCounterVar(llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
,
7827 DSAStackTy
&DSA
) const;
7828 /// Build reference expression to the private counter be used for
7830 Expr
*buildPrivateCounterVar() const;
7831 /// Build initialization of the counter be used for codegen.
7832 Expr
*buildCounterInit() const;
7833 /// Build step of the counter be used for codegen.
7834 Expr
*buildCounterStep() const;
7835 /// Build loop data with counter value for depend clauses in ordered
7838 buildOrderedLoopData(Scope
*S
, Expr
*Counter
,
7839 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
,
7840 SourceLocation Loc
, Expr
*Inc
= nullptr,
7841 OverloadedOperatorKind OOK
= OO_Amp
);
7842 /// Builds the minimum value for the loop counter.
7843 std::pair
<Expr
*, Expr
*> buildMinMaxValues(
7844 Scope
*S
, llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const;
7845 /// Builds final condition for the non-rectangular loops.
7846 Expr
*buildFinalCondition(Scope
*S
) const;
7847 /// Return true if any expression is dependent.
7848 bool dependent() const;
7849 /// Returns true if the initializer forms non-rectangular loop.
7850 bool doesInitDependOnLC() const { return InitDependOnLC
.has_value(); }
7851 /// Returns true if the condition forms non-rectangular loop.
7852 bool doesCondDependOnLC() const { return CondDependOnLC
.has_value(); }
7853 /// Returns index of the loop we depend on (starting from 1), or 0 otherwise.
7854 unsigned getLoopDependentIdx() const {
7855 return InitDependOnLC
.value_or(CondDependOnLC
.value_or(0));
7859 /// Check the right-hand side of an assignment in the increment
7861 bool checkAndSetIncRHS(Expr
*RHS
);
7862 /// Helper to set loop counter variable and its initializer.
7863 bool setLCDeclAndLB(ValueDecl
*NewLCDecl
, Expr
*NewDeclRefExpr
, Expr
*NewLB
,
7865 /// Helper to set upper bound.
7866 bool setUB(Expr
*NewUB
, std::optional
<bool> LessOp
, bool StrictOp
,
7867 SourceRange SR
, SourceLocation SL
);
7868 /// Helper to set loop increment.
7869 bool setStep(Expr
*NewStep
, bool Subtract
);
7872 bool OpenMPIterationSpaceChecker::dependent() const {
7874 assert(!LB
&& !UB
&& !Step
);
7877 return LCDecl
->getType()->isDependentType() ||
7878 (LB
&& LB
->isValueDependent()) || (UB
&& UB
->isValueDependent()) ||
7879 (Step
&& Step
->isValueDependent());
7882 bool OpenMPIterationSpaceChecker::setLCDeclAndLB(ValueDecl
*NewLCDecl
,
7884 Expr
*NewLB
, bool EmitDiags
) {
7885 // State consistency checking to ensure correct usage.
7886 assert(LCDecl
== nullptr && LB
== nullptr && LCRef
== nullptr &&
7887 UB
== nullptr && Step
== nullptr && !TestIsLessOp
&& !TestIsStrictOp
);
7888 if (!NewLCDecl
|| !NewLB
|| NewLB
->containsErrors())
7890 LCDecl
= getCanonicalDecl(NewLCDecl
);
7891 LCRef
= NewLCRefExpr
;
7892 if (auto *CE
= dyn_cast_or_null
<CXXConstructExpr
>(NewLB
))
7893 if (const CXXConstructorDecl
*Ctor
= CE
->getConstructor())
7894 if ((Ctor
->isCopyOrMoveConstructor() ||
7895 Ctor
->isConvertingConstructor(/*AllowExplicit=*/false)) &&
7896 CE
->getNumArgs() > 0 && CE
->getArg(0) != nullptr)
7897 NewLB
= CE
->getArg(0)->IgnoreParenImpCasts();
7900 InitDependOnLC
= doesDependOnLoopCounter(LB
, /*IsInitializer=*/true);
7904 bool OpenMPIterationSpaceChecker::setUB(Expr
*NewUB
, std::optional
<bool> LessOp
,
7905 bool StrictOp
, SourceRange SR
,
7906 SourceLocation SL
) {
7907 // State consistency checking to ensure correct usage.
7908 assert(LCDecl
!= nullptr && LB
!= nullptr && UB
== nullptr &&
7909 Step
== nullptr && !TestIsLessOp
&& !TestIsStrictOp
);
7910 if (!NewUB
|| NewUB
->containsErrors())
7914 TestIsLessOp
= LessOp
;
7915 TestIsStrictOp
= StrictOp
;
7916 ConditionSrcRange
= SR
;
7918 CondDependOnLC
= doesDependOnLoopCounter(UB
, /*IsInitializer=*/false);
7922 bool OpenMPIterationSpaceChecker::setStep(Expr
*NewStep
, bool Subtract
) {
7923 // State consistency checking to ensure correct usage.
7924 assert(LCDecl
!= nullptr && LB
!= nullptr && Step
== nullptr);
7925 if (!NewStep
|| NewStep
->containsErrors())
7927 if (!NewStep
->isValueDependent()) {
7928 // Check that the step is integer expression.
7929 SourceLocation StepLoc
= NewStep
->getBeginLoc();
7930 ExprResult Val
= SemaRef
.OpenMP().PerformOpenMPImplicitIntegerConversion(
7931 StepLoc
, getExprAsWritten(NewStep
));
7932 if (Val
.isInvalid())
7934 NewStep
= Val
.get();
7936 // OpenMP [2.6, Canonical Loop Form, Restrictions]
7937 // If test-expr is of form var relational-op b and relational-op is < or
7938 // <= then incr-expr must cause var to increase on each iteration of the
7939 // loop. If test-expr is of form var relational-op b and relational-op is
7940 // > or >= then incr-expr must cause var to decrease on each iteration of
7942 // If test-expr is of form b relational-op var and relational-op is < or
7943 // <= then incr-expr must cause var to decrease on each iteration of the
7944 // loop. If test-expr is of form b relational-op var and relational-op is
7945 // > or >= then incr-expr must cause var to increase on each iteration of
7947 std::optional
<llvm::APSInt
> Result
=
7948 NewStep
->getIntegerConstantExpr(SemaRef
.Context
);
7949 bool IsUnsigned
= !NewStep
->getType()->hasSignedIntegerRepresentation();
7951 Result
&& Result
->isSigned() && (Subtract
!= Result
->isNegative());
7953 Result
&& Result
->isSigned() && (Subtract
== Result
->isNegative());
7954 bool IsConstZero
= Result
&& !Result
->getBoolValue();
7956 // != with increment is treated as <; != with decrement is treated as >
7958 TestIsLessOp
= IsConstPos
|| (IsUnsigned
&& !Subtract
);
7959 if (UB
&& (IsConstZero
||
7960 (*TestIsLessOp
? (IsConstNeg
|| (IsUnsigned
&& Subtract
))
7961 : (IsConstPos
|| (IsUnsigned
&& !Subtract
))))) {
7962 SemaRef
.Diag(NewStep
->getExprLoc(),
7963 diag::err_omp_loop_incr_not_compatible
)
7964 << LCDecl
<< *TestIsLessOp
<< NewStep
->getSourceRange();
7965 SemaRef
.Diag(ConditionLoc
,
7966 diag::note_omp_loop_cond_requires_compatible_incr
)
7967 << *TestIsLessOp
<< ConditionSrcRange
;
7970 if (*TestIsLessOp
== Subtract
) {
7972 SemaRef
.CreateBuiltinUnaryOp(NewStep
->getExprLoc(), UO_Minus
, NewStep
)
7974 Subtract
= !Subtract
;
7979 SubtractStep
= Subtract
;
7984 /// Checker for the non-rectangular loops. Checks if the initializer or
7985 /// condition expression references loop counter variable.
7986 class LoopCounterRefChecker final
7987 : public ConstStmtVisitor
<LoopCounterRefChecker
, bool> {
7990 const ValueDecl
*CurLCDecl
= nullptr;
7991 const ValueDecl
*DepDecl
= nullptr;
7992 const ValueDecl
*PrevDepDecl
= nullptr;
7993 bool IsInitializer
= true;
7994 bool SupportsNonRectangular
;
7995 unsigned BaseLoopId
= 0;
7996 bool checkDecl(const Expr
*E
, const ValueDecl
*VD
) {
7997 if (getCanonicalDecl(VD
) == getCanonicalDecl(CurLCDecl
)) {
7998 SemaRef
.Diag(E
->getExprLoc(), diag::err_omp_stmt_depends_on_loop_counter
)
7999 << (IsInitializer
? 0 : 1);
8002 const auto &&Data
= Stack
.isLoopControlVariable(VD
);
8003 // OpenMP, 2.9.1 Canonical Loop Form, Restrictions.
8004 // The type of the loop iterator on which we depend may not have a random
8005 // access iterator type.
8006 if (Data
.first
&& VD
->getType()->isRecordType()) {
8007 SmallString
<128> Name
;
8008 llvm::raw_svector_ostream
OS(Name
);
8009 VD
->getNameForDiagnostic(OS
, SemaRef
.getPrintingPolicy(),
8010 /*Qualified=*/true);
8011 SemaRef
.Diag(E
->getExprLoc(),
8012 diag::err_omp_wrong_dependency_iterator_type
)
8014 SemaRef
.Diag(VD
->getLocation(), diag::note_previous_decl
) << VD
;
8017 if (Data
.first
&& !SupportsNonRectangular
) {
8018 SemaRef
.Diag(E
->getExprLoc(), diag::err_omp_invariant_dependency
);
8022 (DepDecl
|| (PrevDepDecl
&&
8023 getCanonicalDecl(VD
) != getCanonicalDecl(PrevDepDecl
)))) {
8024 if (!DepDecl
&& PrevDepDecl
)
8025 DepDecl
= PrevDepDecl
;
8026 SmallString
<128> Name
;
8027 llvm::raw_svector_ostream
OS(Name
);
8028 DepDecl
->getNameForDiagnostic(OS
, SemaRef
.getPrintingPolicy(),
8029 /*Qualified=*/true);
8030 SemaRef
.Diag(E
->getExprLoc(),
8031 diag::err_omp_invariant_or_linear_dependency
)
8037 BaseLoopId
= Data
.first
;
8043 bool VisitDeclRefExpr(const DeclRefExpr
*E
) {
8044 const ValueDecl
*VD
= E
->getDecl();
8045 if (isa
<VarDecl
>(VD
))
8046 return checkDecl(E
, VD
);
8049 bool VisitMemberExpr(const MemberExpr
*E
) {
8050 if (isa
<CXXThisExpr
>(E
->getBase()->IgnoreParens())) {
8051 const ValueDecl
*VD
= E
->getMemberDecl();
8052 if (isa
<VarDecl
>(VD
) || isa
<FieldDecl
>(VD
))
8053 return checkDecl(E
, VD
);
8057 bool VisitStmt(const Stmt
*S
) {
8059 for (const Stmt
*Child
: S
->children())
8060 Res
= (Child
&& Visit(Child
)) || Res
;
8063 explicit LoopCounterRefChecker(Sema
&SemaRef
, DSAStackTy
&Stack
,
8064 const ValueDecl
*CurLCDecl
, bool IsInitializer
,
8065 const ValueDecl
*PrevDepDecl
= nullptr,
8066 bool SupportsNonRectangular
= true)
8067 : SemaRef(SemaRef
), Stack(Stack
), CurLCDecl(CurLCDecl
),
8068 PrevDepDecl(PrevDepDecl
), IsInitializer(IsInitializer
),
8069 SupportsNonRectangular(SupportsNonRectangular
) {}
8070 unsigned getBaseLoopId() const {
8071 assert(CurLCDecl
&& "Expected loop dependency.");
8074 const ValueDecl
*getDepDecl() const {
8075 assert(CurLCDecl
&& "Expected loop dependency.");
8081 std::optional
<unsigned>
8082 OpenMPIterationSpaceChecker::doesDependOnLoopCounter(const Stmt
*S
,
8083 bool IsInitializer
) {
8084 // Check for the non-rectangular loops.
8085 LoopCounterRefChecker
LoopStmtChecker(SemaRef
, Stack
, LCDecl
, IsInitializer
,
8086 DepDecl
, SupportsNonRectangular
);
8087 if (LoopStmtChecker
.Visit(S
)) {
8088 DepDecl
= LoopStmtChecker
.getDepDecl();
8089 return LoopStmtChecker
.getBaseLoopId();
8091 return std::nullopt
;
8094 bool OpenMPIterationSpaceChecker::checkAndSetInit(Stmt
*S
, bool EmitDiags
) {
8095 // Check init-expr for canonical loop form and save loop counter
8096 // variable - #Var and its initialization value - #LB.
8097 // OpenMP [2.6] Canonical loop form. init-expr may be one of the following:
8099 // integer-type var = lb
8100 // random-access-iterator-type var = lb
8101 // pointer-type var = lb
8105 SemaRef
.Diag(DefaultLoc
, diag::err_omp_loop_not_canonical_init
);
8109 if (auto *ExprTemp
= dyn_cast
<ExprWithCleanups
>(S
))
8110 if (!ExprTemp
->cleanupsHaveSideEffects())
8111 S
= ExprTemp
->getSubExpr();
8113 if (!CollapsedLoopVarDecls
.empty()) {
8114 ForSubExprChecker FSEC
{CollapsedLoopVarDecls
};
8115 if (!FSEC
.TraverseStmt(S
)) {
8116 SourceRange Range
= FSEC
.getErrRange();
8117 SemaRef
.Diag(Range
.getBegin(), diag::err_omp_loop_bad_collapse_var
)
8118 << Range
.getEnd() << 0 << FSEC
.getForbiddenVar();
8123 InitSrcRange
= S
->getSourceRange();
8124 if (Expr
*E
= dyn_cast
<Expr
>(S
))
8125 S
= E
->IgnoreParens();
8126 if (auto *BO
= dyn_cast
<BinaryOperator
>(S
)) {
8127 if (BO
->getOpcode() == BO_Assign
) {
8128 Expr
*LHS
= BO
->getLHS()->IgnoreParens();
8129 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(LHS
)) {
8130 if (auto *CED
= dyn_cast
<OMPCapturedExprDecl
>(DRE
->getDecl()))
8131 if (auto *ME
= dyn_cast
<MemberExpr
>(getExprAsWritten(CED
->getInit())))
8132 return setLCDeclAndLB(ME
->getMemberDecl(), ME
, BO
->getRHS(),
8134 return setLCDeclAndLB(DRE
->getDecl(), DRE
, BO
->getRHS(), EmitDiags
);
8136 if (auto *ME
= dyn_cast
<MemberExpr
>(LHS
)) {
8137 if (ME
->isArrow() &&
8138 isa
<CXXThisExpr
>(ME
->getBase()->IgnoreParenImpCasts()))
8139 return setLCDeclAndLB(ME
->getMemberDecl(), ME
, BO
->getRHS(),
8143 } else if (auto *DS
= dyn_cast
<DeclStmt
>(S
)) {
8144 if (DS
->isSingleDecl()) {
8145 if (auto *Var
= dyn_cast_or_null
<VarDecl
>(DS
->getSingleDecl())) {
8146 if (Var
->hasInit() && !Var
->getType()->isReferenceType()) {
8147 // Accept non-canonical init form here but emit ext. warning.
8148 if (Var
->getInitStyle() != VarDecl::CInit
&& EmitDiags
)
8149 SemaRef
.Diag(S
->getBeginLoc(),
8150 diag::ext_omp_loop_not_canonical_init
)
8151 << S
->getSourceRange();
8152 return setLCDeclAndLB(
8154 buildDeclRefExpr(SemaRef
, Var
,
8155 Var
->getType().getNonReferenceType(),
8157 Var
->getInit(), EmitDiags
);
8161 } else if (auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(S
)) {
8162 if (CE
->getOperator() == OO_Equal
) {
8163 Expr
*LHS
= CE
->getArg(0);
8164 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(LHS
)) {
8165 if (auto *CED
= dyn_cast
<OMPCapturedExprDecl
>(DRE
->getDecl()))
8166 if (auto *ME
= dyn_cast
<MemberExpr
>(getExprAsWritten(CED
->getInit())))
8167 return setLCDeclAndLB(ME
->getMemberDecl(), ME
, BO
->getRHS(),
8169 return setLCDeclAndLB(DRE
->getDecl(), DRE
, CE
->getArg(1), EmitDiags
);
8171 if (auto *ME
= dyn_cast
<MemberExpr
>(LHS
)) {
8172 if (ME
->isArrow() &&
8173 isa
<CXXThisExpr
>(ME
->getBase()->IgnoreParenImpCasts()))
8174 return setLCDeclAndLB(ME
->getMemberDecl(), ME
, BO
->getRHS(),
8180 if (dependent() || SemaRef
.CurContext
->isDependentContext())
8183 SemaRef
.Diag(S
->getBeginLoc(), diag::err_omp_loop_not_canonical_init
)
8184 << S
->getSourceRange();
8189 /// Ignore parenthesizes, implicit casts, copy constructor and return the
8190 /// variable (which may be the loop variable) if possible.
8191 static const ValueDecl
*getInitLCDecl(const Expr
*E
) {
8194 E
= getExprAsWritten(E
);
8195 if (const auto *CE
= dyn_cast_or_null
<CXXConstructExpr
>(E
))
8196 if (const CXXConstructorDecl
*Ctor
= CE
->getConstructor())
8197 if ((Ctor
->isCopyOrMoveConstructor() ||
8198 Ctor
->isConvertingConstructor(/*AllowExplicit=*/false)) &&
8199 CE
->getNumArgs() > 0 && CE
->getArg(0) != nullptr)
8200 E
= CE
->getArg(0)->IgnoreParenImpCasts();
8201 if (const auto *DRE
= dyn_cast_or_null
<DeclRefExpr
>(E
)) {
8202 if (const auto *VD
= dyn_cast
<VarDecl
>(DRE
->getDecl()))
8203 return getCanonicalDecl(VD
);
8205 if (const auto *ME
= dyn_cast_or_null
<MemberExpr
>(E
))
8206 if (ME
->isArrow() && isa
<CXXThisExpr
>(ME
->getBase()->IgnoreParenImpCasts()))
8207 return getCanonicalDecl(ME
->getMemberDecl());
8211 bool OpenMPIterationSpaceChecker::checkAndSetCond(Expr
*S
) {
8212 // Check test-expr for canonical form, save upper-bound UB, flags for
8213 // less/greater and for strict/non-strict comparison.
8214 // OpenMP [2.9] Canonical loop form. Test-expr may be one of the following:
8215 // var relational-op b
8216 // b relational-op var
8218 bool IneqCondIsCanonical
= SemaRef
.getLangOpts().OpenMP
>= 50;
8220 SemaRef
.Diag(DefaultLoc
, diag::err_omp_loop_not_canonical_cond
)
8221 << (IneqCondIsCanonical
? 1 : 0) << LCDecl
;
8225 S
= getExprAsWritten(S
);
8227 if (!CollapsedLoopVarDecls
.empty()) {
8228 ForSubExprChecker FSEC
{CollapsedLoopVarDecls
};
8229 if (!FSEC
.TraverseStmt(S
)) {
8230 SourceRange Range
= FSEC
.getErrRange();
8231 SemaRef
.Diag(Range
.getBegin(), diag::err_omp_loop_bad_collapse_var
)
8232 << Range
.getEnd() << 1 << FSEC
.getForbiddenVar();
8237 SourceLocation CondLoc
= S
->getBeginLoc();
8238 auto &&CheckAndSetCond
=
8239 [this, IneqCondIsCanonical
](BinaryOperatorKind Opcode
, const Expr
*LHS
,
8240 const Expr
*RHS
, SourceRange SR
,
8241 SourceLocation OpLoc
) -> std::optional
<bool> {
8242 if (BinaryOperator::isRelationalOp(Opcode
)) {
8243 if (getInitLCDecl(LHS
) == LCDecl
)
8244 return setUB(const_cast<Expr
*>(RHS
),
8245 (Opcode
== BO_LT
|| Opcode
== BO_LE
),
8246 (Opcode
== BO_LT
|| Opcode
== BO_GT
), SR
, OpLoc
);
8247 if (getInitLCDecl(RHS
) == LCDecl
)
8248 return setUB(const_cast<Expr
*>(LHS
),
8249 (Opcode
== BO_GT
|| Opcode
== BO_GE
),
8250 (Opcode
== BO_LT
|| Opcode
== BO_GT
), SR
, OpLoc
);
8251 } else if (IneqCondIsCanonical
&& Opcode
== BO_NE
) {
8252 return setUB(const_cast<Expr
*>(getInitLCDecl(LHS
) == LCDecl
? RHS
: LHS
),
8253 /*LessOp=*/std::nullopt
,
8254 /*StrictOp=*/true, SR
, OpLoc
);
8256 return std::nullopt
;
8258 std::optional
<bool> Res
;
8259 if (auto *RBO
= dyn_cast
<CXXRewrittenBinaryOperator
>(S
)) {
8260 CXXRewrittenBinaryOperator::DecomposedForm DF
= RBO
->getDecomposedForm();
8261 Res
= CheckAndSetCond(DF
.Opcode
, DF
.LHS
, DF
.RHS
, RBO
->getSourceRange(),
8262 RBO
->getOperatorLoc());
8263 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(S
)) {
8264 Res
= CheckAndSetCond(BO
->getOpcode(), BO
->getLHS(), BO
->getRHS(),
8265 BO
->getSourceRange(), BO
->getOperatorLoc());
8266 } else if (auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(S
)) {
8267 if (CE
->getNumArgs() == 2) {
8268 Res
= CheckAndSetCond(
8269 BinaryOperator::getOverloadedOpcode(CE
->getOperator()), CE
->getArg(0),
8270 CE
->getArg(1), CE
->getSourceRange(), CE
->getOperatorLoc());
8275 if (dependent() || SemaRef
.CurContext
->isDependentContext())
8277 SemaRef
.Diag(CondLoc
, diag::err_omp_loop_not_canonical_cond
)
8278 << (IneqCondIsCanonical
? 1 : 0) << S
->getSourceRange() << LCDecl
;
8282 bool OpenMPIterationSpaceChecker::checkAndSetIncRHS(Expr
*RHS
) {
8283 // RHS of canonical loop form increment can be:
8288 RHS
= RHS
->IgnoreParenImpCasts();
8289 if (auto *BO
= dyn_cast
<BinaryOperator
>(RHS
)) {
8290 if (BO
->isAdditiveOp()) {
8291 bool IsAdd
= BO
->getOpcode() == BO_Add
;
8292 if (getInitLCDecl(BO
->getLHS()) == LCDecl
)
8293 return setStep(BO
->getRHS(), !IsAdd
);
8294 if (IsAdd
&& getInitLCDecl(BO
->getRHS()) == LCDecl
)
8295 return setStep(BO
->getLHS(), /*Subtract=*/false);
8297 } else if (auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(RHS
)) {
8298 bool IsAdd
= CE
->getOperator() == OO_Plus
;
8299 if ((IsAdd
|| CE
->getOperator() == OO_Minus
) && CE
->getNumArgs() == 2) {
8300 if (getInitLCDecl(CE
->getArg(0)) == LCDecl
)
8301 return setStep(CE
->getArg(1), !IsAdd
);
8302 if (IsAdd
&& getInitLCDecl(CE
->getArg(1)) == LCDecl
)
8303 return setStep(CE
->getArg(0), /*Subtract=*/false);
8306 if (dependent() || SemaRef
.CurContext
->isDependentContext())
8308 SemaRef
.Diag(RHS
->getBeginLoc(), diag::err_omp_loop_not_canonical_incr
)
8309 << RHS
->getSourceRange() << LCDecl
;
8313 bool OpenMPIterationSpaceChecker::checkAndSetInc(Expr
*S
) {
8314 // Check incr-expr for canonical loop form and return true if it
8315 // does not conform.
8316 // OpenMP [2.6] Canonical loop form. Test-expr may be one of the following:
8328 SemaRef
.Diag(DefaultLoc
, diag::err_omp_loop_not_canonical_incr
) << LCDecl
;
8331 if (auto *ExprTemp
= dyn_cast
<ExprWithCleanups
>(S
))
8332 if (!ExprTemp
->cleanupsHaveSideEffects())
8333 S
= ExprTemp
->getSubExpr();
8335 if (!CollapsedLoopVarDecls
.empty()) {
8336 ForSubExprChecker FSEC
{CollapsedLoopVarDecls
};
8337 if (!FSEC
.TraverseStmt(S
)) {
8338 SourceRange Range
= FSEC
.getErrRange();
8339 SemaRef
.Diag(Range
.getBegin(), diag::err_omp_loop_bad_collapse_var
)
8340 << Range
.getEnd() << 2 << FSEC
.getForbiddenVar();
8345 IncrementSrcRange
= S
->getSourceRange();
8346 S
= S
->IgnoreParens();
8347 if (auto *UO
= dyn_cast
<UnaryOperator
>(S
)) {
8348 if (UO
->isIncrementDecrementOp() &&
8349 getInitLCDecl(UO
->getSubExpr()) == LCDecl
)
8350 return setStep(SemaRef
8351 .ActOnIntegerConstant(UO
->getBeginLoc(),
8352 (UO
->isDecrementOp() ? -1 : 1))
8354 /*Subtract=*/false);
8355 } else if (auto *BO
= dyn_cast
<BinaryOperator
>(S
)) {
8356 switch (BO
->getOpcode()) {
8359 if (getInitLCDecl(BO
->getLHS()) == LCDecl
)
8360 return setStep(BO
->getRHS(), BO
->getOpcode() == BO_SubAssign
);
8363 if (getInitLCDecl(BO
->getLHS()) == LCDecl
)
8364 return checkAndSetIncRHS(BO
->getRHS());
8369 } else if (auto *CE
= dyn_cast
<CXXOperatorCallExpr
>(S
)) {
8370 switch (CE
->getOperator()) {
8373 if (getInitLCDecl(CE
->getArg(0)) == LCDecl
)
8374 return setStep(SemaRef
8375 .ActOnIntegerConstant(
8377 ((CE
->getOperator() == OO_MinusMinus
) ? -1 : 1))
8379 /*Subtract=*/false);
8383 if (getInitLCDecl(CE
->getArg(0)) == LCDecl
)
8384 return setStep(CE
->getArg(1), CE
->getOperator() == OO_MinusEqual
);
8387 if (getInitLCDecl(CE
->getArg(0)) == LCDecl
)
8388 return checkAndSetIncRHS(CE
->getArg(1));
8394 if (dependent() || SemaRef
.CurContext
->isDependentContext())
8396 SemaRef
.Diag(S
->getBeginLoc(), diag::err_omp_loop_not_canonical_incr
)
8397 << S
->getSourceRange() << LCDecl
;
8402 tryBuildCapture(Sema
&SemaRef
, Expr
*Capture
,
8403 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
,
8404 StringRef Name
= ".capture_expr.") {
8405 if (SemaRef
.CurContext
->isDependentContext() || Capture
->containsErrors())
8407 if (Capture
->isEvaluatable(SemaRef
.Context
, Expr::SE_AllowSideEffects
))
8408 return SemaRef
.PerformImplicitConversion(Capture
->IgnoreImpCasts(),
8410 AssignmentAction::Converting
,
8411 /*AllowExplicit=*/true);
8412 auto I
= Captures
.find(Capture
);
8413 if (I
!= Captures
.end())
8414 return buildCapture(SemaRef
, Capture
, I
->second
, Name
);
8415 DeclRefExpr
*Ref
= nullptr;
8416 ExprResult Res
= buildCapture(SemaRef
, Capture
, Ref
, Name
);
8417 Captures
[Capture
] = Ref
;
8421 /// Calculate number of iterations, transforming to unsigned, if number of
8422 /// iterations may be larger than the original type.
8424 calculateNumIters(Sema
&SemaRef
, Scope
*S
, SourceLocation DefaultLoc
,
8425 Expr
*Lower
, Expr
*Upper
, Expr
*Step
, QualType LCTy
,
8426 bool TestIsStrictOp
, bool RoundToStep
,
8427 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) {
8428 ExprResult NewStep
= tryBuildCapture(SemaRef
, Step
, Captures
, ".new_step");
8429 if (!NewStep
.isUsable())
8431 llvm::APSInt LRes
, SRes
;
8432 bool IsLowerConst
= false, IsStepConst
= false;
8433 if (std::optional
<llvm::APSInt
> Res
=
8434 Lower
->getIntegerConstantExpr(SemaRef
.Context
)) {
8436 IsLowerConst
= true;
8438 if (std::optional
<llvm::APSInt
> Res
=
8439 Step
->getIntegerConstantExpr(SemaRef
.Context
)) {
8443 bool NoNeedToConvert
= IsLowerConst
&& !RoundToStep
&&
8444 ((!TestIsStrictOp
&& LRes
.isNonNegative()) ||
8445 (TestIsStrictOp
&& LRes
.isStrictlyPositive()));
8446 bool NeedToReorganize
= false;
8447 // Check if any subexpressions in Lower -Step [+ 1] lead to overflow.
8448 if (!NoNeedToConvert
&& IsLowerConst
&&
8449 (TestIsStrictOp
|| (RoundToStep
&& IsStepConst
))) {
8450 NoNeedToConvert
= true;
8452 unsigned BW
= LRes
.getBitWidth() > SRes
.getBitWidth()
8453 ? LRes
.getBitWidth()
8454 : SRes
.getBitWidth();
8455 LRes
= LRes
.extend(BW
+ 1);
8456 LRes
.setIsSigned(true);
8457 SRes
= SRes
.extend(BW
+ 1);
8458 SRes
.setIsSigned(true);
8460 NoNeedToConvert
= LRes
.trunc(BW
).extend(BW
+ 1) == LRes
;
8461 LRes
= LRes
.trunc(BW
);
8463 if (TestIsStrictOp
) {
8464 unsigned BW
= LRes
.getBitWidth();
8465 LRes
= LRes
.extend(BW
+ 1);
8466 LRes
.setIsSigned(true);
8469 NoNeedToConvert
&& LRes
.trunc(BW
).extend(BW
+ 1) == LRes
;
8470 // truncate to the original bitwidth.
8471 LRes
= LRes
.trunc(BW
);
8473 NeedToReorganize
= NoNeedToConvert
;
8476 bool IsUpperConst
= false;
8477 if (std::optional
<llvm::APSInt
> Res
=
8478 Upper
->getIntegerConstantExpr(SemaRef
.Context
)) {
8480 IsUpperConst
= true;
8482 if (NoNeedToConvert
&& IsLowerConst
&& IsUpperConst
&&
8483 (!RoundToStep
|| IsStepConst
)) {
8484 unsigned BW
= LRes
.getBitWidth() > URes
.getBitWidth() ? LRes
.getBitWidth()
8485 : URes
.getBitWidth();
8486 LRes
= LRes
.extend(BW
+ 1);
8487 LRes
.setIsSigned(true);
8488 URes
= URes
.extend(BW
+ 1);
8489 URes
.setIsSigned(true);
8491 NoNeedToConvert
= URes
.trunc(BW
).extend(BW
+ 1) == URes
;
8492 NeedToReorganize
= NoNeedToConvert
;
8494 // If the boundaries are not constant or (Lower - Step [+ 1]) is not constant
8495 // or less than zero (Upper - (Lower - Step [+ 1]) may overflow) - promote to
8497 if ((!NoNeedToConvert
|| (LRes
.isNegative() && !IsUpperConst
)) &&
8498 !LCTy
->isDependentType() && LCTy
->isIntegerType()) {
8499 QualType LowerTy
= Lower
->getType();
8500 QualType UpperTy
= Upper
->getType();
8501 uint64_t LowerSize
= SemaRef
.Context
.getTypeSize(LowerTy
);
8502 uint64_t UpperSize
= SemaRef
.Context
.getTypeSize(UpperTy
);
8503 if ((LowerSize
<= UpperSize
&& UpperTy
->hasSignedIntegerRepresentation()) ||
8504 (LowerSize
> UpperSize
&& LowerTy
->hasSignedIntegerRepresentation())) {
8505 QualType CastType
= SemaRef
.Context
.getIntTypeForBitwidth(
8506 LowerSize
> UpperSize
? LowerSize
: UpperSize
, /*Signed=*/0);
8509 .PerformImplicitConversion(
8510 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Upper
).get(),
8511 CastType
, AssignmentAction::Converting
)
8513 Lower
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Lower
).get();
8514 NewStep
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, NewStep
.get());
8517 if (!Lower
|| !Upper
|| NewStep
.isInvalid())
8521 // If need to reorganize, then calculate the form as Upper - (Lower - Step [+
8523 if (NeedToReorganize
) {
8529 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Sub
, Diff
.get(), NewStep
.get());
8530 if (!Diff
.isUsable())
8534 // Lower - Step [+ 1]
8536 Diff
= SemaRef
.BuildBinOp(
8537 S
, DefaultLoc
, BO_Add
, Diff
.get(),
8538 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get());
8539 if (!Diff
.isUsable())
8542 Diff
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Diff
.get());
8543 if (!Diff
.isUsable())
8546 // Upper - (Lower - Step [+ 1]).
8547 Diff
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Sub
, Upper
, Diff
.get());
8548 if (!Diff
.isUsable())
8551 Diff
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Sub
, Upper
, Lower
);
8553 if (!Diff
.isUsable() && LCTy
->getAsCXXRecordDecl()) {
8554 // BuildBinOp already emitted error, this one is to point user to upper
8555 // and lower bound, and to tell what is passed to 'operator-'.
8556 SemaRef
.Diag(Upper
->getBeginLoc(), diag::err_omp_loop_diff_cxx
)
8557 << Upper
->getSourceRange() << Lower
->getSourceRange();
8561 if (!Diff
.isUsable())
8564 // Upper - Lower [- 1]
8566 Diff
= SemaRef
.BuildBinOp(
8567 S
, DefaultLoc
, BO_Sub
, Diff
.get(),
8568 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get());
8569 if (!Diff
.isUsable())
8573 // Upper - Lower [- 1] + Step
8575 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Add
, Diff
.get(), NewStep
.get());
8576 if (!Diff
.isUsable())
8581 // Parentheses (for dumping/debugging purposes only).
8582 Diff
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Diff
.get());
8583 if (!Diff
.isUsable())
8586 // (Upper - Lower [- 1] + Step) / Step or (Upper - Lower) / Step
8587 Diff
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Div
, Diff
.get(), NewStep
.get());
8588 if (!Diff
.isUsable())
8594 /// Build the expression to calculate the number of iterations.
8595 Expr
*OpenMPIterationSpaceChecker::buildNumIterations(
8596 Scope
*S
, ArrayRef
<LoopIterationSpace
> ResultIterSpaces
, bool LimitedType
,
8597 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const {
8598 QualType VarType
= LCDecl
->getType().getNonReferenceType();
8599 if (!VarType
->isIntegerType() && !VarType
->isPointerType() &&
8600 !SemaRef
.getLangOpts().CPlusPlus
)
8604 // OuterVar = (LB = TestIsLessOp.getValue() ? min(LB(MinVal), LB(MaxVal)) :
8605 // max(LB(MinVal), LB(MaxVal)))
8606 if (InitDependOnLC
) {
8607 const LoopIterationSpace
&IS
= ResultIterSpaces
[*InitDependOnLC
- 1];
8608 if (!IS
.MinValue
|| !IS
.MaxValue
)
8611 ExprResult MinValue
=
8612 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, IS
.MinValue
);
8613 if (!MinValue
.isUsable())
8616 ExprResult LBMinVal
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Assign
,
8617 IS
.CounterVar
, MinValue
.get());
8618 if (!LBMinVal
.isUsable())
8620 // OuterVar = Min, LBVal
8622 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Comma
, LBMinVal
.get(), LBVal
);
8623 if (!LBMinVal
.isUsable())
8625 // (OuterVar = Min, LBVal)
8626 LBMinVal
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, LBMinVal
.get());
8627 if (!LBMinVal
.isUsable())
8631 ExprResult MaxValue
=
8632 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, IS
.MaxValue
);
8633 if (!MaxValue
.isUsable())
8636 ExprResult LBMaxVal
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Assign
,
8637 IS
.CounterVar
, MaxValue
.get());
8638 if (!LBMaxVal
.isUsable())
8640 // OuterVar = Max, LBVal
8642 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Comma
, LBMaxVal
.get(), LBVal
);
8643 if (!LBMaxVal
.isUsable())
8645 // (OuterVar = Max, LBVal)
8646 LBMaxVal
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, LBMaxVal
.get());
8647 if (!LBMaxVal
.isUsable())
8651 tryBuildCapture(SemaRef
, LBMinVal
.get(), Captures
, ".lb_min").get();
8653 tryBuildCapture(SemaRef
, LBMaxVal
.get(), Captures
, ".lb_max").get();
8654 if (!LBMin
|| !LBMax
)
8656 // LB(MinVal) < LB(MaxVal)
8657 ExprResult MinLessMaxRes
=
8658 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_LT
, LBMin
, LBMax
);
8659 if (!MinLessMaxRes
.isUsable())
8662 tryBuildCapture(SemaRef
, MinLessMaxRes
.get(), Captures
, ".min_less_max")
8666 if (*TestIsLessOp
) {
8667 // LB(MinVal) < LB(MaxVal) ? LB(MinVal) : LB(MaxVal) - min(LB(MinVal),
8669 ExprResult MinLB
= SemaRef
.ActOnConditionalOp(DefaultLoc
, DefaultLoc
,
8670 MinLessMax
, LBMin
, LBMax
);
8671 if (!MinLB
.isUsable())
8673 LBVal
= MinLB
.get();
8675 // LB(MinVal) < LB(MaxVal) ? LB(MaxVal) : LB(MinVal) - max(LB(MinVal),
8677 ExprResult MaxLB
= SemaRef
.ActOnConditionalOp(DefaultLoc
, DefaultLoc
,
8678 MinLessMax
, LBMax
, LBMin
);
8679 if (!MaxLB
.isUsable())
8681 LBVal
= MaxLB
.get();
8685 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Assign
, IS
.CounterVar
, LBVal
);
8686 if (!LBMinVal
.isUsable())
8688 LBVal
= LBMinVal
.get();
8690 // UB = TestIsLessOp.getValue() ? max(UB(MinVal), UB(MaxVal)) :
8691 // min(UB(MinVal), UB(MaxVal))
8692 if (CondDependOnLC
) {
8693 const LoopIterationSpace
&IS
= ResultIterSpaces
[*CondDependOnLC
- 1];
8694 if (!IS
.MinValue
|| !IS
.MaxValue
)
8697 ExprResult MinValue
=
8698 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, IS
.MinValue
);
8699 if (!MinValue
.isUsable())
8702 ExprResult UBMinVal
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Assign
,
8703 IS
.CounterVar
, MinValue
.get());
8704 if (!UBMinVal
.isUsable())
8706 // OuterVar = Min, UBVal
8708 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Comma
, UBMinVal
.get(), UBVal
);
8709 if (!UBMinVal
.isUsable())
8711 // (OuterVar = Min, UBVal)
8712 UBMinVal
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, UBMinVal
.get());
8713 if (!UBMinVal
.isUsable())
8717 ExprResult MaxValue
=
8718 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, IS
.MaxValue
);
8719 if (!MaxValue
.isUsable())
8722 ExprResult UBMaxVal
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Assign
,
8723 IS
.CounterVar
, MaxValue
.get());
8724 if (!UBMaxVal
.isUsable())
8726 // OuterVar = Max, UBVal
8728 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Comma
, UBMaxVal
.get(), UBVal
);
8729 if (!UBMaxVal
.isUsable())
8731 // (OuterVar = Max, UBVal)
8732 UBMaxVal
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, UBMaxVal
.get());
8733 if (!UBMaxVal
.isUsable())
8737 tryBuildCapture(SemaRef
, UBMinVal
.get(), Captures
, ".ub_min").get();
8739 tryBuildCapture(SemaRef
, UBMaxVal
.get(), Captures
, ".ub_max").get();
8740 if (!UBMin
|| !UBMax
)
8742 // UB(MinVal) > UB(MaxVal)
8743 ExprResult MinGreaterMaxRes
=
8744 SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_GT
, UBMin
, UBMax
);
8745 if (!MinGreaterMaxRes
.isUsable())
8747 Expr
*MinGreaterMax
= tryBuildCapture(SemaRef
, MinGreaterMaxRes
.get(),
8748 Captures
, ".min_greater_max")
8752 if (*TestIsLessOp
) {
8753 // UB(MinVal) > UB(MaxVal) ? UB(MinVal) : UB(MaxVal) - max(UB(MinVal),
8755 ExprResult MaxUB
= SemaRef
.ActOnConditionalOp(
8756 DefaultLoc
, DefaultLoc
, MinGreaterMax
, UBMin
, UBMax
);
8757 if (!MaxUB
.isUsable())
8759 UBVal
= MaxUB
.get();
8761 // UB(MinVal) > UB(MaxVal) ? UB(MaxVal) : UB(MinVal) - min(UB(MinVal),
8763 ExprResult MinUB
= SemaRef
.ActOnConditionalOp(
8764 DefaultLoc
, DefaultLoc
, MinGreaterMax
, UBMax
, UBMin
);
8765 if (!MinUB
.isUsable())
8767 UBVal
= MinUB
.get();
8770 Expr
*UBExpr
= *TestIsLessOp
? UBVal
: LBVal
;
8771 Expr
*LBExpr
= *TestIsLessOp
? LBVal
: UBVal
;
8772 Expr
*Upper
= tryBuildCapture(SemaRef
, UBExpr
, Captures
, ".upper").get();
8773 Expr
*Lower
= tryBuildCapture(SemaRef
, LBExpr
, Captures
, ".lower").get();
8774 if (!Upper
|| !Lower
)
8777 ExprResult Diff
= calculateNumIters(SemaRef
, S
, DefaultLoc
, Lower
, Upper
,
8778 Step
, VarType
, TestIsStrictOp
,
8779 /*RoundToStep=*/true, Captures
);
8780 if (!Diff
.isUsable())
8783 // OpenMP runtime requires 32-bit or 64-bit loop variables.
8784 QualType Type
= Diff
.get()->getType();
8785 ASTContext
&C
= SemaRef
.Context
;
8786 bool UseVarType
= VarType
->hasIntegerRepresentation() &&
8787 C
.getTypeSize(Type
) > C
.getTypeSize(VarType
);
8788 if (!Type
->isIntegerType() || UseVarType
) {
8790 UseVarType
? C
.getTypeSize(VarType
) : C
.getTypeSize(Type
);
8791 bool IsSigned
= UseVarType
? VarType
->hasSignedIntegerRepresentation()
8792 : Type
->hasSignedIntegerRepresentation();
8793 Type
= C
.getIntTypeForBitwidth(NewSize
, IsSigned
);
8794 if (!SemaRef
.Context
.hasSameType(Diff
.get()->getType(), Type
)) {
8795 Diff
= SemaRef
.PerformImplicitConversion(Diff
.get(), Type
,
8796 AssignmentAction::Converting
,
8797 /*AllowExplicit=*/true);
8798 if (!Diff
.isUsable())
8803 unsigned NewSize
= (C
.getTypeSize(Type
) > 32) ? 64 : 32;
8804 if (NewSize
!= C
.getTypeSize(Type
)) {
8805 if (NewSize
< C
.getTypeSize(Type
)) {
8806 assert(NewSize
== 64 && "incorrect loop var size");
8807 SemaRef
.Diag(DefaultLoc
, diag::warn_omp_loop_64_bit_var
)
8808 << InitSrcRange
<< ConditionSrcRange
;
8810 QualType NewType
= C
.getIntTypeForBitwidth(
8811 NewSize
, Type
->hasSignedIntegerRepresentation() ||
8812 C
.getTypeSize(Type
) < NewSize
);
8813 if (!SemaRef
.Context
.hasSameType(Diff
.get()->getType(), NewType
)) {
8814 Diff
= SemaRef
.PerformImplicitConversion(Diff
.get(), NewType
,
8815 AssignmentAction::Converting
,
8816 /*AllowExplicit=*/true);
8817 if (!Diff
.isUsable())
8826 std::pair
<Expr
*, Expr
*> OpenMPIterationSpaceChecker::buildMinMaxValues(
8827 Scope
*S
, llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const {
8828 // Do not build for iterators, they cannot be used in non-rectangular loop
8830 if (LCDecl
->getType()->isRecordType())
8831 return std::make_pair(nullptr, nullptr);
8832 // If we subtract, the min is in the condition, otherwise the min is in the
8834 Expr
*MinExpr
= nullptr;
8835 Expr
*MaxExpr
= nullptr;
8836 Expr
*LBExpr
= *TestIsLessOp
? LB
: UB
;
8837 Expr
*UBExpr
= *TestIsLessOp
? UB
: LB
;
8839 *TestIsLessOp
? InitDependOnLC
.has_value() : CondDependOnLC
.has_value();
8841 *TestIsLessOp
? CondDependOnLC
.has_value() : InitDependOnLC
.has_value();
8843 LBNonRect
? LBExpr
: tryBuildCapture(SemaRef
, LBExpr
, Captures
).get();
8845 UBNonRect
? UBExpr
: tryBuildCapture(SemaRef
, UBExpr
, Captures
).get();
8846 if (!Upper
|| !Lower
)
8847 return std::make_pair(nullptr, nullptr);
8854 // Build minimum/maximum value based on number of iterations.
8855 QualType VarType
= LCDecl
->getType().getNonReferenceType();
8857 ExprResult Diff
= calculateNumIters(SemaRef
, S
, DefaultLoc
, Lower
, Upper
,
8858 Step
, VarType
, TestIsStrictOp
,
8859 /*RoundToStep=*/false, Captures
);
8860 if (!Diff
.isUsable())
8861 return std::make_pair(nullptr, nullptr);
8863 // ((Upper - Lower [- 1]) / Step) * Step
8864 // Parentheses (for dumping/debugging purposes only).
8865 Diff
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Diff
.get());
8866 if (!Diff
.isUsable())
8867 return std::make_pair(nullptr, nullptr);
8869 ExprResult NewStep
= tryBuildCapture(SemaRef
, Step
, Captures
, ".new_step");
8870 if (!NewStep
.isUsable())
8871 return std::make_pair(nullptr, nullptr);
8872 Diff
= SemaRef
.BuildBinOp(S
, DefaultLoc
, BO_Mul
, Diff
.get(), NewStep
.get());
8873 if (!Diff
.isUsable())
8874 return std::make_pair(nullptr, nullptr);
8876 // Parentheses (for dumping/debugging purposes only).
8877 Diff
= SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Diff
.get());
8878 if (!Diff
.isUsable())
8879 return std::make_pair(nullptr, nullptr);
8881 // Convert to the ptrdiff_t, if original type is pointer.
8882 if (VarType
->isAnyPointerType() &&
8883 !SemaRef
.Context
.hasSameType(
8884 Diff
.get()->getType(),
8885 SemaRef
.Context
.getUnsignedPointerDiffType())) {
8886 Diff
= SemaRef
.PerformImplicitConversion(
8887 Diff
.get(), SemaRef
.Context
.getUnsignedPointerDiffType(),
8888 AssignmentAction::Converting
, /*AllowExplicit=*/true);
8890 if (!Diff
.isUsable())
8891 return std::make_pair(nullptr, nullptr);
8893 if (*TestIsLessOp
) {
8895 // MaxExpr = Lower + (((Upper - Lower [- 1]) / Step) * Step)
8896 Diff
= SemaRef
.BuildBinOp(
8897 S
, DefaultLoc
, BO_Add
,
8898 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Lower
).get(),
8900 if (!Diff
.isUsable())
8901 return std::make_pair(nullptr, nullptr);
8904 // MinExpr = Upper - (((Upper - Lower [- 1]) / Step) * Step)
8905 Diff
= SemaRef
.BuildBinOp(
8906 S
, DefaultLoc
, BO_Sub
,
8907 SemaRef
.ActOnParenExpr(DefaultLoc
, DefaultLoc
, Upper
).get(),
8909 if (!Diff
.isUsable())
8910 return std::make_pair(nullptr, nullptr);
8913 // Convert to the original type.
8914 if (SemaRef
.Context
.hasSameType(Diff
.get()->getType(), VarType
))
8915 Diff
= SemaRef
.PerformImplicitConversion(Diff
.get(), VarType
,
8916 AssignmentAction::Converting
,
8917 /*AllowExplicit=*/true);
8918 if (!Diff
.isUsable())
8919 return std::make_pair(nullptr, nullptr);
8921 Sema::TentativeAnalysisScope
Trap(SemaRef
);
8922 Diff
= SemaRef
.ActOnFinishFullExpr(Diff
.get(), /*DiscardedValue=*/false);
8923 if (!Diff
.isUsable())
8924 return std::make_pair(nullptr, nullptr);
8927 MaxExpr
= Diff
.get();
8929 MinExpr
= Diff
.get();
8931 return std::make_pair(MinExpr
, MaxExpr
);
8934 Expr
*OpenMPIterationSpaceChecker::buildFinalCondition(Scope
*S
) const {
8935 if (InitDependOnLC
|| CondDependOnLC
)
8940 Expr
*OpenMPIterationSpaceChecker::buildPreCond(
8941 Scope
*S
, Expr
*Cond
,
8942 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) const {
8943 // Do not build a precondition when the condition/initialization is dependent
8944 // to prevent pessimistic early loop exit.
8945 // TODO: this can be improved by calculating min/max values but not sure that
8946 // it will be very effective.
8947 if (CondDependOnLC
|| InitDependOnLC
)
8949 .PerformImplicitConversion(
8950 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get(),
8951 SemaRef
.Context
.BoolTy
, /*Action=*/AssignmentAction::Casting
,
8952 /*AllowExplicit=*/true)
8955 // Try to build LB <op> UB, where <op> is <, >, <=, or >=.
8956 Sema::TentativeAnalysisScope
Trap(SemaRef
);
8958 ExprResult NewLB
= tryBuildCapture(SemaRef
, LB
, Captures
);
8959 ExprResult NewUB
= tryBuildCapture(SemaRef
, UB
, Captures
);
8960 if (!NewLB
.isUsable() || !NewUB
.isUsable())
8963 ExprResult CondExpr
=
8964 SemaRef
.BuildBinOp(S
, DefaultLoc
,
8965 *TestIsLessOp
? (TestIsStrictOp
? BO_LT
: BO_LE
)
8966 : (TestIsStrictOp
? BO_GT
: BO_GE
),
8967 NewLB
.get(), NewUB
.get());
8968 if (CondExpr
.isUsable()) {
8969 if (!SemaRef
.Context
.hasSameUnqualifiedType(CondExpr
.get()->getType(),
8970 SemaRef
.Context
.BoolTy
))
8971 CondExpr
= SemaRef
.PerformImplicitConversion(
8972 CondExpr
.get(), SemaRef
.Context
.BoolTy
,
8973 /*Action=*/AssignmentAction::Casting
,
8974 /*AllowExplicit=*/true);
8977 // Otherwise use original loop condition and evaluate it in runtime.
8978 return CondExpr
.isUsable() ? CondExpr
.get() : Cond
;
8981 /// Build reference expression to the counter be used for codegen.
8982 DeclRefExpr
*OpenMPIterationSpaceChecker::buildCounterVar(
8983 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
,
8984 DSAStackTy
&DSA
) const {
8985 auto *VD
= dyn_cast
<VarDecl
>(LCDecl
);
8987 VD
= SemaRef
.OpenMP().isOpenMPCapturedDecl(LCDecl
);
8988 DeclRefExpr
*Ref
= buildDeclRefExpr(
8989 SemaRef
, VD
, VD
->getType().getNonReferenceType(), DefaultLoc
);
8990 const DSAStackTy::DSAVarData Data
=
8991 DSA
.getTopDSA(LCDecl
, /*FromParent=*/false);
8992 // If the loop control decl is explicitly marked as private, do not mark it
8993 // as captured again.
8994 if (!isOpenMPPrivate(Data
.CKind
) || !Data
.RefExpr
)
8995 Captures
.insert(std::make_pair(LCRef
, Ref
));
8998 return cast
<DeclRefExpr
>(LCRef
);
9001 Expr
*OpenMPIterationSpaceChecker::buildPrivateCounterVar() const {
9002 if (LCDecl
&& !LCDecl
->isInvalidDecl()) {
9003 QualType Type
= LCDecl
->getType().getNonReferenceType();
9004 VarDecl
*PrivateVar
= buildVarDecl(
9005 SemaRef
, DefaultLoc
, Type
, LCDecl
->getName(),
9006 LCDecl
->hasAttrs() ? &LCDecl
->getAttrs() : nullptr,
9007 isa
<VarDecl
>(LCDecl
)
9008 ? buildDeclRefExpr(SemaRef
, cast
<VarDecl
>(LCDecl
), Type
, DefaultLoc
)
9010 if (PrivateVar
->isInvalidDecl())
9012 return buildDeclRefExpr(SemaRef
, PrivateVar
, Type
, DefaultLoc
);
9017 /// Build initialization of the counter to be used for codegen.
9018 Expr
*OpenMPIterationSpaceChecker::buildCounterInit() const { return LB
; }
9020 /// Build step of the counter be used for codegen.
9021 Expr
*OpenMPIterationSpaceChecker::buildCounterStep() const { return Step
; }
9023 Expr
*OpenMPIterationSpaceChecker::buildOrderedLoopData(
9024 Scope
*S
, Expr
*Counter
,
9025 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
, SourceLocation Loc
,
9026 Expr
*Inc
, OverloadedOperatorKind OOK
) {
9027 Expr
*Cnt
= SemaRef
.DefaultLvalueConversion(Counter
).get();
9031 assert((OOK
== OO_Plus
|| OOK
== OO_Minus
) &&
9032 "Expected only + or - operations for depend clauses.");
9033 BinaryOperatorKind BOK
= (OOK
== OO_Plus
) ? BO_Add
: BO_Sub
;
9034 Cnt
= SemaRef
.BuildBinOp(S
, Loc
, BOK
, Cnt
, Inc
).get();
9038 QualType VarType
= LCDecl
->getType().getNonReferenceType();
9039 if (!VarType
->isIntegerType() && !VarType
->isPointerType() &&
9040 !SemaRef
.getLangOpts().CPlusPlus
)
9044 *TestIsLessOp
? Cnt
: tryBuildCapture(SemaRef
, LB
, Captures
).get();
9046 *TestIsLessOp
? tryBuildCapture(SemaRef
, LB
, Captures
).get() : Cnt
;
9047 if (!Upper
|| !Lower
)
9050 ExprResult Diff
= calculateNumIters(
9051 SemaRef
, S
, DefaultLoc
, Lower
, Upper
, Step
, VarType
,
9052 /*TestIsStrictOp=*/false, /*RoundToStep=*/false, Captures
);
9053 if (!Diff
.isUsable())
9060 void SemaOpenMP::ActOnOpenMPLoopInitialization(SourceLocation ForLoc
,
9062 assert(getLangOpts().OpenMP
&& "OpenMP is not active.");
9063 assert(Init
&& "Expected loop in canonical form.");
9064 unsigned AssociatedLoops
= DSAStack
->getAssociatedLoops();
9065 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
9066 if (AssociatedLoops
== 0 || !isOpenMPLoopDirective(DKind
))
9069 DSAStack
->loopStart();
9070 llvm::SmallPtrSet
<const Decl
*, 1> EmptyDeclSet
;
9071 OpenMPIterationSpaceChecker
ISC(SemaRef
, /*SupportsNonRectangular=*/true,
9072 *DSAStack
, ForLoc
, EmptyDeclSet
);
9073 if (!ISC
.checkAndSetInit(Init
, /*EmitDiags=*/false)) {
9074 if (ValueDecl
*D
= ISC
.getLoopDecl()) {
9075 auto *VD
= dyn_cast
<VarDecl
>(D
);
9076 DeclRefExpr
*PrivateRef
= nullptr;
9078 if (VarDecl
*Private
= isOpenMPCapturedDecl(D
)) {
9081 PrivateRef
= buildCapture(SemaRef
, D
, ISC
.getLoopDeclRefExpr(),
9082 /*WithInit=*/false);
9083 VD
= cast
<VarDecl
>(PrivateRef
->getDecl());
9086 DSAStack
->addLoopControlVariable(D
, VD
);
9087 const Decl
*LD
= DSAStack
->getPossiblyLoopCounter();
9088 if (LD
!= D
->getCanonicalDecl()) {
9089 DSAStack
->resetPossibleLoopCounter();
9090 if (auto *Var
= dyn_cast_or_null
<VarDecl
>(LD
))
9091 SemaRef
.MarkDeclarationsReferencedInExpr(buildDeclRefExpr(
9092 SemaRef
, const_cast<VarDecl
*>(Var
),
9093 Var
->getType().getNonLValueExprType(getASTContext()), ForLoc
,
9094 /*RefersToCapture=*/true));
9096 // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables
9097 // Referenced in a Construct, C/C++]. The loop iteration variable in the
9098 // associated for-loop of a simd construct with just one associated
9099 // for-loop may be listed in a linear clause with a constant-linear-step
9100 // that is the increment of the associated for-loop. The loop iteration
9101 // variable(s) in the associated for-loop(s) of a for or parallel for
9102 // construct may be listed in a private or lastprivate clause.
9103 DSAStackTy::DSAVarData DVar
=
9104 DSAStack
->getTopDSA(D
, /*FromParent=*/false);
9105 // If LoopVarRefExpr is nullptr it means the corresponding loop variable
9106 // is declared in the loop and it is predetermined as a private.
9107 Expr
*LoopDeclRefExpr
= ISC
.getLoopDeclRefExpr();
9108 OpenMPClauseKind PredeterminedCKind
=
9109 isOpenMPSimdDirective(DKind
)
9110 ? (DSAStack
->hasMutipleLoops() ? OMPC_lastprivate
: OMPC_linear
)
9112 auto IsOpenMPTaskloopDirective
= [](OpenMPDirectiveKind DK
) {
9113 return getLeafConstructsOrSelf(DK
).back() == OMPD_taskloop
;
9115 if (((isOpenMPSimdDirective(DKind
) && DVar
.CKind
!= OMPC_unknown
&&
9116 DVar
.CKind
!= PredeterminedCKind
&& DVar
.RefExpr
&&
9117 (getLangOpts().OpenMP
<= 45 ||
9118 (DVar
.CKind
!= OMPC_lastprivate
&& DVar
.CKind
!= OMPC_private
))) ||
9119 ((isOpenMPWorksharingDirective(DKind
) ||
9120 IsOpenMPTaskloopDirective(DKind
) ||
9121 isOpenMPDistributeDirective(DKind
)) &&
9122 !isOpenMPSimdDirective(DKind
) && DVar
.CKind
!= OMPC_unknown
&&
9123 DVar
.CKind
!= OMPC_private
&& DVar
.CKind
!= OMPC_lastprivate
)) &&
9124 (DVar
.CKind
!= OMPC_private
|| DVar
.RefExpr
)) {
9125 Diag(Init
->getBeginLoc(), diag::err_omp_loop_var_dsa
)
9126 << getOpenMPClauseName(DVar
.CKind
) << getOpenMPDirectiveName(DKind
)
9127 << getOpenMPClauseName(PredeterminedCKind
);
9128 if (DVar
.RefExpr
== nullptr)
9129 DVar
.CKind
= PredeterminedCKind
;
9130 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
, /*IsLoopIterVar=*/true);
9131 } else if (LoopDeclRefExpr
) {
9132 // Make the loop iteration variable private (for worksharing
9133 // constructs), linear (for simd directives with the only one
9134 // associated loop) or lastprivate (for simd directives with several
9135 // collapsed or ordered loops).
9136 if (DVar
.CKind
== OMPC_unknown
)
9137 DSAStack
->addDSA(D
, LoopDeclRefExpr
, PredeterminedCKind
, PrivateRef
);
9141 DSAStack
->setAssociatedLoops(AssociatedLoops
- 1);
9145 // Utility for OpenMP doacross clause kind
9146 class OMPDoacrossKind
{
9148 bool isSource(const OMPDoacrossClause
*C
) {
9149 return C
->getDependenceType() == OMPC_DOACROSS_source
||
9150 C
->getDependenceType() == OMPC_DOACROSS_source_omp_cur_iteration
;
9152 bool isSink(const OMPDoacrossClause
*C
) {
9153 return C
->getDependenceType() == OMPC_DOACROSS_sink
;
9155 bool isSinkIter(const OMPDoacrossClause
*C
) {
9156 return C
->getDependenceType() == OMPC_DOACROSS_sink_omp_cur_iteration
;
9160 /// Called on a for stmt to check and extract its iteration space
9161 /// for further processing (such as collapsing).
9162 static bool checkOpenMPIterationSpace(
9163 OpenMPDirectiveKind DKind
, Stmt
*S
, Sema
&SemaRef
, DSAStackTy
&DSA
,
9164 unsigned CurrentNestedLoopCount
, unsigned NestedLoopCount
,
9165 unsigned TotalNestedLoopCount
, Expr
*CollapseLoopCountExpr
,
9166 Expr
*OrderedLoopCountExpr
,
9167 SemaOpenMP::VarsWithInheritedDSAType
&VarsWithImplicitDSA
,
9168 llvm::MutableArrayRef
<LoopIterationSpace
> ResultIterSpaces
,
9169 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
,
9170 const llvm::SmallPtrSetImpl
<const Decl
*> &CollapsedLoopVarDecls
) {
9171 bool SupportsNonRectangular
= !isOpenMPLoopTransformationDirective(DKind
);
9172 // OpenMP [2.9.1, Canonical Loop Form]
9173 // for (init-expr; test-expr; incr-expr) structured-block
9174 // for (range-decl: range-expr) structured-block
9175 if (auto *CanonLoop
= dyn_cast_or_null
<OMPCanonicalLoop
>(S
))
9176 S
= CanonLoop
->getLoopStmt();
9177 auto *For
= dyn_cast_or_null
<ForStmt
>(S
);
9178 auto *CXXFor
= dyn_cast_or_null
<CXXForRangeStmt
>(S
);
9179 // Ranged for is supported only in OpenMP 5.0.
9180 if (!For
&& (SemaRef
.LangOpts
.OpenMP
<= 45 || !CXXFor
)) {
9181 SemaRef
.Diag(S
->getBeginLoc(), diag::err_omp_not_for
)
9182 << (CollapseLoopCountExpr
!= nullptr || OrderedLoopCountExpr
!= nullptr)
9183 << getOpenMPDirectiveName(DKind
) << TotalNestedLoopCount
9184 << (CurrentNestedLoopCount
> 0) << CurrentNestedLoopCount
;
9185 if (TotalNestedLoopCount
> 1) {
9186 if (CollapseLoopCountExpr
&& OrderedLoopCountExpr
)
9187 SemaRef
.Diag(DSA
.getConstructLoc(),
9188 diag::note_omp_collapse_ordered_expr
)
9189 << 2 << CollapseLoopCountExpr
->getSourceRange()
9190 << OrderedLoopCountExpr
->getSourceRange();
9191 else if (CollapseLoopCountExpr
)
9192 SemaRef
.Diag(CollapseLoopCountExpr
->getExprLoc(),
9193 diag::note_omp_collapse_ordered_expr
)
9194 << 0 << CollapseLoopCountExpr
->getSourceRange();
9195 else if (OrderedLoopCountExpr
)
9196 SemaRef
.Diag(OrderedLoopCountExpr
->getExprLoc(),
9197 diag::note_omp_collapse_ordered_expr
)
9198 << 1 << OrderedLoopCountExpr
->getSourceRange();
9202 assert(((For
&& For
->getBody()) || (CXXFor
&& CXXFor
->getBody())) &&
9204 // Postpone analysis in dependent contexts for ranged for loops.
9205 if (CXXFor
&& SemaRef
.CurContext
->isDependentContext())
9208 OpenMPIterationSpaceChecker
ISC(SemaRef
, SupportsNonRectangular
, DSA
,
9209 For
? For
->getForLoc() : CXXFor
->getForLoc(),
9210 CollapsedLoopVarDecls
);
9213 Stmt
*Init
= For
? For
->getInit() : CXXFor
->getBeginStmt();
9214 if (ISC
.checkAndSetInit(Init
))
9217 bool HasErrors
= false;
9219 // Check loop variable's type.
9220 if (ValueDecl
*LCDecl
= ISC
.getLoopDecl()) {
9221 // OpenMP [2.6, Canonical Loop Form]
9222 // Var is one of the following:
9223 // A variable of signed or unsigned integer type.
9224 // For C++, a variable of a random access iterator type.
9225 // For C, a variable of a pointer type.
9226 QualType VarType
= LCDecl
->getType().getNonReferenceType();
9227 if (!VarType
->isDependentType() && !VarType
->isIntegerType() &&
9228 !VarType
->isPointerType() &&
9229 !(SemaRef
.getLangOpts().CPlusPlus
&& VarType
->isOverloadableType())) {
9230 SemaRef
.Diag(Init
->getBeginLoc(), diag::err_omp_loop_variable_type
)
9231 << SemaRef
.getLangOpts().CPlusPlus
;
9235 // OpenMP, 2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in
9237 // The loop iteration variable(s) in the associated for-loop(s) of a for or
9238 // parallel for construct is (are) private.
9239 // The loop iteration variable in the associated for-loop of a simd
9240 // construct with just one associated for-loop is linear with a
9241 // constant-linear-step that is the increment of the associated for-loop.
9242 // Exclude loop var from the list of variables with implicitly defined data
9243 // sharing attributes.
9244 VarsWithImplicitDSA
.erase(LCDecl
);
9246 assert(isOpenMPLoopDirective(DKind
) && "DSA for non-loop vars");
9249 HasErrors
|= ISC
.checkAndSetCond(For
? For
->getCond() : CXXFor
->getCond());
9252 HasErrors
|= ISC
.checkAndSetInc(For
? For
->getInc() : CXXFor
->getInc());
9255 if (ISC
.dependent() || SemaRef
.CurContext
->isDependentContext() || HasErrors
)
9258 // Build the loop's iteration space representation.
9259 ResultIterSpaces
[CurrentNestedLoopCount
].PreCond
= ISC
.buildPreCond(
9260 DSA
.getCurScope(), For
? For
->getCond() : CXXFor
->getCond(), Captures
);
9261 ResultIterSpaces
[CurrentNestedLoopCount
].NumIterations
=
9262 ISC
.buildNumIterations(DSA
.getCurScope(), ResultIterSpaces
,
9263 (isOpenMPWorksharingDirective(DKind
) ||
9264 isOpenMPGenericLoopDirective(DKind
) ||
9265 isOpenMPTaskLoopDirective(DKind
) ||
9266 isOpenMPDistributeDirective(DKind
) ||
9267 isOpenMPLoopTransformationDirective(DKind
)),
9269 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
=
9270 ISC
.buildCounterVar(Captures
, DSA
);
9271 ResultIterSpaces
[CurrentNestedLoopCount
].PrivateCounterVar
=
9272 ISC
.buildPrivateCounterVar();
9273 ResultIterSpaces
[CurrentNestedLoopCount
].CounterInit
= ISC
.buildCounterInit();
9274 ResultIterSpaces
[CurrentNestedLoopCount
].CounterStep
= ISC
.buildCounterStep();
9275 ResultIterSpaces
[CurrentNestedLoopCount
].InitSrcRange
= ISC
.getInitSrcRange();
9276 ResultIterSpaces
[CurrentNestedLoopCount
].CondSrcRange
=
9277 ISC
.getConditionSrcRange();
9278 ResultIterSpaces
[CurrentNestedLoopCount
].IncSrcRange
=
9279 ISC
.getIncrementSrcRange();
9280 ResultIterSpaces
[CurrentNestedLoopCount
].Subtract
= ISC
.shouldSubtractStep();
9281 ResultIterSpaces
[CurrentNestedLoopCount
].IsStrictCompare
=
9282 ISC
.isStrictTestOp();
9283 std::tie(ResultIterSpaces
[CurrentNestedLoopCount
].MinValue
,
9284 ResultIterSpaces
[CurrentNestedLoopCount
].MaxValue
) =
9285 ISC
.buildMinMaxValues(DSA
.getCurScope(), Captures
);
9286 ResultIterSpaces
[CurrentNestedLoopCount
].FinalCondition
=
9287 ISC
.buildFinalCondition(DSA
.getCurScope());
9288 ResultIterSpaces
[CurrentNestedLoopCount
].IsNonRectangularLB
=
9289 ISC
.doesInitDependOnLC();
9290 ResultIterSpaces
[CurrentNestedLoopCount
].IsNonRectangularUB
=
9291 ISC
.doesCondDependOnLC();
9292 ResultIterSpaces
[CurrentNestedLoopCount
].LoopDependentIdx
=
9293 ISC
.getLoopDependentIdx();
9296 (ResultIterSpaces
[CurrentNestedLoopCount
].PreCond
== nullptr ||
9297 ResultIterSpaces
[CurrentNestedLoopCount
].NumIterations
== nullptr ||
9298 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
== nullptr ||
9299 ResultIterSpaces
[CurrentNestedLoopCount
].PrivateCounterVar
== nullptr ||
9300 ResultIterSpaces
[CurrentNestedLoopCount
].CounterInit
== nullptr ||
9301 ResultIterSpaces
[CurrentNestedLoopCount
].CounterStep
== nullptr);
9302 if (!HasErrors
&& DSA
.isOrderedRegion()) {
9303 if (DSA
.getOrderedRegionParam().second
->getNumForLoops()) {
9304 if (CurrentNestedLoopCount
<
9305 DSA
.getOrderedRegionParam().second
->getLoopNumIterations().size()) {
9306 DSA
.getOrderedRegionParam().second
->setLoopNumIterations(
9307 CurrentNestedLoopCount
,
9308 ResultIterSpaces
[CurrentNestedLoopCount
].NumIterations
);
9309 DSA
.getOrderedRegionParam().second
->setLoopCounter(
9310 CurrentNestedLoopCount
,
9311 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
);
9314 for (auto &Pair
: DSA
.getDoacrossDependClauses()) {
9315 auto *DependC
= dyn_cast
<OMPDependClause
>(Pair
.first
);
9316 auto *DoacrossC
= dyn_cast
<OMPDoacrossClause
>(Pair
.first
);
9318 DependC
? DependC
->getNumLoops() : DoacrossC
->getNumLoops();
9319 if (CurrentNestedLoopCount
>= NumLoops
) {
9320 // Erroneous case - clause has some problems.
9323 if (DependC
&& DependC
->getDependencyKind() == OMPC_DEPEND_sink
&&
9324 Pair
.second
.size() <= CurrentNestedLoopCount
) {
9325 // Erroneous case - clause has some problems.
9326 DependC
->setLoopData(CurrentNestedLoopCount
, nullptr);
9329 OMPDoacrossKind ODK
;
9330 if (DoacrossC
&& ODK
.isSink(DoacrossC
) &&
9331 Pair
.second
.size() <= CurrentNestedLoopCount
) {
9332 // Erroneous case - clause has some problems.
9333 DoacrossC
->setLoopData(CurrentNestedLoopCount
, nullptr);
9337 SourceLocation DepLoc
=
9338 DependC
? DependC
->getDependencyLoc() : DoacrossC
->getDependenceLoc();
9339 if ((DependC
&& DependC
->getDependencyKind() == OMPC_DEPEND_source
) ||
9340 (DoacrossC
&& ODK
.isSource(DoacrossC
)))
9341 CntValue
= ISC
.buildOrderedLoopData(
9343 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
, Captures
,
9345 else if (DoacrossC
&& ODK
.isSinkIter(DoacrossC
)) {
9347 .DefaultLvalueConversion(
9348 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
)
9352 // build CounterVar - 1
9354 SemaRef
.ActOnIntegerConstant(DoacrossC
->getColonLoc(), /*Val=*/1)
9356 CntValue
= ISC
.buildOrderedLoopData(
9358 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
, Captures
,
9359 DepLoc
, Inc
, clang::OO_Minus
);
9361 CntValue
= ISC
.buildOrderedLoopData(
9363 ResultIterSpaces
[CurrentNestedLoopCount
].CounterVar
, Captures
,
9364 DepLoc
, Pair
.second
[CurrentNestedLoopCount
].first
,
9365 Pair
.second
[CurrentNestedLoopCount
].second
);
9367 DependC
->setLoopData(CurrentNestedLoopCount
, CntValue
);
9369 DoacrossC
->setLoopData(CurrentNestedLoopCount
, CntValue
);
9376 /// Build 'VarRef = Start.
9378 buildCounterInit(Sema
&SemaRef
, Scope
*S
, SourceLocation Loc
, ExprResult VarRef
,
9379 ExprResult Start
, bool IsNonRectangularLB
,
9380 llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) {
9381 // Build 'VarRef = Start.
9382 ExprResult NewStart
= IsNonRectangularLB
9384 : tryBuildCapture(SemaRef
, Start
.get(), Captures
);
9385 if (!NewStart
.isUsable())
9387 if (!SemaRef
.Context
.hasSameType(NewStart
.get()->getType(),
9388 VarRef
.get()->getType())) {
9389 NewStart
= SemaRef
.PerformImplicitConversion(
9390 NewStart
.get(), VarRef
.get()->getType(), AssignmentAction::Converting
,
9391 /*AllowExplicit=*/true);
9392 if (!NewStart
.isUsable())
9397 SemaRef
.BuildBinOp(S
, Loc
, BO_Assign
, VarRef
.get(), NewStart
.get());
9401 /// Build 'VarRef = Start + Iter * Step'.
9402 static ExprResult
buildCounterUpdate(
9403 Sema
&SemaRef
, Scope
*S
, SourceLocation Loc
, ExprResult VarRef
,
9404 ExprResult Start
, ExprResult Iter
, ExprResult Step
, bool Subtract
,
9405 bool IsNonRectangularLB
,
9406 llvm::MapVector
<const Expr
*, DeclRefExpr
*> *Captures
= nullptr) {
9407 // Add parentheses (for debugging purposes only).
9408 Iter
= SemaRef
.ActOnParenExpr(Loc
, Loc
, Iter
.get());
9409 if (!VarRef
.isUsable() || !Start
.isUsable() || !Iter
.isUsable() ||
9413 ExprResult NewStep
= Step
;
9415 NewStep
= tryBuildCapture(SemaRef
, Step
.get(), *Captures
);
9416 if (NewStep
.isInvalid())
9419 SemaRef
.BuildBinOp(S
, Loc
, BO_Mul
, Iter
.get(), NewStep
.get());
9420 if (!Update
.isUsable())
9423 // Try to build 'VarRef = Start, VarRef (+|-)= Iter * Step' or
9424 // 'VarRef = Start (+|-) Iter * Step'.
9425 if (!Start
.isUsable())
9427 ExprResult NewStart
= SemaRef
.ActOnParenExpr(Loc
, Loc
, Start
.get());
9428 if (!NewStart
.isUsable())
9430 if (Captures
&& !IsNonRectangularLB
)
9431 NewStart
= tryBuildCapture(SemaRef
, Start
.get(), *Captures
);
9432 if (NewStart
.isInvalid())
9435 // First attempt: try to build 'VarRef = Start, VarRef += Iter * Step'.
9436 ExprResult SavedUpdate
= Update
;
9437 ExprResult UpdateVal
;
9438 if (VarRef
.get()->getType()->isOverloadableType() ||
9439 NewStart
.get()->getType()->isOverloadableType() ||
9440 Update
.get()->getType()->isOverloadableType()) {
9441 Sema::TentativeAnalysisScope
Trap(SemaRef
);
9444 SemaRef
.BuildBinOp(S
, Loc
, BO_Assign
, VarRef
.get(), NewStart
.get());
9445 if (Update
.isUsable()) {
9447 SemaRef
.BuildBinOp(S
, Loc
, Subtract
? BO_SubAssign
: BO_AddAssign
,
9448 VarRef
.get(), SavedUpdate
.get());
9449 if (UpdateVal
.isUsable()) {
9450 Update
= SemaRef
.CreateBuiltinBinOp(Loc
, BO_Comma
, Update
.get(),
9456 // Second attempt: try to build 'VarRef = Start (+|-) Iter * Step'.
9457 if (!Update
.isUsable() || !UpdateVal
.isUsable()) {
9458 Update
= SemaRef
.BuildBinOp(S
, Loc
, Subtract
? BO_Sub
: BO_Add
,
9459 NewStart
.get(), SavedUpdate
.get());
9460 if (!Update
.isUsable())
9463 if (!SemaRef
.Context
.hasSameType(Update
.get()->getType(),
9464 VarRef
.get()->getType())) {
9465 Update
= SemaRef
.PerformImplicitConversion(
9466 Update
.get(), VarRef
.get()->getType(), AssignmentAction::Converting
,
9467 /*AllowExplicit=*/true);
9468 if (!Update
.isUsable())
9472 Update
= SemaRef
.BuildBinOp(S
, Loc
, BO_Assign
, VarRef
.get(), Update
.get());
9477 /// Convert integer expression \a E to make it have at least \a Bits
9479 static ExprResult
widenIterationCount(unsigned Bits
, Expr
*E
, Sema
&SemaRef
) {
9482 ASTContext
&C
= SemaRef
.Context
;
9483 QualType OldType
= E
->getType();
9484 unsigned HasBits
= C
.getTypeSize(OldType
);
9485 if (HasBits
>= Bits
)
9486 return ExprResult(E
);
9487 // OK to convert to signed, because new type has more bits than old.
9488 QualType NewType
= C
.getIntTypeForBitwidth(Bits
, /*Signed=*/true);
9489 return SemaRef
.PerformImplicitConversion(
9490 E
, NewType
, AssignmentAction::Converting
, /*AllowExplicit=*/true);
9493 /// Check if the given expression \a E is a constant integer that fits
9494 /// into \a Bits bits.
9495 static bool fitsInto(unsigned Bits
, bool Signed
, const Expr
*E
, Sema
&SemaRef
) {
9498 if (std::optional
<llvm::APSInt
> Result
=
9499 E
->getIntegerConstantExpr(SemaRef
.Context
))
9500 return Signed
? Result
->isSignedIntN(Bits
) : Result
->isIntN(Bits
);
9504 /// Build preinits statement for the given declarations.
9505 static Stmt
*buildPreInits(ASTContext
&Context
,
9506 MutableArrayRef
<Decl
*> PreInits
) {
9507 if (!PreInits
.empty()) {
9508 return new (Context
) DeclStmt(
9509 DeclGroupRef::Create(Context
, PreInits
.begin(), PreInits
.size()),
9510 SourceLocation(), SourceLocation());
9515 /// Append the \p Item or the content of a CompoundStmt to the list \p
9518 /// A CompoundStmt is used as container in case multiple statements need to be
9519 /// stored in lieu of using an explicit list. Flattening is necessary because
9520 /// contained DeclStmts need to be visible after the execution of the list. Used
9521 /// for OpenMP pre-init declarations/statements.
9522 static void appendFlattenedStmtList(SmallVectorImpl
<Stmt
*> &TargetList
,
9524 // nullptr represents an empty list.
9528 if (auto *CS
= dyn_cast
<CompoundStmt
>(Item
))
9529 llvm::append_range(TargetList
, CS
->body());
9531 TargetList
.push_back(Item
);
9534 /// Build preinits statement for the given declarations.
9536 buildPreInits(ASTContext
&Context
,
9537 const llvm::MapVector
<const Expr
*, DeclRefExpr
*> &Captures
) {
9538 if (!Captures
.empty()) {
9539 SmallVector
<Decl
*, 16> PreInits
;
9540 for (const auto &Pair
: Captures
)
9541 PreInits
.push_back(Pair
.second
->getDecl());
9542 return buildPreInits(Context
, PreInits
);
9547 /// Build pre-init statement for the given statements.
9548 static Stmt
*buildPreInits(ASTContext
&Context
, ArrayRef
<Stmt
*> PreInits
) {
9549 if (PreInits
.empty())
9552 SmallVector
<Stmt
*> Stmts
;
9553 for (Stmt
*S
: PreInits
)
9554 appendFlattenedStmtList(Stmts
, S
);
9555 return CompoundStmt::Create(Context
, PreInits
, FPOptionsOverride(), {}, {});
9558 /// Build postupdate expression for the given list of postupdates expressions.
9559 static Expr
*buildPostUpdate(Sema
&S
, ArrayRef
<Expr
*> PostUpdates
) {
9560 Expr
*PostUpdate
= nullptr;
9561 if (!PostUpdates
.empty()) {
9562 for (Expr
*E
: PostUpdates
) {
9563 Expr
*ConvE
= S
.BuildCStyleCastExpr(
9565 S
.Context
.getTrivialTypeSourceInfo(S
.Context
.VoidTy
),
9568 PostUpdate
= PostUpdate
9569 ? S
.CreateBuiltinBinOp(ConvE
->getExprLoc(), BO_Comma
,
9578 /// Look for variables declared in the body parts of a for-loop nest. Used
9579 /// for verifying loop nest structure before performing a loop collapse
9581 class ForVarDeclFinder
: public DynamicRecursiveASTVisitor
{
9582 int NestingDepth
= 0;
9583 llvm::SmallPtrSetImpl
<const Decl
*> &VarDecls
;
9586 explicit ForVarDeclFinder(llvm::SmallPtrSetImpl
<const Decl
*> &VD
)
9589 bool VisitForStmt(ForStmt
*F
) override
{
9591 TraverseStmt(F
->getBody());
9596 bool VisitCXXForRangeStmt(CXXForRangeStmt
*RF
) override
{
9598 TraverseStmt(RF
->getBody());
9603 bool VisitVarDecl(VarDecl
*D
) override
{
9604 Decl
*C
= D
->getCanonicalDecl();
9605 if (NestingDepth
> 0)
9611 /// Called on a for stmt to check itself and nested loops (if any).
9612 /// \return Returns 0 if one of the collapsed stmts is not canonical for loop,
9613 /// number of collapsed loops otherwise.
9615 checkOpenMPLoop(OpenMPDirectiveKind DKind
, Expr
*CollapseLoopCountExpr
,
9616 Expr
*OrderedLoopCountExpr
, Stmt
*AStmt
, Sema
&SemaRef
,
9618 SemaOpenMP::VarsWithInheritedDSAType
&VarsWithImplicitDSA
,
9619 OMPLoopBasedDirective::HelperExprs
&Built
) {
9620 unsigned NestedLoopCount
= 1;
9621 bool SupportsNonPerfectlyNested
= (SemaRef
.LangOpts
.OpenMP
>= 50) &&
9622 !isOpenMPLoopTransformationDirective(DKind
);
9623 llvm::SmallPtrSet
<const Decl
*, 4> CollapsedLoopVarDecls
;
9625 if (CollapseLoopCountExpr
) {
9626 // Found 'collapse' clause - calculate collapse number.
9627 Expr::EvalResult Result
;
9628 if (!CollapseLoopCountExpr
->isValueDependent() &&
9629 CollapseLoopCountExpr
->EvaluateAsInt(Result
, SemaRef
.getASTContext())) {
9630 NestedLoopCount
= Result
.Val
.getInt().getLimitedValue();
9632 ForVarDeclFinder FVDF
{CollapsedLoopVarDecls
};
9633 FVDF
.TraverseStmt(AStmt
);
9635 Built
.clear(/*Size=*/1);
9639 unsigned OrderedLoopCount
= 1;
9640 if (OrderedLoopCountExpr
) {
9641 // Found 'ordered' clause - calculate collapse number.
9642 Expr::EvalResult EVResult
;
9643 if (!OrderedLoopCountExpr
->isValueDependent() &&
9644 OrderedLoopCountExpr
->EvaluateAsInt(EVResult
,
9645 SemaRef
.getASTContext())) {
9646 llvm::APSInt Result
= EVResult
.Val
.getInt();
9647 if (Result
.getLimitedValue() < NestedLoopCount
) {
9648 SemaRef
.Diag(OrderedLoopCountExpr
->getExprLoc(),
9649 diag::err_omp_wrong_ordered_loop_count
)
9650 << OrderedLoopCountExpr
->getSourceRange();
9651 SemaRef
.Diag(CollapseLoopCountExpr
->getExprLoc(),
9652 diag::note_collapse_loop_count
)
9653 << CollapseLoopCountExpr
->getSourceRange();
9655 OrderedLoopCount
= Result
.getLimitedValue();
9657 Built
.clear(/*Size=*/1);
9661 // This is helper routine for loop directives (e.g., 'for', 'simd',
9662 // 'for simd', etc.).
9663 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
9664 unsigned NumLoops
= std::max(OrderedLoopCount
, NestedLoopCount
);
9665 SmallVector
<LoopIterationSpace
, 4> IterSpaces(NumLoops
);
9666 if (!OMPLoopBasedDirective::doForAllLoops(
9667 AStmt
->IgnoreContainers(!isOpenMPLoopTransformationDirective(DKind
)),
9668 SupportsNonPerfectlyNested
, NumLoops
,
9669 [DKind
, &SemaRef
, &DSA
, NumLoops
, NestedLoopCount
,
9670 CollapseLoopCountExpr
, OrderedLoopCountExpr
, &VarsWithImplicitDSA
,
9671 &IterSpaces
, &Captures
,
9672 &CollapsedLoopVarDecls
](unsigned Cnt
, Stmt
*CurStmt
) {
9673 if (checkOpenMPIterationSpace(
9674 DKind
, CurStmt
, SemaRef
, DSA
, Cnt
, NestedLoopCount
,
9675 NumLoops
, CollapseLoopCountExpr
, OrderedLoopCountExpr
,
9676 VarsWithImplicitDSA
, IterSpaces
, Captures
,
9677 CollapsedLoopVarDecls
))
9679 if (Cnt
> 0 && Cnt
>= NestedLoopCount
&&
9680 IterSpaces
[Cnt
].CounterVar
) {
9681 // Handle initialization of captured loop iterator variables.
9682 auto *DRE
= cast
<DeclRefExpr
>(IterSpaces
[Cnt
].CounterVar
);
9683 if (isa
<OMPCapturedExprDecl
>(DRE
->getDecl())) {
9684 Captures
[DRE
] = DRE
;
9689 [&SemaRef
, &Captures
](OMPLoopTransformationDirective
*Transform
) {
9690 Stmt
*DependentPreInits
= Transform
->getPreInits();
9691 if (!DependentPreInits
)
9694 // Search for pre-init declared variables that need to be captured
9695 // to be referenceable inside the directive.
9696 SmallVector
<Stmt
*> Constituents
;
9697 appendFlattenedStmtList(Constituents
, DependentPreInits
);
9698 for (Stmt
*S
: Constituents
) {
9699 if (auto *DC
= dyn_cast
<DeclStmt
>(S
)) {
9700 for (Decl
*C
: DC
->decls()) {
9701 auto *D
= cast
<VarDecl
>(C
);
9702 DeclRefExpr
*Ref
= buildDeclRefExpr(
9703 SemaRef
, D
, D
->getType().getNonReferenceType(),
9704 Transform
->getBeginLoc());
9705 Captures
[Ref
] = Ref
;
9712 Built
.clear(/*size=*/NestedLoopCount
);
9714 if (SemaRef
.CurContext
->isDependentContext())
9715 return NestedLoopCount
;
9717 // An example of what is generated for the following code:
9719 // #pragma omp simd collapse(2) ordered(2)
9720 // for (i = 0; i < NI; ++i)
9721 // for (k = 0; k < NK; ++k)
9722 // for (j = J0; j < NJ; j+=2) {
9726 // We generate the code below.
9727 // Note: the loop body may be outlined in CodeGen.
9728 // Note: some counters may be C++ classes, operator- is used to find number of
9729 // iterations and operator+= to calculate counter value.
9730 // Note: decltype(NumIterations) must be integer type (in 'omp for', only i32
9731 // or i64 is currently supported).
9733 // #define NumIterations (NI * ((NJ - J0 - 1 + 2) / 2))
9734 // for (int[32|64]_t IV = 0; IV < NumIterations; ++IV ) {
9735 // .local.i = IV / ((NJ - J0 - 1 + 2) / 2);
9736 // .local.j = J0 + (IV % ((NJ - J0 - 1 + 2) / 2)) * 2;
9737 // // similar updates for vars in clauses (e.g. 'linear')
9738 // <loop body (using local i and j)>
9740 // i = NI; // assign final values of counters
9744 // Last iteration number is (I1 * I2 * ... In) - 1, where I1, I2 ... In are
9745 // the iteration counts of the collapsed for loops.
9746 // Precondition tests if there is at least one iteration (all conditions are
9748 auto PreCond
= ExprResult(IterSpaces
[0].PreCond
);
9749 Expr
*N0
= IterSpaces
[0].NumIterations
;
9750 ExprResult LastIteration32
= widenIterationCount(
9753 .PerformImplicitConversion(N0
->IgnoreImpCasts(), N0
->getType(),
9754 AssignmentAction::Converting
,
9755 /*AllowExplicit=*/true)
9758 ExprResult LastIteration64
= widenIterationCount(
9761 .PerformImplicitConversion(N0
->IgnoreImpCasts(), N0
->getType(),
9762 AssignmentAction::Converting
,
9763 /*AllowExplicit=*/true)
9767 if (!LastIteration32
.isUsable() || !LastIteration64
.isUsable())
9768 return NestedLoopCount
;
9770 ASTContext
&C
= SemaRef
.Context
;
9771 bool AllCountsNeedLessThan32Bits
= C
.getTypeSize(N0
->getType()) < 32;
9773 Scope
*CurScope
= DSA
.getCurScope();
9774 for (unsigned Cnt
= 1; Cnt
< NestedLoopCount
; ++Cnt
) {
9775 if (PreCond
.isUsable()) {
9777 SemaRef
.BuildBinOp(CurScope
, PreCond
.get()->getExprLoc(), BO_LAnd
,
9778 PreCond
.get(), IterSpaces
[Cnt
].PreCond
);
9780 Expr
*N
= IterSpaces
[Cnt
].NumIterations
;
9781 SourceLocation Loc
= N
->getExprLoc();
9782 AllCountsNeedLessThan32Bits
&= C
.getTypeSize(N
->getType()) < 32;
9783 if (LastIteration32
.isUsable())
9784 LastIteration32
= SemaRef
.BuildBinOp(
9785 CurScope
, Loc
, BO_Mul
, LastIteration32
.get(),
9787 .PerformImplicitConversion(N
->IgnoreImpCasts(), N
->getType(),
9788 AssignmentAction::Converting
,
9789 /*AllowExplicit=*/true)
9791 if (LastIteration64
.isUsable())
9792 LastIteration64
= SemaRef
.BuildBinOp(
9793 CurScope
, Loc
, BO_Mul
, LastIteration64
.get(),
9795 .PerformImplicitConversion(N
->IgnoreImpCasts(), N
->getType(),
9796 AssignmentAction::Converting
,
9797 /*AllowExplicit=*/true)
9801 // Choose either the 32-bit or 64-bit version.
9802 ExprResult LastIteration
= LastIteration64
;
9803 if (SemaRef
.getLangOpts().OpenMPOptimisticCollapse
||
9804 (LastIteration32
.isUsable() &&
9805 C
.getTypeSize(LastIteration32
.get()->getType()) == 32 &&
9806 (AllCountsNeedLessThan32Bits
|| NestedLoopCount
== 1 ||
9809 LastIteration32
.get()->getType()->hasSignedIntegerRepresentation(),
9810 LastIteration64
.get(), SemaRef
))))
9811 LastIteration
= LastIteration32
;
9812 QualType VType
= LastIteration
.get()->getType();
9813 QualType RealVType
= VType
;
9814 QualType StrideVType
= VType
;
9815 if (isOpenMPTaskLoopDirective(DKind
)) {
9817 SemaRef
.Context
.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
9819 SemaRef
.Context
.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
9822 if (!LastIteration
.isUsable())
9825 // Save the number of iterations.
9826 ExprResult NumIterations
= LastIteration
;
9828 LastIteration
= SemaRef
.BuildBinOp(
9829 CurScope
, LastIteration
.get()->getExprLoc(), BO_Sub
,
9830 LastIteration
.get(),
9831 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get());
9832 if (!LastIteration
.isUsable())
9836 // Calculate the last iteration number beforehand instead of doing this on
9837 // each iteration. Do not do this if the number of iterations may be kfold-ed.
9838 bool IsConstant
= LastIteration
.get()->isIntegerConstantExpr(SemaRef
.Context
);
9839 ExprResult CalcLastIteration
;
9841 ExprResult SaveRef
=
9842 tryBuildCapture(SemaRef
, LastIteration
.get(), Captures
);
9843 LastIteration
= SaveRef
;
9845 // Prepare SaveRef + 1.
9846 NumIterations
= SemaRef
.BuildBinOp(
9847 CurScope
, SaveRef
.get()->getExprLoc(), BO_Add
, SaveRef
.get(),
9848 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get());
9849 if (!NumIterations
.isUsable())
9853 SourceLocation InitLoc
= IterSpaces
[0].InitSrcRange
.getBegin();
9855 // Build variables passed into runtime, necessary for worksharing directives.
9856 ExprResult LB
, UB
, IL
, ST
, EUB
, CombLB
, CombUB
, PrevLB
, PrevUB
, CombEUB
;
9857 if (isOpenMPWorksharingDirective(DKind
) || isOpenMPTaskLoopDirective(DKind
) ||
9858 isOpenMPDistributeDirective(DKind
) ||
9859 isOpenMPGenericLoopDirective(DKind
) ||
9860 isOpenMPLoopTransformationDirective(DKind
)) {
9861 // Lower bound variable, initialized with zero.
9862 VarDecl
*LBDecl
= buildVarDecl(SemaRef
, InitLoc
, VType
, ".omp.lb");
9863 LB
= buildDeclRefExpr(SemaRef
, LBDecl
, VType
, InitLoc
);
9864 SemaRef
.AddInitializerToDecl(LBDecl
,
9865 SemaRef
.ActOnIntegerConstant(InitLoc
, 0).get(),
9866 /*DirectInit=*/false);
9868 // Upper bound variable, initialized with last iteration number.
9869 VarDecl
*UBDecl
= buildVarDecl(SemaRef
, InitLoc
, VType
, ".omp.ub");
9870 UB
= buildDeclRefExpr(SemaRef
, UBDecl
, VType
, InitLoc
);
9871 SemaRef
.AddInitializerToDecl(UBDecl
, LastIteration
.get(),
9872 /*DirectInit=*/false);
9874 // A 32-bit variable-flag where runtime returns 1 for the last iteration.
9875 // This will be used to implement clause 'lastprivate'.
9876 QualType Int32Ty
= SemaRef
.Context
.getIntTypeForBitwidth(32, true);
9877 VarDecl
*ILDecl
= buildVarDecl(SemaRef
, InitLoc
, Int32Ty
, ".omp.is_last");
9878 IL
= buildDeclRefExpr(SemaRef
, ILDecl
, Int32Ty
, InitLoc
);
9879 SemaRef
.AddInitializerToDecl(ILDecl
,
9880 SemaRef
.ActOnIntegerConstant(InitLoc
, 0).get(),
9881 /*DirectInit=*/false);
9883 // Stride variable returned by runtime (we initialize it to 1 by default).
9885 buildVarDecl(SemaRef
, InitLoc
, StrideVType
, ".omp.stride");
9886 ST
= buildDeclRefExpr(SemaRef
, STDecl
, StrideVType
, InitLoc
);
9887 SemaRef
.AddInitializerToDecl(STDecl
,
9888 SemaRef
.ActOnIntegerConstant(InitLoc
, 1).get(),
9889 /*DirectInit=*/false);
9891 // Build expression: UB = min(UB, LastIteration)
9892 // It is necessary for CodeGen of directives with static scheduling.
9893 ExprResult IsUBGreater
= SemaRef
.BuildBinOp(CurScope
, InitLoc
, BO_GT
,
9894 UB
.get(), LastIteration
.get());
9895 ExprResult CondOp
= SemaRef
.ActOnConditionalOp(
9896 LastIteration
.get()->getExprLoc(), InitLoc
, IsUBGreater
.get(),
9897 LastIteration
.get(), UB
.get());
9898 EUB
= SemaRef
.BuildBinOp(CurScope
, InitLoc
, BO_Assign
, UB
.get(),
9900 EUB
= SemaRef
.ActOnFinishFullExpr(EUB
.get(), /*DiscardedValue=*/false);
9902 // If we have a combined directive that combines 'distribute', 'for' or
9903 // 'simd' we need to be able to access the bounds of the schedule of the
9904 // enclosing region. E.g. in 'distribute parallel for' the bounds obtained
9905 // by scheduling 'distribute' have to be passed to the schedule of 'for'.
9906 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
9907 // Lower bound variable, initialized with zero.
9908 VarDecl
*CombLBDecl
=
9909 buildVarDecl(SemaRef
, InitLoc
, VType
, ".omp.comb.lb");
9910 CombLB
= buildDeclRefExpr(SemaRef
, CombLBDecl
, VType
, InitLoc
);
9911 SemaRef
.AddInitializerToDecl(
9912 CombLBDecl
, SemaRef
.ActOnIntegerConstant(InitLoc
, 0).get(),
9913 /*DirectInit=*/false);
9915 // Upper bound variable, initialized with last iteration number.
9916 VarDecl
*CombUBDecl
=
9917 buildVarDecl(SemaRef
, InitLoc
, VType
, ".omp.comb.ub");
9918 CombUB
= buildDeclRefExpr(SemaRef
, CombUBDecl
, VType
, InitLoc
);
9919 SemaRef
.AddInitializerToDecl(CombUBDecl
, LastIteration
.get(),
9920 /*DirectInit=*/false);
9922 ExprResult CombIsUBGreater
= SemaRef
.BuildBinOp(
9923 CurScope
, InitLoc
, BO_GT
, CombUB
.get(), LastIteration
.get());
9924 ExprResult CombCondOp
=
9925 SemaRef
.ActOnConditionalOp(InitLoc
, InitLoc
, CombIsUBGreater
.get(),
9926 LastIteration
.get(), CombUB
.get());
9927 CombEUB
= SemaRef
.BuildBinOp(CurScope
, InitLoc
, BO_Assign
, CombUB
.get(),
9930 SemaRef
.ActOnFinishFullExpr(CombEUB
.get(), /*DiscardedValue=*/false);
9932 const CapturedDecl
*CD
= cast
<CapturedStmt
>(AStmt
)->getCapturedDecl();
9933 // We expect to have at least 2 more parameters than the 'parallel'
9934 // directive does - the lower and upper bounds of the previous schedule.
9935 assert(CD
->getNumParams() >= 4 &&
9936 "Unexpected number of parameters in loop combined directive");
9938 // Set the proper type for the bounds given what we learned from the
9940 ImplicitParamDecl
*PrevLBDecl
= CD
->getParam(/*PrevLB=*/2);
9941 ImplicitParamDecl
*PrevUBDecl
= CD
->getParam(/*PrevUB=*/3);
9943 // Previous lower and upper bounds are obtained from the region
9946 buildDeclRefExpr(SemaRef
, PrevLBDecl
, PrevLBDecl
->getType(), InitLoc
);
9948 buildDeclRefExpr(SemaRef
, PrevUBDecl
, PrevUBDecl
->getType(), InitLoc
);
9952 // Build the iteration variable and its initialization before loop.
9954 ExprResult Init
, CombInit
;
9956 VarDecl
*IVDecl
= buildVarDecl(SemaRef
, InitLoc
, RealVType
, ".omp.iv");
9957 IV
= buildDeclRefExpr(SemaRef
, IVDecl
, RealVType
, InitLoc
);
9958 Expr
*RHS
= (isOpenMPWorksharingDirective(DKind
) ||
9959 isOpenMPGenericLoopDirective(DKind
) ||
9960 isOpenMPTaskLoopDirective(DKind
) ||
9961 isOpenMPDistributeDirective(DKind
) ||
9962 isOpenMPLoopTransformationDirective(DKind
))
9964 : SemaRef
.ActOnIntegerConstant(SourceLocation(), 0).get();
9965 Init
= SemaRef
.BuildBinOp(CurScope
, InitLoc
, BO_Assign
, IV
.get(), RHS
);
9966 Init
= SemaRef
.ActOnFinishFullExpr(Init
.get(), /*DiscardedValue=*/false);
9968 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
9970 (isOpenMPWorksharingDirective(DKind
) ||
9971 isOpenMPGenericLoopDirective(DKind
) ||
9972 isOpenMPTaskLoopDirective(DKind
) ||
9973 isOpenMPDistributeDirective(DKind
))
9975 : SemaRef
.ActOnIntegerConstant(SourceLocation(), 0).get();
9977 SemaRef
.BuildBinOp(CurScope
, InitLoc
, BO_Assign
, IV
.get(), CombRHS
);
9979 SemaRef
.ActOnFinishFullExpr(CombInit
.get(), /*DiscardedValue=*/false);
9983 bool UseStrictCompare
=
9984 RealVType
->hasUnsignedIntegerRepresentation() &&
9985 llvm::all_of(IterSpaces
, [](const LoopIterationSpace
&LIS
) {
9986 return LIS
.IsStrictCompare
;
9988 // Loop condition (IV < NumIterations) or (IV <= UB or IV < UB + 1 (for
9989 // unsigned IV)) for worksharing loops.
9990 SourceLocation CondLoc
= AStmt
->getBeginLoc();
9991 Expr
*BoundUB
= UB
.get();
9992 if (UseStrictCompare
) {
9995 .BuildBinOp(CurScope
, CondLoc
, BO_Add
, BoundUB
,
9996 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get())
9999 SemaRef
.ActOnFinishFullExpr(BoundUB
, /*DiscardedValue=*/false).get();
10002 (isOpenMPWorksharingDirective(DKind
) ||
10003 isOpenMPGenericLoopDirective(DKind
) ||
10004 isOpenMPTaskLoopDirective(DKind
) || isOpenMPDistributeDirective(DKind
) ||
10005 isOpenMPLoopTransformationDirective(DKind
))
10006 ? SemaRef
.BuildBinOp(CurScope
, CondLoc
,
10007 UseStrictCompare
? BO_LT
: BO_LE
, IV
.get(),
10009 : SemaRef
.BuildBinOp(CurScope
, CondLoc
, BO_LT
, IV
.get(),
10010 NumIterations
.get());
10011 ExprResult CombDistCond
;
10012 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
10013 CombDistCond
= SemaRef
.BuildBinOp(CurScope
, CondLoc
, BO_LT
, IV
.get(),
10014 NumIterations
.get());
10017 ExprResult CombCond
;
10018 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
10019 Expr
*BoundCombUB
= CombUB
.get();
10020 if (UseStrictCompare
) {
10024 CurScope
, CondLoc
, BO_Add
, BoundCombUB
,
10025 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get())
10028 SemaRef
.ActOnFinishFullExpr(BoundCombUB
, /*DiscardedValue=*/false)
10032 SemaRef
.BuildBinOp(CurScope
, CondLoc
, UseStrictCompare
? BO_LT
: BO_LE
,
10033 IV
.get(), BoundCombUB
);
10035 // Loop increment (IV = IV + 1)
10036 SourceLocation IncLoc
= AStmt
->getBeginLoc();
10038 SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Add
, IV
.get(),
10039 SemaRef
.ActOnIntegerConstant(IncLoc
, 1).get());
10040 if (!Inc
.isUsable())
10042 Inc
= SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Assign
, IV
.get(), Inc
.get());
10043 Inc
= SemaRef
.ActOnFinishFullExpr(Inc
.get(), /*DiscardedValue=*/false);
10044 if (!Inc
.isUsable())
10047 // Increments for worksharing loops (LB = LB + ST; UB = UB + ST).
10048 // Used for directives with static scheduling.
10049 // In combined construct, add combined version that use CombLB and CombUB
10050 // base variables for the update
10051 ExprResult NextLB
, NextUB
, CombNextLB
, CombNextUB
;
10052 if (isOpenMPWorksharingDirective(DKind
) || isOpenMPTaskLoopDirective(DKind
) ||
10053 isOpenMPGenericLoopDirective(DKind
) ||
10054 isOpenMPDistributeDirective(DKind
) ||
10055 isOpenMPLoopTransformationDirective(DKind
)) {
10057 NextLB
= SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Add
, LB
.get(), ST
.get());
10058 if (!NextLB
.isUsable())
10062 SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Assign
, LB
.get(), NextLB
.get());
10064 SemaRef
.ActOnFinishFullExpr(NextLB
.get(), /*DiscardedValue=*/false);
10065 if (!NextLB
.isUsable())
10068 NextUB
= SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Add
, UB
.get(), ST
.get());
10069 if (!NextUB
.isUsable())
10073 SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Assign
, UB
.get(), NextUB
.get());
10075 SemaRef
.ActOnFinishFullExpr(NextUB
.get(), /*DiscardedValue=*/false);
10076 if (!NextUB
.isUsable())
10078 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
10080 SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Add
, CombLB
.get(), ST
.get());
10081 if (!NextLB
.isUsable())
10084 CombNextLB
= SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Assign
, CombLB
.get(),
10086 CombNextLB
= SemaRef
.ActOnFinishFullExpr(CombNextLB
.get(),
10087 /*DiscardedValue=*/false);
10088 if (!CombNextLB
.isUsable())
10092 SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Add
, CombUB
.get(), ST
.get());
10093 if (!CombNextUB
.isUsable())
10096 CombNextUB
= SemaRef
.BuildBinOp(CurScope
, IncLoc
, BO_Assign
, CombUB
.get(),
10098 CombNextUB
= SemaRef
.ActOnFinishFullExpr(CombNextUB
.get(),
10099 /*DiscardedValue=*/false);
10100 if (!CombNextUB
.isUsable())
10105 // Create increment expression for distribute loop when combined in a same
10106 // directive with for as IV = IV + ST; ensure upper bound expression based
10107 // on PrevUB instead of NumIterations - used to implement 'for' when found
10108 // in combination with 'distribute', like in 'distribute parallel for'
10109 SourceLocation DistIncLoc
= AStmt
->getBeginLoc();
10110 ExprResult DistCond
, DistInc
, PrevEUB
, ParForInDistCond
;
10111 if (isOpenMPLoopBoundSharingDirective(DKind
)) {
10112 DistCond
= SemaRef
.BuildBinOp(
10113 CurScope
, CondLoc
, UseStrictCompare
? BO_LT
: BO_LE
, IV
.get(), BoundUB
);
10114 assert(DistCond
.isUsable() && "distribute cond expr was not built");
10117 SemaRef
.BuildBinOp(CurScope
, DistIncLoc
, BO_Add
, IV
.get(), ST
.get());
10118 assert(DistInc
.isUsable() && "distribute inc expr was not built");
10119 DistInc
= SemaRef
.BuildBinOp(CurScope
, DistIncLoc
, BO_Assign
, IV
.get(),
10122 SemaRef
.ActOnFinishFullExpr(DistInc
.get(), /*DiscardedValue=*/false);
10123 assert(DistInc
.isUsable() && "distribute inc expr was not built");
10125 // Build expression: UB = min(UB, prevUB) for #for in composite or combined
10127 ExprResult NewPrevUB
= PrevUB
;
10128 SourceLocation DistEUBLoc
= AStmt
->getBeginLoc();
10129 if (!SemaRef
.Context
.hasSameType(UB
.get()->getType(),
10130 PrevUB
.get()->getType())) {
10131 NewPrevUB
= SemaRef
.BuildCStyleCastExpr(
10133 SemaRef
.Context
.getTrivialTypeSourceInfo(UB
.get()->getType()),
10134 DistEUBLoc
, NewPrevUB
.get());
10135 if (!NewPrevUB
.isUsable())
10138 ExprResult IsUBGreater
= SemaRef
.BuildBinOp(CurScope
, DistEUBLoc
, BO_GT
,
10139 UB
.get(), NewPrevUB
.get());
10140 ExprResult CondOp
= SemaRef
.ActOnConditionalOp(
10141 DistEUBLoc
, DistEUBLoc
, IsUBGreater
.get(), NewPrevUB
.get(), UB
.get());
10142 PrevEUB
= SemaRef
.BuildBinOp(CurScope
, DistIncLoc
, BO_Assign
, UB
.get(),
10145 SemaRef
.ActOnFinishFullExpr(PrevEUB
.get(), /*DiscardedValue=*/false);
10147 // Build IV <= PrevUB or IV < PrevUB + 1 for unsigned IV to be used in
10148 // parallel for is in combination with a distribute directive with
10149 // schedule(static, 1)
10150 Expr
*BoundPrevUB
= PrevUB
.get();
10151 if (UseStrictCompare
) {
10155 CurScope
, CondLoc
, BO_Add
, BoundPrevUB
,
10156 SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get())
10159 SemaRef
.ActOnFinishFullExpr(BoundPrevUB
, /*DiscardedValue=*/false)
10163 SemaRef
.BuildBinOp(CurScope
, CondLoc
, UseStrictCompare
? BO_LT
: BO_LE
,
10164 IV
.get(), BoundPrevUB
);
10167 // Build updates and final values of the loop counters.
10168 bool HasErrors
= false;
10169 Built
.Counters
.resize(NestedLoopCount
);
10170 Built
.Inits
.resize(NestedLoopCount
);
10171 Built
.Updates
.resize(NestedLoopCount
);
10172 Built
.Finals
.resize(NestedLoopCount
);
10173 Built
.DependentCounters
.resize(NestedLoopCount
);
10174 Built
.DependentInits
.resize(NestedLoopCount
);
10175 Built
.FinalsConditions
.resize(NestedLoopCount
);
10177 // We implement the following algorithm for obtaining the
10178 // original loop iteration variable values based on the
10179 // value of the collapsed loop iteration variable IV.
10181 // Let n+1 be the number of collapsed loops in the nest.
10182 // Iteration variables (I0, I1, .... In)
10183 // Iteration counts (N0, N1, ... Nn)
10187 // To compute Ik for loop k, 0 <= k <= n, generate:
10188 // Prod = N(k+1) * N(k+2) * ... * Nn;
10189 // Ik = Acc / Prod;
10190 // Acc -= Ik * Prod;
10192 ExprResult Acc
= IV
;
10193 for (unsigned int Cnt
= 0; Cnt
< NestedLoopCount
; ++Cnt
) {
10194 LoopIterationSpace
&IS
= IterSpaces
[Cnt
];
10195 SourceLocation UpdLoc
= IS
.IncSrcRange
.getBegin();
10199 ExprResult Prod
= SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get();
10200 for (unsigned int K
= Cnt
+ 1; K
< NestedLoopCount
; ++K
)
10201 Prod
= SemaRef
.BuildBinOp(CurScope
, UpdLoc
, BO_Mul
, Prod
.get(),
10202 IterSpaces
[K
].NumIterations
);
10204 // Iter = Acc / Prod
10205 // If there is at least one more inner loop to avoid
10206 // multiplication by 1.
10207 if (Cnt
+ 1 < NestedLoopCount
)
10209 SemaRef
.BuildBinOp(CurScope
, UpdLoc
, BO_Div
, Acc
.get(), Prod
.get());
10212 if (!Iter
.isUsable()) {
10218 // Acc -= Iter * Prod
10219 // Check if there is at least one more inner loop to avoid
10220 // multiplication by 1.
10221 if (Cnt
+ 1 < NestedLoopCount
)
10222 Prod
= SemaRef
.BuildBinOp(CurScope
, UpdLoc
, BO_Mul
, Iter
.get(),
10226 Acc
= SemaRef
.BuildBinOp(CurScope
, UpdLoc
, BO_Sub
, Acc
.get(), Prod
.get());
10228 // Build update: IS.CounterVar(Private) = IS.Start + Iter * IS.Step
10229 auto *VD
= cast
<VarDecl
>(cast
<DeclRefExpr
>(IS
.CounterVar
)->getDecl());
10230 DeclRefExpr
*CounterVar
= buildDeclRefExpr(
10231 SemaRef
, VD
, IS
.CounterVar
->getType(), IS
.CounterVar
->getExprLoc(),
10232 /*RefersToCapture=*/true);
10234 buildCounterInit(SemaRef
, CurScope
, UpdLoc
, CounterVar
,
10235 IS
.CounterInit
, IS
.IsNonRectangularLB
, Captures
);
10236 if (!Init
.isUsable()) {
10240 ExprResult Update
= buildCounterUpdate(
10241 SemaRef
, CurScope
, UpdLoc
, CounterVar
, IS
.CounterInit
, Iter
,
10242 IS
.CounterStep
, IS
.Subtract
, IS
.IsNonRectangularLB
, &Captures
);
10243 if (!Update
.isUsable()) {
10248 // Build final: IS.CounterVar = IS.Start + IS.NumIters * IS.Step
10250 buildCounterUpdate(SemaRef
, CurScope
, UpdLoc
, CounterVar
,
10251 IS
.CounterInit
, IS
.NumIterations
, IS
.CounterStep
,
10252 IS
.Subtract
, IS
.IsNonRectangularLB
, &Captures
);
10253 if (!Final
.isUsable()) {
10258 if (!Update
.isUsable() || !Final
.isUsable()) {
10263 Built
.Counters
[Cnt
] = IS
.CounterVar
;
10264 Built
.PrivateCounters
[Cnt
] = IS
.PrivateCounterVar
;
10265 Built
.Inits
[Cnt
] = Init
.get();
10266 Built
.Updates
[Cnt
] = Update
.get();
10267 Built
.Finals
[Cnt
] = Final
.get();
10268 Built
.DependentCounters
[Cnt
] = nullptr;
10269 Built
.DependentInits
[Cnt
] = nullptr;
10270 Built
.FinalsConditions
[Cnt
] = nullptr;
10271 if (IS
.IsNonRectangularLB
|| IS
.IsNonRectangularUB
) {
10272 Built
.DependentCounters
[Cnt
] = Built
.Counters
[IS
.LoopDependentIdx
- 1];
10273 Built
.DependentInits
[Cnt
] = Built
.Inits
[IS
.LoopDependentIdx
- 1];
10274 Built
.FinalsConditions
[Cnt
] = IS
.FinalCondition
;
10283 Built
.IterationVarRef
= IV
.get();
10284 Built
.LastIteration
= LastIteration
.get();
10285 Built
.NumIterations
= NumIterations
.get();
10286 Built
.CalcLastIteration
= SemaRef
10287 .ActOnFinishFullExpr(CalcLastIteration
.get(),
10288 /*DiscardedValue=*/false)
10290 Built
.PreCond
= PreCond
.get();
10291 Built
.PreInits
= buildPreInits(C
, Captures
);
10292 Built
.Cond
= Cond
.get();
10293 Built
.Init
= Init
.get();
10294 Built
.Inc
= Inc
.get();
10295 Built
.LB
= LB
.get();
10296 Built
.UB
= UB
.get();
10297 Built
.IL
= IL
.get();
10298 Built
.ST
= ST
.get();
10299 Built
.EUB
= EUB
.get();
10300 Built
.NLB
= NextLB
.get();
10301 Built
.NUB
= NextUB
.get();
10302 Built
.PrevLB
= PrevLB
.get();
10303 Built
.PrevUB
= PrevUB
.get();
10304 Built
.DistInc
= DistInc
.get();
10305 Built
.PrevEUB
= PrevEUB
.get();
10306 Built
.DistCombinedFields
.LB
= CombLB
.get();
10307 Built
.DistCombinedFields
.UB
= CombUB
.get();
10308 Built
.DistCombinedFields
.EUB
= CombEUB
.get();
10309 Built
.DistCombinedFields
.Init
= CombInit
.get();
10310 Built
.DistCombinedFields
.Cond
= CombCond
.get();
10311 Built
.DistCombinedFields
.NLB
= CombNextLB
.get();
10312 Built
.DistCombinedFields
.NUB
= CombNextUB
.get();
10313 Built
.DistCombinedFields
.DistCond
= CombDistCond
.get();
10314 Built
.DistCombinedFields
.ParForInDistCond
= ParForInDistCond
.get();
10316 return NestedLoopCount
;
10319 static Expr
*getCollapseNumberExpr(ArrayRef
<OMPClause
*> Clauses
) {
10320 auto CollapseClauses
=
10321 OMPExecutableDirective::getClausesOfKind
<OMPCollapseClause
>(Clauses
);
10322 if (CollapseClauses
.begin() != CollapseClauses
.end())
10323 return (*CollapseClauses
.begin())->getNumForLoops();
10327 static Expr
*getOrderedNumberExpr(ArrayRef
<OMPClause
*> Clauses
) {
10328 auto OrderedClauses
=
10329 OMPExecutableDirective::getClausesOfKind
<OMPOrderedClause
>(Clauses
);
10330 if (OrderedClauses
.begin() != OrderedClauses
.end())
10331 return (*OrderedClauses
.begin())->getNumForLoops();
10335 static bool checkSimdlenSafelenSpecified(Sema
&S
,
10336 const ArrayRef
<OMPClause
*> Clauses
) {
10337 const OMPSafelenClause
*Safelen
= nullptr;
10338 const OMPSimdlenClause
*Simdlen
= nullptr;
10340 for (const OMPClause
*Clause
: Clauses
) {
10341 if (Clause
->getClauseKind() == OMPC_safelen
)
10342 Safelen
= cast
<OMPSafelenClause
>(Clause
);
10343 else if (Clause
->getClauseKind() == OMPC_simdlen
)
10344 Simdlen
= cast
<OMPSimdlenClause
>(Clause
);
10345 if (Safelen
&& Simdlen
)
10349 if (Simdlen
&& Safelen
) {
10350 const Expr
*SimdlenLength
= Simdlen
->getSimdlen();
10351 const Expr
*SafelenLength
= Safelen
->getSafelen();
10352 if (SimdlenLength
->isValueDependent() || SimdlenLength
->isTypeDependent() ||
10353 SimdlenLength
->isInstantiationDependent() ||
10354 SimdlenLength
->containsUnexpandedParameterPack())
10356 if (SafelenLength
->isValueDependent() || SafelenLength
->isTypeDependent() ||
10357 SafelenLength
->isInstantiationDependent() ||
10358 SafelenLength
->containsUnexpandedParameterPack())
10360 Expr::EvalResult SimdlenResult
, SafelenResult
;
10361 SimdlenLength
->EvaluateAsInt(SimdlenResult
, S
.Context
);
10362 SafelenLength
->EvaluateAsInt(SafelenResult
, S
.Context
);
10363 llvm::APSInt SimdlenRes
= SimdlenResult
.Val
.getInt();
10364 llvm::APSInt SafelenRes
= SafelenResult
.Val
.getInt();
10365 // OpenMP 4.5 [2.8.1, simd Construct, Restrictions]
10366 // If both simdlen and safelen clauses are specified, the value of the
10367 // simdlen parameter must be less than or equal to the value of the safelen
10369 if (SimdlenRes
> SafelenRes
) {
10370 S
.Diag(SimdlenLength
->getExprLoc(),
10371 diag::err_omp_wrong_simdlen_safelen_values
)
10372 << SimdlenLength
->getSourceRange() << SafelenLength
->getSourceRange();
10379 StmtResult
SemaOpenMP::ActOnOpenMPSimdDirective(
10380 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10381 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10383 return StmtError();
10385 CapturedStmt
*CS
= setBranchProtectedScope(SemaRef
, OMPD_simd
, AStmt
);
10387 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
10388 OMPLoopBasedDirective::HelperExprs B
;
10389 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10390 // define the nested loops number.
10391 unsigned NestedLoopCount
= checkOpenMPLoop(
10392 OMPD_simd
, getCollapseNumberExpr(Clauses
), getOrderedNumberExpr(Clauses
),
10393 CS
, SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
10394 if (NestedLoopCount
== 0)
10395 return StmtError();
10397 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
10398 return StmtError();
10400 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
10401 return StmtError();
10403 auto *SimdDirective
= OMPSimdDirective::Create(
10404 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
10405 return SimdDirective
;
10408 StmtResult
SemaOpenMP::ActOnOpenMPForDirective(
10409 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10410 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10412 return StmtError();
10414 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
10415 OMPLoopBasedDirective::HelperExprs B
;
10416 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10417 // define the nested loops number.
10418 unsigned NestedLoopCount
= checkOpenMPLoop(
10419 OMPD_for
, getCollapseNumberExpr(Clauses
), getOrderedNumberExpr(Clauses
),
10420 AStmt
, SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
10421 if (NestedLoopCount
== 0)
10422 return StmtError();
10424 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
10425 return StmtError();
10427 auto *ForDirective
= OMPForDirective::Create(
10428 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
10429 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
10430 return ForDirective
;
10433 StmtResult
SemaOpenMP::ActOnOpenMPForSimdDirective(
10434 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10435 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10437 return StmtError();
10439 CapturedStmt
*CS
= setBranchProtectedScope(SemaRef
, OMPD_for_simd
, AStmt
);
10441 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
10442 OMPLoopBasedDirective::HelperExprs B
;
10443 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10444 // define the nested loops number.
10445 unsigned NestedLoopCount
=
10446 checkOpenMPLoop(OMPD_for_simd
, getCollapseNumberExpr(Clauses
),
10447 getOrderedNumberExpr(Clauses
), CS
, SemaRef
, *DSAStack
,
10448 VarsWithImplicitDSA
, B
);
10449 if (NestedLoopCount
== 0)
10450 return StmtError();
10452 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
10453 return StmtError();
10455 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
10456 return StmtError();
10458 return OMPForSimdDirective::Create(getASTContext(), StartLoc
, EndLoc
,
10459 NestedLoopCount
, Clauses
, AStmt
, B
);
10462 static bool checkSectionsDirective(Sema
&SemaRef
, OpenMPDirectiveKind DKind
,
10463 Stmt
*AStmt
, DSAStackTy
*Stack
) {
10467 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
10468 auto BaseStmt
= AStmt
;
10469 while (auto *CS
= dyn_cast_or_null
<CapturedStmt
>(BaseStmt
))
10470 BaseStmt
= CS
->getCapturedStmt();
10471 if (auto *C
= dyn_cast_or_null
<CompoundStmt
>(BaseStmt
)) {
10472 auto S
= C
->children();
10473 if (S
.begin() == S
.end())
10475 // All associated statements must be '#pragma omp section' except for
10477 for (Stmt
*SectionStmt
: llvm::drop_begin(S
)) {
10478 if (!SectionStmt
|| !isa
<OMPSectionDirective
>(SectionStmt
)) {
10480 SemaRef
.Diag(SectionStmt
->getBeginLoc(),
10481 diag::err_omp_sections_substmt_not_section
)
10482 << getOpenMPDirectiveName(DKind
);
10485 cast
<OMPSectionDirective
>(SectionStmt
)
10486 ->setHasCancel(Stack
->isCancelRegion());
10489 SemaRef
.Diag(AStmt
->getBeginLoc(), diag::err_omp_sections_not_compound_stmt
)
10490 << getOpenMPDirectiveName(DKind
);
10497 SemaOpenMP::ActOnOpenMPSectionsDirective(ArrayRef
<OMPClause
*> Clauses
,
10498 Stmt
*AStmt
, SourceLocation StartLoc
,
10499 SourceLocation EndLoc
) {
10500 if (checkSectionsDirective(SemaRef
, OMPD_sections
, AStmt
, DSAStack
))
10501 return StmtError();
10503 SemaRef
.setFunctionHasBranchProtectedScope();
10505 return OMPSectionsDirective::Create(
10506 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
10507 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
10510 StmtResult
SemaOpenMP::ActOnOpenMPSectionDirective(Stmt
*AStmt
,
10511 SourceLocation StartLoc
,
10512 SourceLocation EndLoc
) {
10514 return StmtError();
10516 SemaRef
.setFunctionHasBranchProtectedScope();
10517 DSAStack
->setParentCancelRegion(DSAStack
->isCancelRegion());
10519 return OMPSectionDirective::Create(getASTContext(), StartLoc
, EndLoc
, AStmt
,
10520 DSAStack
->isCancelRegion());
10523 static Expr
*getDirectCallExpr(Expr
*E
) {
10524 E
= E
->IgnoreParenCasts()->IgnoreImplicit();
10525 if (auto *CE
= dyn_cast
<CallExpr
>(E
))
10526 if (CE
->getDirectCallee())
10532 SemaOpenMP::ActOnOpenMPDispatchDirective(ArrayRef
<OMPClause
*> Clauses
,
10533 Stmt
*AStmt
, SourceLocation StartLoc
,
10534 SourceLocation EndLoc
) {
10536 return StmtError();
10538 Stmt
*S
= cast
<CapturedStmt
>(AStmt
)->getCapturedStmt();
10541 // expression-stmt : an expression statement with one of the following forms:
10542 // expression = target-call ( [expression-list] );
10543 // target-call ( [expression-list] );
10545 SourceLocation TargetCallLoc
;
10547 if (!SemaRef
.CurContext
->isDependentContext()) {
10548 Expr
*TargetCall
= nullptr;
10550 auto *E
= dyn_cast
<Expr
>(S
);
10552 Diag(S
->getBeginLoc(), diag::err_omp_dispatch_statement_call
);
10553 return StmtError();
10556 E
= E
->IgnoreParenCasts()->IgnoreImplicit();
10558 if (auto *BO
= dyn_cast
<BinaryOperator
>(E
)) {
10559 if (BO
->getOpcode() == BO_Assign
)
10560 TargetCall
= getDirectCallExpr(BO
->getRHS());
10562 if (auto *COCE
= dyn_cast
<CXXOperatorCallExpr
>(E
))
10563 if (COCE
->getOperator() == OO_Equal
)
10564 TargetCall
= getDirectCallExpr(COCE
->getArg(1));
10566 TargetCall
= getDirectCallExpr(E
);
10569 Diag(E
->getBeginLoc(), diag::err_omp_dispatch_statement_call
);
10570 return StmtError();
10572 TargetCallLoc
= TargetCall
->getExprLoc();
10575 SemaRef
.setFunctionHasBranchProtectedScope();
10577 return OMPDispatchDirective::Create(getASTContext(), StartLoc
, EndLoc
,
10578 Clauses
, AStmt
, TargetCallLoc
);
10581 static bool checkGenericLoopLastprivate(Sema
&S
, ArrayRef
<OMPClause
*> Clauses
,
10582 OpenMPDirectiveKind K
,
10583 DSAStackTy
*Stack
) {
10584 bool ErrorFound
= false;
10585 for (OMPClause
*C
: Clauses
) {
10586 if (auto *LPC
= dyn_cast
<OMPLastprivateClause
>(C
)) {
10587 for (Expr
*RefExpr
: LPC
->varlist()) {
10588 SourceLocation ELoc
;
10589 SourceRange ERange
;
10590 Expr
*SimpleRefExpr
= RefExpr
;
10591 auto Res
= getPrivateItem(S
, SimpleRefExpr
, ELoc
, ERange
);
10592 if (ValueDecl
*D
= Res
.first
) {
10593 auto &&Info
= Stack
->isLoopControlVariable(D
);
10595 S
.Diag(ELoc
, diag::err_omp_lastprivate_loop_var_non_loop_iteration
)
10596 << getOpenMPDirectiveName(K
);
10606 StmtResult
SemaOpenMP::ActOnOpenMPGenericLoopDirective(
10607 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10608 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10610 return StmtError();
10612 // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10613 // A list item may not appear in a lastprivate clause unless it is the
10614 // loop iteration variable of a loop that is associated with the construct.
10615 if (checkGenericLoopLastprivate(SemaRef
, Clauses
, OMPD_loop
, DSAStack
))
10616 return StmtError();
10618 setBranchProtectedScope(SemaRef
, OMPD_loop
, AStmt
);
10620 OMPLoopDirective::HelperExprs B
;
10621 // In presence of clause 'collapse', it will define the nested loops number.
10622 unsigned NestedLoopCount
= checkOpenMPLoop(
10623 OMPD_loop
, getCollapseNumberExpr(Clauses
), getOrderedNumberExpr(Clauses
),
10624 AStmt
, SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
10625 if (NestedLoopCount
== 0)
10626 return StmtError();
10628 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
10629 "omp loop exprs were not built");
10631 return OMPGenericLoopDirective::Create(getASTContext(), StartLoc
, EndLoc
,
10632 NestedLoopCount
, Clauses
, AStmt
, B
);
10635 StmtResult
SemaOpenMP::ActOnOpenMPTeamsGenericLoopDirective(
10636 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10637 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10639 return StmtError();
10641 // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10642 // A list item may not appear in a lastprivate clause unless it is the
10643 // loop iteration variable of a loop that is associated with the construct.
10644 if (checkGenericLoopLastprivate(SemaRef
, Clauses
, OMPD_teams_loop
, DSAStack
))
10645 return StmtError();
10647 CapturedStmt
*CS
= setBranchProtectedScope(SemaRef
, OMPD_teams_loop
, AStmt
);
10649 OMPLoopDirective::HelperExprs B
;
10650 // In presence of clause 'collapse', it will define the nested loops number.
10651 unsigned NestedLoopCount
=
10652 checkOpenMPLoop(OMPD_teams_loop
, getCollapseNumberExpr(Clauses
),
10653 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
10654 VarsWithImplicitDSA
, B
);
10655 if (NestedLoopCount
== 0)
10656 return StmtError();
10658 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
10659 "omp loop exprs were not built");
10661 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
10663 return OMPTeamsGenericLoopDirective::Create(
10664 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
10667 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsGenericLoopDirective(
10668 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10669 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10671 return StmtError();
10673 // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10674 // A list item may not appear in a lastprivate clause unless it is the
10675 // loop iteration variable of a loop that is associated with the construct.
10676 if (checkGenericLoopLastprivate(SemaRef
, Clauses
, OMPD_target_teams_loop
,
10678 return StmtError();
10681 setBranchProtectedScope(SemaRef
, OMPD_target_teams_loop
, AStmt
);
10683 OMPLoopDirective::HelperExprs B
;
10684 // In presence of clause 'collapse', it will define the nested loops number.
10685 unsigned NestedLoopCount
=
10686 checkOpenMPLoop(OMPD_target_teams_loop
, getCollapseNumberExpr(Clauses
),
10687 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
10688 VarsWithImplicitDSA
, B
);
10689 if (NestedLoopCount
== 0)
10690 return StmtError();
10692 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
10693 "omp loop exprs were not built");
10695 return OMPTargetTeamsGenericLoopDirective::Create(
10696 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
10697 teamsLoopCanBeParallelFor(AStmt
, SemaRef
));
10700 StmtResult
SemaOpenMP::ActOnOpenMPParallelGenericLoopDirective(
10701 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10702 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10704 return StmtError();
10706 // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10707 // A list item may not appear in a lastprivate clause unless it is the
10708 // loop iteration variable of a loop that is associated with the construct.
10709 if (checkGenericLoopLastprivate(SemaRef
, Clauses
, OMPD_parallel_loop
,
10711 return StmtError();
10714 setBranchProtectedScope(SemaRef
, OMPD_parallel_loop
, AStmt
);
10716 OMPLoopDirective::HelperExprs B
;
10717 // In presence of clause 'collapse', it will define the nested loops number.
10718 unsigned NestedLoopCount
=
10719 checkOpenMPLoop(OMPD_parallel_loop
, getCollapseNumberExpr(Clauses
),
10720 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
10721 VarsWithImplicitDSA
, B
);
10722 if (NestedLoopCount
== 0)
10723 return StmtError();
10725 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
10726 "omp loop exprs were not built");
10728 return OMPParallelGenericLoopDirective::Create(
10729 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
10732 StmtResult
SemaOpenMP::ActOnOpenMPTargetParallelGenericLoopDirective(
10733 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10734 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10736 return StmtError();
10738 // OpenMP 5.1 [2.11.7, loop construct, Restrictions]
10739 // A list item may not appear in a lastprivate clause unless it is the
10740 // loop iteration variable of a loop that is associated with the construct.
10741 if (checkGenericLoopLastprivate(SemaRef
, Clauses
, OMPD_target_parallel_loop
,
10743 return StmtError();
10746 setBranchProtectedScope(SemaRef
, OMPD_target_parallel_loop
, AStmt
);
10748 OMPLoopDirective::HelperExprs B
;
10749 // In presence of clause 'collapse', it will define the nested loops number.
10750 unsigned NestedLoopCount
=
10751 checkOpenMPLoop(OMPD_target_parallel_loop
, getCollapseNumberExpr(Clauses
),
10752 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
10753 VarsWithImplicitDSA
, B
);
10754 if (NestedLoopCount
== 0)
10755 return StmtError();
10757 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
10758 "omp loop exprs were not built");
10760 return OMPTargetParallelGenericLoopDirective::Create(
10761 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
10764 StmtResult
SemaOpenMP::ActOnOpenMPSingleDirective(ArrayRef
<OMPClause
*> Clauses
,
10766 SourceLocation StartLoc
,
10767 SourceLocation EndLoc
) {
10769 return StmtError();
10771 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
10773 SemaRef
.setFunctionHasBranchProtectedScope();
10775 // OpenMP [2.7.3, single Construct, Restrictions]
10776 // The copyprivate clause must not be used with the nowait clause.
10777 const OMPClause
*Nowait
= nullptr;
10778 const OMPClause
*Copyprivate
= nullptr;
10779 for (const OMPClause
*Clause
: Clauses
) {
10780 if (Clause
->getClauseKind() == OMPC_nowait
)
10782 else if (Clause
->getClauseKind() == OMPC_copyprivate
)
10783 Copyprivate
= Clause
;
10784 if (Copyprivate
&& Nowait
) {
10785 Diag(Copyprivate
->getBeginLoc(),
10786 diag::err_omp_single_copyprivate_with_nowait
);
10787 Diag(Nowait
->getBeginLoc(), diag::note_omp_nowait_clause_here
);
10788 return StmtError();
10792 return OMPSingleDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
10796 StmtResult
SemaOpenMP::ActOnOpenMPMasterDirective(Stmt
*AStmt
,
10797 SourceLocation StartLoc
,
10798 SourceLocation EndLoc
) {
10800 return StmtError();
10802 SemaRef
.setFunctionHasBranchProtectedScope();
10804 return OMPMasterDirective::Create(getASTContext(), StartLoc
, EndLoc
, AStmt
);
10807 StmtResult
SemaOpenMP::ActOnOpenMPMaskedDirective(ArrayRef
<OMPClause
*> Clauses
,
10809 SourceLocation StartLoc
,
10810 SourceLocation EndLoc
) {
10812 return StmtError();
10814 SemaRef
.setFunctionHasBranchProtectedScope();
10816 return OMPMaskedDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
10820 StmtResult
SemaOpenMP::ActOnOpenMPCriticalDirective(
10821 const DeclarationNameInfo
&DirName
, ArrayRef
<OMPClause
*> Clauses
,
10822 Stmt
*AStmt
, SourceLocation StartLoc
, SourceLocation EndLoc
) {
10824 return StmtError();
10826 bool ErrorFound
= false;
10828 SourceLocation HintLoc
;
10829 bool DependentHint
= false;
10830 for (const OMPClause
*C
: Clauses
) {
10831 if (C
->getClauseKind() == OMPC_hint
) {
10832 if (!DirName
.getName()) {
10833 Diag(C
->getBeginLoc(), diag::err_omp_hint_clause_no_name
);
10836 Expr
*E
= cast
<OMPHintClause
>(C
)->getHint();
10837 if (E
->isTypeDependent() || E
->isValueDependent() ||
10838 E
->isInstantiationDependent()) {
10839 DependentHint
= true;
10841 Hint
= E
->EvaluateKnownConstInt(getASTContext());
10842 HintLoc
= C
->getBeginLoc();
10847 return StmtError();
10848 const auto Pair
= DSAStack
->getCriticalWithHint(DirName
);
10849 if (Pair
.first
&& DirName
.getName() && !DependentHint
) {
10850 if (llvm::APSInt::compareValues(Hint
, Pair
.second
) != 0) {
10851 Diag(StartLoc
, diag::err_omp_critical_with_hint
);
10852 if (HintLoc
.isValid())
10853 Diag(HintLoc
, diag::note_omp_critical_hint_here
)
10854 << 0 << toString(Hint
, /*Radix=*/10, /*Signed=*/false);
10856 Diag(StartLoc
, diag::note_omp_critical_no_hint
) << 0;
10857 if (const auto *C
= Pair
.first
->getSingleClause
<OMPHintClause
>()) {
10858 Diag(C
->getBeginLoc(), diag::note_omp_critical_hint_here
)
10860 << toString(C
->getHint()->EvaluateKnownConstInt(getASTContext()),
10861 /*Radix=*/10, /*Signed=*/false);
10863 Diag(Pair
.first
->getBeginLoc(), diag::note_omp_critical_no_hint
) << 1;
10868 SemaRef
.setFunctionHasBranchProtectedScope();
10870 auto *Dir
= OMPCriticalDirective::Create(getASTContext(), DirName
, StartLoc
,
10871 EndLoc
, Clauses
, AStmt
);
10872 if (!Pair
.first
&& DirName
.getName() && !DependentHint
)
10873 DSAStack
->addCriticalWithHint(Dir
, Hint
);
10877 StmtResult
SemaOpenMP::ActOnOpenMPParallelForDirective(
10878 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10879 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10881 return StmtError();
10883 setBranchProtectedScope(SemaRef
, OMPD_parallel_for
, AStmt
);
10885 OMPLoopBasedDirective::HelperExprs B
;
10886 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10887 // define the nested loops number.
10888 unsigned NestedLoopCount
=
10889 checkOpenMPLoop(OMPD_parallel_for
, getCollapseNumberExpr(Clauses
),
10890 getOrderedNumberExpr(Clauses
), AStmt
, SemaRef
, *DSAStack
,
10891 VarsWithImplicitDSA
, B
);
10892 if (NestedLoopCount
== 0)
10893 return StmtError();
10895 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
10896 return StmtError();
10898 return OMPParallelForDirective::Create(
10899 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
10900 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
10903 StmtResult
SemaOpenMP::ActOnOpenMPParallelForSimdDirective(
10904 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10905 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
10907 return StmtError();
10910 setBranchProtectedScope(SemaRef
, OMPD_parallel_for_simd
, AStmt
);
10912 OMPLoopBasedDirective::HelperExprs B
;
10913 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
10914 // define the nested loops number.
10915 unsigned NestedLoopCount
=
10916 checkOpenMPLoop(OMPD_parallel_for_simd
, getCollapseNumberExpr(Clauses
),
10917 getOrderedNumberExpr(Clauses
), CS
, SemaRef
, *DSAStack
,
10918 VarsWithImplicitDSA
, B
);
10919 if (NestedLoopCount
== 0)
10920 return StmtError();
10922 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
10923 return StmtError();
10925 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
10926 return StmtError();
10928 return OMPParallelForSimdDirective::Create(
10929 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
10932 StmtResult
SemaOpenMP::ActOnOpenMPParallelMasterDirective(
10933 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10934 SourceLocation EndLoc
) {
10936 return StmtError();
10938 setBranchProtectedScope(SemaRef
, OMPD_parallel_master
, AStmt
);
10940 return OMPParallelMasterDirective::Create(
10941 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
10942 DSAStack
->getTaskgroupReductionRef());
10945 StmtResult
SemaOpenMP::ActOnOpenMPParallelMaskedDirective(
10946 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10947 SourceLocation EndLoc
) {
10949 return StmtError();
10951 setBranchProtectedScope(SemaRef
, OMPD_parallel_masked
, AStmt
);
10953 return OMPParallelMaskedDirective::Create(
10954 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
10955 DSAStack
->getTaskgroupReductionRef());
10958 StmtResult
SemaOpenMP::ActOnOpenMPParallelSectionsDirective(
10959 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
10960 SourceLocation EndLoc
) {
10961 if (checkSectionsDirective(SemaRef
, OMPD_parallel_sections
, AStmt
, DSAStack
))
10962 return StmtError();
10964 SemaRef
.setFunctionHasBranchProtectedScope();
10966 return OMPParallelSectionsDirective::Create(
10967 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
10968 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
10971 /// Find and diagnose mutually exclusive clause kinds.
10972 static bool checkMutuallyExclusiveClauses(
10973 Sema
&S
, ArrayRef
<OMPClause
*> Clauses
,
10974 ArrayRef
<OpenMPClauseKind
> MutuallyExclusiveClauses
) {
10975 const OMPClause
*PrevClause
= nullptr;
10976 bool ErrorFound
= false;
10977 for (const OMPClause
*C
: Clauses
) {
10978 if (llvm::is_contained(MutuallyExclusiveClauses
, C
->getClauseKind())) {
10981 } else if (PrevClause
->getClauseKind() != C
->getClauseKind()) {
10982 S
.Diag(C
->getBeginLoc(), diag::err_omp_clauses_mutually_exclusive
)
10983 << getOpenMPClauseName(C
->getClauseKind())
10984 << getOpenMPClauseName(PrevClause
->getClauseKind());
10985 S
.Diag(PrevClause
->getBeginLoc(), diag::note_omp_previous_clause
)
10986 << getOpenMPClauseName(PrevClause
->getClauseKind());
10994 StmtResult
SemaOpenMP::ActOnOpenMPTaskDirective(ArrayRef
<OMPClause
*> Clauses
,
10996 SourceLocation StartLoc
,
10997 SourceLocation EndLoc
) {
10999 return StmtError();
11001 // OpenMP 5.0, 2.10.1 task Construct
11002 // If a detach clause appears on the directive, then a mergeable clause cannot
11003 // appear on the same directive.
11004 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
11005 {OMPC_detach
, OMPC_mergeable
}))
11006 return StmtError();
11008 setBranchProtectedScope(SemaRef
, OMPD_task
, AStmt
);
11010 return OMPTaskDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
11011 AStmt
, DSAStack
->isCancelRegion());
11014 StmtResult
SemaOpenMP::ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc
,
11015 SourceLocation EndLoc
) {
11016 return OMPTaskyieldDirective::Create(getASTContext(), StartLoc
, EndLoc
);
11019 StmtResult
SemaOpenMP::ActOnOpenMPBarrierDirective(SourceLocation StartLoc
,
11020 SourceLocation EndLoc
) {
11021 return OMPBarrierDirective::Create(getASTContext(), StartLoc
, EndLoc
);
11024 StmtResult
SemaOpenMP::ActOnOpenMPErrorDirective(ArrayRef
<OMPClause
*> Clauses
,
11025 SourceLocation StartLoc
,
11026 SourceLocation EndLoc
,
11027 bool InExContext
) {
11028 const OMPAtClause
*AtC
=
11029 OMPExecutableDirective::getSingleClause
<OMPAtClause
>(Clauses
);
11031 if (AtC
&& !InExContext
&& AtC
->getAtKind() == OMPC_AT_execution
) {
11032 Diag(AtC
->getAtKindKwLoc(), diag::err_omp_unexpected_execution_modifier
);
11033 return StmtError();
11036 const OMPSeverityClause
*SeverityC
=
11037 OMPExecutableDirective::getSingleClause
<OMPSeverityClause
>(Clauses
);
11038 const OMPMessageClause
*MessageC
=
11039 OMPExecutableDirective::getSingleClause
<OMPMessageClause
>(Clauses
);
11040 Expr
*ME
= MessageC
? MessageC
->getMessageString() : nullptr;
11042 if (!AtC
|| AtC
->getAtKind() == OMPC_AT_compilation
) {
11043 if (SeverityC
&& SeverityC
->getSeverityKind() == OMPC_SEVERITY_warning
)
11044 Diag(SeverityC
->getSeverityKindKwLoc(), diag::warn_diagnose_if_succeeded
)
11045 << (ME
? cast
<StringLiteral
>(ME
)->getString() : "WARNING");
11047 Diag(StartLoc
, diag::err_diagnose_if_succeeded
)
11048 << (ME
? cast
<StringLiteral
>(ME
)->getString() : "ERROR");
11049 if (!SeverityC
|| SeverityC
->getSeverityKind() != OMPC_SEVERITY_warning
)
11050 return StmtError();
11052 return OMPErrorDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
);
11056 SemaOpenMP::ActOnOpenMPTaskwaitDirective(ArrayRef
<OMPClause
*> Clauses
,
11057 SourceLocation StartLoc
,
11058 SourceLocation EndLoc
) {
11059 const OMPNowaitClause
*NowaitC
=
11060 OMPExecutableDirective::getSingleClause
<OMPNowaitClause
>(Clauses
);
11062 !OMPExecutableDirective::getClausesOfKind
<OMPDependClause
>(Clauses
)
11064 if (NowaitC
&& !HasDependC
) {
11065 Diag(StartLoc
, diag::err_omp_nowait_clause_without_depend
);
11066 return StmtError();
11069 return OMPTaskwaitDirective::Create(getASTContext(), StartLoc
, EndLoc
,
11074 SemaOpenMP::ActOnOpenMPTaskgroupDirective(ArrayRef
<OMPClause
*> Clauses
,
11075 Stmt
*AStmt
, SourceLocation StartLoc
,
11076 SourceLocation EndLoc
) {
11078 return StmtError();
11080 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
11082 SemaRef
.setFunctionHasBranchProtectedScope();
11084 return OMPTaskgroupDirective::Create(getASTContext(), StartLoc
, EndLoc
,
11086 DSAStack
->getTaskgroupReductionRef());
11089 StmtResult
SemaOpenMP::ActOnOpenMPFlushDirective(ArrayRef
<OMPClause
*> Clauses
,
11090 SourceLocation StartLoc
,
11091 SourceLocation EndLoc
) {
11092 OMPFlushClause
*FC
= nullptr;
11093 OMPClause
*OrderClause
= nullptr;
11094 for (OMPClause
*C
: Clauses
) {
11095 if (C
->getClauseKind() == OMPC_flush
)
11096 FC
= cast
<OMPFlushClause
>(C
);
11100 OpenMPClauseKind MemOrderKind
= OMPC_unknown
;
11101 SourceLocation MemOrderLoc
;
11102 for (const OMPClause
*C
: Clauses
) {
11103 if (C
->getClauseKind() == OMPC_acq_rel
||
11104 C
->getClauseKind() == OMPC_acquire
||
11105 C
->getClauseKind() == OMPC_release
||
11106 C
->getClauseKind() == OMPC_seq_cst
/*OpenMP 5.1*/) {
11107 if (MemOrderKind
!= OMPC_unknown
) {
11108 Diag(C
->getBeginLoc(), diag::err_omp_several_mem_order_clauses
)
11109 << getOpenMPDirectiveName(OMPD_flush
) << 1
11110 << SourceRange(C
->getBeginLoc(), C
->getEndLoc());
11111 Diag(MemOrderLoc
, diag::note_omp_previous_mem_order_clause
)
11112 << getOpenMPClauseName(MemOrderKind
);
11114 MemOrderKind
= C
->getClauseKind();
11115 MemOrderLoc
= C
->getBeginLoc();
11119 if (FC
&& OrderClause
) {
11120 Diag(FC
->getLParenLoc(), diag::err_omp_flush_order_clause_and_list
)
11121 << getOpenMPClauseName(OrderClause
->getClauseKind());
11122 Diag(OrderClause
->getBeginLoc(), diag::note_omp_flush_order_clause_here
)
11123 << getOpenMPClauseName(OrderClause
->getClauseKind());
11124 return StmtError();
11126 return OMPFlushDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
);
11129 StmtResult
SemaOpenMP::ActOnOpenMPDepobjDirective(ArrayRef
<OMPClause
*> Clauses
,
11130 SourceLocation StartLoc
,
11131 SourceLocation EndLoc
) {
11132 if (Clauses
.empty()) {
11133 Diag(StartLoc
, diag::err_omp_depobj_expected
);
11134 return StmtError();
11135 } else if (Clauses
[0]->getClauseKind() != OMPC_depobj
) {
11136 Diag(Clauses
[0]->getBeginLoc(), diag::err_omp_depobj_expected
);
11137 return StmtError();
11139 // Only depobj expression and another single clause is allowed.
11140 if (Clauses
.size() > 2) {
11141 Diag(Clauses
[2]->getBeginLoc(),
11142 diag::err_omp_depobj_single_clause_expected
);
11143 return StmtError();
11144 } else if (Clauses
.size() < 1) {
11145 Diag(Clauses
[0]->getEndLoc(), diag::err_omp_depobj_single_clause_expected
);
11146 return StmtError();
11148 return OMPDepobjDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
);
11151 StmtResult
SemaOpenMP::ActOnOpenMPScanDirective(ArrayRef
<OMPClause
*> Clauses
,
11152 SourceLocation StartLoc
,
11153 SourceLocation EndLoc
) {
11154 // Check that exactly one clause is specified.
11155 if (Clauses
.size() != 1) {
11156 Diag(Clauses
.empty() ? EndLoc
: Clauses
[1]->getBeginLoc(),
11157 diag::err_omp_scan_single_clause_expected
);
11158 return StmtError();
11160 // Check that scan directive is used in the scope of the OpenMP loop body.
11161 if (Scope
*S
= DSAStack
->getCurScope()) {
11162 Scope
*ParentS
= S
->getParent();
11163 if (!ParentS
|| ParentS
->getParent() != ParentS
->getBreakParent() ||
11164 !ParentS
->getBreakParent()->isOpenMPLoopScope())
11165 return StmtError(Diag(StartLoc
, diag::err_omp_orphaned_device_directive
)
11166 << getOpenMPDirectiveName(OMPD_scan
) << 5);
11168 // Check that only one instance of scan directives is used in the same outer
11170 if (DSAStack
->doesParentHasScanDirective()) {
11171 Diag(StartLoc
, diag::err_omp_several_directives_in_region
) << "scan";
11172 Diag(DSAStack
->getParentScanDirectiveLoc(),
11173 diag::note_omp_previous_directive
)
11175 return StmtError();
11177 DSAStack
->setParentHasScanDirective(StartLoc
);
11178 return OMPScanDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
);
11182 SemaOpenMP::ActOnOpenMPOrderedDirective(ArrayRef
<OMPClause
*> Clauses
,
11183 Stmt
*AStmt
, SourceLocation StartLoc
,
11184 SourceLocation EndLoc
) {
11185 const OMPClause
*DependFound
= nullptr;
11186 const OMPClause
*DependSourceClause
= nullptr;
11187 const OMPClause
*DependSinkClause
= nullptr;
11188 const OMPClause
*DoacrossFound
= nullptr;
11189 const OMPClause
*DoacrossSourceClause
= nullptr;
11190 const OMPClause
*DoacrossSinkClause
= nullptr;
11191 bool ErrorFound
= false;
11192 const OMPThreadsClause
*TC
= nullptr;
11193 const OMPSIMDClause
*SC
= nullptr;
11194 for (const OMPClause
*C
: Clauses
) {
11195 auto DOC
= dyn_cast
<OMPDoacrossClause
>(C
);
11196 auto DC
= dyn_cast
<OMPDependClause
>(C
);
11198 DependFound
= DC
? C
: nullptr;
11199 DoacrossFound
= DOC
? C
: nullptr;
11200 OMPDoacrossKind ODK
;
11201 if ((DC
&& DC
->getDependencyKind() == OMPC_DEPEND_source
) ||
11202 (DOC
&& (ODK
.isSource(DOC
)))) {
11203 if ((DC
&& DependSourceClause
) || (DOC
&& DoacrossSourceClause
)) {
11204 Diag(C
->getBeginLoc(), diag::err_omp_more_one_clause
)
11205 << getOpenMPDirectiveName(OMPD_ordered
)
11206 << getOpenMPClauseName(DC
? OMPC_depend
: OMPC_doacross
) << 2;
11210 DependSourceClause
= C
;
11212 DoacrossSourceClause
= C
;
11214 if ((DC
&& DependSinkClause
) || (DOC
&& DoacrossSinkClause
)) {
11215 Diag(C
->getBeginLoc(), diag::err_omp_sink_and_source_not_allowed
)
11216 << (DC
? "depend" : "doacross") << 0;
11219 } else if ((DC
&& DC
->getDependencyKind() == OMPC_DEPEND_sink
) ||
11220 (DOC
&& (ODK
.isSink(DOC
) || ODK
.isSinkIter(DOC
)))) {
11221 if (DependSourceClause
|| DoacrossSourceClause
) {
11222 Diag(C
->getBeginLoc(), diag::err_omp_sink_and_source_not_allowed
)
11223 << (DC
? "depend" : "doacross") << 1;
11227 DependSinkClause
= C
;
11229 DoacrossSinkClause
= C
;
11231 } else if (C
->getClauseKind() == OMPC_threads
) {
11232 TC
= cast
<OMPThreadsClause
>(C
);
11233 } else if (C
->getClauseKind() == OMPC_simd
) {
11234 SC
= cast
<OMPSIMDClause
>(C
);
11237 if (!ErrorFound
&& !SC
&&
11238 isOpenMPSimdDirective(DSAStack
->getParentDirective())) {
11239 // OpenMP [2.8.1,simd Construct, Restrictions]
11240 // An ordered construct with the simd clause is the only OpenMP construct
11241 // that can appear in the simd region.
11242 Diag(StartLoc
, diag::err_omp_prohibited_region_simd
)
11243 << (getLangOpts().OpenMP
>= 50 ? 1 : 0);
11245 } else if ((DependFound
|| DoacrossFound
) && (TC
|| SC
)) {
11246 SourceLocation Loc
=
11247 DependFound
? DependFound
->getBeginLoc() : DoacrossFound
->getBeginLoc();
11248 Diag(Loc
, diag::err_omp_depend_clause_thread_simd
)
11249 << getOpenMPClauseName(DependFound
? OMPC_depend
: OMPC_doacross
)
11250 << getOpenMPClauseName(TC
? TC
->getClauseKind() : SC
->getClauseKind());
11252 } else if ((DependFound
|| DoacrossFound
) &&
11253 !DSAStack
->getParentOrderedRegionParam().first
) {
11254 SourceLocation Loc
=
11255 DependFound
? DependFound
->getBeginLoc() : DoacrossFound
->getBeginLoc();
11256 Diag(Loc
, diag::err_omp_ordered_directive_without_param
)
11257 << getOpenMPClauseName(DependFound
? OMPC_depend
: OMPC_doacross
);
11259 } else if (TC
|| Clauses
.empty()) {
11260 if (const Expr
*Param
= DSAStack
->getParentOrderedRegionParam().first
) {
11261 SourceLocation ErrLoc
= TC
? TC
->getBeginLoc() : StartLoc
;
11262 Diag(ErrLoc
, diag::err_omp_ordered_directive_with_param
)
11263 << (TC
!= nullptr);
11264 Diag(Param
->getBeginLoc(), diag::note_omp_ordered_param
) << 1;
11268 if ((!AStmt
&& !DependFound
&& !DoacrossFound
) || ErrorFound
)
11269 return StmtError();
11271 // OpenMP 5.0, 2.17.9, ordered Construct, Restrictions.
11272 // During execution of an iteration of a worksharing-loop or a loop nest
11273 // within a worksharing-loop, simd, or worksharing-loop SIMD region, a thread
11274 // must not execute more than one ordered region corresponding to an ordered
11275 // construct without a depend clause.
11276 if (!DependFound
&& !DoacrossFound
) {
11277 if (DSAStack
->doesParentHasOrderedDirective()) {
11278 Diag(StartLoc
, diag::err_omp_several_directives_in_region
) << "ordered";
11279 Diag(DSAStack
->getParentOrderedDirectiveLoc(),
11280 diag::note_omp_previous_directive
)
11282 return StmtError();
11284 DSAStack
->setParentHasOrderedDirective(StartLoc
);
11288 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
11290 SemaRef
.setFunctionHasBranchProtectedScope();
11293 return OMPOrderedDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
11298 /// Helper class for checking expression in 'omp atomic [update]'
11300 class OpenMPAtomicUpdateChecker
{
11301 /// Error results for atomic update expressions.
11302 enum ExprAnalysisErrorCode
{
11303 /// A statement is not an expression statement.
11305 /// Expression is not builtin binary or unary operation.
11306 NotABinaryOrUnaryExpression
,
11307 /// Unary operation is not post-/pre- increment/decrement operation.
11308 NotAnUnaryIncDecExpression
,
11309 /// An expression is not of scalar type.
11311 /// A binary operation is not an assignment operation.
11313 /// RHS part of the binary operation is not a binary expression.
11314 NotABinaryExpression
,
11315 /// RHS part is not additive/multiplicative/shift/bitwise binary
11317 NotABinaryOperator
,
11318 /// RHS binary operation does not have reference to the updated LHS
11320 NotAnUpdateExpression
,
11321 /// An expression contains semantical error not related to
11322 /// 'omp atomic [update]'
11323 NotAValidExpression
,
11324 /// No errors is found.
11327 /// Reference to Sema.
11329 /// A location for note diagnostics (when error is found).
11330 SourceLocation NoteLoc
;
11331 /// 'x' lvalue part of the source atomic expression.
11333 /// 'expr' rvalue part of the source atomic expression.
11335 /// Helper expression of the form
11336 /// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
11337 /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
11339 /// Is 'x' a LHS in a RHS part of full update expression. It is
11340 /// important for non-associative operations.
11341 bool IsXLHSInRHSPart
;
11342 BinaryOperatorKind Op
;
11343 SourceLocation OpLoc
;
11344 /// true if the source expression is a postfix unary operation, false
11345 /// if it is a prefix unary operation.
11346 bool IsPostfixUpdate
;
11349 OpenMPAtomicUpdateChecker(Sema
&SemaRef
)
11350 : SemaRef(SemaRef
), X(nullptr), E(nullptr), UpdateExpr(nullptr),
11351 IsXLHSInRHSPart(false), Op(BO_PtrMemD
), IsPostfixUpdate(false) {}
11352 /// Check specified statement that it is suitable for 'atomic update'
11353 /// constructs and extract 'x', 'expr' and Operation from the original
11354 /// expression. If DiagId and NoteId == 0, then only check is performed
11355 /// without error notification.
11356 /// \param DiagId Diagnostic which should be emitted if error is found.
11357 /// \param NoteId Diagnostic note for the main error message.
11358 /// \return true if statement is not an update expression, false otherwise.
11359 bool checkStatement(Stmt
*S
, unsigned DiagId
= 0, unsigned NoteId
= 0);
11360 /// Return the 'x' lvalue part of the source atomic expression.
11361 Expr
*getX() const { return X
; }
11362 /// Return the 'expr' rvalue part of the source atomic expression.
11363 Expr
*getExpr() const { return E
; }
11364 /// Return the update expression used in calculation of the updated
11365 /// value. Always has form 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or
11366 /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'.
11367 Expr
*getUpdateExpr() const { return UpdateExpr
; }
11368 /// Return true if 'x' is LHS in RHS part of full update expression,
11369 /// false otherwise.
11370 bool isXLHSInRHSPart() const { return IsXLHSInRHSPart
; }
11372 /// true if the source expression is a postfix unary operation, false
11373 /// if it is a prefix unary operation.
11374 bool isPostfixUpdate() const { return IsPostfixUpdate
; }
11377 bool checkBinaryOperation(BinaryOperator
*AtomicBinOp
, unsigned DiagId
= 0,
11378 unsigned NoteId
= 0);
11381 bool OpenMPAtomicUpdateChecker::checkBinaryOperation(
11382 BinaryOperator
*AtomicBinOp
, unsigned DiagId
, unsigned NoteId
) {
11383 ExprAnalysisErrorCode ErrorFound
= NoError
;
11384 SourceLocation ErrorLoc
, NoteLoc
;
11385 SourceRange ErrorRange
, NoteRange
;
11386 // Allowed constructs are:
11387 // x = x binop expr;
11388 // x = expr binop x;
11389 if (AtomicBinOp
->getOpcode() == BO_Assign
) {
11390 X
= AtomicBinOp
->getLHS();
11391 if (const auto *AtomicInnerBinOp
= dyn_cast
<BinaryOperator
>(
11392 AtomicBinOp
->getRHS()->IgnoreParenImpCasts())) {
11393 if (AtomicInnerBinOp
->isMultiplicativeOp() ||
11394 AtomicInnerBinOp
->isAdditiveOp() || AtomicInnerBinOp
->isShiftOp() ||
11395 AtomicInnerBinOp
->isBitwiseOp()) {
11396 Op
= AtomicInnerBinOp
->getOpcode();
11397 OpLoc
= AtomicInnerBinOp
->getOperatorLoc();
11398 Expr
*LHS
= AtomicInnerBinOp
->getLHS();
11399 Expr
*RHS
= AtomicInnerBinOp
->getRHS();
11400 llvm::FoldingSetNodeID XId
, LHSId
, RHSId
;
11401 X
->IgnoreParenImpCasts()->Profile(XId
, SemaRef
.getASTContext(),
11402 /*Canonical=*/true);
11403 LHS
->IgnoreParenImpCasts()->Profile(LHSId
, SemaRef
.getASTContext(),
11404 /*Canonical=*/true);
11405 RHS
->IgnoreParenImpCasts()->Profile(RHSId
, SemaRef
.getASTContext(),
11406 /*Canonical=*/true);
11407 if (XId
== LHSId
) {
11409 IsXLHSInRHSPart
= true;
11410 } else if (XId
== RHSId
) {
11412 IsXLHSInRHSPart
= false;
11414 ErrorLoc
= AtomicInnerBinOp
->getExprLoc();
11415 ErrorRange
= AtomicInnerBinOp
->getSourceRange();
11416 NoteLoc
= X
->getExprLoc();
11417 NoteRange
= X
->getSourceRange();
11418 ErrorFound
= NotAnUpdateExpression
;
11421 ErrorLoc
= AtomicInnerBinOp
->getExprLoc();
11422 ErrorRange
= AtomicInnerBinOp
->getSourceRange();
11423 NoteLoc
= AtomicInnerBinOp
->getOperatorLoc();
11424 NoteRange
= SourceRange(NoteLoc
, NoteLoc
);
11425 ErrorFound
= NotABinaryOperator
;
11428 NoteLoc
= ErrorLoc
= AtomicBinOp
->getRHS()->getExprLoc();
11429 NoteRange
= ErrorRange
= AtomicBinOp
->getRHS()->getSourceRange();
11430 ErrorFound
= NotABinaryExpression
;
11433 ErrorLoc
= AtomicBinOp
->getExprLoc();
11434 ErrorRange
= AtomicBinOp
->getSourceRange();
11435 NoteLoc
= AtomicBinOp
->getOperatorLoc();
11436 NoteRange
= SourceRange(NoteLoc
, NoteLoc
);
11437 ErrorFound
= NotAnAssignmentOp
;
11439 if (ErrorFound
!= NoError
&& DiagId
!= 0 && NoteId
!= 0) {
11440 SemaRef
.Diag(ErrorLoc
, DiagId
) << ErrorRange
;
11441 SemaRef
.Diag(NoteLoc
, NoteId
) << ErrorFound
<< NoteRange
;
11444 if (SemaRef
.CurContext
->isDependentContext())
11445 E
= X
= UpdateExpr
= nullptr;
11446 return ErrorFound
!= NoError
;
11449 bool OpenMPAtomicUpdateChecker::checkStatement(Stmt
*S
, unsigned DiagId
,
11451 ExprAnalysisErrorCode ErrorFound
= NoError
;
11452 SourceLocation ErrorLoc
, NoteLoc
;
11453 SourceRange ErrorRange
, NoteRange
;
11454 // Allowed constructs are:
11460 // x = x binop expr;
11461 // x = expr binop x;
11462 if (auto *AtomicBody
= dyn_cast
<Expr
>(S
)) {
11463 AtomicBody
= AtomicBody
->IgnoreParenImpCasts();
11464 if (AtomicBody
->getType()->isScalarType() ||
11465 AtomicBody
->isInstantiationDependent()) {
11466 if (const auto *AtomicCompAssignOp
= dyn_cast
<CompoundAssignOperator
>(
11467 AtomicBody
->IgnoreParenImpCasts())) {
11468 // Check for Compound Assignment Operation
11469 Op
= BinaryOperator::getOpForCompoundAssignment(
11470 AtomicCompAssignOp
->getOpcode());
11471 OpLoc
= AtomicCompAssignOp
->getOperatorLoc();
11472 E
= AtomicCompAssignOp
->getRHS();
11473 X
= AtomicCompAssignOp
->getLHS()->IgnoreParens();
11474 IsXLHSInRHSPart
= true;
11475 } else if (auto *AtomicBinOp
= dyn_cast
<BinaryOperator
>(
11476 AtomicBody
->IgnoreParenImpCasts())) {
11477 // Check for Binary Operation
11478 if (checkBinaryOperation(AtomicBinOp
, DiagId
, NoteId
))
11480 } else if (const auto *AtomicUnaryOp
= dyn_cast
<UnaryOperator
>(
11481 AtomicBody
->IgnoreParenImpCasts())) {
11482 // Check for Unary Operation
11483 if (AtomicUnaryOp
->isIncrementDecrementOp()) {
11484 IsPostfixUpdate
= AtomicUnaryOp
->isPostfix();
11485 Op
= AtomicUnaryOp
->isIncrementOp() ? BO_Add
: BO_Sub
;
11486 OpLoc
= AtomicUnaryOp
->getOperatorLoc();
11487 X
= AtomicUnaryOp
->getSubExpr()->IgnoreParens();
11488 E
= SemaRef
.ActOnIntegerConstant(OpLoc
, /*uint64_t Val=*/1).get();
11489 IsXLHSInRHSPart
= true;
11491 ErrorFound
= NotAnUnaryIncDecExpression
;
11492 ErrorLoc
= AtomicUnaryOp
->getExprLoc();
11493 ErrorRange
= AtomicUnaryOp
->getSourceRange();
11494 NoteLoc
= AtomicUnaryOp
->getOperatorLoc();
11495 NoteRange
= SourceRange(NoteLoc
, NoteLoc
);
11497 } else if (!AtomicBody
->isInstantiationDependent()) {
11498 ErrorFound
= NotABinaryOrUnaryExpression
;
11499 NoteLoc
= ErrorLoc
= AtomicBody
->getExprLoc();
11500 NoteRange
= ErrorRange
= AtomicBody
->getSourceRange();
11501 } else if (AtomicBody
->containsErrors()) {
11502 ErrorFound
= NotAValidExpression
;
11503 NoteLoc
= ErrorLoc
= AtomicBody
->getExprLoc();
11504 NoteRange
= ErrorRange
= AtomicBody
->getSourceRange();
11507 ErrorFound
= NotAScalarType
;
11508 NoteLoc
= ErrorLoc
= AtomicBody
->getBeginLoc();
11509 NoteRange
= ErrorRange
= SourceRange(NoteLoc
, NoteLoc
);
11512 ErrorFound
= NotAnExpression
;
11513 NoteLoc
= ErrorLoc
= S
->getBeginLoc();
11514 NoteRange
= ErrorRange
= SourceRange(NoteLoc
, NoteLoc
);
11516 if (ErrorFound
!= NoError
&& DiagId
!= 0 && NoteId
!= 0) {
11517 SemaRef
.Diag(ErrorLoc
, DiagId
) << ErrorRange
;
11518 SemaRef
.Diag(NoteLoc
, NoteId
) << ErrorFound
<< NoteRange
;
11521 if (SemaRef
.CurContext
->isDependentContext())
11522 E
= X
= UpdateExpr
= nullptr;
11523 if (ErrorFound
== NoError
&& E
&& X
) {
11524 // Build an update expression of form 'OpaqueValueExpr(x) binop
11525 // OpaqueValueExpr(expr)' or 'OpaqueValueExpr(expr) binop
11526 // OpaqueValueExpr(x)' and then cast it to the type of the 'x' expression.
11527 auto *OVEX
= new (SemaRef
.getASTContext())
11528 OpaqueValueExpr(X
->getExprLoc(), X
->getType(), VK_PRValue
);
11529 auto *OVEExpr
= new (SemaRef
.getASTContext())
11530 OpaqueValueExpr(E
->getExprLoc(), E
->getType(), VK_PRValue
);
11531 ExprResult Update
=
11532 SemaRef
.CreateBuiltinBinOp(OpLoc
, Op
, IsXLHSInRHSPart
? OVEX
: OVEExpr
,
11533 IsXLHSInRHSPart
? OVEExpr
: OVEX
);
11534 if (Update
.isInvalid())
11536 Update
= SemaRef
.PerformImplicitConversion(Update
.get(), X
->getType(),
11537 AssignmentAction::Casting
);
11538 if (Update
.isInvalid())
11540 UpdateExpr
= Update
.get();
11542 return ErrorFound
!= NoError
;
11545 /// Get the node id of the fixed point of an expression \a S.
11546 llvm::FoldingSetNodeID
getNodeId(ASTContext
&Context
, const Expr
*S
) {
11547 llvm::FoldingSetNodeID Id
;
11548 S
->IgnoreParenImpCasts()->Profile(Id
, Context
, true);
11552 /// Check if two expressions are same.
11553 bool checkIfTwoExprsAreSame(ASTContext
&Context
, const Expr
*LHS
,
11555 return getNodeId(Context
, LHS
) == getNodeId(Context
, RHS
);
11558 class OpenMPAtomicCompareChecker
{
11560 /// All kinds of errors that can occur in `atomic compare`
11562 /// Empty compound statement.
11564 /// More than one statement in a compound statement.
11566 /// Not an assignment binary operator.
11568 /// Not a conditional operator.
11570 /// Wrong false expr. According to the spec, 'x' should be at the false
11571 /// expression of a conditional expression.
11573 /// The condition of a conditional expression is not a binary operator.
11575 /// Invalid binary operator (not <, >, or ==).
11577 /// Invalid comparison (not x == e, e == x, x ordop expr, or expr ordop x).
11579 /// X is not a lvalue.
11583 /// Not an integer.
11585 /// 'else' statement is not expected.
11587 /// Not an equality operator.
11589 /// Invalid assignment (not v == x).
11591 /// Not if statement
11593 /// More than two statements in a compound statement.
11595 /// Not a compound statement.
11597 /// No else statement.
11605 struct ErrorInfoTy
{
11607 SourceLocation ErrorLoc
;
11608 SourceRange ErrorRange
;
11609 SourceLocation NoteLoc
;
11610 SourceRange NoteRange
;
11613 OpenMPAtomicCompareChecker(Sema
&S
) : ContextRef(S
.getASTContext()) {}
11615 /// Check if statement \a S is valid for <tt>atomic compare</tt>.
11616 bool checkStmt(Stmt
*S
, ErrorInfoTy
&ErrorInfo
);
11618 Expr
*getX() const { return X
; }
11619 Expr
*getE() const { return E
; }
11620 Expr
*getD() const { return D
; }
11621 Expr
*getCond() const { return C
; }
11622 bool isXBinopExpr() const { return IsXBinopExpr
; }
11625 /// Reference to ASTContext
11626 ASTContext
&ContextRef
;
11627 /// 'x' lvalue part of the source atomic expression.
11629 /// 'expr' or 'e' rvalue part of the source atomic expression.
11631 /// 'd' rvalue part of the source atomic expression.
11633 /// 'cond' part of the source atomic expression. It is in one of the following
11640 /// True if the cond expr is in the form of 'x ordop expr'.
11641 bool IsXBinopExpr
= true;
11643 /// Check if it is a valid conditional update statement (cond-update-stmt).
11644 bool checkCondUpdateStmt(IfStmt
*S
, ErrorInfoTy
&ErrorInfo
);
11646 /// Check if it is a valid conditional expression statement (cond-expr-stmt).
11647 bool checkCondExprStmt(Stmt
*S
, ErrorInfoTy
&ErrorInfo
);
11649 /// Check if all captured values have right type.
11650 bool checkType(ErrorInfoTy
&ErrorInfo
) const;
11652 static bool CheckValue(const Expr
*E
, ErrorInfoTy
&ErrorInfo
,
11653 bool ShouldBeLValue
, bool ShouldBeInteger
= false) {
11654 if (E
->isInstantiationDependent())
11657 if (ShouldBeLValue
&& !E
->isLValue()) {
11658 ErrorInfo
.Error
= ErrorTy::XNotLValue
;
11659 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= E
->getExprLoc();
11660 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= E
->getSourceRange();
11664 QualType QTy
= E
->getType();
11665 if (!QTy
->isScalarType()) {
11666 ErrorInfo
.Error
= ErrorTy::NotScalar
;
11667 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= E
->getExprLoc();
11668 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= E
->getSourceRange();
11671 if (ShouldBeInteger
&& !QTy
->isIntegerType()) {
11672 ErrorInfo
.Error
= ErrorTy::NotInteger
;
11673 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= E
->getExprLoc();
11674 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= E
->getSourceRange();
11682 bool OpenMPAtomicCompareChecker::checkCondUpdateStmt(IfStmt
*S
,
11683 ErrorInfoTy
&ErrorInfo
) {
11684 auto *Then
= S
->getThen();
11685 if (auto *CS
= dyn_cast
<CompoundStmt
>(Then
)) {
11686 if (CS
->body_empty()) {
11687 ErrorInfo
.Error
= ErrorTy::NoStmt
;
11688 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11689 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
11692 if (CS
->size() > 1) {
11693 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
11694 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11695 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getSourceRange();
11698 Then
= CS
->body_front();
11701 auto *BO
= dyn_cast
<BinaryOperator
>(Then
);
11703 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
11704 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Then
->getBeginLoc();
11705 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Then
->getSourceRange();
11708 if (BO
->getOpcode() != BO_Assign
) {
11709 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
11710 ErrorInfo
.ErrorLoc
= BO
->getExprLoc();
11711 ErrorInfo
.NoteLoc
= BO
->getOperatorLoc();
11712 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
11718 auto *Cond
= dyn_cast
<BinaryOperator
>(S
->getCond());
11720 ErrorInfo
.Error
= ErrorTy::NotABinaryOp
;
11721 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getCond()->getExprLoc();
11722 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getCond()->getSourceRange();
11726 switch (Cond
->getOpcode()) {
11730 if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getLHS())) {
11731 E
= Cond
->getRHS();
11732 } else if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getRHS())) {
11733 E
= Cond
->getLHS();
11735 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
11736 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11737 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11745 if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getLHS()) &&
11746 checkIfTwoExprsAreSame(ContextRef
, E
, Cond
->getRHS())) {
11748 } else if (checkIfTwoExprsAreSame(ContextRef
, E
, Cond
->getLHS()) &&
11749 checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getRHS())) {
11751 IsXBinopExpr
= false;
11753 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
11754 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11755 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11761 ErrorInfo
.Error
= ErrorTy::InvalidBinaryOp
;
11762 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11763 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11767 if (S
->getElse()) {
11768 ErrorInfo
.Error
= ErrorTy::UnexpectedElse
;
11769 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getElse()->getBeginLoc();
11770 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getElse()->getSourceRange();
11777 bool OpenMPAtomicCompareChecker::checkCondExprStmt(Stmt
*S
,
11778 ErrorInfoTy
&ErrorInfo
) {
11779 auto *BO
= dyn_cast
<BinaryOperator
>(S
);
11781 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
11782 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getBeginLoc();
11783 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getSourceRange();
11786 if (BO
->getOpcode() != BO_Assign
) {
11787 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
11788 ErrorInfo
.ErrorLoc
= BO
->getExprLoc();
11789 ErrorInfo
.NoteLoc
= BO
->getOperatorLoc();
11790 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
11796 auto *CO
= dyn_cast
<ConditionalOperator
>(BO
->getRHS()->IgnoreParenImpCasts());
11798 ErrorInfo
.Error
= ErrorTy::NotCondOp
;
11799 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= BO
->getRHS()->getExprLoc();
11800 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getRHS()->getSourceRange();
11804 if (!checkIfTwoExprsAreSame(ContextRef
, X
, CO
->getFalseExpr())) {
11805 ErrorInfo
.Error
= ErrorTy::WrongFalseExpr
;
11806 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CO
->getFalseExpr()->getExprLoc();
11807 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
=
11808 CO
->getFalseExpr()->getSourceRange();
11812 auto *Cond
= dyn_cast
<BinaryOperator
>(CO
->getCond());
11814 ErrorInfo
.Error
= ErrorTy::NotABinaryOp
;
11815 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CO
->getCond()->getExprLoc();
11816 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
=
11817 CO
->getCond()->getSourceRange();
11821 switch (Cond
->getOpcode()) {
11824 D
= CO
->getTrueExpr();
11825 if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getLHS())) {
11826 E
= Cond
->getRHS();
11827 } else if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getRHS())) {
11828 E
= Cond
->getLHS();
11830 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
11831 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11832 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11839 E
= CO
->getTrueExpr();
11840 if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getLHS()) &&
11841 checkIfTwoExprsAreSame(ContextRef
, E
, Cond
->getRHS())) {
11843 } else if (checkIfTwoExprsAreSame(ContextRef
, E
, Cond
->getLHS()) &&
11844 checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getRHS())) {
11846 IsXBinopExpr
= false;
11848 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
11849 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11850 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11856 ErrorInfo
.Error
= ErrorTy::InvalidBinaryOp
;
11857 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
11858 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
11865 bool OpenMPAtomicCompareChecker::checkType(ErrorInfoTy
&ErrorInfo
) const {
11866 // 'x' and 'e' cannot be nullptr
11867 assert(X
&& E
&& "X and E cannot be nullptr");
11869 if (!CheckValue(X
, ErrorInfo
, true))
11872 if (!CheckValue(E
, ErrorInfo
, false))
11875 if (D
&& !CheckValue(D
, ErrorInfo
, false))
11881 bool OpenMPAtomicCompareChecker::checkStmt(
11882 Stmt
*S
, OpenMPAtomicCompareChecker::ErrorInfoTy
&ErrorInfo
) {
11883 auto *CS
= dyn_cast
<CompoundStmt
>(S
);
11885 if (CS
->body_empty()) {
11886 ErrorInfo
.Error
= ErrorTy::NoStmt
;
11887 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11888 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
11892 if (CS
->size() != 1) {
11893 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
11894 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11895 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
11898 S
= CS
->body_front();
11903 if (auto *IS
= dyn_cast
<IfStmt
>(S
)) {
11904 // Check if the statement is in one of the following forms
11905 // (cond-update-stmt):
11906 // if (expr ordop x) { x = expr; }
11907 // if (x ordop expr) { x = expr; }
11908 // if (x == e) { x = d; }
11909 Res
= checkCondUpdateStmt(IS
, ErrorInfo
);
11911 // Check if the statement is in one of the following forms (cond-expr-stmt):
11912 // x = expr ordop x ? expr : x;
11913 // x = x ordop expr ? expr : x;
11914 // x = x == e ? d : x;
11915 Res
= checkCondExprStmt(S
, ErrorInfo
);
11921 return checkType(ErrorInfo
);
11924 class OpenMPAtomicCompareCaptureChecker final
11925 : public OpenMPAtomicCompareChecker
{
11927 OpenMPAtomicCompareCaptureChecker(Sema
&S
) : OpenMPAtomicCompareChecker(S
) {}
11929 Expr
*getV() const { return V
; }
11930 Expr
*getR() const { return R
; }
11931 bool isFailOnly() const { return IsFailOnly
; }
11932 bool isPostfixUpdate() const { return IsPostfixUpdate
; }
11934 /// Check if statement \a S is valid for <tt>atomic compare capture</tt>.
11935 bool checkStmt(Stmt
*S
, ErrorInfoTy
&ErrorInfo
);
11938 bool checkType(ErrorInfoTy
&ErrorInfo
);
11940 // NOTE: Form 3, 4, 5 in the following comments mean the 3rd, 4th, and 5th
11941 // form of 'conditional-update-capture-atomic' structured block on the v5.2
11943 // (1) { v = x; cond-update-stmt }
11944 // (2) { cond-update-stmt v = x; }
11945 // (3) if(x == e) { x = d; } else { v = x; }
11946 // (4) { r = x == e; if(r) { x = d; } }
11947 // (5) { r = x == e; if(r) { x = d; } else { v = x; } }
11949 /// Check if it is valid 'if(x == e) { x = d; } else { v = x; }' (form 3)
11950 bool checkForm3(IfStmt
*S
, ErrorInfoTy
&ErrorInfo
);
11952 /// Check if it is valid '{ r = x == e; if(r) { x = d; } }',
11953 /// or '{ r = x == e; if(r) { x = d; } else { v = x; } }' (form 4 and 5)
11954 bool checkForm45(Stmt
*S
, ErrorInfoTy
&ErrorInfo
);
11956 /// 'v' lvalue part of the source atomic expression.
11958 /// 'r' lvalue part of the source atomic expression.
11960 /// If 'v' is only updated when the comparison fails.
11961 bool IsFailOnly
= false;
11962 /// If original value of 'x' must be stored in 'v', not an updated one.
11963 bool IsPostfixUpdate
= false;
11966 bool OpenMPAtomicCompareCaptureChecker::checkType(ErrorInfoTy
&ErrorInfo
) {
11967 if (!OpenMPAtomicCompareChecker::checkType(ErrorInfo
))
11970 if (V
&& !CheckValue(V
, ErrorInfo
, true))
11973 if (R
&& !CheckValue(R
, ErrorInfo
, true, true))
11979 bool OpenMPAtomicCompareCaptureChecker::checkForm3(IfStmt
*S
,
11980 ErrorInfoTy
&ErrorInfo
) {
11983 auto *Then
= S
->getThen();
11984 if (auto *CS
= dyn_cast
<CompoundStmt
>(Then
)) {
11985 if (CS
->body_empty()) {
11986 ErrorInfo
.Error
= ErrorTy::NoStmt
;
11987 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11988 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
11991 if (CS
->size() > 1) {
11992 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
11993 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
11994 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
11997 Then
= CS
->body_front();
12000 auto *BO
= dyn_cast
<BinaryOperator
>(Then
);
12002 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12003 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Then
->getBeginLoc();
12004 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Then
->getSourceRange();
12007 if (BO
->getOpcode() != BO_Assign
) {
12008 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12009 ErrorInfo
.ErrorLoc
= BO
->getExprLoc();
12010 ErrorInfo
.NoteLoc
= BO
->getOperatorLoc();
12011 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
12018 auto *Cond
= dyn_cast
<BinaryOperator
>(S
->getCond());
12020 ErrorInfo
.Error
= ErrorTy::NotABinaryOp
;
12021 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getCond()->getExprLoc();
12022 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getCond()->getSourceRange();
12025 if (Cond
->getOpcode() != BO_EQ
) {
12026 ErrorInfo
.Error
= ErrorTy::NotEQ
;
12027 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
12028 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
12032 if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getLHS())) {
12033 E
= Cond
->getRHS();
12034 } else if (checkIfTwoExprsAreSame(ContextRef
, X
, Cond
->getRHS())) {
12035 E
= Cond
->getLHS();
12037 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
12038 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Cond
->getExprLoc();
12039 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
12045 if (!S
->getElse()) {
12046 ErrorInfo
.Error
= ErrorTy::NoElse
;
12047 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getBeginLoc();
12048 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getSourceRange();
12052 auto *Else
= S
->getElse();
12053 if (auto *CS
= dyn_cast
<CompoundStmt
>(Else
)) {
12054 if (CS
->body_empty()) {
12055 ErrorInfo
.Error
= ErrorTy::NoStmt
;
12056 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
12057 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
12060 if (CS
->size() > 1) {
12061 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
12062 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
12063 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getSourceRange();
12066 Else
= CS
->body_front();
12069 auto *ElseBO
= dyn_cast
<BinaryOperator
>(Else
);
12071 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12072 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Else
->getBeginLoc();
12073 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Else
->getSourceRange();
12076 if (ElseBO
->getOpcode() != BO_Assign
) {
12077 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12078 ErrorInfo
.ErrorLoc
= ElseBO
->getExprLoc();
12079 ErrorInfo
.NoteLoc
= ElseBO
->getOperatorLoc();
12080 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ElseBO
->getSourceRange();
12084 if (!checkIfTwoExprsAreSame(ContextRef
, X
, ElseBO
->getRHS())) {
12085 ErrorInfo
.Error
= ErrorTy::InvalidAssignment
;
12086 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= ElseBO
->getRHS()->getExprLoc();
12087 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
=
12088 ElseBO
->getRHS()->getSourceRange();
12092 V
= ElseBO
->getLHS();
12094 return checkType(ErrorInfo
);
12097 bool OpenMPAtomicCompareCaptureChecker::checkForm45(Stmt
*S
,
12098 ErrorInfoTy
&ErrorInfo
) {
12099 // We don't check here as they should be already done before call this
12101 auto *CS
= cast
<CompoundStmt
>(S
);
12102 assert(CS
->size() == 2 && "CompoundStmt size is not expected");
12103 auto *S1
= cast
<BinaryOperator
>(CS
->body_front());
12104 auto *S2
= cast
<IfStmt
>(CS
->body_back());
12105 assert(S1
->getOpcode() == BO_Assign
&& "unexpected binary operator");
12107 if (!checkIfTwoExprsAreSame(ContextRef
, S1
->getLHS(), S2
->getCond())) {
12108 ErrorInfo
.Error
= ErrorTy::InvalidCondition
;
12109 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S2
->getCond()->getExprLoc();
12110 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S1
->getLHS()->getSourceRange();
12116 auto *Then
= S2
->getThen();
12117 if (auto *ThenCS
= dyn_cast
<CompoundStmt
>(Then
)) {
12118 if (ThenCS
->body_empty()) {
12119 ErrorInfo
.Error
= ErrorTy::NoStmt
;
12120 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= ThenCS
->getBeginLoc();
12121 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ThenCS
->getSourceRange();
12124 if (ThenCS
->size() > 1) {
12125 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
12126 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= ThenCS
->getBeginLoc();
12127 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ThenCS
->getSourceRange();
12130 Then
= ThenCS
->body_front();
12133 auto *ThenBO
= dyn_cast
<BinaryOperator
>(Then
);
12135 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12136 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S2
->getBeginLoc();
12137 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S2
->getSourceRange();
12140 if (ThenBO
->getOpcode() != BO_Assign
) {
12141 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12142 ErrorInfo
.ErrorLoc
= ThenBO
->getExprLoc();
12143 ErrorInfo
.NoteLoc
= ThenBO
->getOperatorLoc();
12144 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ThenBO
->getSourceRange();
12148 X
= ThenBO
->getLHS();
12149 D
= ThenBO
->getRHS();
12151 auto *BO
= cast
<BinaryOperator
>(S1
->getRHS()->IgnoreImpCasts());
12152 if (BO
->getOpcode() != BO_EQ
) {
12153 ErrorInfo
.Error
= ErrorTy::NotEQ
;
12154 ErrorInfo
.ErrorLoc
= BO
->getExprLoc();
12155 ErrorInfo
.NoteLoc
= BO
->getOperatorLoc();
12156 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
12162 if (checkIfTwoExprsAreSame(ContextRef
, X
, BO
->getLHS())) {
12164 } else if (checkIfTwoExprsAreSame(ContextRef
, X
, BO
->getRHS())) {
12167 ErrorInfo
.Error
= ErrorTy::InvalidComparison
;
12168 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= BO
->getExprLoc();
12169 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
12173 if (S2
->getElse()) {
12176 auto *Else
= S2
->getElse();
12177 if (auto *ElseCS
= dyn_cast
<CompoundStmt
>(Else
)) {
12178 if (ElseCS
->body_empty()) {
12179 ErrorInfo
.Error
= ErrorTy::NoStmt
;
12180 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= ElseCS
->getBeginLoc();
12181 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ElseCS
->getSourceRange();
12184 if (ElseCS
->size() > 1) {
12185 ErrorInfo
.Error
= ErrorTy::MoreThanOneStmt
;
12186 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= ElseCS
->getBeginLoc();
12187 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ElseCS
->getSourceRange();
12190 Else
= ElseCS
->body_front();
12193 auto *ElseBO
= dyn_cast
<BinaryOperator
>(Else
);
12195 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12196 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= Else
->getBeginLoc();
12197 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Else
->getSourceRange();
12200 if (ElseBO
->getOpcode() != BO_Assign
) {
12201 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12202 ErrorInfo
.ErrorLoc
= ElseBO
->getExprLoc();
12203 ErrorInfo
.NoteLoc
= ElseBO
->getOperatorLoc();
12204 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= ElseBO
->getSourceRange();
12207 if (!checkIfTwoExprsAreSame(ContextRef
, X
, ElseBO
->getRHS())) {
12208 ErrorInfo
.Error
= ErrorTy::InvalidAssignment
;
12209 ErrorInfo
.ErrorLoc
= ElseBO
->getRHS()->getExprLoc();
12210 ErrorInfo
.NoteLoc
= X
->getExprLoc();
12211 ErrorInfo
.ErrorRange
= ElseBO
->getRHS()->getSourceRange();
12212 ErrorInfo
.NoteRange
= X
->getSourceRange();
12216 V
= ElseBO
->getLHS();
12219 return checkType(ErrorInfo
);
12222 bool OpenMPAtomicCompareCaptureChecker::checkStmt(Stmt
*S
,
12223 ErrorInfoTy
&ErrorInfo
) {
12224 // if(x == e) { x = d; } else { v = x; }
12225 if (auto *IS
= dyn_cast
<IfStmt
>(S
))
12226 return checkForm3(IS
, ErrorInfo
);
12228 auto *CS
= dyn_cast
<CompoundStmt
>(S
);
12230 ErrorInfo
.Error
= ErrorTy::NotCompoundStmt
;
12231 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= S
->getBeginLoc();
12232 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= S
->getSourceRange();
12235 if (CS
->body_empty()) {
12236 ErrorInfo
.Error
= ErrorTy::NoStmt
;
12237 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
12238 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
12242 // { if(x == e) { x = d; } else { v = x; } }
12243 if (CS
->size() == 1) {
12244 auto *IS
= dyn_cast
<IfStmt
>(CS
->body_front());
12246 ErrorInfo
.Error
= ErrorTy::NotIfStmt
;
12247 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->body_front()->getBeginLoc();
12248 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
=
12249 CS
->body_front()->getSourceRange();
12253 return checkForm3(IS
, ErrorInfo
);
12254 } else if (CS
->size() == 2) {
12255 auto *S1
= CS
->body_front();
12256 auto *S2
= CS
->body_back();
12258 Stmt
*UpdateStmt
= nullptr;
12259 Stmt
*CondUpdateStmt
= nullptr;
12260 Stmt
*CondExprStmt
= nullptr;
12262 if (auto *BO
= dyn_cast
<BinaryOperator
>(S1
)) {
12263 // It could be one of the following cases:
12264 // { v = x; cond-update-stmt }
12265 // { v = x; cond-expr-stmt }
12266 // { cond-expr-stmt; v = x; }
12268 if (isa
<BinaryOperator
>(BO
->getRHS()->IgnoreImpCasts()) ||
12269 isa
<ConditionalOperator
>(BO
->getRHS()->IgnoreImpCasts())) {
12270 // check if form 45
12271 if (isa
<IfStmt
>(S2
))
12272 return checkForm45(CS
, ErrorInfo
);
12273 // { cond-expr-stmt; v = x; }
12277 IsPostfixUpdate
= true;
12279 if (isa
<IfStmt
>(S2
)) {
12280 // { v = x; cond-update-stmt }
12281 CondUpdateStmt
= S2
;
12283 // { v = x; cond-expr-stmt }
12288 // { cond-update-stmt v = x; }
12290 CondUpdateStmt
= S1
;
12293 auto CheckCondUpdateStmt
= [this, &ErrorInfo
](Stmt
*CUS
) {
12294 auto *IS
= dyn_cast
<IfStmt
>(CUS
);
12296 ErrorInfo
.Error
= ErrorTy::NotIfStmt
;
12297 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CUS
->getBeginLoc();
12298 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CUS
->getSourceRange();
12302 return checkCondUpdateStmt(IS
, ErrorInfo
);
12305 // CheckUpdateStmt has to be called *after* CheckCondUpdateStmt.
12306 auto CheckUpdateStmt
= [this, &ErrorInfo
](Stmt
*US
) {
12307 auto *BO
= dyn_cast
<BinaryOperator
>(US
);
12309 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12310 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= US
->getBeginLoc();
12311 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= US
->getSourceRange();
12314 if (BO
->getOpcode() != BO_Assign
) {
12315 ErrorInfo
.Error
= ErrorTy::NotAnAssignment
;
12316 ErrorInfo
.ErrorLoc
= BO
->getExprLoc();
12317 ErrorInfo
.NoteLoc
= BO
->getOperatorLoc();
12318 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= BO
->getSourceRange();
12321 if (!checkIfTwoExprsAreSame(ContextRef
, this->X
, BO
->getRHS())) {
12322 ErrorInfo
.Error
= ErrorTy::InvalidAssignment
;
12323 ErrorInfo
.ErrorLoc
= BO
->getRHS()->getExprLoc();
12324 ErrorInfo
.NoteLoc
= this->X
->getExprLoc();
12325 ErrorInfo
.ErrorRange
= BO
->getRHS()->getSourceRange();
12326 ErrorInfo
.NoteRange
= this->X
->getSourceRange();
12330 this->V
= BO
->getLHS();
12335 if (CondUpdateStmt
&& !CheckCondUpdateStmt(CondUpdateStmt
))
12337 if (CondExprStmt
&& !checkCondExprStmt(CondExprStmt
, ErrorInfo
))
12339 if (!CheckUpdateStmt(UpdateStmt
))
12342 ErrorInfo
.Error
= ErrorTy::MoreThanTwoStmts
;
12343 ErrorInfo
.ErrorLoc
= ErrorInfo
.NoteLoc
= CS
->getBeginLoc();
12344 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= CS
->getSourceRange();
12348 return checkType(ErrorInfo
);
12352 StmtResult
SemaOpenMP::ActOnOpenMPAtomicDirective(ArrayRef
<OMPClause
*> Clauses
,
12354 SourceLocation StartLoc
,
12355 SourceLocation EndLoc
) {
12356 ASTContext
&Context
= getASTContext();
12357 // Register location of the first atomic directive.
12358 DSAStack
->addAtomicDirectiveLoc(StartLoc
);
12360 return StmtError();
12362 // 1.2.2 OpenMP Language Terminology
12363 // Structured block - An executable statement with a single entry at the
12364 // top and a single exit at the bottom.
12365 // The point of exit cannot be a branch out of the structured block.
12366 // longjmp() and throw() must not violate the entry/exit criteria.
12367 OpenMPClauseKind AtomicKind
= OMPC_unknown
;
12368 SourceLocation AtomicKindLoc
;
12369 OpenMPClauseKind MemOrderKind
= OMPC_unknown
;
12370 SourceLocation MemOrderLoc
;
12371 bool MutexClauseEncountered
= false;
12372 llvm::SmallSet
<OpenMPClauseKind
, 2> EncounteredAtomicKinds
;
12373 for (const OMPClause
*C
: Clauses
) {
12374 switch (C
->getClauseKind()) {
12378 MutexClauseEncountered
= true;
12381 case OMPC_compare
: {
12382 if (AtomicKind
!= OMPC_unknown
&& MutexClauseEncountered
) {
12383 Diag(C
->getBeginLoc(), diag::err_omp_atomic_several_clauses
)
12384 << SourceRange(C
->getBeginLoc(), C
->getEndLoc());
12385 Diag(AtomicKindLoc
, diag::note_omp_previous_mem_order_clause
)
12386 << getOpenMPClauseName(AtomicKind
);
12388 AtomicKind
= C
->getClauseKind();
12389 AtomicKindLoc
= C
->getBeginLoc();
12390 if (!EncounteredAtomicKinds
.insert(C
->getClauseKind()).second
) {
12391 Diag(C
->getBeginLoc(), diag::err_omp_atomic_several_clauses
)
12392 << SourceRange(C
->getBeginLoc(), C
->getEndLoc());
12393 Diag(AtomicKindLoc
, diag::note_omp_previous_mem_order_clause
)
12394 << getOpenMPClauseName(AtomicKind
);
12401 if (!EncounteredAtomicKinds
.contains(OMPC_compare
)) {
12402 Diag(C
->getBeginLoc(), diag::err_omp_atomic_no_compare
)
12403 << getOpenMPClauseName(C
->getClauseKind())
12404 << SourceRange(C
->getBeginLoc(), C
->getEndLoc());
12405 return StmtError();
12413 case OMPC_relaxed
: {
12414 if (MemOrderKind
!= OMPC_unknown
) {
12415 Diag(C
->getBeginLoc(), diag::err_omp_several_mem_order_clauses
)
12416 << getOpenMPDirectiveName(OMPD_atomic
) << 0
12417 << SourceRange(C
->getBeginLoc(), C
->getEndLoc());
12418 Diag(MemOrderLoc
, diag::note_omp_previous_mem_order_clause
)
12419 << getOpenMPClauseName(MemOrderKind
);
12421 MemOrderKind
= C
->getClauseKind();
12422 MemOrderLoc
= C
->getBeginLoc();
12426 // The following clauses are allowed, but we don't need to do anything here.
12430 llvm_unreachable("unknown clause is encountered");
12433 bool IsCompareCapture
= false;
12434 if (EncounteredAtomicKinds
.contains(OMPC_compare
) &&
12435 EncounteredAtomicKinds
.contains(OMPC_capture
)) {
12436 IsCompareCapture
= true;
12437 AtomicKind
= OMPC_compare
;
12439 // OpenMP 5.0, 2.17.7 atomic Construct, Restrictions
12440 // If atomic-clause is read then memory-order-clause must not be acq_rel or
12442 // If atomic-clause is write then memory-order-clause must not be acq_rel or
12444 // If atomic-clause is update or not present then memory-order-clause must not
12445 // be acq_rel or acquire.
12446 if ((AtomicKind
== OMPC_read
&&
12447 (MemOrderKind
== OMPC_acq_rel
|| MemOrderKind
== OMPC_release
)) ||
12448 ((AtomicKind
== OMPC_write
|| AtomicKind
== OMPC_update
||
12449 AtomicKind
== OMPC_unknown
) &&
12450 (MemOrderKind
== OMPC_acq_rel
|| MemOrderKind
== OMPC_acquire
))) {
12451 SourceLocation Loc
= AtomicKindLoc
;
12452 if (AtomicKind
== OMPC_unknown
)
12454 Diag(Loc
, diag::err_omp_atomic_incompatible_mem_order_clause
)
12455 << getOpenMPClauseName(AtomicKind
)
12456 << (AtomicKind
== OMPC_unknown
? 1 : 0)
12457 << getOpenMPClauseName(MemOrderKind
);
12458 Diag(MemOrderLoc
, diag::note_omp_previous_mem_order_clause
)
12459 << getOpenMPClauseName(MemOrderKind
);
12462 Stmt
*Body
= AStmt
;
12463 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Body
))
12464 Body
= EWC
->getSubExpr();
12469 Expr
*UE
= nullptr;
12471 Expr
*CE
= nullptr;
12473 bool IsXLHSInRHSPart
= false;
12474 bool IsPostfixUpdate
= false;
12475 bool IsFailOnly
= false;
12476 // OpenMP [2.12.6, atomic Construct]
12477 // In the next expressions:
12478 // * x and v (as applicable) are both l-value expressions with scalar type.
12479 // * During the execution of an atomic region, multiple syntactic
12480 // occurrences of x must designate the same storage location.
12481 // * Neither of v and expr (as applicable) may access the storage location
12482 // designated by x.
12483 // * Neither of x and expr (as applicable) may access the storage location
12484 // designated by v.
12485 // * expr is an expression with scalar type.
12486 // * binop is one of +, *, -, /, &, ^, |, <<, or >>.
12487 // * binop, binop=, ++, and -- are not overloaded operators.
12488 // * The expression x binop expr must be numerically equivalent to x binop
12489 // (expr). This requirement is satisfied if the operators in expr have
12490 // precedence greater than binop, or by using parentheses around expr or
12491 // subexpressions of expr.
12492 // * The expression expr binop x must be numerically equivalent to (expr)
12493 // binop x. This requirement is satisfied if the operators in expr have
12494 // precedence equal to or greater than binop, or by using parentheses around
12495 // expr or subexpressions of expr.
12496 // * For forms that allow multiple occurrences of x, the number of times
12497 // that x is evaluated is unspecified.
12498 if (AtomicKind
== OMPC_read
) {
12505 } ErrorFound
= NoError
;
12506 SourceLocation ErrorLoc
, NoteLoc
;
12507 SourceRange ErrorRange
, NoteRange
;
12508 // If clause is read:
12510 if (const auto *AtomicBody
= dyn_cast
<Expr
>(Body
)) {
12511 const auto *AtomicBinOp
=
12512 dyn_cast
<BinaryOperator
>(AtomicBody
->IgnoreParenImpCasts());
12513 if (AtomicBinOp
&& AtomicBinOp
->getOpcode() == BO_Assign
) {
12514 X
= AtomicBinOp
->getRHS()->IgnoreParenImpCasts();
12515 V
= AtomicBinOp
->getLHS()->IgnoreParenImpCasts();
12516 if ((X
->isInstantiationDependent() || X
->getType()->isScalarType()) &&
12517 (V
->isInstantiationDependent() || V
->getType()->isScalarType())) {
12518 if (!X
->isLValue() || !V
->isLValue()) {
12519 const Expr
*NotLValueExpr
= X
->isLValue() ? V
: X
;
12520 ErrorFound
= NotAnLValue
;
12521 ErrorLoc
= AtomicBinOp
->getExprLoc();
12522 ErrorRange
= AtomicBinOp
->getSourceRange();
12523 NoteLoc
= NotLValueExpr
->getExprLoc();
12524 NoteRange
= NotLValueExpr
->getSourceRange();
12526 } else if (!X
->isInstantiationDependent() ||
12527 !V
->isInstantiationDependent()) {
12528 const Expr
*NotScalarExpr
=
12529 (X
->isInstantiationDependent() || X
->getType()->isScalarType())
12532 ErrorFound
= NotAScalarType
;
12533 ErrorLoc
= AtomicBinOp
->getExprLoc();
12534 ErrorRange
= AtomicBinOp
->getSourceRange();
12535 NoteLoc
= NotScalarExpr
->getExprLoc();
12536 NoteRange
= NotScalarExpr
->getSourceRange();
12538 } else if (!AtomicBody
->isInstantiationDependent()) {
12539 ErrorFound
= NotAnAssignmentOp
;
12540 ErrorLoc
= AtomicBody
->getExprLoc();
12541 ErrorRange
= AtomicBody
->getSourceRange();
12542 NoteLoc
= AtomicBinOp
? AtomicBinOp
->getOperatorLoc()
12543 : AtomicBody
->getExprLoc();
12544 NoteRange
= AtomicBinOp
? AtomicBinOp
->getSourceRange()
12545 : AtomicBody
->getSourceRange();
12548 ErrorFound
= NotAnExpression
;
12549 NoteLoc
= ErrorLoc
= Body
->getBeginLoc();
12550 NoteRange
= ErrorRange
= SourceRange(NoteLoc
, NoteLoc
);
12552 if (ErrorFound
!= NoError
) {
12553 Diag(ErrorLoc
, diag::err_omp_atomic_read_not_expression_statement
)
12555 Diag(NoteLoc
, diag::note_omp_atomic_read_write
)
12556 << ErrorFound
<< NoteRange
;
12557 return StmtError();
12559 if (SemaRef
.CurContext
->isDependentContext())
12561 } else if (AtomicKind
== OMPC_write
) {
12568 } ErrorFound
= NoError
;
12569 SourceLocation ErrorLoc
, NoteLoc
;
12570 SourceRange ErrorRange
, NoteRange
;
12571 // If clause is write:
12573 if (const auto *AtomicBody
= dyn_cast
<Expr
>(Body
)) {
12574 const auto *AtomicBinOp
=
12575 dyn_cast
<BinaryOperator
>(AtomicBody
->IgnoreParenImpCasts());
12576 if (AtomicBinOp
&& AtomicBinOp
->getOpcode() == BO_Assign
) {
12577 X
= AtomicBinOp
->getLHS();
12578 E
= AtomicBinOp
->getRHS();
12579 if ((X
->isInstantiationDependent() || X
->getType()->isScalarType()) &&
12580 (E
->isInstantiationDependent() || E
->getType()->isScalarType())) {
12581 if (!X
->isLValue()) {
12582 ErrorFound
= NotAnLValue
;
12583 ErrorLoc
= AtomicBinOp
->getExprLoc();
12584 ErrorRange
= AtomicBinOp
->getSourceRange();
12585 NoteLoc
= X
->getExprLoc();
12586 NoteRange
= X
->getSourceRange();
12588 } else if (!X
->isInstantiationDependent() ||
12589 !E
->isInstantiationDependent()) {
12590 const Expr
*NotScalarExpr
=
12591 (X
->isInstantiationDependent() || X
->getType()->isScalarType())
12594 ErrorFound
= NotAScalarType
;
12595 ErrorLoc
= AtomicBinOp
->getExprLoc();
12596 ErrorRange
= AtomicBinOp
->getSourceRange();
12597 NoteLoc
= NotScalarExpr
->getExprLoc();
12598 NoteRange
= NotScalarExpr
->getSourceRange();
12600 } else if (!AtomicBody
->isInstantiationDependent()) {
12601 ErrorFound
= NotAnAssignmentOp
;
12602 ErrorLoc
= AtomicBody
->getExprLoc();
12603 ErrorRange
= AtomicBody
->getSourceRange();
12604 NoteLoc
= AtomicBinOp
? AtomicBinOp
->getOperatorLoc()
12605 : AtomicBody
->getExprLoc();
12606 NoteRange
= AtomicBinOp
? AtomicBinOp
->getSourceRange()
12607 : AtomicBody
->getSourceRange();
12610 ErrorFound
= NotAnExpression
;
12611 NoteLoc
= ErrorLoc
= Body
->getBeginLoc();
12612 NoteRange
= ErrorRange
= SourceRange(NoteLoc
, NoteLoc
);
12614 if (ErrorFound
!= NoError
) {
12615 Diag(ErrorLoc
, diag::err_omp_atomic_write_not_expression_statement
)
12617 Diag(NoteLoc
, diag::note_omp_atomic_read_write
)
12618 << ErrorFound
<< NoteRange
;
12619 return StmtError();
12621 if (SemaRef
.CurContext
->isDependentContext())
12623 } else if (AtomicKind
== OMPC_update
|| AtomicKind
== OMPC_unknown
) {
12624 // If clause is update:
12630 // x = x binop expr;
12631 // x = expr binop x;
12632 OpenMPAtomicUpdateChecker
Checker(SemaRef
);
12633 if (Checker
.checkStatement(
12635 (AtomicKind
== OMPC_update
)
12636 ? diag::err_omp_atomic_update_not_expression_statement
12637 : diag::err_omp_atomic_not_expression_statement
,
12638 diag::note_omp_atomic_update
))
12639 return StmtError();
12640 if (!SemaRef
.CurContext
->isDependentContext()) {
12641 E
= Checker
.getExpr();
12642 X
= Checker
.getX();
12643 UE
= Checker
.getUpdateExpr();
12644 IsXLHSInRHSPart
= Checker
.isXLHSInRHSPart();
12646 } else if (AtomicKind
== OMPC_capture
) {
12649 NotACompoundStatement
,
12650 NotTwoSubstatements
,
12651 NotASpecificExpression
,
12653 } ErrorFound
= NoError
;
12654 SourceLocation ErrorLoc
, NoteLoc
;
12655 SourceRange ErrorRange
, NoteRange
;
12656 if (const auto *AtomicBody
= dyn_cast
<Expr
>(Body
)) {
12657 // If clause is a capture:
12662 // v = x binop= expr;
12663 // v = x = x binop expr;
12664 // v = x = expr binop x;
12665 const auto *AtomicBinOp
=
12666 dyn_cast
<BinaryOperator
>(AtomicBody
->IgnoreParenImpCasts());
12667 if (AtomicBinOp
&& AtomicBinOp
->getOpcode() == BO_Assign
) {
12668 V
= AtomicBinOp
->getLHS();
12669 Body
= AtomicBinOp
->getRHS()->IgnoreParenImpCasts();
12670 OpenMPAtomicUpdateChecker
Checker(SemaRef
);
12671 if (Checker
.checkStatement(
12672 Body
, diag::err_omp_atomic_capture_not_expression_statement
,
12673 diag::note_omp_atomic_update
))
12674 return StmtError();
12675 E
= Checker
.getExpr();
12676 X
= Checker
.getX();
12677 UE
= Checker
.getUpdateExpr();
12678 IsXLHSInRHSPart
= Checker
.isXLHSInRHSPart();
12679 IsPostfixUpdate
= Checker
.isPostfixUpdate();
12680 } else if (!AtomicBody
->isInstantiationDependent()) {
12681 ErrorLoc
= AtomicBody
->getExprLoc();
12682 ErrorRange
= AtomicBody
->getSourceRange();
12683 NoteLoc
= AtomicBinOp
? AtomicBinOp
->getOperatorLoc()
12684 : AtomicBody
->getExprLoc();
12685 NoteRange
= AtomicBinOp
? AtomicBinOp
->getSourceRange()
12686 : AtomicBody
->getSourceRange();
12687 ErrorFound
= NotAnAssignmentOp
;
12689 if (ErrorFound
!= NoError
) {
12690 Diag(ErrorLoc
, diag::err_omp_atomic_capture_not_expression_statement
)
12692 Diag(NoteLoc
, diag::note_omp_atomic_capture
) << ErrorFound
<< NoteRange
;
12693 return StmtError();
12695 if (SemaRef
.CurContext
->isDependentContext())
12696 UE
= V
= E
= X
= nullptr;
12698 // If clause is a capture:
12699 // { v = x; x = expr; }
12704 // { v = x; x binop= expr; }
12705 // { v = x; x = x binop expr; }
12706 // { v = x; x = expr binop x; }
12711 // { x binop= expr; v = x; }
12712 // { x = x binop expr; v = x; }
12713 // { x = expr binop x; v = x; }
12714 if (auto *CS
= dyn_cast
<CompoundStmt
>(Body
)) {
12715 // Check that this is { expr1; expr2; }
12716 if (CS
->size() == 2) {
12717 Stmt
*First
= CS
->body_front();
12718 Stmt
*Second
= CS
->body_back();
12719 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(First
))
12720 First
= EWC
->getSubExpr()->IgnoreParenImpCasts();
12721 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Second
))
12722 Second
= EWC
->getSubExpr()->IgnoreParenImpCasts();
12723 // Need to find what subexpression is 'v' and what is 'x'.
12724 OpenMPAtomicUpdateChecker
Checker(SemaRef
);
12725 bool IsUpdateExprFound
= !Checker
.checkStatement(Second
);
12726 BinaryOperator
*BinOp
= nullptr;
12727 if (IsUpdateExprFound
) {
12728 BinOp
= dyn_cast
<BinaryOperator
>(First
);
12729 IsUpdateExprFound
= BinOp
&& BinOp
->getOpcode() == BO_Assign
;
12731 if (IsUpdateExprFound
&& !SemaRef
.CurContext
->isDependentContext()) {
12736 // { v = x; x binop= expr; }
12737 // { v = x; x = x binop expr; }
12738 // { v = x; x = expr binop x; }
12739 // Check that the first expression has form v = x.
12740 Expr
*PossibleX
= BinOp
->getRHS()->IgnoreParenImpCasts();
12741 llvm::FoldingSetNodeID XId
, PossibleXId
;
12742 Checker
.getX()->Profile(XId
, Context
, /*Canonical=*/true);
12743 PossibleX
->Profile(PossibleXId
, Context
, /*Canonical=*/true);
12744 IsUpdateExprFound
= XId
== PossibleXId
;
12745 if (IsUpdateExprFound
) {
12746 V
= BinOp
->getLHS();
12747 X
= Checker
.getX();
12748 E
= Checker
.getExpr();
12749 UE
= Checker
.getUpdateExpr();
12750 IsXLHSInRHSPart
= Checker
.isXLHSInRHSPart();
12751 IsPostfixUpdate
= true;
12754 if (!IsUpdateExprFound
) {
12755 IsUpdateExprFound
= !Checker
.checkStatement(First
);
12757 if (IsUpdateExprFound
) {
12758 BinOp
= dyn_cast
<BinaryOperator
>(Second
);
12759 IsUpdateExprFound
= BinOp
&& BinOp
->getOpcode() == BO_Assign
;
12761 if (IsUpdateExprFound
&&
12762 !SemaRef
.CurContext
->isDependentContext()) {
12767 // { x binop= expr; v = x; }
12768 // { x = x binop expr; v = x; }
12769 // { x = expr binop x; v = x; }
12770 // Check that the second expression has form v = x.
12771 Expr
*PossibleX
= BinOp
->getRHS()->IgnoreParenImpCasts();
12772 llvm::FoldingSetNodeID XId
, PossibleXId
;
12773 Checker
.getX()->Profile(XId
, Context
, /*Canonical=*/true);
12774 PossibleX
->Profile(PossibleXId
, Context
, /*Canonical=*/true);
12775 IsUpdateExprFound
= XId
== PossibleXId
;
12776 if (IsUpdateExprFound
) {
12777 V
= BinOp
->getLHS();
12778 X
= Checker
.getX();
12779 E
= Checker
.getExpr();
12780 UE
= Checker
.getUpdateExpr();
12781 IsXLHSInRHSPart
= Checker
.isXLHSInRHSPart();
12782 IsPostfixUpdate
= false;
12786 if (!IsUpdateExprFound
) {
12787 // { v = x; x = expr; }
12788 auto *FirstExpr
= dyn_cast
<Expr
>(First
);
12789 auto *SecondExpr
= dyn_cast
<Expr
>(Second
);
12790 if (!FirstExpr
|| !SecondExpr
||
12791 !(FirstExpr
->isInstantiationDependent() ||
12792 SecondExpr
->isInstantiationDependent())) {
12793 auto *FirstBinOp
= dyn_cast
<BinaryOperator
>(First
);
12794 if (!FirstBinOp
|| FirstBinOp
->getOpcode() != BO_Assign
) {
12795 ErrorFound
= NotAnAssignmentOp
;
12796 NoteLoc
= ErrorLoc
= FirstBinOp
? FirstBinOp
->getOperatorLoc()
12797 : First
->getBeginLoc();
12798 NoteRange
= ErrorRange
= FirstBinOp
12799 ? FirstBinOp
->getSourceRange()
12800 : SourceRange(ErrorLoc
, ErrorLoc
);
12802 auto *SecondBinOp
= dyn_cast
<BinaryOperator
>(Second
);
12803 if (!SecondBinOp
|| SecondBinOp
->getOpcode() != BO_Assign
) {
12804 ErrorFound
= NotAnAssignmentOp
;
12805 NoteLoc
= ErrorLoc
= SecondBinOp
12806 ? SecondBinOp
->getOperatorLoc()
12807 : Second
->getBeginLoc();
12808 NoteRange
= ErrorRange
=
12809 SecondBinOp
? SecondBinOp
->getSourceRange()
12810 : SourceRange(ErrorLoc
, ErrorLoc
);
12812 Expr
*PossibleXRHSInFirst
=
12813 FirstBinOp
->getRHS()->IgnoreParenImpCasts();
12814 Expr
*PossibleXLHSInSecond
=
12815 SecondBinOp
->getLHS()->IgnoreParenImpCasts();
12816 llvm::FoldingSetNodeID X1Id
, X2Id
;
12817 PossibleXRHSInFirst
->Profile(X1Id
, Context
,
12818 /*Canonical=*/true);
12819 PossibleXLHSInSecond
->Profile(X2Id
, Context
,
12820 /*Canonical=*/true);
12821 IsUpdateExprFound
= X1Id
== X2Id
;
12822 if (IsUpdateExprFound
) {
12823 V
= FirstBinOp
->getLHS();
12824 X
= SecondBinOp
->getLHS();
12825 E
= SecondBinOp
->getRHS();
12827 IsXLHSInRHSPart
= false;
12828 IsPostfixUpdate
= true;
12830 ErrorFound
= NotASpecificExpression
;
12831 ErrorLoc
= FirstBinOp
->getExprLoc();
12832 ErrorRange
= FirstBinOp
->getSourceRange();
12833 NoteLoc
= SecondBinOp
->getLHS()->getExprLoc();
12834 NoteRange
= SecondBinOp
->getRHS()->getSourceRange();
12841 NoteLoc
= ErrorLoc
= Body
->getBeginLoc();
12842 NoteRange
= ErrorRange
=
12843 SourceRange(Body
->getBeginLoc(), Body
->getBeginLoc());
12844 ErrorFound
= NotTwoSubstatements
;
12847 NoteLoc
= ErrorLoc
= Body
->getBeginLoc();
12848 NoteRange
= ErrorRange
=
12849 SourceRange(Body
->getBeginLoc(), Body
->getBeginLoc());
12850 ErrorFound
= NotACompoundStatement
;
12853 if (ErrorFound
!= NoError
) {
12854 Diag(ErrorLoc
, diag::err_omp_atomic_capture_not_compound_statement
)
12856 Diag(NoteLoc
, diag::note_omp_atomic_capture
) << ErrorFound
<< NoteRange
;
12857 return StmtError();
12859 if (SemaRef
.CurContext
->isDependentContext())
12860 UE
= V
= E
= X
= nullptr;
12861 } else if (AtomicKind
== OMPC_compare
) {
12862 if (IsCompareCapture
) {
12863 OpenMPAtomicCompareCaptureChecker::ErrorInfoTy ErrorInfo
;
12864 OpenMPAtomicCompareCaptureChecker
Checker(SemaRef
);
12865 if (!Checker
.checkStmt(Body
, ErrorInfo
)) {
12866 Diag(ErrorInfo
.ErrorLoc
, diag::err_omp_atomic_compare_capture
)
12867 << ErrorInfo
.ErrorRange
;
12868 Diag(ErrorInfo
.NoteLoc
, diag::note_omp_atomic_compare
)
12869 << ErrorInfo
.Error
<< ErrorInfo
.NoteRange
;
12870 return StmtError();
12872 X
= Checker
.getX();
12873 E
= Checker
.getE();
12874 D
= Checker
.getD();
12875 CE
= Checker
.getCond();
12876 V
= Checker
.getV();
12877 R
= Checker
.getR();
12878 // We reuse IsXLHSInRHSPart to tell if it is in the form 'x ordop expr'.
12879 IsXLHSInRHSPart
= Checker
.isXBinopExpr();
12880 IsFailOnly
= Checker
.isFailOnly();
12881 IsPostfixUpdate
= Checker
.isPostfixUpdate();
12883 OpenMPAtomicCompareChecker::ErrorInfoTy ErrorInfo
;
12884 OpenMPAtomicCompareChecker
Checker(SemaRef
);
12885 if (!Checker
.checkStmt(Body
, ErrorInfo
)) {
12886 Diag(ErrorInfo
.ErrorLoc
, diag::err_omp_atomic_compare
)
12887 << ErrorInfo
.ErrorRange
;
12888 Diag(ErrorInfo
.NoteLoc
, diag::note_omp_atomic_compare
)
12889 << ErrorInfo
.Error
<< ErrorInfo
.NoteRange
;
12890 return StmtError();
12892 X
= Checker
.getX();
12893 E
= Checker
.getE();
12894 D
= Checker
.getD();
12895 CE
= Checker
.getCond();
12896 // The weak clause may only appear if the resulting atomic operation is
12897 // an atomic conditional update for which the comparison tests for
12898 // equality. It was not possible to do this check in
12899 // OpenMPAtomicCompareChecker::checkStmt() as the check for OMPC_weak
12900 // could not be performed (Clauses are not available).
12901 auto *It
= find_if(Clauses
, [](OMPClause
*C
) {
12902 return C
->getClauseKind() == llvm::omp::Clause::OMPC_weak
;
12904 if (It
!= Clauses
.end()) {
12905 auto *Cond
= dyn_cast
<BinaryOperator
>(CE
);
12906 if (Cond
->getOpcode() != BO_EQ
) {
12907 ErrorInfo
.Error
= Checker
.ErrorTy::NotAnAssignment
;
12908 ErrorInfo
.ErrorLoc
= Cond
->getExprLoc();
12909 ErrorInfo
.NoteLoc
= Cond
->getOperatorLoc();
12910 ErrorInfo
.ErrorRange
= ErrorInfo
.NoteRange
= Cond
->getSourceRange();
12912 Diag(ErrorInfo
.ErrorLoc
, diag::err_omp_atomic_weak_no_equality
)
12913 << ErrorInfo
.ErrorRange
;
12914 return StmtError();
12917 // We reuse IsXLHSInRHSPart to tell if it is in the form 'x ordop expr'.
12918 IsXLHSInRHSPart
= Checker
.isXBinopExpr();
12922 SemaRef
.setFunctionHasBranchProtectedScope();
12924 return OMPAtomicDirective::Create(
12925 Context
, StartLoc
, EndLoc
, Clauses
, AStmt
,
12926 {X
, V
, R
, E
, UE
, D
, CE
, IsXLHSInRHSPart
, IsPostfixUpdate
, IsFailOnly
});
12929 StmtResult
SemaOpenMP::ActOnOpenMPTargetDirective(ArrayRef
<OMPClause
*> Clauses
,
12931 SourceLocation StartLoc
,
12932 SourceLocation EndLoc
) {
12934 return StmtError();
12936 CapturedStmt
*CS
= setBranchProtectedScope(SemaRef
, OMPD_target
, AStmt
);
12938 // OpenMP [2.16, Nesting of Regions]
12939 // If specified, a teams construct must be contained within a target
12940 // construct. That target construct must contain no statements or directives
12941 // outside of the teams construct.
12942 if (DSAStack
->hasInnerTeamsRegion()) {
12943 const Stmt
*S
= CS
->IgnoreContainers(/*IgnoreCaptured=*/true);
12944 bool OMPTeamsFound
= true;
12945 if (const auto *CS
= dyn_cast
<CompoundStmt
>(S
)) {
12946 auto I
= CS
->body_begin();
12947 while (I
!= CS
->body_end()) {
12948 const auto *OED
= dyn_cast
<OMPExecutableDirective
>(*I
);
12949 bool IsTeams
= OED
&& isOpenMPTeamsDirective(OED
->getDirectiveKind());
12950 if (!IsTeams
|| I
!= CS
->body_begin()) {
12951 OMPTeamsFound
= false;
12952 if (IsTeams
&& I
!= CS
->body_begin()) {
12953 // This is the two teams case. Since the InnerTeamsRegionLoc will
12954 // point to this second one reset the iterator to the other teams.
12961 assert(I
!= CS
->body_end() && "Not found statement");
12964 const auto *OED
= dyn_cast
<OMPExecutableDirective
>(S
);
12965 OMPTeamsFound
= OED
&& isOpenMPTeamsDirective(OED
->getDirectiveKind());
12967 if (!OMPTeamsFound
) {
12968 Diag(StartLoc
, diag::err_omp_target_contains_not_only_teams
);
12969 Diag(DSAStack
->getInnerTeamsRegionLoc(),
12970 diag::note_omp_nested_teams_construct_here
);
12971 Diag(S
->getBeginLoc(), diag::note_omp_nested_statement_here
)
12972 << isa
<OMPExecutableDirective
>(S
);
12973 return StmtError();
12977 return OMPTargetDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
12981 StmtResult
SemaOpenMP::ActOnOpenMPTargetParallelDirective(
12982 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
12983 SourceLocation EndLoc
) {
12985 return StmtError();
12987 setBranchProtectedScope(SemaRef
, OMPD_target_parallel
, AStmt
);
12989 return OMPTargetParallelDirective::Create(
12990 getASTContext(), StartLoc
, EndLoc
, Clauses
, AStmt
,
12991 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
12994 StmtResult
SemaOpenMP::ActOnOpenMPTargetParallelForDirective(
12995 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
12996 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
12998 return StmtError();
13001 setBranchProtectedScope(SemaRef
, OMPD_target_parallel_for
, AStmt
);
13003 OMPLoopBasedDirective::HelperExprs B
;
13004 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13005 // define the nested loops number.
13006 unsigned NestedLoopCount
=
13007 checkOpenMPLoop(OMPD_target_parallel_for
, getCollapseNumberExpr(Clauses
),
13008 getOrderedNumberExpr(Clauses
), CS
, SemaRef
, *DSAStack
,
13009 VarsWithImplicitDSA
, B
);
13010 if (NestedLoopCount
== 0)
13011 return StmtError();
13013 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13014 return StmtError();
13016 return OMPTargetParallelForDirective::Create(
13017 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
13018 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
13021 /// Check for existence of a map clause in the list of clauses.
13022 static bool hasClauses(ArrayRef
<OMPClause
*> Clauses
,
13023 const OpenMPClauseKind K
) {
13024 return llvm::any_of(
13025 Clauses
, [K
](const OMPClause
*C
) { return C
->getClauseKind() == K
; });
13028 template <typename
... Params
>
13029 static bool hasClauses(ArrayRef
<OMPClause
*> Clauses
, const OpenMPClauseKind K
,
13030 const Params
... ClauseTypes
) {
13031 return hasClauses(Clauses
, K
) || hasClauses(Clauses
, ClauseTypes
...);
13034 /// Check if the variables in the mapping clause are externally visible.
13035 static bool isClauseMappable(ArrayRef
<OMPClause
*> Clauses
) {
13036 for (const OMPClause
*C
: Clauses
) {
13037 if (auto *TC
= dyn_cast
<OMPToClause
>(C
))
13038 return llvm::all_of(TC
->all_decls(), [](ValueDecl
*VD
) {
13039 return !VD
|| !VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() ||
13040 (VD
->isExternallyVisible() &&
13041 VD
->getVisibility() != HiddenVisibility
);
13043 else if (auto *FC
= dyn_cast
<OMPFromClause
>(C
))
13044 return llvm::all_of(FC
->all_decls(), [](ValueDecl
*VD
) {
13045 return !VD
|| !VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() ||
13046 (VD
->isExternallyVisible() &&
13047 VD
->getVisibility() != HiddenVisibility
);
13055 SemaOpenMP::ActOnOpenMPTargetDataDirective(ArrayRef
<OMPClause
*> Clauses
,
13056 Stmt
*AStmt
, SourceLocation StartLoc
,
13057 SourceLocation EndLoc
) {
13059 return StmtError();
13061 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13063 // OpenMP [2.12.2, target data Construct, Restrictions]
13064 // At least one map, use_device_addr or use_device_ptr clause must appear on
13066 if (!hasClauses(Clauses
, OMPC_map
, OMPC_use_device_ptr
) &&
13067 (getLangOpts().OpenMP
< 50 ||
13068 !hasClauses(Clauses
, OMPC_use_device_addr
))) {
13069 StringRef Expected
;
13070 if (getLangOpts().OpenMP
< 50)
13071 Expected
= "'map' or 'use_device_ptr'";
13073 Expected
= "'map', 'use_device_ptr', or 'use_device_addr'";
13074 Diag(StartLoc
, diag::err_omp_no_clause_for_directive
)
13075 << Expected
<< getOpenMPDirectiveName(OMPD_target_data
);
13076 return StmtError();
13079 SemaRef
.setFunctionHasBranchProtectedScope();
13081 return OMPTargetDataDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13085 StmtResult
SemaOpenMP::ActOnOpenMPTargetEnterDataDirective(
13086 ArrayRef
<OMPClause
*> Clauses
, SourceLocation StartLoc
,
13087 SourceLocation EndLoc
, Stmt
*AStmt
) {
13089 return StmtError();
13091 setBranchProtectedScope(SemaRef
, OMPD_target_enter_data
, AStmt
);
13093 // OpenMP [2.10.2, Restrictions, p. 99]
13094 // At least one map clause must appear on the directive.
13095 if (!hasClauses(Clauses
, OMPC_map
)) {
13096 Diag(StartLoc
, diag::err_omp_no_clause_for_directive
)
13097 << "'map'" << getOpenMPDirectiveName(OMPD_target_enter_data
);
13098 return StmtError();
13101 return OMPTargetEnterDataDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13105 StmtResult
SemaOpenMP::ActOnOpenMPTargetExitDataDirective(
13106 ArrayRef
<OMPClause
*> Clauses
, SourceLocation StartLoc
,
13107 SourceLocation EndLoc
, Stmt
*AStmt
) {
13109 return StmtError();
13111 setBranchProtectedScope(SemaRef
, OMPD_target_exit_data
, AStmt
);
13113 // OpenMP [2.10.3, Restrictions, p. 102]
13114 // At least one map clause must appear on the directive.
13115 if (!hasClauses(Clauses
, OMPC_map
)) {
13116 Diag(StartLoc
, diag::err_omp_no_clause_for_directive
)
13117 << "'map'" << getOpenMPDirectiveName(OMPD_target_exit_data
);
13118 return StmtError();
13121 return OMPTargetExitDataDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13125 StmtResult
SemaOpenMP::ActOnOpenMPTargetUpdateDirective(
13126 ArrayRef
<OMPClause
*> Clauses
, SourceLocation StartLoc
,
13127 SourceLocation EndLoc
, Stmt
*AStmt
) {
13129 return StmtError();
13131 setBranchProtectedScope(SemaRef
, OMPD_target_update
, AStmt
);
13133 if (!hasClauses(Clauses
, OMPC_to
, OMPC_from
)) {
13134 Diag(StartLoc
, diag::err_omp_at_least_one_motion_clause_required
);
13135 return StmtError();
13138 if (!isClauseMappable(Clauses
)) {
13139 Diag(StartLoc
, diag::err_omp_cannot_update_with_internal_linkage
);
13140 return StmtError();
13143 return OMPTargetUpdateDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13147 /// This checks whether a \p ClauseType clause \p C has at most \p Max
13148 /// expression. If not, a diag of number \p Diag will be emitted.
13149 template <typename ClauseType
>
13150 static bool checkNumExprsInClause(SemaBase
&SemaRef
,
13151 ArrayRef
<OMPClause
*> Clauses
,
13152 unsigned MaxNum
, unsigned Diag
) {
13153 auto ClauseItr
= llvm::find_if(Clauses
, llvm::IsaPred
<ClauseType
>);
13154 if (ClauseItr
== Clauses
.end())
13156 const auto *C
= cast
<ClauseType
>(*ClauseItr
);
13157 auto VarList
= C
->getVarRefs();
13158 if (VarList
.size() > MaxNum
) {
13159 SemaRef
.Diag(VarList
[MaxNum
]->getBeginLoc(), Diag
)
13160 << getOpenMPClauseName(C
->getClauseKind());
13166 StmtResult
SemaOpenMP::ActOnOpenMPTeamsDirective(ArrayRef
<OMPClause
*> Clauses
,
13168 SourceLocation StartLoc
,
13169 SourceLocation EndLoc
) {
13171 return StmtError();
13173 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(
13174 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
) ||
13175 !checkNumExprsInClause
<OMPThreadLimitClause
>(
13176 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
))
13177 return StmtError();
13179 // Report affected OpenMP target offloading behavior when in HIP lang-mode.
13180 if (getLangOpts().HIP
&& (DSAStack
->getParentDirective() == OMPD_target
))
13181 Diag(StartLoc
, diag::warn_hip_omp_target_directives
);
13183 setBranchProtectedScope(SemaRef
, OMPD_teams
, AStmt
);
13185 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
13187 return OMPTeamsDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
13191 StmtResult
SemaOpenMP::ActOnOpenMPCancellationPointDirective(
13192 SourceLocation StartLoc
, SourceLocation EndLoc
,
13193 OpenMPDirectiveKind CancelRegion
) {
13194 if (DSAStack
->isParentNowaitRegion()) {
13195 Diag(StartLoc
, diag::err_omp_parent_cancel_region_nowait
) << 0;
13196 return StmtError();
13198 if (DSAStack
->isParentOrderedRegion()) {
13199 Diag(StartLoc
, diag::err_omp_parent_cancel_region_ordered
) << 0;
13200 return StmtError();
13202 return OMPCancellationPointDirective::Create(getASTContext(), StartLoc
,
13203 EndLoc
, CancelRegion
);
13206 StmtResult
SemaOpenMP::ActOnOpenMPCancelDirective(
13207 ArrayRef
<OMPClause
*> Clauses
, SourceLocation StartLoc
,
13208 SourceLocation EndLoc
, OpenMPDirectiveKind CancelRegion
) {
13209 if (DSAStack
->isParentNowaitRegion()) {
13210 Diag(StartLoc
, diag::err_omp_parent_cancel_region_nowait
) << 1;
13211 return StmtError();
13213 if (DSAStack
->isParentOrderedRegion()) {
13214 Diag(StartLoc
, diag::err_omp_parent_cancel_region_ordered
) << 1;
13215 return StmtError();
13217 DSAStack
->setParentCancelRegion(/*Cancel=*/true);
13218 return OMPCancelDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
13222 static bool checkReductionClauseWithNogroup(Sema
&S
,
13223 ArrayRef
<OMPClause
*> Clauses
) {
13224 const OMPClause
*ReductionClause
= nullptr;
13225 const OMPClause
*NogroupClause
= nullptr;
13226 for (const OMPClause
*C
: Clauses
) {
13227 if (C
->getClauseKind() == OMPC_reduction
) {
13228 ReductionClause
= C
;
13233 if (C
->getClauseKind() == OMPC_nogroup
) {
13235 if (ReductionClause
)
13240 if (ReductionClause
&& NogroupClause
) {
13241 S
.Diag(ReductionClause
->getBeginLoc(), diag::err_omp_reduction_with_nogroup
)
13242 << SourceRange(NogroupClause
->getBeginLoc(),
13243 NogroupClause
->getEndLoc());
13249 StmtResult
SemaOpenMP::ActOnOpenMPTaskLoopDirective(
13250 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13251 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13253 return StmtError();
13255 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13256 OMPLoopBasedDirective::HelperExprs B
;
13257 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13258 // define the nested loops number.
13259 unsigned NestedLoopCount
=
13260 checkOpenMPLoop(OMPD_taskloop
, getCollapseNumberExpr(Clauses
),
13261 /*OrderedLoopCountExpr=*/nullptr, AStmt
, SemaRef
,
13262 *DSAStack
, VarsWithImplicitDSA
, B
);
13263 if (NestedLoopCount
== 0)
13264 return StmtError();
13266 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13267 "omp for loop exprs were not built");
13269 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13270 // The grainsize clause and num_tasks clause are mutually exclusive and may
13271 // not appear on the same taskloop directive.
13272 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13273 {OMPC_grainsize
, OMPC_num_tasks
}))
13274 return StmtError();
13275 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13276 // If a reduction clause is present on the taskloop directive, the nogroup
13277 // clause must not be specified.
13278 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13279 return StmtError();
13281 SemaRef
.setFunctionHasBranchProtectedScope();
13282 return OMPTaskLoopDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13283 NestedLoopCount
, Clauses
, AStmt
, B
,
13284 DSAStack
->isCancelRegion());
13287 StmtResult
SemaOpenMP::ActOnOpenMPTaskLoopSimdDirective(
13288 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13289 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13291 return StmtError();
13294 setBranchProtectedScope(SemaRef
, OMPD_taskloop_simd
, AStmt
);
13296 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13297 OMPLoopBasedDirective::HelperExprs B
;
13298 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13299 // define the nested loops number.
13300 unsigned NestedLoopCount
=
13301 checkOpenMPLoop(OMPD_taskloop_simd
, getCollapseNumberExpr(Clauses
),
13302 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13303 VarsWithImplicitDSA
, B
);
13304 if (NestedLoopCount
== 0)
13305 return StmtError();
13307 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13308 return StmtError();
13310 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13311 // The grainsize clause and num_tasks clause are mutually exclusive and may
13312 // not appear on the same taskloop directive.
13313 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13314 {OMPC_grainsize
, OMPC_num_tasks
}))
13315 return StmtError();
13316 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13317 // If a reduction clause is present on the taskloop directive, the nogroup
13318 // clause must not be specified.
13319 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13320 return StmtError();
13321 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13322 return StmtError();
13324 return OMPTaskLoopSimdDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13325 NestedLoopCount
, Clauses
, AStmt
, B
);
13328 StmtResult
SemaOpenMP::ActOnOpenMPMasterTaskLoopDirective(
13329 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13330 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13332 return StmtError();
13334 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13335 OMPLoopBasedDirective::HelperExprs B
;
13336 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13337 // define the nested loops number.
13338 unsigned NestedLoopCount
=
13339 checkOpenMPLoop(OMPD_master_taskloop
, getCollapseNumberExpr(Clauses
),
13340 /*OrderedLoopCountExpr=*/nullptr, AStmt
, SemaRef
,
13341 *DSAStack
, VarsWithImplicitDSA
, B
);
13342 if (NestedLoopCount
== 0)
13343 return StmtError();
13345 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13346 "omp for loop exprs were not built");
13348 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13349 // The grainsize clause and num_tasks clause are mutually exclusive and may
13350 // not appear on the same taskloop directive.
13351 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13352 {OMPC_grainsize
, OMPC_num_tasks
}))
13353 return StmtError();
13354 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13355 // If a reduction clause is present on the taskloop directive, the nogroup
13356 // clause must not be specified.
13357 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13358 return StmtError();
13360 SemaRef
.setFunctionHasBranchProtectedScope();
13361 return OMPMasterTaskLoopDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13362 NestedLoopCount
, Clauses
, AStmt
, B
,
13363 DSAStack
->isCancelRegion());
13366 StmtResult
SemaOpenMP::ActOnOpenMPMaskedTaskLoopDirective(
13367 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13368 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13370 return StmtError();
13372 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13373 OMPLoopBasedDirective::HelperExprs B
;
13374 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13375 // define the nested loops number.
13376 unsigned NestedLoopCount
=
13377 checkOpenMPLoop(OMPD_masked_taskloop
, getCollapseNumberExpr(Clauses
),
13378 /*OrderedLoopCountExpr=*/nullptr, AStmt
, SemaRef
,
13379 *DSAStack
, VarsWithImplicitDSA
, B
);
13380 if (NestedLoopCount
== 0)
13381 return StmtError();
13383 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13384 "omp for loop exprs were not built");
13386 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13387 // The grainsize clause and num_tasks clause are mutually exclusive and may
13388 // not appear on the same taskloop directive.
13389 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13390 {OMPC_grainsize
, OMPC_num_tasks
}))
13391 return StmtError();
13392 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13393 // If a reduction clause is present on the taskloop directive, the nogroup
13394 // clause must not be specified.
13395 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13396 return StmtError();
13398 SemaRef
.setFunctionHasBranchProtectedScope();
13399 return OMPMaskedTaskLoopDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13400 NestedLoopCount
, Clauses
, AStmt
, B
,
13401 DSAStack
->isCancelRegion());
13404 StmtResult
SemaOpenMP::ActOnOpenMPMasterTaskLoopSimdDirective(
13405 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13406 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13408 return StmtError();
13411 setBranchProtectedScope(SemaRef
, OMPD_master_taskloop_simd
, AStmt
);
13413 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13414 OMPLoopBasedDirective::HelperExprs B
;
13415 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13416 // define the nested loops number.
13417 unsigned NestedLoopCount
=
13418 checkOpenMPLoop(OMPD_master_taskloop_simd
, getCollapseNumberExpr(Clauses
),
13419 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13420 VarsWithImplicitDSA
, B
);
13421 if (NestedLoopCount
== 0)
13422 return StmtError();
13424 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13425 return StmtError();
13427 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13428 // The grainsize clause and num_tasks clause are mutually exclusive and may
13429 // not appear on the same taskloop directive.
13430 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13431 {OMPC_grainsize
, OMPC_num_tasks
}))
13432 return StmtError();
13433 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13434 // If a reduction clause is present on the taskloop directive, the nogroup
13435 // clause must not be specified.
13436 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13437 return StmtError();
13438 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13439 return StmtError();
13441 return OMPMasterTaskLoopSimdDirective::Create(
13442 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13445 StmtResult
SemaOpenMP::ActOnOpenMPMaskedTaskLoopSimdDirective(
13446 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13447 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13449 return StmtError();
13452 setBranchProtectedScope(SemaRef
, OMPD_masked_taskloop_simd
, AStmt
);
13454 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13455 OMPLoopBasedDirective::HelperExprs B
;
13456 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13457 // define the nested loops number.
13458 unsigned NestedLoopCount
=
13459 checkOpenMPLoop(OMPD_masked_taskloop_simd
, getCollapseNumberExpr(Clauses
),
13460 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13461 VarsWithImplicitDSA
, B
);
13462 if (NestedLoopCount
== 0)
13463 return StmtError();
13465 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13466 return StmtError();
13468 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13469 // The grainsize clause and num_tasks clause are mutually exclusive and may
13470 // not appear on the same taskloop directive.
13471 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13472 {OMPC_grainsize
, OMPC_num_tasks
}))
13473 return StmtError();
13474 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13475 // If a reduction clause is present on the taskloop directive, the nogroup
13476 // clause must not be specified.
13477 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13478 return StmtError();
13479 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13480 return StmtError();
13482 return OMPMaskedTaskLoopSimdDirective::Create(
13483 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13486 StmtResult
SemaOpenMP::ActOnOpenMPParallelMasterTaskLoopDirective(
13487 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13488 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13490 return StmtError();
13493 setBranchProtectedScope(SemaRef
, OMPD_parallel_master_taskloop
, AStmt
);
13495 OMPLoopBasedDirective::HelperExprs B
;
13496 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13497 // define the nested loops number.
13498 unsigned NestedLoopCount
= checkOpenMPLoop(
13499 OMPD_parallel_master_taskloop
, getCollapseNumberExpr(Clauses
),
13500 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13501 VarsWithImplicitDSA
, B
);
13502 if (NestedLoopCount
== 0)
13503 return StmtError();
13505 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13506 "omp for loop exprs were not built");
13508 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13509 // The grainsize clause and num_tasks clause are mutually exclusive and may
13510 // not appear on the same taskloop directive.
13511 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13512 {OMPC_grainsize
, OMPC_num_tasks
}))
13513 return StmtError();
13514 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13515 // If a reduction clause is present on the taskloop directive, the nogroup
13516 // clause must not be specified.
13517 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13518 return StmtError();
13520 return OMPParallelMasterTaskLoopDirective::Create(
13521 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
13522 DSAStack
->isCancelRegion());
13525 StmtResult
SemaOpenMP::ActOnOpenMPParallelMaskedTaskLoopDirective(
13526 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13527 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13529 return StmtError();
13532 setBranchProtectedScope(SemaRef
, OMPD_parallel_masked_taskloop
, AStmt
);
13534 OMPLoopBasedDirective::HelperExprs B
;
13535 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13536 // define the nested loops number.
13537 unsigned NestedLoopCount
= checkOpenMPLoop(
13538 OMPD_parallel_masked_taskloop
, getCollapseNumberExpr(Clauses
),
13539 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13540 VarsWithImplicitDSA
, B
);
13541 if (NestedLoopCount
== 0)
13542 return StmtError();
13544 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13545 "omp for loop exprs were not built");
13547 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13548 // The grainsize clause and num_tasks clause are mutually exclusive and may
13549 // not appear on the same taskloop directive.
13550 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13551 {OMPC_grainsize
, OMPC_num_tasks
}))
13552 return StmtError();
13553 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13554 // If a reduction clause is present on the taskloop directive, the nogroup
13555 // clause must not be specified.
13556 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13557 return StmtError();
13559 return OMPParallelMaskedTaskLoopDirective::Create(
13560 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
13561 DSAStack
->isCancelRegion());
13564 StmtResult
SemaOpenMP::ActOnOpenMPParallelMasterTaskLoopSimdDirective(
13565 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13566 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13568 return StmtError();
13570 CapturedStmt
*CS
= setBranchProtectedScope(
13571 SemaRef
, OMPD_parallel_master_taskloop_simd
, AStmt
);
13573 OMPLoopBasedDirective::HelperExprs B
;
13574 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13575 // define the nested loops number.
13576 unsigned NestedLoopCount
= checkOpenMPLoop(
13577 OMPD_parallel_master_taskloop_simd
, getCollapseNumberExpr(Clauses
),
13578 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13579 VarsWithImplicitDSA
, B
);
13580 if (NestedLoopCount
== 0)
13581 return StmtError();
13583 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13584 return StmtError();
13586 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13587 // The grainsize clause and num_tasks clause are mutually exclusive and may
13588 // not appear on the same taskloop directive.
13589 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13590 {OMPC_grainsize
, OMPC_num_tasks
}))
13591 return StmtError();
13592 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13593 // If a reduction clause is present on the taskloop directive, the nogroup
13594 // clause must not be specified.
13595 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13596 return StmtError();
13597 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13598 return StmtError();
13600 return OMPParallelMasterTaskLoopSimdDirective::Create(
13601 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13604 StmtResult
SemaOpenMP::ActOnOpenMPParallelMaskedTaskLoopSimdDirective(
13605 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13606 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13608 return StmtError();
13610 CapturedStmt
*CS
= setBranchProtectedScope(
13611 SemaRef
, OMPD_parallel_masked_taskloop_simd
, AStmt
);
13613 OMPLoopBasedDirective::HelperExprs B
;
13614 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13615 // define the nested loops number.
13616 unsigned NestedLoopCount
= checkOpenMPLoop(
13617 OMPD_parallel_masked_taskloop_simd
, getCollapseNumberExpr(Clauses
),
13618 /*OrderedLoopCountExpr=*/nullptr, CS
, SemaRef
, *DSAStack
,
13619 VarsWithImplicitDSA
, B
);
13620 if (NestedLoopCount
== 0)
13621 return StmtError();
13623 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13624 return StmtError();
13626 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13627 // The grainsize clause and num_tasks clause are mutually exclusive and may
13628 // not appear on the same taskloop directive.
13629 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
13630 {OMPC_grainsize
, OMPC_num_tasks
}))
13631 return StmtError();
13632 // OpenMP, [2.9.2 taskloop Construct, Restrictions]
13633 // If a reduction clause is present on the taskloop directive, the nogroup
13634 // clause must not be specified.
13635 if (checkReductionClauseWithNogroup(SemaRef
, Clauses
))
13636 return StmtError();
13637 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13638 return StmtError();
13640 return OMPParallelMaskedTaskLoopSimdDirective::Create(
13641 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13644 StmtResult
SemaOpenMP::ActOnOpenMPDistributeDirective(
13645 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13646 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13648 return StmtError();
13650 assert(isa
<CapturedStmt
>(AStmt
) && "Captured statement expected");
13651 OMPLoopBasedDirective::HelperExprs B
;
13652 // In presence of clause 'collapse' with number of loops, it will
13653 // define the nested loops number.
13654 unsigned NestedLoopCount
=
13655 checkOpenMPLoop(OMPD_distribute
, getCollapseNumberExpr(Clauses
),
13656 nullptr /*ordered not a clause on distribute*/, AStmt
,
13657 SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
13658 if (NestedLoopCount
== 0)
13659 return StmtError();
13661 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13662 "omp for loop exprs were not built");
13664 SemaRef
.setFunctionHasBranchProtectedScope();
13665 auto *DistributeDirective
= OMPDistributeDirective::Create(
13666 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13667 return DistributeDirective
;
13670 StmtResult
SemaOpenMP::ActOnOpenMPDistributeParallelForDirective(
13671 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13672 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13674 return StmtError();
13677 setBranchProtectedScope(SemaRef
, OMPD_distribute_parallel_for
, AStmt
);
13679 OMPLoopBasedDirective::HelperExprs B
;
13680 // In presence of clause 'collapse' with number of loops, it will
13681 // define the nested loops number.
13682 unsigned NestedLoopCount
= checkOpenMPLoop(
13683 OMPD_distribute_parallel_for
, getCollapseNumberExpr(Clauses
),
13684 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13685 VarsWithImplicitDSA
, B
);
13686 if (NestedLoopCount
== 0)
13687 return StmtError();
13689 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13690 "omp for loop exprs were not built");
13692 return OMPDistributeParallelForDirective::Create(
13693 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
13694 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
13697 StmtResult
SemaOpenMP::ActOnOpenMPDistributeParallelForSimdDirective(
13698 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13699 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13701 return StmtError();
13703 CapturedStmt
*CS
= setBranchProtectedScope(
13704 SemaRef
, OMPD_distribute_parallel_for_simd
, AStmt
);
13706 OMPLoopBasedDirective::HelperExprs B
;
13707 // In presence of clause 'collapse' with number of loops, it will
13708 // define the nested loops number.
13709 unsigned NestedLoopCount
= checkOpenMPLoop(
13710 OMPD_distribute_parallel_for_simd
, getCollapseNumberExpr(Clauses
),
13711 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13712 VarsWithImplicitDSA
, B
);
13713 if (NestedLoopCount
== 0)
13714 return StmtError();
13716 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13717 return StmtError();
13719 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13720 return StmtError();
13722 return OMPDistributeParallelForSimdDirective::Create(
13723 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13726 StmtResult
SemaOpenMP::ActOnOpenMPDistributeSimdDirective(
13727 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13728 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13730 return StmtError();
13733 setBranchProtectedScope(SemaRef
, OMPD_distribute_simd
, AStmt
);
13735 OMPLoopBasedDirective::HelperExprs B
;
13736 // In presence of clause 'collapse' with number of loops, it will
13737 // define the nested loops number.
13738 unsigned NestedLoopCount
=
13739 checkOpenMPLoop(OMPD_distribute_simd
, getCollapseNumberExpr(Clauses
),
13740 nullptr /*ordered not a clause on distribute*/, CS
,
13741 SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
13742 if (NestedLoopCount
== 0)
13743 return StmtError();
13745 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13746 return StmtError();
13748 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13749 return StmtError();
13751 return OMPDistributeSimdDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13752 NestedLoopCount
, Clauses
, AStmt
, B
);
13755 StmtResult
SemaOpenMP::ActOnOpenMPTargetParallelForSimdDirective(
13756 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13757 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13759 return StmtError();
13762 setBranchProtectedScope(SemaRef
, OMPD_target_parallel_for_simd
, AStmt
);
13764 OMPLoopBasedDirective::HelperExprs B
;
13765 // In presence of clause 'collapse' or 'ordered' with number of loops, it will
13766 // define the nested loops number.
13767 unsigned NestedLoopCount
= checkOpenMPLoop(
13768 OMPD_target_parallel_for_simd
, getCollapseNumberExpr(Clauses
),
13769 getOrderedNumberExpr(Clauses
), CS
, SemaRef
, *DSAStack
,
13770 VarsWithImplicitDSA
, B
);
13771 if (NestedLoopCount
== 0)
13772 return StmtError();
13774 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13775 return StmtError();
13777 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13778 return StmtError();
13780 return OMPTargetParallelForSimdDirective::Create(
13781 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13784 StmtResult
SemaOpenMP::ActOnOpenMPTargetSimdDirective(
13785 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13786 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13788 return StmtError();
13790 CapturedStmt
*CS
= setBranchProtectedScope(SemaRef
, OMPD_target_simd
, AStmt
);
13792 OMPLoopBasedDirective::HelperExprs B
;
13793 // In presence of clause 'collapse' with number of loops, it will define the
13794 // nested loops number.
13795 unsigned NestedLoopCount
=
13796 checkOpenMPLoop(OMPD_target_simd
, getCollapseNumberExpr(Clauses
),
13797 getOrderedNumberExpr(Clauses
), CS
, SemaRef
, *DSAStack
,
13798 VarsWithImplicitDSA
, B
);
13799 if (NestedLoopCount
== 0)
13800 return StmtError();
13802 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13803 return StmtError();
13805 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13806 return StmtError();
13808 return OMPTargetSimdDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13809 NestedLoopCount
, Clauses
, AStmt
, B
);
13812 StmtResult
SemaOpenMP::ActOnOpenMPTeamsDistributeDirective(
13813 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13814 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13816 return StmtError();
13819 setBranchProtectedScope(SemaRef
, OMPD_teams_distribute
, AStmt
);
13821 OMPLoopBasedDirective::HelperExprs B
;
13822 // In presence of clause 'collapse' with number of loops, it will
13823 // define the nested loops number.
13824 unsigned NestedLoopCount
=
13825 checkOpenMPLoop(OMPD_teams_distribute
, getCollapseNumberExpr(Clauses
),
13826 nullptr /*ordered not a clause on distribute*/, CS
,
13827 SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
13828 if (NestedLoopCount
== 0)
13829 return StmtError();
13831 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13832 "omp teams distribute loop exprs were not built");
13834 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
13836 return OMPTeamsDistributeDirective::Create(
13837 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13840 StmtResult
SemaOpenMP::ActOnOpenMPTeamsDistributeSimdDirective(
13841 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13842 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13844 return StmtError();
13847 setBranchProtectedScope(SemaRef
, OMPD_teams_distribute_simd
, AStmt
);
13849 OMPLoopBasedDirective::HelperExprs B
;
13850 // In presence of clause 'collapse' with number of loops, it will
13851 // define the nested loops number.
13852 unsigned NestedLoopCount
= checkOpenMPLoop(
13853 OMPD_teams_distribute_simd
, getCollapseNumberExpr(Clauses
),
13854 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13855 VarsWithImplicitDSA
, B
);
13856 if (NestedLoopCount
== 0)
13857 return StmtError();
13859 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13860 return StmtError();
13862 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13863 return StmtError();
13865 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
13867 return OMPTeamsDistributeSimdDirective::Create(
13868 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13871 StmtResult
SemaOpenMP::ActOnOpenMPTeamsDistributeParallelForSimdDirective(
13872 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13873 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13875 return StmtError();
13877 CapturedStmt
*CS
= setBranchProtectedScope(
13878 SemaRef
, OMPD_teams_distribute_parallel_for_simd
, AStmt
);
13880 OMPLoopBasedDirective::HelperExprs B
;
13881 // In presence of clause 'collapse' with number of loops, it will
13882 // define the nested loops number.
13883 unsigned NestedLoopCount
= checkOpenMPLoop(
13884 OMPD_teams_distribute_parallel_for_simd
, getCollapseNumberExpr(Clauses
),
13885 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13886 VarsWithImplicitDSA
, B
);
13887 if (NestedLoopCount
== 0)
13888 return StmtError();
13890 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
13891 return StmtError();
13893 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
13894 return StmtError();
13896 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
13898 return OMPTeamsDistributeParallelForSimdDirective::Create(
13899 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13902 StmtResult
SemaOpenMP::ActOnOpenMPTeamsDistributeParallelForDirective(
13903 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13904 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13906 return StmtError();
13908 CapturedStmt
*CS
= setBranchProtectedScope(
13909 SemaRef
, OMPD_teams_distribute_parallel_for
, AStmt
);
13911 OMPLoopBasedDirective::HelperExprs B
;
13912 // In presence of clause 'collapse' with number of loops, it will
13913 // define the nested loops number.
13914 unsigned NestedLoopCount
= checkOpenMPLoop(
13915 OMPD_teams_distribute_parallel_for
, getCollapseNumberExpr(Clauses
),
13916 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13917 VarsWithImplicitDSA
, B
);
13919 if (NestedLoopCount
== 0)
13920 return StmtError();
13922 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13923 "omp for loop exprs were not built");
13925 DSAStack
->setParentTeamsRegionLoc(StartLoc
);
13927 return OMPTeamsDistributeParallelForDirective::Create(
13928 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
13929 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
13932 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsDirective(
13933 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13934 SourceLocation EndLoc
) {
13936 return StmtError();
13938 setBranchProtectedScope(SemaRef
, OMPD_target_teams
, AStmt
);
13940 const OMPClause
*BareClause
= nullptr;
13941 bool HasThreadLimitAndNumTeamsClause
= hasClauses(Clauses
, OMPC_num_teams
) &&
13942 hasClauses(Clauses
, OMPC_thread_limit
);
13943 bool HasBareClause
= llvm::any_of(Clauses
, [&](const OMPClause
*C
) {
13945 return C
->getClauseKind() == OMPC_ompx_bare
;
13948 if (HasBareClause
&& !HasThreadLimitAndNumTeamsClause
) {
13949 Diag(BareClause
->getBeginLoc(), diag::err_ompx_bare_no_grid
);
13950 return StmtError();
13953 unsigned ClauseMaxNumExprs
= HasBareClause
? 3 : 1;
13954 unsigned DiagNo
= HasBareClause
13955 ? diag::err_ompx_more_than_three_expr_not_allowed
13956 : diag::err_omp_multi_expr_not_allowed
;
13957 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(*this, Clauses
,
13958 ClauseMaxNumExprs
, DiagNo
) ||
13959 !checkNumExprsInClause
<OMPThreadLimitClause
>(*this, Clauses
,
13960 ClauseMaxNumExprs
, DiagNo
))
13961 return StmtError();
13963 return OMPTargetTeamsDirective::Create(getASTContext(), StartLoc
, EndLoc
,
13967 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsDistributeDirective(
13968 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
13969 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
13971 return StmtError();
13973 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(
13974 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
) ||
13975 !checkNumExprsInClause
<OMPThreadLimitClause
>(
13976 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
))
13977 return StmtError();
13980 setBranchProtectedScope(SemaRef
, OMPD_target_teams_distribute
, AStmt
);
13982 OMPLoopBasedDirective::HelperExprs B
;
13983 // In presence of clause 'collapse' with number of loops, it will
13984 // define the nested loops number.
13985 unsigned NestedLoopCount
= checkOpenMPLoop(
13986 OMPD_target_teams_distribute
, getCollapseNumberExpr(Clauses
),
13987 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
13988 VarsWithImplicitDSA
, B
);
13989 if (NestedLoopCount
== 0)
13990 return StmtError();
13992 assert((SemaRef
.CurContext
->isDependentContext() || B
.builtAll()) &&
13993 "omp target teams distribute loop exprs were not built");
13995 return OMPTargetTeamsDistributeDirective::Create(
13996 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
13999 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsDistributeParallelForDirective(
14000 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
14001 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
14003 return StmtError();
14005 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(
14006 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
) ||
14007 !checkNumExprsInClause
<OMPThreadLimitClause
>(
14008 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
))
14009 return StmtError();
14011 CapturedStmt
*CS
= setBranchProtectedScope(
14012 SemaRef
, OMPD_target_teams_distribute_parallel_for
, AStmt
);
14014 OMPLoopBasedDirective::HelperExprs B
;
14015 // In presence of clause 'collapse' with number of loops, it will
14016 // define the nested loops number.
14017 unsigned NestedLoopCount
= checkOpenMPLoop(
14018 OMPD_target_teams_distribute_parallel_for
, getCollapseNumberExpr(Clauses
),
14019 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
14020 VarsWithImplicitDSA
, B
);
14021 if (NestedLoopCount
== 0)
14022 return StmtError();
14024 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
14025 return StmtError();
14027 return OMPTargetTeamsDistributeParallelForDirective::Create(
14028 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
,
14029 DSAStack
->getTaskgroupReductionRef(), DSAStack
->isCancelRegion());
14032 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
14033 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
14034 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
14036 return StmtError();
14038 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(
14039 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
) ||
14040 !checkNumExprsInClause
<OMPThreadLimitClause
>(
14041 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
))
14042 return StmtError();
14044 CapturedStmt
*CS
= setBranchProtectedScope(
14045 SemaRef
, OMPD_target_teams_distribute_parallel_for_simd
, AStmt
);
14047 OMPLoopBasedDirective::HelperExprs B
;
14048 // In presence of clause 'collapse' with number of loops, it will
14049 // define the nested loops number.
14050 unsigned NestedLoopCount
=
14051 checkOpenMPLoop(OMPD_target_teams_distribute_parallel_for_simd
,
14052 getCollapseNumberExpr(Clauses
),
14053 nullptr /*ordered not a clause on distribute*/, CS
,
14054 SemaRef
, *DSAStack
, VarsWithImplicitDSA
, B
);
14055 if (NestedLoopCount
== 0)
14056 return StmtError();
14058 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
14059 return StmtError();
14061 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
14062 return StmtError();
14064 return OMPTargetTeamsDistributeParallelForSimdDirective::Create(
14065 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
14068 StmtResult
SemaOpenMP::ActOnOpenMPTargetTeamsDistributeSimdDirective(
14069 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
14070 SourceLocation EndLoc
, VarsWithInheritedDSAType
&VarsWithImplicitDSA
) {
14072 return StmtError();
14074 if (!checkNumExprsInClause
<OMPNumTeamsClause
>(
14075 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
) ||
14076 !checkNumExprsInClause
<OMPThreadLimitClause
>(
14077 *this, Clauses
, /*MaxNum=*/1, diag::err_omp_multi_expr_not_allowed
))
14078 return StmtError();
14080 CapturedStmt
*CS
= setBranchProtectedScope(
14081 SemaRef
, OMPD_target_teams_distribute_simd
, AStmt
);
14083 OMPLoopBasedDirective::HelperExprs B
;
14084 // In presence of clause 'collapse' with number of loops, it will
14085 // define the nested loops number.
14086 unsigned NestedLoopCount
= checkOpenMPLoop(
14087 OMPD_target_teams_distribute_simd
, getCollapseNumberExpr(Clauses
),
14088 nullptr /*ordered not a clause on distribute*/, CS
, SemaRef
, *DSAStack
,
14089 VarsWithImplicitDSA
, B
);
14090 if (NestedLoopCount
== 0)
14091 return StmtError();
14093 if (finishLinearClauses(SemaRef
, Clauses
, B
, DSAStack
))
14094 return StmtError();
14096 if (checkSimdlenSafelenSpecified(SemaRef
, Clauses
))
14097 return StmtError();
14099 return OMPTargetTeamsDistributeSimdDirective::Create(
14100 getASTContext(), StartLoc
, EndLoc
, NestedLoopCount
, Clauses
, AStmt
, B
);
14103 bool SemaOpenMP::checkTransformableLoopNest(
14104 OpenMPDirectiveKind Kind
, Stmt
*AStmt
, int NumLoops
,
14105 SmallVectorImpl
<OMPLoopBasedDirective::HelperExprs
> &LoopHelpers
,
14106 Stmt
*&Body
, SmallVectorImpl
<SmallVector
<Stmt
*, 0>> &OriginalInits
) {
14107 OriginalInits
.emplace_back();
14108 bool Result
= OMPLoopBasedDirective::doForAllLoops(
14109 AStmt
->IgnoreContainers(), /*TryImperfectlyNestedLoops=*/false, NumLoops
,
14110 [this, &LoopHelpers
, &Body
, &OriginalInits
, Kind
](unsigned Cnt
,
14112 VarsWithInheritedDSAType TmpDSA
;
14113 unsigned SingleNumLoops
=
14114 checkOpenMPLoop(Kind
, nullptr, nullptr, CurStmt
, SemaRef
, *DSAStack
,
14115 TmpDSA
, LoopHelpers
[Cnt
]);
14116 if (SingleNumLoops
== 0)
14118 assert(SingleNumLoops
== 1 && "Expect single loop iteration space");
14119 if (auto *For
= dyn_cast
<ForStmt
>(CurStmt
)) {
14120 OriginalInits
.back().push_back(For
->getInit());
14121 Body
= For
->getBody();
14123 assert(isa
<CXXForRangeStmt
>(CurStmt
) &&
14124 "Expected canonical for or range-based for loops.");
14125 auto *CXXFor
= cast
<CXXForRangeStmt
>(CurStmt
);
14126 OriginalInits
.back().push_back(CXXFor
->getBeginStmt());
14127 Body
= CXXFor
->getBody();
14129 OriginalInits
.emplace_back();
14132 [&OriginalInits
](OMPLoopBasedDirective
*Transform
) {
14133 Stmt
*DependentPreInits
;
14134 if (auto *Dir
= dyn_cast
<OMPTileDirective
>(Transform
))
14135 DependentPreInits
= Dir
->getPreInits();
14136 else if (auto *Dir
= dyn_cast
<OMPUnrollDirective
>(Transform
))
14137 DependentPreInits
= Dir
->getPreInits();
14138 else if (auto *Dir
= dyn_cast
<OMPReverseDirective
>(Transform
))
14139 DependentPreInits
= Dir
->getPreInits();
14140 else if (auto *Dir
= dyn_cast
<OMPInterchangeDirective
>(Transform
))
14141 DependentPreInits
= Dir
->getPreInits();
14143 llvm_unreachable("Unhandled loop transformation");
14145 appendFlattenedStmtList(OriginalInits
.back(), DependentPreInits
);
14147 assert(OriginalInits
.back().empty() && "No preinit after innermost loop");
14148 OriginalInits
.pop_back();
14152 /// Add preinit statements that need to be propageted from the selected loop.
14153 static void addLoopPreInits(ASTContext
&Context
,
14154 OMPLoopBasedDirective::HelperExprs
&LoopHelper
,
14155 Stmt
*LoopStmt
, ArrayRef
<Stmt
*> OriginalInit
,
14156 SmallVectorImpl
<Stmt
*> &PreInits
) {
14158 // For range-based for-statements, ensure that their syntactic sugar is
14159 // executed by adding them as pre-init statements.
14160 if (auto *CXXRangeFor
= dyn_cast
<CXXForRangeStmt
>(LoopStmt
)) {
14161 Stmt
*RangeInit
= CXXRangeFor
->getInit();
14163 PreInits
.push_back(RangeInit
);
14165 DeclStmt
*RangeStmt
= CXXRangeFor
->getRangeStmt();
14166 PreInits
.push_back(new (Context
) DeclStmt(RangeStmt
->getDeclGroup(),
14167 RangeStmt
->getBeginLoc(),
14168 RangeStmt
->getEndLoc()));
14170 DeclStmt
*RangeEnd
= CXXRangeFor
->getEndStmt();
14171 PreInits
.push_back(new (Context
) DeclStmt(RangeEnd
->getDeclGroup(),
14172 RangeEnd
->getBeginLoc(),
14173 RangeEnd
->getEndLoc()));
14176 llvm::append_range(PreInits
, OriginalInit
);
14178 // List of OMPCapturedExprDecl, for __begin, __end, and NumIterations
14179 if (auto *PI
= cast_or_null
<DeclStmt
>(LoopHelper
.PreInits
)) {
14180 PreInits
.push_back(new (Context
) DeclStmt(
14181 PI
->getDeclGroup(), PI
->getBeginLoc(), PI
->getEndLoc()));
14184 // Gather declarations for the data members used as counters.
14185 for (Expr
*CounterRef
: LoopHelper
.Counters
) {
14186 auto *CounterDecl
= cast
<DeclRefExpr
>(CounterRef
)->getDecl();
14187 if (isa
<OMPCapturedExprDecl
>(CounterDecl
))
14188 PreInits
.push_back(new (Context
) DeclStmt(
14189 DeclGroupRef(CounterDecl
), SourceLocation(), SourceLocation()));
14193 /// Collect the loop statements (ForStmt or CXXRangeForStmt) of the affected
14194 /// loop of a construct.
14195 static void collectLoopStmts(Stmt
*AStmt
, MutableArrayRef
<Stmt
*> LoopStmts
) {
14196 size_t NumLoops
= LoopStmts
.size();
14197 OMPLoopBasedDirective::doForAllLoops(
14198 AStmt
, /*TryImperfectlyNestedLoops=*/false, NumLoops
,
14199 [LoopStmts
](unsigned Cnt
, Stmt
*CurStmt
) {
14200 assert(!LoopStmts
[Cnt
] && "Loop statement must not yet be assigned");
14201 LoopStmts
[Cnt
] = CurStmt
;
14204 assert(!is_contained(LoopStmts
, nullptr) &&
14205 "Expecting a loop statement for each affected loop");
14208 StmtResult
SemaOpenMP::ActOnOpenMPTileDirective(ArrayRef
<OMPClause
*> Clauses
,
14210 SourceLocation StartLoc
,
14211 SourceLocation EndLoc
) {
14212 ASTContext
&Context
= getASTContext();
14213 Scope
*CurScope
= SemaRef
.getCurScope();
14215 const auto *SizesClause
=
14216 OMPExecutableDirective::getSingleClause
<OMPSizesClause
>(Clauses
);
14217 if (!SizesClause
||
14218 llvm::any_of(SizesClause
->getSizesRefs(), [](Expr
*E
) { return !E
; }))
14219 return StmtError();
14220 unsigned NumLoops
= SizesClause
->getNumSizes();
14222 // Empty statement should only be possible if there already was an error.
14224 return StmtError();
14226 // Verify and diagnose loop nest.
14227 SmallVector
<OMPLoopBasedDirective::HelperExprs
, 4> LoopHelpers(NumLoops
);
14228 Stmt
*Body
= nullptr;
14229 SmallVector
<SmallVector
<Stmt
*, 0>, 4> OriginalInits
;
14230 if (!checkTransformableLoopNest(OMPD_tile
, AStmt
, NumLoops
, LoopHelpers
, Body
,
14232 return StmtError();
14234 // Delay tiling to when template is completely instantiated.
14235 if (SemaRef
.CurContext
->isDependentContext())
14236 return OMPTileDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
,
14237 NumLoops
, AStmt
, nullptr, nullptr);
14239 assert(LoopHelpers
.size() == NumLoops
&&
14240 "Expecting loop iteration space dimensionality to match number of "
14242 assert(OriginalInits
.size() == NumLoops
&&
14243 "Expecting loop iteration space dimensionality to match number of "
14246 // Collect all affected loop statements.
14247 SmallVector
<Stmt
*> LoopStmts(NumLoops
, nullptr);
14248 collectLoopStmts(AStmt
, LoopStmts
);
14250 SmallVector
<Stmt
*, 4> PreInits
;
14251 CaptureVars
CopyTransformer(SemaRef
);
14253 // Create iteration variables for the generated loops.
14254 SmallVector
<VarDecl
*, 4> FloorIndVars
;
14255 SmallVector
<VarDecl
*, 4> TileIndVars
;
14256 FloorIndVars
.resize(NumLoops
);
14257 TileIndVars
.resize(NumLoops
);
14258 for (unsigned I
= 0; I
< NumLoops
; ++I
) {
14259 OMPLoopBasedDirective::HelperExprs
&LoopHelper
= LoopHelpers
[I
];
14261 assert(LoopHelper
.Counters
.size() == 1 &&
14262 "Expect single-dimensional loop iteration space");
14263 auto *OrigCntVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
.front());
14264 std::string OrigVarName
= OrigCntVar
->getNameInfo().getAsString();
14265 DeclRefExpr
*IterVarRef
= cast
<DeclRefExpr
>(LoopHelper
.IterationVarRef
);
14266 QualType CntTy
= IterVarRef
->getType();
14268 // Iteration variable for the floor (i.e. outer) loop.
14270 std::string FloorCntName
=
14271 (Twine(".floor_") + llvm::utostr(I
) + ".iv." + OrigVarName
).str();
14272 VarDecl
*FloorCntDecl
=
14273 buildVarDecl(SemaRef
, {}, CntTy
, FloorCntName
, nullptr, OrigCntVar
);
14274 FloorIndVars
[I
] = FloorCntDecl
;
14277 // Iteration variable for the tile (i.e. inner) loop.
14279 std::string TileCntName
=
14280 (Twine(".tile_") + llvm::utostr(I
) + ".iv." + OrigVarName
).str();
14282 // Reuse the iteration variable created by checkOpenMPLoop. It is also
14283 // used by the expressions to derive the original iteration variable's
14284 // value from the logical iteration number.
14285 auto *TileCntDecl
= cast
<VarDecl
>(IterVarRef
->getDecl());
14286 TileCntDecl
->setDeclName(
14287 &SemaRef
.PP
.getIdentifierTable().get(TileCntName
));
14288 TileIndVars
[I
] = TileCntDecl
;
14291 addLoopPreInits(Context
, LoopHelper
, LoopStmts
[I
], OriginalInits
[I
],
14295 // Once the original iteration values are set, append the innermost body.
14296 Stmt
*Inner
= Body
;
14298 auto MakeDimTileSize
= [&SemaRef
= this->SemaRef
, &CopyTransformer
, &Context
,
14299 SizesClause
, CurScope
](int I
) -> Expr
* {
14300 Expr
*DimTileSizeExpr
= SizesClause
->getSizesRefs()[I
];
14301 if (isa
<ConstantExpr
>(DimTileSizeExpr
))
14302 return AssertSuccess(CopyTransformer
.TransformExpr(DimTileSizeExpr
));
14304 // When the tile size is not a constant but a variable, it is possible to
14305 // pass non-positive numbers. For instance:
14308 // #pragma omp tile sizes(a)
14309 // for (int i = 0; i < 42; ++i)
14312 // Although there is no meaningful interpretation of the tile size, the body
14313 // should still be executed 42 times to avoid surprises. To preserve the
14314 // invariant that every loop iteration is executed exactly once and not
14315 // cause an infinite loop, apply a minimum tile size of one.
14318 // (TS <= 0) ? 1 : TS
14320 QualType DimTy
= DimTileSizeExpr
->getType();
14321 uint64_t DimWidth
= Context
.getTypeSize(DimTy
);
14322 IntegerLiteral
*Zero
= IntegerLiteral::Create(
14323 Context
, llvm::APInt::getZero(DimWidth
), DimTy
, {});
14324 IntegerLiteral
*One
=
14325 IntegerLiteral::Create(Context
, llvm::APInt(DimWidth
, 1), DimTy
, {});
14326 Expr
*Cond
= AssertSuccess(SemaRef
.BuildBinOp(
14327 CurScope
, {}, BO_LE
,
14328 AssertSuccess(CopyTransformer
.TransformExpr(DimTileSizeExpr
)), Zero
));
14329 Expr
*MinOne
= new (Context
) ConditionalOperator(
14331 AssertSuccess(CopyTransformer
.TransformExpr(DimTileSizeExpr
)), DimTy
,
14332 VK_PRValue
, OK_Ordinary
);
14336 // Create tile loops from the inside to the outside.
14337 for (int I
= NumLoops
- 1; I
>= 0; --I
) {
14338 OMPLoopBasedDirective::HelperExprs
&LoopHelper
= LoopHelpers
[I
];
14339 Expr
*NumIterations
= LoopHelper
.NumIterations
;
14340 auto *OrigCntVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
[0]);
14341 QualType IVTy
= NumIterations
->getType();
14342 Stmt
*LoopStmt
= LoopStmts
[I
];
14344 // Commonly used variables. One of the constraints of an AST is that every
14345 // node object must appear at most once, hence we define lamdas that create
14346 // a new AST node at every use.
14347 auto MakeTileIVRef
= [&SemaRef
= this->SemaRef
, &TileIndVars
, I
, IVTy
,
14349 return buildDeclRefExpr(SemaRef
, TileIndVars
[I
], IVTy
,
14350 OrigCntVar
->getExprLoc());
14352 auto MakeFloorIVRef
= [&SemaRef
= this->SemaRef
, &FloorIndVars
, I
, IVTy
,
14354 return buildDeclRefExpr(SemaRef
, FloorIndVars
[I
], IVTy
,
14355 OrigCntVar
->getExprLoc());
14358 // For init-statement: auto .tile.iv = .floor.iv
14359 SemaRef
.AddInitializerToDecl(
14360 TileIndVars
[I
], SemaRef
.DefaultLvalueConversion(MakeFloorIVRef()).get(),
14361 /*DirectInit=*/false);
14362 Decl
*CounterDecl
= TileIndVars
[I
];
14363 StmtResult InitStmt
= new (Context
)
14364 DeclStmt(DeclGroupRef::Create(Context
, &CounterDecl
, 1),
14365 OrigCntVar
->getBeginLoc(), OrigCntVar
->getEndLoc());
14366 if (!InitStmt
.isUsable())
14367 return StmtError();
14369 // For cond-expression:
14370 // .tile.iv < min(.floor.iv + DimTileSize, NumIterations)
14371 ExprResult EndOfTile
=
14372 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_Add
,
14373 MakeFloorIVRef(), MakeDimTileSize(I
));
14374 if (!EndOfTile
.isUsable())
14375 return StmtError();
14376 ExprResult IsPartialTile
=
14377 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14378 NumIterations
, EndOfTile
.get());
14379 if (!IsPartialTile
.isUsable())
14380 return StmtError();
14381 ExprResult MinTileAndIterSpace
= SemaRef
.ActOnConditionalOp(
14382 LoopHelper
.Cond
->getBeginLoc(), LoopHelper
.Cond
->getEndLoc(),
14383 IsPartialTile
.get(), NumIterations
, EndOfTile
.get());
14384 if (!MinTileAndIterSpace
.isUsable())
14385 return StmtError();
14386 ExprResult CondExpr
=
14387 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14388 MakeTileIVRef(), MinTileAndIterSpace
.get());
14389 if (!CondExpr
.isUsable())
14390 return StmtError();
14392 // For incr-statement: ++.tile.iv
14393 ExprResult IncrStmt
= SemaRef
.BuildUnaryOp(
14394 CurScope
, LoopHelper
.Inc
->getExprLoc(), UO_PreInc
, MakeTileIVRef());
14395 if (!IncrStmt
.isUsable())
14396 return StmtError();
14398 // Statements to set the original iteration variable's value from the
14399 // logical iteration number.
14400 // Generated for loop is:
14402 // Original_for_init;
14403 // for (auto .tile.iv = .floor.iv;
14404 // .tile.iv < min(.floor.iv + DimTileSize, NumIterations);
14407 // Original_counter_update;
14410 // FIXME: If the innermost body is an loop itself, inserting these
14411 // statements stops it being recognized as a perfectly nested loop (e.g.
14412 // for applying tiling again). If this is the case, sink the expressions
14413 // further into the inner loop.
14414 SmallVector
<Stmt
*, 4> BodyParts
;
14415 BodyParts
.append(LoopHelper
.Updates
.begin(), LoopHelper
.Updates
.end());
14416 if (auto *SourceCXXFor
= dyn_cast
<CXXForRangeStmt
>(LoopStmt
))
14417 BodyParts
.push_back(SourceCXXFor
->getLoopVarStmt());
14418 BodyParts
.push_back(Inner
);
14419 Inner
= CompoundStmt::Create(Context
, BodyParts
, FPOptionsOverride(),
14420 Inner
->getBeginLoc(), Inner
->getEndLoc());
14421 Inner
= new (Context
)
14422 ForStmt(Context
, InitStmt
.get(), CondExpr
.get(), nullptr,
14423 IncrStmt
.get(), Inner
, LoopHelper
.Init
->getBeginLoc(),
14424 LoopHelper
.Init
->getBeginLoc(), LoopHelper
.Inc
->getEndLoc());
14427 // Create floor loops from the inside to the outside.
14428 for (int I
= NumLoops
- 1; I
>= 0; --I
) {
14429 auto &LoopHelper
= LoopHelpers
[I
];
14430 Expr
*NumIterations
= LoopHelper
.NumIterations
;
14431 DeclRefExpr
*OrigCntVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
[0]);
14432 QualType IVTy
= NumIterations
->getType();
14434 // Commonly used variables. One of the constraints of an AST is that every
14435 // node object must appear at most once, hence we define lamdas that create
14436 // a new AST node at every use.
14437 auto MakeFloorIVRef
= [&SemaRef
= this->SemaRef
, &FloorIndVars
, I
, IVTy
,
14439 return buildDeclRefExpr(SemaRef
, FloorIndVars
[I
], IVTy
,
14440 OrigCntVar
->getExprLoc());
14443 // For init-statement: auto .floor.iv = 0
14444 SemaRef
.AddInitializerToDecl(
14446 SemaRef
.ActOnIntegerConstant(LoopHelper
.Init
->getExprLoc(), 0).get(),
14447 /*DirectInit=*/false);
14448 Decl
*CounterDecl
= FloorIndVars
[I
];
14449 StmtResult InitStmt
= new (Context
)
14450 DeclStmt(DeclGroupRef::Create(Context
, &CounterDecl
, 1),
14451 OrigCntVar
->getBeginLoc(), OrigCntVar
->getEndLoc());
14452 if (!InitStmt
.isUsable())
14453 return StmtError();
14455 // For cond-expression: .floor.iv < NumIterations
14456 ExprResult CondExpr
=
14457 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14458 MakeFloorIVRef(), NumIterations
);
14459 if (!CondExpr
.isUsable())
14460 return StmtError();
14462 // For incr-statement: .floor.iv += DimTileSize
14463 ExprResult IncrStmt
=
14464 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Inc
->getExprLoc(), BO_AddAssign
,
14465 MakeFloorIVRef(), MakeDimTileSize(I
));
14466 if (!IncrStmt
.isUsable())
14467 return StmtError();
14469 Inner
= new (Context
)
14470 ForStmt(Context
, InitStmt
.get(), CondExpr
.get(), nullptr,
14471 IncrStmt
.get(), Inner
, LoopHelper
.Init
->getBeginLoc(),
14472 LoopHelper
.Init
->getBeginLoc(), LoopHelper
.Inc
->getEndLoc());
14475 return OMPTileDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
, NumLoops
,
14477 buildPreInits(Context
, PreInits
));
14480 StmtResult
SemaOpenMP::ActOnOpenMPUnrollDirective(ArrayRef
<OMPClause
*> Clauses
,
14482 SourceLocation StartLoc
,
14483 SourceLocation EndLoc
) {
14484 ASTContext
&Context
= getASTContext();
14485 Scope
*CurScope
= SemaRef
.getCurScope();
14486 // Empty statement should only be possible if there already was an error.
14488 return StmtError();
14490 if (checkMutuallyExclusiveClauses(SemaRef
, Clauses
,
14491 {OMPC_partial
, OMPC_full
}))
14492 return StmtError();
14494 const OMPFullClause
*FullClause
=
14495 OMPExecutableDirective::getSingleClause
<OMPFullClause
>(Clauses
);
14496 const OMPPartialClause
*PartialClause
=
14497 OMPExecutableDirective::getSingleClause
<OMPPartialClause
>(Clauses
);
14498 assert(!(FullClause
&& PartialClause
) &&
14499 "mutual exclusivity must have been checked before");
14501 constexpr unsigned NumLoops
= 1;
14502 Stmt
*Body
= nullptr;
14503 SmallVector
<OMPLoopBasedDirective::HelperExprs
, NumLoops
> LoopHelpers(
14505 SmallVector
<SmallVector
<Stmt
*, 0>, NumLoops
+ 1> OriginalInits
;
14506 if (!checkTransformableLoopNest(OMPD_unroll
, AStmt
, NumLoops
, LoopHelpers
,
14507 Body
, OriginalInits
))
14508 return StmtError();
14510 unsigned NumGeneratedLoops
= PartialClause
? 1 : 0;
14512 // Delay unrolling to when template is completely instantiated.
14513 if (SemaRef
.CurContext
->isDependentContext())
14514 return OMPUnrollDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
, AStmt
,
14515 NumGeneratedLoops
, nullptr, nullptr);
14517 assert(LoopHelpers
.size() == NumLoops
&&
14518 "Expecting a single-dimensional loop iteration space");
14519 assert(OriginalInits
.size() == NumLoops
&&
14520 "Expecting a single-dimensional loop iteration space");
14521 OMPLoopBasedDirective::HelperExprs
&LoopHelper
= LoopHelpers
.front();
14524 if (!VerifyPositiveIntegerConstantInClause(
14525 LoopHelper
.NumIterations
, OMPC_full
, /*StrictlyPositive=*/false,
14526 /*SuppressExprDiags=*/true)
14528 Diag(AStmt
->getBeginLoc(), diag::err_omp_unroll_full_variable_trip_count
);
14529 Diag(FullClause
->getBeginLoc(), diag::note_omp_directive_here
)
14530 << "#pragma omp unroll full";
14531 return StmtError();
14535 // The generated loop may only be passed to other loop-associated directive
14536 // when a partial clause is specified. Without the requirement it is
14537 // sufficient to generate loop unroll metadata at code-generation.
14538 if (NumGeneratedLoops
== 0)
14539 return OMPUnrollDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
, AStmt
,
14540 NumGeneratedLoops
, nullptr, nullptr);
14542 // Otherwise, we need to provide a de-sugared/transformed AST that can be
14543 // associated with another loop directive.
14545 // The canonical loop analysis return by checkTransformableLoopNest assumes
14546 // the following structure to be the same loop without transformations or
14547 // directives applied: \code OriginalInits; LoopHelper.PreInits;
14548 // LoopHelper.Counters;
14549 // for (; IV < LoopHelper.NumIterations; ++IV) {
14550 // LoopHelper.Updates;
14554 // where IV is a variable declared and initialized to 0 in LoopHelper.PreInits
14555 // and referenced by LoopHelper.IterationVarRef.
14557 // The unrolling directive transforms this into the following loop:
14559 // OriginalInits; \
14560 // LoopHelper.PreInits; > NewPreInits
14561 // LoopHelper.Counters; /
14562 // for (auto UIV = 0; UIV < LoopHelper.NumIterations; UIV+=Factor) {
14563 // #pragma clang loop unroll_count(Factor)
14564 // for (IV = UIV; IV < UIV + Factor && UIV < LoopHelper.NumIterations; ++IV)
14566 // LoopHelper.Updates;
14571 // where UIV is a new logical iteration counter. IV must be the same VarDecl
14572 // as the original LoopHelper.IterationVarRef because LoopHelper.Updates
14573 // references it. If the partially unrolled loop is associated with another
14574 // loop directive (like an OMPForDirective), it will use checkOpenMPLoop to
14575 // analyze this loop, i.e. the outer loop must fulfill the constraints of an
14576 // OpenMP canonical loop. The inner loop is not an associable canonical loop
14577 // and only exists to defer its unrolling to LLVM's LoopUnroll instead of
14578 // doing it in the frontend (by adding loop metadata). NewPreInits becomes a
14579 // property of the OMPLoopBasedDirective instead of statements in
14580 // CompoundStatement. This is to allow the loop to become a non-outermost loop
14581 // of a canonical loop nest where these PreInits are emitted before the
14582 // outermost directive.
14584 // Find the loop statement.
14585 Stmt
*LoopStmt
= nullptr;
14586 collectLoopStmts(AStmt
, {LoopStmt
});
14588 // Determine the PreInit declarations.
14589 SmallVector
<Stmt
*, 4> PreInits
;
14590 addLoopPreInits(Context
, LoopHelper
, LoopStmt
, OriginalInits
[0], PreInits
);
14592 auto *IterationVarRef
= cast
<DeclRefExpr
>(LoopHelper
.IterationVarRef
);
14593 QualType IVTy
= IterationVarRef
->getType();
14594 assert(LoopHelper
.Counters
.size() == 1 &&
14595 "Expecting a single-dimensional loop iteration space");
14596 auto *OrigVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
.front());
14598 // Determine the unroll factor.
14600 SourceLocation FactorLoc
;
14601 if (Expr
*FactorVal
= PartialClause
->getFactor()) {
14602 Factor
= FactorVal
->getIntegerConstantExpr(Context
)->getZExtValue();
14603 FactorLoc
= FactorVal
->getExprLoc();
14605 // TODO: Use a better profitability model.
14608 assert(Factor
> 0 && "Expected positive unroll factor");
14609 auto MakeFactorExpr
= [this, Factor
, IVTy
, FactorLoc
]() {
14610 return IntegerLiteral::Create(
14611 getASTContext(), llvm::APInt(getASTContext().getIntWidth(IVTy
), Factor
),
14615 // Iteration variable SourceLocations.
14616 SourceLocation OrigVarLoc
= OrigVar
->getExprLoc();
14617 SourceLocation OrigVarLocBegin
= OrigVar
->getBeginLoc();
14618 SourceLocation OrigVarLocEnd
= OrigVar
->getEndLoc();
14620 // Internal variable names.
14621 std::string OrigVarName
= OrigVar
->getNameInfo().getAsString();
14622 std::string OuterIVName
= (Twine(".unrolled.iv.") + OrigVarName
).str();
14623 std::string InnerIVName
= (Twine(".unroll_inner.iv.") + OrigVarName
).str();
14624 std::string InnerTripCountName
=
14625 (Twine(".unroll_inner.tripcount.") + OrigVarName
).str();
14627 // Create the iteration variable for the unrolled loop.
14628 VarDecl
*OuterIVDecl
=
14629 buildVarDecl(SemaRef
, {}, IVTy
, OuterIVName
, nullptr, OrigVar
);
14630 auto MakeOuterRef
= [this, OuterIVDecl
, IVTy
, OrigVarLoc
]() {
14631 return buildDeclRefExpr(SemaRef
, OuterIVDecl
, IVTy
, OrigVarLoc
);
14634 // Iteration variable for the inner loop: Reuse the iteration variable created
14635 // by checkOpenMPLoop.
14636 auto *InnerIVDecl
= cast
<VarDecl
>(IterationVarRef
->getDecl());
14637 InnerIVDecl
->setDeclName(&SemaRef
.PP
.getIdentifierTable().get(InnerIVName
));
14638 auto MakeInnerRef
= [this, InnerIVDecl
, IVTy
, OrigVarLoc
]() {
14639 return buildDeclRefExpr(SemaRef
, InnerIVDecl
, IVTy
, OrigVarLoc
);
14642 // Make a copy of the NumIterations expression for each use: By the AST
14643 // constraints, every expression object in a DeclContext must be unique.
14644 CaptureVars
CopyTransformer(SemaRef
);
14645 auto MakeNumIterations
= [&CopyTransformer
, &LoopHelper
]() -> Expr
* {
14646 return AssertSuccess(
14647 CopyTransformer
.TransformExpr(LoopHelper
.NumIterations
));
14650 // Inner For init-statement: auto .unroll_inner.iv = .unrolled.iv
14651 ExprResult LValueConv
= SemaRef
.DefaultLvalueConversion(MakeOuterRef());
14652 SemaRef
.AddInitializerToDecl(InnerIVDecl
, LValueConv
.get(),
14653 /*DirectInit=*/false);
14654 StmtResult InnerInit
= new (Context
)
14655 DeclStmt(DeclGroupRef(InnerIVDecl
), OrigVarLocBegin
, OrigVarLocEnd
);
14656 if (!InnerInit
.isUsable())
14657 return StmtError();
14659 // Inner For cond-expression:
14661 // .unroll_inner.iv < .unrolled.iv + Factor &&
14662 // .unroll_inner.iv < NumIterations
14664 // This conjunction of two conditions allows ScalarEvolution to derive the
14665 // maximum trip count of the inner loop.
14666 ExprResult EndOfTile
=
14667 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_Add
,
14668 MakeOuterRef(), MakeFactorExpr());
14669 if (!EndOfTile
.isUsable())
14670 return StmtError();
14671 ExprResult InnerCond1
=
14672 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14673 MakeInnerRef(), EndOfTile
.get());
14674 if (!InnerCond1
.isUsable())
14675 return StmtError();
14676 ExprResult InnerCond2
=
14677 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14678 MakeInnerRef(), MakeNumIterations());
14679 if (!InnerCond2
.isUsable())
14680 return StmtError();
14681 ExprResult InnerCond
=
14682 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LAnd
,
14683 InnerCond1
.get(), InnerCond2
.get());
14684 if (!InnerCond
.isUsable())
14685 return StmtError();
14687 // Inner For incr-statement: ++.unroll_inner.iv
14688 ExprResult InnerIncr
= SemaRef
.BuildUnaryOp(
14689 CurScope
, LoopHelper
.Inc
->getExprLoc(), UO_PreInc
, MakeInnerRef());
14690 if (!InnerIncr
.isUsable())
14691 return StmtError();
14693 // Inner For statement.
14694 SmallVector
<Stmt
*> InnerBodyStmts
;
14695 InnerBodyStmts
.append(LoopHelper
.Updates
.begin(), LoopHelper
.Updates
.end());
14696 if (auto *CXXRangeFor
= dyn_cast
<CXXForRangeStmt
>(LoopStmt
))
14697 InnerBodyStmts
.push_back(CXXRangeFor
->getLoopVarStmt());
14698 InnerBodyStmts
.push_back(Body
);
14699 CompoundStmt
*InnerBody
=
14700 CompoundStmt::Create(getASTContext(), InnerBodyStmts
, FPOptionsOverride(),
14701 Body
->getBeginLoc(), Body
->getEndLoc());
14702 ForStmt
*InnerFor
= new (Context
)
14703 ForStmt(Context
, InnerInit
.get(), InnerCond
.get(), nullptr,
14704 InnerIncr
.get(), InnerBody
, LoopHelper
.Init
->getBeginLoc(),
14705 LoopHelper
.Init
->getBeginLoc(), LoopHelper
.Inc
->getEndLoc());
14707 // Unroll metadata for the inner loop.
14708 // This needs to take into account the remainder portion of the unrolled loop,
14709 // hence `unroll(full)` does not apply here, even though the LoopUnroll pass
14710 // supports multiple loop exits. Instead, unroll using a factor equivalent to
14711 // the maximum trip count, which will also generate a remainder loop. Just
14712 // `unroll(enable)` (which could have been useful if the user has not
14713 // specified a concrete factor; even though the outer loop cannot be
14714 // influenced anymore, would avoid more code bloat than necessary) will refuse
14715 // the loop because "Won't unroll; remainder loop could not be generated when
14716 // assuming runtime trip count". Even if it did work, it must not choose a
14717 // larger unroll factor than the maximum loop length, or it would always just
14718 // execute the remainder loop.
14719 LoopHintAttr
*UnrollHintAttr
=
14720 LoopHintAttr::CreateImplicit(Context
, LoopHintAttr::UnrollCount
,
14721 LoopHintAttr::Numeric
, MakeFactorExpr());
14722 AttributedStmt
*InnerUnrolled
= AttributedStmt::Create(
14723 getASTContext(), StartLoc
, {UnrollHintAttr
}, InnerFor
);
14725 // Outer For init-statement: auto .unrolled.iv = 0
14726 SemaRef
.AddInitializerToDecl(
14728 SemaRef
.ActOnIntegerConstant(LoopHelper
.Init
->getExprLoc(), 0).get(),
14729 /*DirectInit=*/false);
14730 StmtResult OuterInit
= new (Context
)
14731 DeclStmt(DeclGroupRef(OuterIVDecl
), OrigVarLocBegin
, OrigVarLocEnd
);
14732 if (!OuterInit
.isUsable())
14733 return StmtError();
14735 // Outer For cond-expression: .unrolled.iv < NumIterations
14736 ExprResult OuterConde
=
14737 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14738 MakeOuterRef(), MakeNumIterations());
14739 if (!OuterConde
.isUsable())
14740 return StmtError();
14742 // Outer For incr-statement: .unrolled.iv += Factor
14743 ExprResult OuterIncr
=
14744 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Inc
->getExprLoc(), BO_AddAssign
,
14745 MakeOuterRef(), MakeFactorExpr());
14746 if (!OuterIncr
.isUsable())
14747 return StmtError();
14749 // Outer For statement.
14750 ForStmt
*OuterFor
= new (Context
)
14751 ForStmt(Context
, OuterInit
.get(), OuterConde
.get(), nullptr,
14752 OuterIncr
.get(), InnerUnrolled
, LoopHelper
.Init
->getBeginLoc(),
14753 LoopHelper
.Init
->getBeginLoc(), LoopHelper
.Inc
->getEndLoc());
14755 return OMPUnrollDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
, AStmt
,
14756 NumGeneratedLoops
, OuterFor
,
14757 buildPreInits(Context
, PreInits
));
14760 StmtResult
SemaOpenMP::ActOnOpenMPReverseDirective(Stmt
*AStmt
,
14761 SourceLocation StartLoc
,
14762 SourceLocation EndLoc
) {
14763 ASTContext
&Context
= getASTContext();
14764 Scope
*CurScope
= SemaRef
.getCurScope();
14766 // Empty statement should only be possible if there already was an error.
14768 return StmtError();
14770 constexpr unsigned NumLoops
= 1;
14771 Stmt
*Body
= nullptr;
14772 SmallVector
<OMPLoopBasedDirective::HelperExprs
, NumLoops
> LoopHelpers(
14774 SmallVector
<SmallVector
<Stmt
*, 0>, NumLoops
+ 1> OriginalInits
;
14775 if (!checkTransformableLoopNest(OMPD_reverse
, AStmt
, NumLoops
, LoopHelpers
,
14776 Body
, OriginalInits
))
14777 return StmtError();
14779 // Delay applying the transformation to when template is completely
14781 if (SemaRef
.CurContext
->isDependentContext())
14782 return OMPReverseDirective::Create(Context
, StartLoc
, EndLoc
, AStmt
,
14785 assert(LoopHelpers
.size() == NumLoops
&&
14786 "Expecting a single-dimensional loop iteration space");
14787 assert(OriginalInits
.size() == NumLoops
&&
14788 "Expecting a single-dimensional loop iteration space");
14789 OMPLoopBasedDirective::HelperExprs
&LoopHelper
= LoopHelpers
.front();
14791 // Find the loop statement.
14792 Stmt
*LoopStmt
= nullptr;
14793 collectLoopStmts(AStmt
, {LoopStmt
});
14795 // Determine the PreInit declarations.
14796 SmallVector
<Stmt
*> PreInits
;
14797 addLoopPreInits(Context
, LoopHelper
, LoopStmt
, OriginalInits
[0], PreInits
);
14799 auto *IterationVarRef
= cast
<DeclRefExpr
>(LoopHelper
.IterationVarRef
);
14800 QualType IVTy
= IterationVarRef
->getType();
14801 uint64_t IVWidth
= Context
.getTypeSize(IVTy
);
14802 auto *OrigVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
.front());
14804 // Iteration variable SourceLocations.
14805 SourceLocation OrigVarLoc
= OrigVar
->getExprLoc();
14806 SourceLocation OrigVarLocBegin
= OrigVar
->getBeginLoc();
14807 SourceLocation OrigVarLocEnd
= OrigVar
->getEndLoc();
14809 // Locations pointing to the transformation.
14810 SourceLocation TransformLoc
= StartLoc
;
14811 SourceLocation TransformLocBegin
= StartLoc
;
14812 SourceLocation TransformLocEnd
= EndLoc
;
14814 // Internal variable names.
14815 std::string OrigVarName
= OrigVar
->getNameInfo().getAsString();
14816 SmallString
<64> ForwardIVName(".forward.iv.");
14817 ForwardIVName
+= OrigVarName
;
14818 SmallString
<64> ReversedIVName(".reversed.iv.");
14819 ReversedIVName
+= OrigVarName
;
14821 // LoopHelper.Updates will read the logical iteration number from
14822 // LoopHelper.IterationVarRef, compute the value of the user loop counter of
14823 // that logical iteration from it, then assign it to the user loop counter
14824 // variable. We cannot directly use LoopHelper.IterationVarRef as the
14825 // induction variable of the generated loop because it may cause an underflow:
14827 // for (unsigned i = 0; i < n; ++i)
14833 // for (unsigned i = n-1; i >= 0; --i)
14837 // Instead, we introduce a new iteration variable representing the logical
14838 // iteration counter of the original loop, convert it to the logical iteration
14839 // number of the reversed loop, then let LoopHelper.Updates compute the user's
14840 // loop iteration variable from it.
14842 // for (auto .forward.iv = 0; .forward.iv < n; ++.forward.iv) {
14843 // auto .reversed.iv = n - .forward.iv - 1;
14844 // i = (.reversed.iv + 0) * 1; // LoopHelper.Updates
14845 // body(i); // Body
14849 // Subexpressions with more than one use. One of the constraints of an AST is
14850 // that every node object must appear at most once, hence we define a lambda
14851 // that creates a new AST node at every use.
14852 CaptureVars
CopyTransformer(SemaRef
);
14853 auto MakeNumIterations
= [&CopyTransformer
, &LoopHelper
]() -> Expr
* {
14854 return AssertSuccess(
14855 CopyTransformer
.TransformExpr(LoopHelper
.NumIterations
));
14858 // Create the iteration variable for the forward loop (from 0 to n-1).
14859 VarDecl
*ForwardIVDecl
=
14860 buildVarDecl(SemaRef
, {}, IVTy
, ForwardIVName
, nullptr, OrigVar
);
14861 auto MakeForwardRef
= [&SemaRef
= this->SemaRef
, ForwardIVDecl
, IVTy
,
14863 return buildDeclRefExpr(SemaRef
, ForwardIVDecl
, IVTy
, OrigVarLoc
);
14866 // Iteration variable for the reversed induction variable (from n-1 downto 0):
14867 // Reuse the iteration variable created by checkOpenMPLoop.
14868 auto *ReversedIVDecl
= cast
<VarDecl
>(IterationVarRef
->getDecl());
14869 ReversedIVDecl
->setDeclName(
14870 &SemaRef
.PP
.getIdentifierTable().get(ReversedIVName
));
14872 // For init-statement:
14874 // auto .forward.iv = 0;
14876 auto *Zero
= IntegerLiteral::Create(Context
, llvm::APInt::getZero(IVWidth
),
14877 ForwardIVDecl
->getType(), OrigVarLoc
);
14878 SemaRef
.AddInitializerToDecl(ForwardIVDecl
, Zero
, /*DirectInit=*/false);
14879 StmtResult Init
= new (Context
)
14880 DeclStmt(DeclGroupRef(ForwardIVDecl
), OrigVarLocBegin
, OrigVarLocEnd
);
14881 if (!Init
.isUsable())
14882 return StmtError();
14884 // Forward iv cond-expression:
14886 // .forward.iv < MakeNumIterations()
14889 SemaRef
.BuildBinOp(CurScope
, LoopHelper
.Cond
->getExprLoc(), BO_LT
,
14890 MakeForwardRef(), MakeNumIterations());
14891 if (!Cond
.isUsable())
14892 return StmtError();
14894 // Forward incr-statement:
14898 ExprResult Incr
= SemaRef
.BuildUnaryOp(CurScope
, LoopHelper
.Inc
->getExprLoc(),
14899 UO_PreInc
, MakeForwardRef());
14900 if (!Incr
.isUsable())
14901 return StmtError();
14903 // Reverse the forward-iv:
14905 // auto .reversed.iv = MakeNumIterations() - 1 - .forward.iv
14907 auto *One
= IntegerLiteral::Create(Context
, llvm::APInt(IVWidth
, 1), IVTy
,
14909 ExprResult Minus
= SemaRef
.BuildBinOp(CurScope
, TransformLoc
, BO_Sub
,
14910 MakeNumIterations(), One
);
14911 if (!Minus
.isUsable())
14912 return StmtError();
14913 Minus
= SemaRef
.BuildBinOp(CurScope
, TransformLoc
, BO_Sub
, Minus
.get(),
14915 if (!Minus
.isUsable())
14916 return StmtError();
14917 StmtResult InitReversed
= new (Context
) DeclStmt(
14918 DeclGroupRef(ReversedIVDecl
), TransformLocBegin
, TransformLocEnd
);
14919 if (!InitReversed
.isUsable())
14920 return StmtError();
14921 SemaRef
.AddInitializerToDecl(ReversedIVDecl
, Minus
.get(),
14922 /*DirectInit=*/false);
14924 // The new loop body.
14925 SmallVector
<Stmt
*, 4> BodyStmts
;
14926 BodyStmts
.reserve(LoopHelper
.Updates
.size() + 2 +
14927 (isa
<CXXForRangeStmt
>(LoopStmt
) ? 1 : 0));
14928 BodyStmts
.push_back(InitReversed
.get());
14929 llvm::append_range(BodyStmts
, LoopHelper
.Updates
);
14930 if (auto *CXXRangeFor
= dyn_cast
<CXXForRangeStmt
>(LoopStmt
))
14931 BodyStmts
.push_back(CXXRangeFor
->getLoopVarStmt());
14932 BodyStmts
.push_back(Body
);
14933 auto *ReversedBody
=
14934 CompoundStmt::Create(Context
, BodyStmts
, FPOptionsOverride(),
14935 Body
->getBeginLoc(), Body
->getEndLoc());
14937 // Finally create the reversed For-statement.
14938 auto *ReversedFor
= new (Context
)
14939 ForStmt(Context
, Init
.get(), Cond
.get(), nullptr, Incr
.get(),
14940 ReversedBody
, LoopHelper
.Init
->getBeginLoc(),
14941 LoopHelper
.Init
->getBeginLoc(), LoopHelper
.Inc
->getEndLoc());
14942 return OMPReverseDirective::Create(Context
, StartLoc
, EndLoc
, AStmt
,
14944 buildPreInits(Context
, PreInits
));
14947 StmtResult
SemaOpenMP::ActOnOpenMPInterchangeDirective(
14948 ArrayRef
<OMPClause
*> Clauses
, Stmt
*AStmt
, SourceLocation StartLoc
,
14949 SourceLocation EndLoc
) {
14950 ASTContext
&Context
= getASTContext();
14951 DeclContext
*CurContext
= SemaRef
.CurContext
;
14952 Scope
*CurScope
= SemaRef
.getCurScope();
14954 // Empty statement should only be possible if there already was an error.
14956 return StmtError();
14958 // interchange without permutation clause swaps two loops.
14959 const OMPPermutationClause
*PermutationClause
=
14960 OMPExecutableDirective::getSingleClause
<OMPPermutationClause
>(Clauses
);
14961 size_t NumLoops
= PermutationClause
? PermutationClause
->getNumLoops() : 2;
14963 // Verify and diagnose loop nest.
14964 SmallVector
<OMPLoopBasedDirective::HelperExprs
, 4> LoopHelpers(NumLoops
);
14965 Stmt
*Body
= nullptr;
14966 SmallVector
<SmallVector
<Stmt
*, 0>, 2> OriginalInits
;
14967 if (!checkTransformableLoopNest(OMPD_interchange
, AStmt
, NumLoops
,
14968 LoopHelpers
, Body
, OriginalInits
))
14969 return StmtError();
14971 // Delay interchange to when template is completely instantiated.
14972 if (CurContext
->isDependentContext())
14973 return OMPInterchangeDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
,
14974 NumLoops
, AStmt
, nullptr, nullptr);
14976 // An invalid expression in the permutation clause is set to nullptr in
14977 // ActOnOpenMPPermutationClause.
14978 if (PermutationClause
&&
14979 llvm::is_contained(PermutationClause
->getArgsRefs(), nullptr))
14980 return StmtError();
14982 assert(LoopHelpers
.size() == NumLoops
&&
14983 "Expecting loop iteration space dimensionaly to match number of "
14985 assert(OriginalInits
.size() == NumLoops
&&
14986 "Expecting loop iteration space dimensionaly to match number of "
14989 // Decode the permutation clause.
14990 SmallVector
<uint64_t, 2> Permutation
;
14991 if (!PermutationClause
) {
14992 Permutation
= {1, 0};
14994 ArrayRef
<Expr
*> PermArgs
= PermutationClause
->getArgsRefs();
14995 llvm::BitVector
Flags(PermArgs
.size());
14996 for (Expr
*PermArg
: PermArgs
) {
14997 std::optional
<llvm::APSInt
> PermCstExpr
=
14998 PermArg
->getIntegerConstantExpr(Context
);
15001 uint64_t PermInt
= PermCstExpr
->getZExtValue();
15002 assert(1 <= PermInt
&& PermInt
<= NumLoops
&&
15003 "Must be a permutation; diagnostic emitted in "
15004 "ActOnOpenMPPermutationClause");
15005 if (Flags
[PermInt
- 1]) {
15006 SourceRange
ExprRange(PermArg
->getBeginLoc(), PermArg
->getEndLoc());
15007 Diag(PermArg
->getExprLoc(),
15008 diag::err_omp_interchange_permutation_value_repeated
)
15009 << PermInt
<< ExprRange
;
15012 Flags
[PermInt
- 1] = true;
15014 Permutation
.push_back(PermInt
- 1);
15017 if (Permutation
.size() != NumLoops
)
15018 return StmtError();
15021 // Nothing to transform with trivial permutation.
15022 if (NumLoops
<= 1 || llvm::all_of(llvm::enumerate(Permutation
), [](auto P
) {
15023 auto [Idx
, Arg
] = P
;
15026 return OMPInterchangeDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
,
15027 NumLoops
, AStmt
, AStmt
, nullptr);
15029 // Find the affected loops.
15030 SmallVector
<Stmt
*> LoopStmts(NumLoops
, nullptr);
15031 collectLoopStmts(AStmt
, LoopStmts
);
15033 // Collect pre-init statements on the order before the permuation.
15034 SmallVector
<Stmt
*> PreInits
;
15035 for (auto I
: llvm::seq
<int>(NumLoops
)) {
15036 OMPLoopBasedDirective::HelperExprs
&LoopHelper
= LoopHelpers
[I
];
15038 assert(LoopHelper
.Counters
.size() == 1 &&
15039 "Single-dimensional loop iteration space expected");
15040 auto *OrigCntVar
= cast
<DeclRefExpr
>(LoopHelper
.Counters
.front());
15042 std::string OrigVarName
= OrigCntVar
->getNameInfo().getAsString();
15043 addLoopPreInits(Context
, LoopHelper
, LoopStmts
[I
], OriginalInits
[I
],
15047 SmallVector
<VarDecl
*> PermutedIndVars(NumLoops
);
15048 CaptureVars
CopyTransformer(SemaRef
);
15050 // Create the permuted loops from the inside to the outside of the
15051 // interchanged loop nest. Body of the innermost new loop is the original
15053 Stmt
*Inner
= Body
;
15054 for (auto TargetIdx
: llvm::reverse(llvm::seq
<int>(NumLoops
))) {
15055 // Get the original loop that belongs to this new position.
15056 uint64_t SourceIdx
= Permutation
[TargetIdx
];
15057 OMPLoopBasedDirective::HelperExprs
&SourceHelper
= LoopHelpers
[SourceIdx
];
15058 Stmt
*SourceLoopStmt
= LoopStmts
[SourceIdx
];
15059 assert(SourceHelper
.Counters
.size() == 1 &&
15060 "Single-dimensional loop iteration space expected");
15061 auto *OrigCntVar
= cast
<DeclRefExpr
>(SourceHelper
.Counters
.front());
15063 // Normalized loop counter variable: From 0 to n-1, always an integer type.
15064 DeclRefExpr
*IterVarRef
= cast
<DeclRefExpr
>(SourceHelper
.IterationVarRef
);
15065 QualType IVTy
= IterVarRef
->getType();
15066 assert(IVTy
->isIntegerType() &&
15067 "Expected the logical iteration counter to be an integer");
15069 std::string OrigVarName
= OrigCntVar
->getNameInfo().getAsString();
15070 SourceLocation OrigVarLoc
= IterVarRef
->getExprLoc();
15072 // Make a copy of the NumIterations expression for each use: By the AST
15073 // constraints, every expression object in a DeclContext must be unique.
15074 auto MakeNumIterations
= [&CopyTransformer
, &SourceHelper
]() -> Expr
* {
15075 return AssertSuccess(
15076 CopyTransformer
.TransformExpr(SourceHelper
.NumIterations
));
15079 // Iteration variable for the permuted loop. Reuse the one from
15080 // checkOpenMPLoop which will also be used to update the original loop
15082 SmallString
<64> PermutedCntName(".permuted_");
15083 PermutedCntName
.append({llvm::utostr(TargetIdx
), ".iv.", OrigVarName
});
15084 auto *PermutedCntDecl
= cast
<VarDecl
>(IterVarRef
->getDecl());
15085 PermutedCntDecl
->setDeclName(
15086 &SemaRef
.PP
.getIdentifierTable().get(PermutedCntName
));
15087 PermutedIndVars
[TargetIdx
] = PermutedCntDecl
;
15088 auto MakePermutedRef
= [this, PermutedCntDecl
, IVTy
, OrigVarLoc
]() {
15089 return buildDeclRefExpr(SemaRef
, PermutedCntDecl
, IVTy
, OrigVarLoc
);
15092 // For init-statement:
15094 // auto .permuted_{target}.iv = 0
15096 ExprResult Zero
= SemaRef
.ActOnIntegerConstant(OrigVarLoc
, 0);
15097 if (!Zero
.isUsable())
15098 return StmtError();
15099 SemaRef
.AddInitializerToDecl(PermutedCntDecl
, Zero
.get(),
15100 /*DirectInit=*/false);
15101 StmtResult InitStmt
= new (Context
)
15102 DeclStmt(DeclGroupRef(PermutedCntDecl
), OrigCntVar
->getBeginLoc(),
15103 OrigCntVar
->getEndLoc());
15104 if (!InitStmt
.isUsable())
15105 return StmtError();
15107 // For cond-expression:
15109 // .permuted_{target}.iv < MakeNumIterations()
15111 ExprResult CondExpr
=
15112 SemaRef
.BuildBinOp(CurScope
, SourceHelper
.Cond
->getExprLoc(), BO_LT
,
15113 MakePermutedRef(), MakeNumIterations());
15114 if (!CondExpr
.isUsable())
15115 return StmtError();
15117 // For incr-statement:
15121 ExprResult IncrStmt
= SemaRef
.BuildUnaryOp(
15122 CurScope
, SourceHelper
.Inc
->getExprLoc(), UO_PreInc
, MakePermutedRef());
15123 if (!IncrStmt
.isUsable())
15124 return StmtError();
15126 SmallVector
<Stmt
*, 4> BodyParts(SourceHelper
.Updates
.begin(),
15127 SourceHelper
.Updates
.end());
15128 if (auto *SourceCXXFor
= dyn_cast
<CXXForRangeStmt
>(SourceLoopStmt
))
15129 BodyParts
.push_back(SourceCXXFor
->getLoopVarStmt());
15130 BodyParts
.push_back(Inner
);
15131 Inner
= CompoundStmt::Create(Context
, BodyParts
, FPOptionsOverride(),
15132 Inner
->getBeginLoc(), Inner
->getEndLoc());
15133 Inner
= new (Context
) ForStmt(
15134 Context
, InitStmt
.get(), CondExpr
.get(), nullptr, IncrStmt
.get(), Inner
,
15135 SourceHelper
.Init
->getBeginLoc(), SourceHelper
.Init
->getBeginLoc(),
15136 SourceHelper
.Inc
->getEndLoc());
15139 return OMPInterchangeDirective::Create(Context
, StartLoc
, EndLoc
, Clauses
,
15140 NumLoops
, AStmt
, Inner
,
15141 buildPreInits(Context
, PreInits
));
15144 OMPClause
*SemaOpenMP::ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind
,
15146 SourceLocation StartLoc
,
15147 SourceLocation LParenLoc
,
15148 SourceLocation EndLoc
) {
15149 OMPClause
*Res
= nullptr;
15152 Res
= ActOnOpenMPFinalClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15154 case OMPC_num_threads
:
15155 Res
= ActOnOpenMPNumThreadsClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15158 Res
= ActOnOpenMPSafelenClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15161 Res
= ActOnOpenMPSimdlenClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15163 case OMPC_allocator
:
15164 Res
= ActOnOpenMPAllocatorClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15166 case OMPC_collapse
:
15167 Res
= ActOnOpenMPCollapseClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15170 Res
= ActOnOpenMPOrderedClause(StartLoc
, EndLoc
, LParenLoc
, Expr
);
15172 case OMPC_priority
:
15173 Res
= ActOnOpenMPPriorityClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15176 Res
= ActOnOpenMPHintClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15179 Res
= ActOnOpenMPDepobjClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15182 Res
= ActOnOpenMPDetachClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15184 case OMPC_novariants
:
15185 Res
= ActOnOpenMPNovariantsClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15187 case OMPC_nocontext
:
15188 Res
= ActOnOpenMPNocontextClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15191 Res
= ActOnOpenMPFilterClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15194 Res
= ActOnOpenMPPartialClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15197 Res
= ActOnOpenMPMessageClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15200 Res
= ActOnOpenMPAlignClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15202 case OMPC_ompx_dyn_cgroup_mem
:
15203 Res
= ActOnOpenMPXDynCGroupMemClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15206 Res
= ActOnOpenMPHoldsClause(Expr
, StartLoc
, LParenLoc
, EndLoc
);
15208 case OMPC_grainsize
:
15209 case OMPC_num_tasks
:
15213 case OMPC_proc_bind
:
15214 case OMPC_schedule
:
15216 case OMPC_firstprivate
:
15217 case OMPC_lastprivate
:
15219 case OMPC_reduction
:
15220 case OMPC_task_reduction
:
15221 case OMPC_in_reduction
:
15225 case OMPC_copyprivate
:
15228 case OMPC_mergeable
:
15229 case OMPC_threadprivate
:
15231 case OMPC_allocate
:
15248 case OMPC_dist_schedule
:
15249 case OMPC_defaultmap
:
15254 case OMPC_use_device_ptr
:
15255 case OMPC_use_device_addr
:
15256 case OMPC_is_device_ptr
:
15257 case OMPC_unified_address
:
15258 case OMPC_unified_shared_memory
:
15259 case OMPC_reverse_offload
:
15260 case OMPC_dynamic_allocators
:
15261 case OMPC_atomic_default_mem_order
:
15262 case OMPC_device_type
:
15264 case OMPC_nontemporal
:
15267 case OMPC_severity
:
15269 case OMPC_inclusive
:
15270 case OMPC_exclusive
:
15271 case OMPC_uses_allocators
:
15272 case OMPC_affinity
:
15275 case OMPC_num_teams
:
15276 case OMPC_thread_limit
:
15278 llvm_unreachable("Clause is not allowed.");
15283 // An OpenMP directive such as 'target parallel' has two captured regions:
15284 // for the 'target' and 'parallel' respectively. This function returns
15285 // the region in which to capture expressions associated with a clause.
15286 // A return value of OMPD_unknown signifies that the expression should not
15288 static OpenMPDirectiveKind
getOpenMPCaptureRegionForClause(
15289 OpenMPDirectiveKind DKind
, OpenMPClauseKind CKind
, unsigned OpenMPVersion
,
15290 OpenMPDirectiveKind NameModifier
= OMPD_unknown
) {
15291 assert(isAllowedClauseForDirective(DKind
, CKind
, OpenMPVersion
) &&
15292 "Invalid directive with CKind-clause");
15294 // Invalid modifier will be diagnosed separately, just return OMPD_unknown.
15295 if (NameModifier
!= OMPD_unknown
&&
15296 !isAllowedClauseForDirective(NameModifier
, CKind
, OpenMPVersion
))
15297 return OMPD_unknown
;
15299 ArrayRef
<OpenMPDirectiveKind
> Leafs
= getLeafConstructsOrSelf(DKind
);
15302 // If the clauses have expressions on them, such as for various clauses where
15303 // the argument of the clause is an expression, or lower-bound, length, or
15304 // stride expressions inside array sections (or subscript and stride
15305 // expressions in subscript-triplet for Fortran), or linear-step or alignment
15306 // expressions, the expressions are evaluated immediately before the construct
15307 // to which the clause has been split or duplicated per the above rules
15308 // (therefore inside of the outer leaf constructs). However, the expressions
15309 // inside the num_teams and thread_limit clauses are always evaluated before
15310 // the outermost leaf construct.
15312 // Process special cases first.
15316 case OMPD_teams_loop
:
15317 case OMPD_target_teams_loop
:
15318 // For [target] teams loop, assume capture region is 'teams' so it's
15319 // available for codegen later to use if/when necessary.
15321 case OMPD_target_update
:
15322 case OMPD_target_enter_data
:
15323 case OMPD_target_exit_data
:
15329 case OMPC_num_teams
:
15330 case OMPC_thread_limit
:
15331 case OMPC_ompx_dyn_cgroup_mem
:
15332 if (Leafs
[0] == OMPD_target
)
15333 return OMPD_target
;
15336 if (Leafs
[0] == OMPD_target
||
15337 llvm::is_contained({OMPD_dispatch
, OMPD_target_update
,
15338 OMPD_target_enter_data
, OMPD_target_exit_data
},
15342 case OMPC_novariants
:
15343 case OMPC_nocontext
:
15344 if (DKind
== OMPD_dispatch
)
15348 if (DKind
== OMPD_metadirective
)
15349 return OMPD_metadirective
;
15352 return OMPD_unknown
;
15357 // If none of the special cases above applied, and DKind is a capturing
15358 // directive, find the innermost enclosing leaf construct that allows the
15359 // clause, and returns the corresponding capture region.
15361 auto GetEnclosingRegion
= [&](int EndIdx
, OpenMPClauseKind Clause
) {
15362 // Find the index in "Leafs" of the last leaf that allows the given
15363 // clause. The search will only include indexes [0, EndIdx).
15364 // EndIdx may be set to the index of the NameModifier, if present.
15365 int InnermostIdx
= [&]() {
15366 for (int I
= EndIdx
- 1; I
>= 0; --I
) {
15367 if (isAllowedClauseForDirective(Leafs
[I
], Clause
, OpenMPVersion
))
15373 // Find the nearest enclosing capture region.
15374 SmallVector
<OpenMPDirectiveKind
, 2> Regions
;
15375 for (int I
= InnermostIdx
- 1; I
>= 0; --I
) {
15376 if (!isOpenMPCapturingDirective(Leafs
[I
]))
15379 getOpenMPCaptureRegions(Regions
, Leafs
[I
]);
15380 if (Regions
[0] != OMPD_unknown
)
15381 return Regions
.back();
15383 return OMPD_unknown
;
15386 if (isOpenMPCapturingDirective(DKind
)) {
15387 auto GetLeafIndex
= [&](OpenMPDirectiveKind Dir
) {
15388 for (int I
= 0, E
= Leafs
.size(); I
!= E
; ++I
) {
15389 if (Leafs
[I
] == Dir
)
15395 int End
= NameModifier
== OMPD_unknown
? Leafs
.size()
15396 : GetLeafIndex(NameModifier
);
15397 return GetEnclosingRegion(End
, CKind
);
15400 return OMPD_unknown
;
15403 OMPClause
*SemaOpenMP::ActOnOpenMPIfClause(
15404 OpenMPDirectiveKind NameModifier
, Expr
*Condition
, SourceLocation StartLoc
,
15405 SourceLocation LParenLoc
, SourceLocation NameModifierLoc
,
15406 SourceLocation ColonLoc
, SourceLocation EndLoc
) {
15407 Expr
*ValExpr
= Condition
;
15408 Stmt
*HelperValStmt
= nullptr;
15409 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
15410 if (!Condition
->isValueDependent() && !Condition
->isTypeDependent() &&
15411 !Condition
->isInstantiationDependent() &&
15412 !Condition
->containsUnexpandedParameterPack()) {
15413 ExprResult Val
= SemaRef
.CheckBooleanCondition(StartLoc
, Condition
);
15414 if (Val
.isInvalid())
15417 ValExpr
= Val
.get();
15419 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
15420 CaptureRegion
= getOpenMPCaptureRegionForClause(
15421 DKind
, OMPC_if
, getLangOpts().OpenMP
, NameModifier
);
15422 if (CaptureRegion
!= OMPD_unknown
&&
15423 !SemaRef
.CurContext
->isDependentContext()) {
15424 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
15425 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
15426 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
15427 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
15431 return new (getASTContext())
15432 OMPIfClause(NameModifier
, ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
,
15433 LParenLoc
, NameModifierLoc
, ColonLoc
, EndLoc
);
15436 OMPClause
*SemaOpenMP::ActOnOpenMPFinalClause(Expr
*Condition
,
15437 SourceLocation StartLoc
,
15438 SourceLocation LParenLoc
,
15439 SourceLocation EndLoc
) {
15440 Expr
*ValExpr
= Condition
;
15441 Stmt
*HelperValStmt
= nullptr;
15442 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
15443 if (!Condition
->isValueDependent() && !Condition
->isTypeDependent() &&
15444 !Condition
->isInstantiationDependent() &&
15445 !Condition
->containsUnexpandedParameterPack()) {
15446 ExprResult Val
= SemaRef
.CheckBooleanCondition(StartLoc
, Condition
);
15447 if (Val
.isInvalid())
15450 ValExpr
= SemaRef
.MakeFullExpr(Val
.get()).get();
15452 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
15453 CaptureRegion
= getOpenMPCaptureRegionForClause(DKind
, OMPC_final
,
15454 getLangOpts().OpenMP
);
15455 if (CaptureRegion
!= OMPD_unknown
&&
15456 !SemaRef
.CurContext
->isDependentContext()) {
15457 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
15458 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
15459 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
15460 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
15464 return new (getASTContext()) OMPFinalClause(
15465 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
15469 SemaOpenMP::PerformOpenMPImplicitIntegerConversion(SourceLocation Loc
,
15472 return ExprError();
15474 class IntConvertDiagnoser
: public Sema::ICEConvertDiagnoser
{
15476 IntConvertDiagnoser()
15477 : ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false, false, true) {}
15478 SemaDiagnosticBuilder
diagnoseNotInt(Sema
&S
, SourceLocation Loc
,
15479 QualType T
) override
{
15480 return S
.Diag(Loc
, diag::err_omp_not_integral
) << T
;
15482 SemaDiagnosticBuilder
diagnoseIncomplete(Sema
&S
, SourceLocation Loc
,
15483 QualType T
) override
{
15484 return S
.Diag(Loc
, diag::err_omp_incomplete_type
) << T
;
15486 SemaDiagnosticBuilder
diagnoseExplicitConv(Sema
&S
, SourceLocation Loc
,
15488 QualType ConvTy
) override
{
15489 return S
.Diag(Loc
, diag::err_omp_explicit_conversion
) << T
<< ConvTy
;
15491 SemaDiagnosticBuilder
noteExplicitConv(Sema
&S
, CXXConversionDecl
*Conv
,
15492 QualType ConvTy
) override
{
15493 return S
.Diag(Conv
->getLocation(), diag::note_omp_conversion_here
)
15494 << ConvTy
->isEnumeralType() << ConvTy
;
15496 SemaDiagnosticBuilder
diagnoseAmbiguous(Sema
&S
, SourceLocation Loc
,
15497 QualType T
) override
{
15498 return S
.Diag(Loc
, diag::err_omp_ambiguous_conversion
) << T
;
15500 SemaDiagnosticBuilder
noteAmbiguous(Sema
&S
, CXXConversionDecl
*Conv
,
15501 QualType ConvTy
) override
{
15502 return S
.Diag(Conv
->getLocation(), diag::note_omp_conversion_here
)
15503 << ConvTy
->isEnumeralType() << ConvTy
;
15505 SemaDiagnosticBuilder
diagnoseConversion(Sema
&, SourceLocation
, QualType
,
15506 QualType
) override
{
15507 llvm_unreachable("conversion functions are permitted");
15509 } ConvertDiagnoser
;
15510 return SemaRef
.PerformContextualImplicitConversion(Loc
, Op
, ConvertDiagnoser
);
15514 isNonNegativeIntegerValue(Expr
*&ValExpr
, Sema
&SemaRef
, OpenMPClauseKind CKind
,
15515 bool StrictlyPositive
, bool BuildCapture
= false,
15516 OpenMPDirectiveKind DKind
= OMPD_unknown
,
15517 OpenMPDirectiveKind
*CaptureRegion
= nullptr,
15518 Stmt
**HelperValStmt
= nullptr) {
15519 if (!ValExpr
->isTypeDependent() && !ValExpr
->isValueDependent() &&
15520 !ValExpr
->isInstantiationDependent()) {
15521 SourceLocation Loc
= ValExpr
->getExprLoc();
15523 SemaRef
.OpenMP().PerformOpenMPImplicitIntegerConversion(Loc
, ValExpr
);
15524 if (Value
.isInvalid())
15527 ValExpr
= Value
.get();
15528 // The expression must evaluate to a non-negative integer value.
15529 if (std::optional
<llvm::APSInt
> Result
=
15530 ValExpr
->getIntegerConstantExpr(SemaRef
.Context
)) {
15531 if (Result
->isSigned() &&
15532 !((!StrictlyPositive
&& Result
->isNonNegative()) ||
15533 (StrictlyPositive
&& Result
->isStrictlyPositive()))) {
15534 SemaRef
.Diag(Loc
, diag::err_omp_negative_expression_in_clause
)
15535 << getOpenMPClauseName(CKind
) << (StrictlyPositive
? 1 : 0)
15536 << ValExpr
->getSourceRange();
15543 getOpenMPCaptureRegionForClause(DKind
, CKind
, SemaRef
.LangOpts
.OpenMP
);
15544 if (*CaptureRegion
!= OMPD_unknown
&&
15545 !SemaRef
.CurContext
->isDependentContext()) {
15546 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
15547 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
15548 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
15549 *HelperValStmt
= buildPreInits(SemaRef
.Context
, Captures
);
15555 OMPClause
*SemaOpenMP::ActOnOpenMPNumThreadsClause(Expr
*NumThreads
,
15556 SourceLocation StartLoc
,
15557 SourceLocation LParenLoc
,
15558 SourceLocation EndLoc
) {
15559 Expr
*ValExpr
= NumThreads
;
15560 Stmt
*HelperValStmt
= nullptr;
15562 // OpenMP [2.5, Restrictions]
15563 // The num_threads expression must evaluate to a positive integer value.
15564 if (!isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_num_threads
,
15565 /*StrictlyPositive=*/true))
15568 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
15569 OpenMPDirectiveKind CaptureRegion
= getOpenMPCaptureRegionForClause(
15570 DKind
, OMPC_num_threads
, getLangOpts().OpenMP
);
15571 if (CaptureRegion
!= OMPD_unknown
&&
15572 !SemaRef
.CurContext
->isDependentContext()) {
15573 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
15574 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
15575 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
15576 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
15579 return new (getASTContext()) OMPNumThreadsClause(
15580 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
15583 ExprResult
SemaOpenMP::VerifyPositiveIntegerConstantInClause(
15584 Expr
*E
, OpenMPClauseKind CKind
, bool StrictlyPositive
,
15585 bool SuppressExprDiags
) {
15587 return ExprError();
15588 if (E
->isValueDependent() || E
->isTypeDependent() ||
15589 E
->isInstantiationDependent() || E
->containsUnexpandedParameterPack())
15592 llvm::APSInt Result
;
15594 if (SuppressExprDiags
) {
15595 // Use a custom diagnoser that suppresses 'note' diagnostics about the
15597 struct SuppressedDiagnoser
: public Sema::VerifyICEDiagnoser
{
15598 SuppressedDiagnoser() : VerifyICEDiagnoser(/*Suppress=*/true) {}
15599 SemaBase::SemaDiagnosticBuilder
15600 diagnoseNotICE(Sema
&S
, SourceLocation Loc
) override
{
15601 llvm_unreachable("Diagnostic suppressed");
15604 ICE
= SemaRef
.VerifyIntegerConstantExpression(E
, &Result
, Diagnoser
,
15607 ICE
= SemaRef
.VerifyIntegerConstantExpression(E
, &Result
,
15608 /*FIXME*/ Sema::AllowFold
);
15610 if (ICE
.isInvalid())
15611 return ExprError();
15613 if ((StrictlyPositive
&& !Result
.isStrictlyPositive()) ||
15614 (!StrictlyPositive
&& !Result
.isNonNegative())) {
15615 Diag(E
->getExprLoc(), diag::err_omp_negative_expression_in_clause
)
15616 << getOpenMPClauseName(CKind
) << (StrictlyPositive
? 1 : 0)
15617 << E
->getSourceRange();
15618 return ExprError();
15620 if ((CKind
== OMPC_aligned
|| CKind
== OMPC_align
) && !Result
.isPowerOf2()) {
15621 Diag(E
->getExprLoc(), diag::warn_omp_alignment_not_power_of_two
)
15622 << E
->getSourceRange();
15623 return ExprError();
15625 if (CKind
== OMPC_collapse
&& DSAStack
->getAssociatedLoops() == 1)
15626 DSAStack
->setAssociatedLoops(Result
.getExtValue());
15627 else if (CKind
== OMPC_ordered
)
15628 DSAStack
->setAssociatedLoops(Result
.getExtValue());
15632 OMPClause
*SemaOpenMP::ActOnOpenMPSafelenClause(Expr
*Len
,
15633 SourceLocation StartLoc
,
15634 SourceLocation LParenLoc
,
15635 SourceLocation EndLoc
) {
15636 // OpenMP [2.8.1, simd construct, Description]
15637 // The parameter of the safelen clause must be a constant
15638 // positive integer expression.
15639 ExprResult Safelen
= VerifyPositiveIntegerConstantInClause(Len
, OMPC_safelen
);
15640 if (Safelen
.isInvalid())
15642 return new (getASTContext())
15643 OMPSafelenClause(Safelen
.get(), StartLoc
, LParenLoc
, EndLoc
);
15646 OMPClause
*SemaOpenMP::ActOnOpenMPSimdlenClause(Expr
*Len
,
15647 SourceLocation StartLoc
,
15648 SourceLocation LParenLoc
,
15649 SourceLocation EndLoc
) {
15650 // OpenMP [2.8.1, simd construct, Description]
15651 // The parameter of the simdlen clause must be a constant
15652 // positive integer expression.
15653 ExprResult Simdlen
= VerifyPositiveIntegerConstantInClause(Len
, OMPC_simdlen
);
15654 if (Simdlen
.isInvalid())
15656 return new (getASTContext())
15657 OMPSimdlenClause(Simdlen
.get(), StartLoc
, LParenLoc
, EndLoc
);
15660 /// Tries to find omp_allocator_handle_t type.
15661 static bool findOMPAllocatorHandleT(Sema
&S
, SourceLocation Loc
,
15662 DSAStackTy
*Stack
) {
15663 if (!Stack
->getOMPAllocatorHandleT().isNull())
15666 // Set the allocator handle type.
15667 IdentifierInfo
*II
= &S
.PP
.getIdentifierTable().get("omp_allocator_handle_t");
15668 ParsedType PT
= S
.getTypeName(*II
, Loc
, S
.getCurScope());
15669 if (!PT
.getAsOpaquePtr() || PT
.get().isNull()) {
15670 S
.Diag(Loc
, diag::err_omp_implied_type_not_found
)
15671 << "omp_allocator_handle_t";
15674 QualType AllocatorHandleEnumTy
= PT
.get();
15675 AllocatorHandleEnumTy
.addConst();
15676 Stack
->setOMPAllocatorHandleT(AllocatorHandleEnumTy
);
15678 // Fill the predefined allocator map.
15679 bool ErrorFound
= false;
15680 for (int I
= 0; I
< OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
; ++I
) {
15681 auto AllocatorKind
= static_cast<OMPAllocateDeclAttr::AllocatorTypeTy
>(I
);
15682 StringRef Allocator
=
15683 OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind
);
15684 DeclarationName AllocatorName
= &S
.getASTContext().Idents
.get(Allocator
);
15685 auto *VD
= dyn_cast_or_null
<ValueDecl
>(
15686 S
.LookupSingleName(S
.TUScope
, AllocatorName
, Loc
, Sema::LookupAnyName
));
15691 QualType AllocatorType
=
15692 VD
->getType().getNonLValueExprType(S
.getASTContext());
15693 ExprResult Res
= S
.BuildDeclRefExpr(VD
, AllocatorType
, VK_LValue
, Loc
);
15694 if (!Res
.isUsable()) {
15698 Res
= S
.PerformImplicitConversion(Res
.get(), AllocatorHandleEnumTy
,
15699 AssignmentAction::Initializing
,
15700 /*AllowExplicit=*/true);
15701 if (!Res
.isUsable()) {
15705 Stack
->setAllocator(AllocatorKind
, Res
.get());
15708 S
.Diag(Loc
, diag::err_omp_implied_type_not_found
)
15709 << "omp_allocator_handle_t";
15716 OMPClause
*SemaOpenMP::ActOnOpenMPAllocatorClause(Expr
*A
,
15717 SourceLocation StartLoc
,
15718 SourceLocation LParenLoc
,
15719 SourceLocation EndLoc
) {
15720 // OpenMP [2.11.3, allocate Directive, Description]
15721 // allocator is an expression of omp_allocator_handle_t type.
15722 if (!findOMPAllocatorHandleT(SemaRef
, A
->getExprLoc(), DSAStack
))
15725 ExprResult Allocator
= SemaRef
.DefaultLvalueConversion(A
);
15726 if (Allocator
.isInvalid())
15728 Allocator
= SemaRef
.PerformImplicitConversion(
15729 Allocator
.get(), DSAStack
->getOMPAllocatorHandleT(),
15730 AssignmentAction::Initializing
,
15731 /*AllowExplicit=*/true);
15732 if (Allocator
.isInvalid())
15734 return new (getASTContext())
15735 OMPAllocatorClause(Allocator
.get(), StartLoc
, LParenLoc
, EndLoc
);
15738 OMPClause
*SemaOpenMP::ActOnOpenMPCollapseClause(Expr
*NumForLoops
,
15739 SourceLocation StartLoc
,
15740 SourceLocation LParenLoc
,
15741 SourceLocation EndLoc
) {
15742 // OpenMP [2.7.1, loop construct, Description]
15743 // OpenMP [2.8.1, simd construct, Description]
15744 // OpenMP [2.9.6, distribute construct, Description]
15745 // The parameter of the collapse clause must be a constant
15746 // positive integer expression.
15747 ExprResult NumForLoopsResult
=
15748 VerifyPositiveIntegerConstantInClause(NumForLoops
, OMPC_collapse
);
15749 if (NumForLoopsResult
.isInvalid())
15751 return new (getASTContext())
15752 OMPCollapseClause(NumForLoopsResult
.get(), StartLoc
, LParenLoc
, EndLoc
);
15755 OMPClause
*SemaOpenMP::ActOnOpenMPOrderedClause(SourceLocation StartLoc
,
15756 SourceLocation EndLoc
,
15757 SourceLocation LParenLoc
,
15758 Expr
*NumForLoops
) {
15759 // OpenMP [2.7.1, loop construct, Description]
15760 // OpenMP [2.8.1, simd construct, Description]
15761 // OpenMP [2.9.6, distribute construct, Description]
15762 // The parameter of the ordered clause must be a constant
15763 // positive integer expression if any.
15764 if (NumForLoops
&& LParenLoc
.isValid()) {
15765 ExprResult NumForLoopsResult
=
15766 VerifyPositiveIntegerConstantInClause(NumForLoops
, OMPC_ordered
);
15767 if (NumForLoopsResult
.isInvalid())
15769 NumForLoops
= NumForLoopsResult
.get();
15771 NumForLoops
= nullptr;
15774 OMPOrderedClause::Create(getASTContext(), NumForLoops
,
15775 NumForLoops
? DSAStack
->getAssociatedLoops() : 0,
15776 StartLoc
, LParenLoc
, EndLoc
);
15777 DSAStack
->setOrderedRegion(/*IsOrdered=*/true, NumForLoops
, Clause
);
15781 OMPClause
*SemaOpenMP::ActOnOpenMPSimpleClause(
15782 OpenMPClauseKind Kind
, unsigned Argument
, SourceLocation ArgumentLoc
,
15783 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation EndLoc
) {
15784 OMPClause
*Res
= nullptr;
15787 Res
= ActOnOpenMPDefaultClause(static_cast<DefaultKind
>(Argument
),
15788 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15790 case OMPC_proc_bind
:
15791 Res
= ActOnOpenMPProcBindClause(static_cast<ProcBindKind
>(Argument
),
15792 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15794 case OMPC_atomic_default_mem_order
:
15795 Res
= ActOnOpenMPAtomicDefaultMemOrderClause(
15796 static_cast<OpenMPAtomicDefaultMemOrderClauseKind
>(Argument
),
15797 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15800 Res
= ActOnOpenMPFailClause(static_cast<OpenMPClauseKind
>(Argument
),
15801 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15804 Res
= ActOnOpenMPUpdateClause(static_cast<OpenMPDependClauseKind
>(Argument
),
15805 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15808 Res
= ActOnOpenMPBindClause(static_cast<OpenMPBindClauseKind
>(Argument
),
15809 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15812 Res
= ActOnOpenMPAtClause(static_cast<OpenMPAtClauseKind
>(Argument
),
15813 ArgumentLoc
, StartLoc
, LParenLoc
, EndLoc
);
15815 case OMPC_severity
:
15816 Res
= ActOnOpenMPSeverityClause(
15817 static_cast<OpenMPSeverityClauseKind
>(Argument
), ArgumentLoc
, StartLoc
,
15818 LParenLoc
, EndLoc
);
15822 case OMPC_num_threads
:
15826 case OMPC_allocator
:
15827 case OMPC_collapse
:
15828 case OMPC_schedule
:
15830 case OMPC_firstprivate
:
15831 case OMPC_lastprivate
:
15833 case OMPC_reduction
:
15834 case OMPC_task_reduction
:
15835 case OMPC_in_reduction
:
15839 case OMPC_copyprivate
:
15843 case OMPC_mergeable
:
15844 case OMPC_threadprivate
:
15845 case OMPC_allocate
:
15862 case OMPC_num_teams
:
15863 case OMPC_thread_limit
:
15864 case OMPC_priority
:
15865 case OMPC_grainsize
:
15867 case OMPC_num_tasks
:
15869 case OMPC_dist_schedule
:
15870 case OMPC_defaultmap
:
15875 case OMPC_use_device_ptr
:
15876 case OMPC_use_device_addr
:
15877 case OMPC_is_device_ptr
:
15878 case OMPC_has_device_addr
:
15879 case OMPC_unified_address
:
15880 case OMPC_unified_shared_memory
:
15881 case OMPC_reverse_offload
:
15882 case OMPC_dynamic_allocators
:
15883 case OMPC_device_type
:
15885 case OMPC_nontemporal
:
15887 case OMPC_novariants
:
15888 case OMPC_nocontext
:
15890 case OMPC_inclusive
:
15891 case OMPC_exclusive
:
15892 case OMPC_uses_allocators
:
15893 case OMPC_affinity
:
15897 llvm_unreachable("Clause is not allowed.");
15902 static std::string
getListOfPossibleValues(OpenMPClauseKind K
, unsigned First
,
15904 ArrayRef
<unsigned> Exclude
= {}) {
15905 SmallString
<256> Buffer
;
15906 llvm::raw_svector_ostream
Out(Buffer
);
15907 unsigned Skipped
= Exclude
.size();
15908 for (unsigned I
= First
; I
< Last
; ++I
) {
15909 if (llvm::is_contained(Exclude
, I
)) {
15913 Out
<< "'" << getOpenMPSimpleClauseTypeName(K
, I
) << "'";
15914 if (I
+ Skipped
+ 2 == Last
)
15916 else if (I
+ Skipped
+ 1 != Last
)
15919 return std::string(Out
.str());
15922 OMPClause
*SemaOpenMP::ActOnOpenMPDefaultClause(DefaultKind Kind
,
15923 SourceLocation KindKwLoc
,
15924 SourceLocation StartLoc
,
15925 SourceLocation LParenLoc
,
15926 SourceLocation EndLoc
) {
15927 if (Kind
== OMP_DEFAULT_unknown
) {
15928 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
15929 << getListOfPossibleValues(OMPC_default
, /*First=*/0,
15930 /*Last=*/unsigned(OMP_DEFAULT_unknown
))
15931 << getOpenMPClauseName(OMPC_default
);
15936 case OMP_DEFAULT_none
:
15937 DSAStack
->setDefaultDSANone(KindKwLoc
);
15939 case OMP_DEFAULT_shared
:
15940 DSAStack
->setDefaultDSAShared(KindKwLoc
);
15942 case OMP_DEFAULT_firstprivate
:
15943 DSAStack
->setDefaultDSAFirstPrivate(KindKwLoc
);
15945 case OMP_DEFAULT_private
:
15946 DSAStack
->setDefaultDSAPrivate(KindKwLoc
);
15949 llvm_unreachable("DSA unexpected in OpenMP default clause");
15952 return new (getASTContext())
15953 OMPDefaultClause(Kind
, KindKwLoc
, StartLoc
, LParenLoc
, EndLoc
);
15956 OMPClause
*SemaOpenMP::ActOnOpenMPProcBindClause(ProcBindKind Kind
,
15957 SourceLocation KindKwLoc
,
15958 SourceLocation StartLoc
,
15959 SourceLocation LParenLoc
,
15960 SourceLocation EndLoc
) {
15961 if (Kind
== OMP_PROC_BIND_unknown
) {
15962 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
15963 << getListOfPossibleValues(OMPC_proc_bind
,
15964 /*First=*/unsigned(OMP_PROC_BIND_master
),
15966 unsigned(getLangOpts().OpenMP
> 50
15967 ? OMP_PROC_BIND_primary
15968 : OMP_PROC_BIND_spread
) +
15970 << getOpenMPClauseName(OMPC_proc_bind
);
15973 if (Kind
== OMP_PROC_BIND_primary
&& getLangOpts().OpenMP
< 51)
15974 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
15975 << getListOfPossibleValues(OMPC_proc_bind
,
15976 /*First=*/unsigned(OMP_PROC_BIND_master
),
15978 unsigned(OMP_PROC_BIND_spread
) + 1)
15979 << getOpenMPClauseName(OMPC_proc_bind
);
15980 return new (getASTContext())
15981 OMPProcBindClause(Kind
, KindKwLoc
, StartLoc
, LParenLoc
, EndLoc
);
15984 OMPClause
*SemaOpenMP::ActOnOpenMPAtomicDefaultMemOrderClause(
15985 OpenMPAtomicDefaultMemOrderClauseKind Kind
, SourceLocation KindKwLoc
,
15986 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation EndLoc
) {
15987 if (Kind
== OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown
) {
15988 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
15989 << getListOfPossibleValues(
15990 OMPC_atomic_default_mem_order
, /*First=*/0,
15991 /*Last=*/OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown
)
15992 << getOpenMPClauseName(OMPC_atomic_default_mem_order
);
15995 return new (getASTContext()) OMPAtomicDefaultMemOrderClause(
15996 Kind
, KindKwLoc
, StartLoc
, LParenLoc
, EndLoc
);
15999 OMPClause
*SemaOpenMP::ActOnOpenMPAtClause(OpenMPAtClauseKind Kind
,
16000 SourceLocation KindKwLoc
,
16001 SourceLocation StartLoc
,
16002 SourceLocation LParenLoc
,
16003 SourceLocation EndLoc
) {
16004 if (Kind
== OMPC_AT_unknown
) {
16005 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
16006 << getListOfPossibleValues(OMPC_at
, /*First=*/0,
16007 /*Last=*/OMPC_AT_unknown
)
16008 << getOpenMPClauseName(OMPC_at
);
16011 return new (getASTContext())
16012 OMPAtClause(Kind
, KindKwLoc
, StartLoc
, LParenLoc
, EndLoc
);
16015 OMPClause
*SemaOpenMP::ActOnOpenMPSeverityClause(OpenMPSeverityClauseKind Kind
,
16016 SourceLocation KindKwLoc
,
16017 SourceLocation StartLoc
,
16018 SourceLocation LParenLoc
,
16019 SourceLocation EndLoc
) {
16020 if (Kind
== OMPC_SEVERITY_unknown
) {
16021 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
16022 << getListOfPossibleValues(OMPC_severity
, /*First=*/0,
16023 /*Last=*/OMPC_SEVERITY_unknown
)
16024 << getOpenMPClauseName(OMPC_severity
);
16027 return new (getASTContext())
16028 OMPSeverityClause(Kind
, KindKwLoc
, StartLoc
, LParenLoc
, EndLoc
);
16031 OMPClause
*SemaOpenMP::ActOnOpenMPMessageClause(Expr
*ME
,
16032 SourceLocation StartLoc
,
16033 SourceLocation LParenLoc
,
16034 SourceLocation EndLoc
) {
16035 assert(ME
&& "NULL expr in Message clause");
16036 if (!isa
<StringLiteral
>(ME
)) {
16037 Diag(ME
->getBeginLoc(), diag::warn_clause_expected_string
)
16038 << getOpenMPClauseName(OMPC_message
);
16041 return new (getASTContext())
16042 OMPMessageClause(ME
, StartLoc
, LParenLoc
, EndLoc
);
16045 OMPClause
*SemaOpenMP::ActOnOpenMPOrderClause(
16046 OpenMPOrderClauseModifier Modifier
, OpenMPOrderClauseKind Kind
,
16047 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation MLoc
,
16048 SourceLocation KindLoc
, SourceLocation EndLoc
) {
16049 if (Kind
!= OMPC_ORDER_concurrent
||
16050 (getLangOpts().OpenMP
< 51 && MLoc
.isValid())) {
16051 // Kind should be concurrent,
16052 // Modifiers introduced in OpenMP 5.1
16053 static_assert(OMPC_ORDER_unknown
> 0,
16054 "OMPC_ORDER_unknown not greater than 0");
16056 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
16057 << getListOfPossibleValues(OMPC_order
,
16059 /*Last=*/OMPC_ORDER_unknown
)
16060 << getOpenMPClauseName(OMPC_order
);
16063 if (getLangOpts().OpenMP
>= 51) {
16064 if (Modifier
== OMPC_ORDER_MODIFIER_unknown
&& MLoc
.isValid()) {
16065 Diag(MLoc
, diag::err_omp_unexpected_clause_value
)
16066 << getListOfPossibleValues(OMPC_order
,
16067 /*First=*/OMPC_ORDER_MODIFIER_unknown
+ 1,
16068 /*Last=*/OMPC_ORDER_MODIFIER_last
)
16069 << getOpenMPClauseName(OMPC_order
);
16071 DSAStack
->setRegionHasOrderConcurrent(/*HasOrderConcurrent=*/true);
16072 if (DSAStack
->getCurScope()) {
16073 // mark the current scope with 'order' flag
16074 unsigned existingFlags
= DSAStack
->getCurScope()->getFlags();
16075 DSAStack
->getCurScope()->setFlags(existingFlags
|
16076 Scope::OpenMPOrderClauseScope
);
16080 return new (getASTContext()) OMPOrderClause(
16081 Kind
, KindLoc
, StartLoc
, LParenLoc
, EndLoc
, Modifier
, MLoc
);
16084 OMPClause
*SemaOpenMP::ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind
,
16085 SourceLocation KindKwLoc
,
16086 SourceLocation StartLoc
,
16087 SourceLocation LParenLoc
,
16088 SourceLocation EndLoc
) {
16089 if (Kind
== OMPC_DEPEND_unknown
|| Kind
== OMPC_DEPEND_source
||
16090 Kind
== OMPC_DEPEND_sink
|| Kind
== OMPC_DEPEND_depobj
) {
16091 SmallVector
<unsigned> Except
= {
16092 OMPC_DEPEND_source
, OMPC_DEPEND_sink
, OMPC_DEPEND_depobj
,
16093 OMPC_DEPEND_outallmemory
, OMPC_DEPEND_inoutallmemory
};
16094 if (getLangOpts().OpenMP
< 51)
16095 Except
.push_back(OMPC_DEPEND_inoutset
);
16096 Diag(KindKwLoc
, diag::err_omp_unexpected_clause_value
)
16097 << getListOfPossibleValues(OMPC_depend
, /*First=*/0,
16098 /*Last=*/OMPC_DEPEND_unknown
, Except
)
16099 << getOpenMPClauseName(OMPC_update
);
16102 return OMPUpdateClause::Create(getASTContext(), StartLoc
, LParenLoc
,
16103 KindKwLoc
, Kind
, EndLoc
);
16106 OMPClause
*SemaOpenMP::ActOnOpenMPSizesClause(ArrayRef
<Expr
*> SizeExprs
,
16107 SourceLocation StartLoc
,
16108 SourceLocation LParenLoc
,
16109 SourceLocation EndLoc
) {
16110 SmallVector
<Expr
*> SanitizedSizeExprs(SizeExprs
);
16112 for (Expr
*&SizeExpr
: SanitizedSizeExprs
) {
16113 // Skip if already sanitized, e.g. during a partial template instantiation.
16117 bool IsValid
= isNonNegativeIntegerValue(SizeExpr
, SemaRef
, OMPC_sizes
,
16118 /*StrictlyPositive=*/true);
16120 // isNonNegativeIntegerValue returns true for non-integral types (but still
16121 // emits error diagnostic), so check for the expected type explicitly.
16122 QualType SizeTy
= SizeExpr
->getType();
16123 if (!SizeTy
->isIntegerType())
16126 // Handling in templates is tricky. There are four possibilities to
16129 // 1a. The expression is valid and we are in a instantiated template or not
16131 // Pass valid expression to be further analysed later in Sema.
16132 // 1b. The expression is valid and we are in a template (including partial
16134 // isNonNegativeIntegerValue skipped any checks so there is no
16135 // guarantee it will be correct after instantiation.
16136 // ActOnOpenMPSizesClause will be called again at instantiation when
16137 // it is not in a dependent context anymore. This may cause warnings
16138 // to be emitted multiple times.
16139 // 2a. The expression is invalid and we are in an instantiated template or
16140 // not in a template:
16141 // Invalidate the expression with a clearly wrong value (nullptr) so
16142 // later in Sema we do not have to do the same validity analysis again
16143 // or crash from unexpected data. Error diagnostics have already been
16145 // 2b. The expression is invalid and we are in a template (including partial
16147 // Pass the invalid expression as-is, template instantiation may
16148 // replace unexpected types/values with valid ones. The directives
16149 // with this clause must not try to use these expressions in dependent
16150 // contexts, but delay analysis until full instantiation.
16151 if (!SizeExpr
->isInstantiationDependent() && !IsValid
)
16152 SizeExpr
= nullptr;
16155 return OMPSizesClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
16156 SanitizedSizeExprs
);
16159 OMPClause
*SemaOpenMP::ActOnOpenMPPermutationClause(ArrayRef
<Expr
*> PermExprs
,
16160 SourceLocation StartLoc
,
16161 SourceLocation LParenLoc
,
16162 SourceLocation EndLoc
) {
16163 size_t NumLoops
= PermExprs
.size();
16164 SmallVector
<Expr
*> SanitizedPermExprs
;
16165 llvm::append_range(SanitizedPermExprs
, PermExprs
);
16167 for (Expr
*&PermExpr
: SanitizedPermExprs
) {
16168 // Skip if template-dependent or already sanitized, e.g. during a partial
16169 // template instantiation.
16170 if (!PermExpr
|| PermExpr
->isInstantiationDependent())
16173 llvm::APSInt PermVal
;
16174 ExprResult PermEvalExpr
= SemaRef
.VerifyIntegerConstantExpression(
16175 PermExpr
, &PermVal
, Sema::AllowFold
);
16176 bool IsValid
= PermEvalExpr
.isUsable();
16178 PermExpr
= PermEvalExpr
.get();
16180 if (IsValid
&& (PermVal
< 1 || NumLoops
< PermVal
)) {
16181 SourceRange
ExprRange(PermEvalExpr
.get()->getBeginLoc(),
16182 PermEvalExpr
.get()->getEndLoc());
16183 Diag(PermEvalExpr
.get()->getExprLoc(),
16184 diag::err_omp_interchange_permutation_value_range
)
16185 << NumLoops
<< ExprRange
;
16189 if (!PermExpr
->isInstantiationDependent() && !IsValid
)
16190 PermExpr
= nullptr;
16193 return OMPPermutationClause::Create(getASTContext(), StartLoc
, LParenLoc
,
16194 EndLoc
, SanitizedPermExprs
);
16197 OMPClause
*SemaOpenMP::ActOnOpenMPFullClause(SourceLocation StartLoc
,
16198 SourceLocation EndLoc
) {
16199 return OMPFullClause::Create(getASTContext(), StartLoc
, EndLoc
);
16202 OMPClause
*SemaOpenMP::ActOnOpenMPPartialClause(Expr
*FactorExpr
,
16203 SourceLocation StartLoc
,
16204 SourceLocation LParenLoc
,
16205 SourceLocation EndLoc
) {
16207 // If an argument is specified, it must be a constant (or an unevaluated
16208 // template expression).
16209 ExprResult FactorResult
= VerifyPositiveIntegerConstantInClause(
16210 FactorExpr
, OMPC_partial
, /*StrictlyPositive=*/true);
16211 if (FactorResult
.isInvalid())
16213 FactorExpr
= FactorResult
.get();
16216 return OMPPartialClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
16220 OMPClause
*SemaOpenMP::ActOnOpenMPAlignClause(Expr
*A
, SourceLocation StartLoc
,
16221 SourceLocation LParenLoc
,
16222 SourceLocation EndLoc
) {
16223 ExprResult AlignVal
;
16224 AlignVal
= VerifyPositiveIntegerConstantInClause(A
, OMPC_align
);
16225 if (AlignVal
.isInvalid())
16227 return OMPAlignClause::Create(getASTContext(), AlignVal
.get(), StartLoc
,
16228 LParenLoc
, EndLoc
);
16231 OMPClause
*SemaOpenMP::ActOnOpenMPSingleExprWithArgClause(
16232 OpenMPClauseKind Kind
, ArrayRef
<unsigned> Argument
, Expr
*Expr
,
16233 SourceLocation StartLoc
, SourceLocation LParenLoc
,
16234 ArrayRef
<SourceLocation
> ArgumentLoc
, SourceLocation DelimLoc
,
16235 SourceLocation EndLoc
) {
16236 OMPClause
*Res
= nullptr;
16238 case OMPC_schedule
:
16239 enum { Modifier1
, Modifier2
, ScheduleKind
, NumberOfElements
};
16240 assert(Argument
.size() == NumberOfElements
&&
16241 ArgumentLoc
.size() == NumberOfElements
);
16242 Res
= ActOnOpenMPScheduleClause(
16243 static_cast<OpenMPScheduleClauseModifier
>(Argument
[Modifier1
]),
16244 static_cast<OpenMPScheduleClauseModifier
>(Argument
[Modifier2
]),
16245 static_cast<OpenMPScheduleClauseKind
>(Argument
[ScheduleKind
]), Expr
,
16246 StartLoc
, LParenLoc
, ArgumentLoc
[Modifier1
], ArgumentLoc
[Modifier2
],
16247 ArgumentLoc
[ScheduleKind
], DelimLoc
, EndLoc
);
16250 assert(Argument
.size() == 1 && ArgumentLoc
.size() == 1);
16251 Res
= ActOnOpenMPIfClause(static_cast<OpenMPDirectiveKind
>(Argument
.back()),
16252 Expr
, StartLoc
, LParenLoc
, ArgumentLoc
.back(),
16255 case OMPC_dist_schedule
:
16256 Res
= ActOnOpenMPDistScheduleClause(
16257 static_cast<OpenMPDistScheduleClauseKind
>(Argument
.back()), Expr
,
16258 StartLoc
, LParenLoc
, ArgumentLoc
.back(), DelimLoc
, EndLoc
);
16260 case OMPC_defaultmap
:
16261 enum { Modifier
, DefaultmapKind
};
16262 Res
= ActOnOpenMPDefaultmapClause(
16263 static_cast<OpenMPDefaultmapClauseModifier
>(Argument
[Modifier
]),
16264 static_cast<OpenMPDefaultmapClauseKind
>(Argument
[DefaultmapKind
]),
16265 StartLoc
, LParenLoc
, ArgumentLoc
[Modifier
], ArgumentLoc
[DefaultmapKind
],
16269 enum { OrderModifier
, OrderKind
};
16270 Res
= ActOnOpenMPOrderClause(
16271 static_cast<OpenMPOrderClauseModifier
>(Argument
[OrderModifier
]),
16272 static_cast<OpenMPOrderClauseKind
>(Argument
[OrderKind
]), StartLoc
,
16273 LParenLoc
, ArgumentLoc
[OrderModifier
], ArgumentLoc
[OrderKind
], EndLoc
);
16276 assert(Argument
.size() == 1 && ArgumentLoc
.size() == 1);
16277 Res
= ActOnOpenMPDeviceClause(
16278 static_cast<OpenMPDeviceClauseModifier
>(Argument
.back()), Expr
,
16279 StartLoc
, LParenLoc
, ArgumentLoc
.back(), EndLoc
);
16281 case OMPC_grainsize
:
16282 assert(Argument
.size() == 1 && ArgumentLoc
.size() == 1 &&
16283 "Modifier for grainsize clause and its location are expected.");
16284 Res
= ActOnOpenMPGrainsizeClause(
16285 static_cast<OpenMPGrainsizeClauseModifier
>(Argument
.back()), Expr
,
16286 StartLoc
, LParenLoc
, ArgumentLoc
.back(), EndLoc
);
16288 case OMPC_num_tasks
:
16289 assert(Argument
.size() == 1 && ArgumentLoc
.size() == 1 &&
16290 "Modifier for num_tasks clause and its location are expected.");
16291 Res
= ActOnOpenMPNumTasksClause(
16292 static_cast<OpenMPNumTasksClauseModifier
>(Argument
.back()), Expr
,
16293 StartLoc
, LParenLoc
, ArgumentLoc
.back(), EndLoc
);
16296 case OMPC_num_threads
:
16300 case OMPC_allocator
:
16301 case OMPC_collapse
:
16303 case OMPC_proc_bind
:
16305 case OMPC_firstprivate
:
16306 case OMPC_lastprivate
:
16308 case OMPC_reduction
:
16309 case OMPC_task_reduction
:
16310 case OMPC_in_reduction
:
16314 case OMPC_copyprivate
:
16318 case OMPC_mergeable
:
16319 case OMPC_threadprivate
:
16320 case OMPC_allocate
:
16337 case OMPC_num_teams
:
16338 case OMPC_thread_limit
:
16339 case OMPC_priority
:
16346 case OMPC_use_device_ptr
:
16347 case OMPC_use_device_addr
:
16348 case OMPC_is_device_ptr
:
16349 case OMPC_has_device_addr
:
16350 case OMPC_unified_address
:
16351 case OMPC_unified_shared_memory
:
16352 case OMPC_reverse_offload
:
16353 case OMPC_dynamic_allocators
:
16354 case OMPC_atomic_default_mem_order
:
16355 case OMPC_device_type
:
16357 case OMPC_nontemporal
:
16359 case OMPC_severity
:
16362 case OMPC_novariants
:
16363 case OMPC_nocontext
:
16365 case OMPC_inclusive
:
16366 case OMPC_exclusive
:
16367 case OMPC_uses_allocators
:
16368 case OMPC_affinity
:
16372 llvm_unreachable("Clause is not allowed.");
16377 static bool checkScheduleModifiers(Sema
&S
, OpenMPScheduleClauseModifier M1
,
16378 OpenMPScheduleClauseModifier M2
,
16379 SourceLocation M1Loc
, SourceLocation M2Loc
) {
16380 if (M1
== OMPC_SCHEDULE_MODIFIER_unknown
&& M1Loc
.isValid()) {
16381 SmallVector
<unsigned, 2> Excluded
;
16382 if (M2
!= OMPC_SCHEDULE_MODIFIER_unknown
)
16383 Excluded
.push_back(M2
);
16384 if (M2
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
)
16385 Excluded
.push_back(OMPC_SCHEDULE_MODIFIER_monotonic
);
16386 if (M2
== OMPC_SCHEDULE_MODIFIER_monotonic
)
16387 Excluded
.push_back(OMPC_SCHEDULE_MODIFIER_nonmonotonic
);
16388 S
.Diag(M1Loc
, diag::err_omp_unexpected_clause_value
)
16389 << getListOfPossibleValues(OMPC_schedule
,
16390 /*First=*/OMPC_SCHEDULE_MODIFIER_unknown
+ 1,
16391 /*Last=*/OMPC_SCHEDULE_MODIFIER_last
,
16393 << getOpenMPClauseName(OMPC_schedule
);
16399 OMPClause
*SemaOpenMP::ActOnOpenMPScheduleClause(
16400 OpenMPScheduleClauseModifier M1
, OpenMPScheduleClauseModifier M2
,
16401 OpenMPScheduleClauseKind Kind
, Expr
*ChunkSize
, SourceLocation StartLoc
,
16402 SourceLocation LParenLoc
, SourceLocation M1Loc
, SourceLocation M2Loc
,
16403 SourceLocation KindLoc
, SourceLocation CommaLoc
, SourceLocation EndLoc
) {
16404 if (checkScheduleModifiers(SemaRef
, M1
, M2
, M1Loc
, M2Loc
) ||
16405 checkScheduleModifiers(SemaRef
, M2
, M1
, M2Loc
, M1Loc
))
16407 // OpenMP, 2.7.1, Loop Construct, Restrictions
16408 // Either the monotonic modifier or the nonmonotonic modifier can be specified
16410 if ((M1
== M2
&& M1
!= OMPC_SCHEDULE_MODIFIER_unknown
) ||
16411 (M1
== OMPC_SCHEDULE_MODIFIER_monotonic
&&
16412 M2
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
) ||
16413 (M1
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
&&
16414 M2
== OMPC_SCHEDULE_MODIFIER_monotonic
)) {
16415 Diag(M2Loc
, diag::err_omp_unexpected_schedule_modifier
)
16416 << getOpenMPSimpleClauseTypeName(OMPC_schedule
, M2
)
16417 << getOpenMPSimpleClauseTypeName(OMPC_schedule
, M1
);
16420 if (Kind
== OMPC_SCHEDULE_unknown
) {
16421 std::string Values
;
16422 if (M1Loc
.isInvalid() && M2Loc
.isInvalid()) {
16423 unsigned Exclude
[] = {OMPC_SCHEDULE_unknown
};
16424 Values
= getListOfPossibleValues(OMPC_schedule
, /*First=*/0,
16425 /*Last=*/OMPC_SCHEDULE_MODIFIER_last
,
16428 Values
= getListOfPossibleValues(OMPC_schedule
, /*First=*/0,
16429 /*Last=*/OMPC_SCHEDULE_unknown
);
16431 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
16432 << Values
<< getOpenMPClauseName(OMPC_schedule
);
16435 // OpenMP, 2.7.1, Loop Construct, Restrictions
16436 // The nonmonotonic modifier can only be specified with schedule(dynamic) or
16437 // schedule(guided).
16438 // OpenMP 5.0 does not have this restriction.
16439 if (getLangOpts().OpenMP
< 50 &&
16440 (M1
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
||
16441 M2
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
) &&
16442 Kind
!= OMPC_SCHEDULE_dynamic
&& Kind
!= OMPC_SCHEDULE_guided
) {
16443 Diag(M1
== OMPC_SCHEDULE_MODIFIER_nonmonotonic
? M1Loc
: M2Loc
,
16444 diag::err_omp_schedule_nonmonotonic_static
);
16447 Expr
*ValExpr
= ChunkSize
;
16448 Stmt
*HelperValStmt
= nullptr;
16450 if (!ChunkSize
->isValueDependent() && !ChunkSize
->isTypeDependent() &&
16451 !ChunkSize
->isInstantiationDependent() &&
16452 !ChunkSize
->containsUnexpandedParameterPack()) {
16453 SourceLocation ChunkSizeLoc
= ChunkSize
->getBeginLoc();
16455 PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc
, ChunkSize
);
16456 if (Val
.isInvalid())
16459 ValExpr
= Val
.get();
16461 // OpenMP [2.7.1, Restrictions]
16462 // chunk_size must be a loop invariant integer expression with a positive
16464 if (std::optional
<llvm::APSInt
> Result
=
16465 ValExpr
->getIntegerConstantExpr(getASTContext())) {
16466 if (Result
->isSigned() && !Result
->isStrictlyPositive()) {
16467 Diag(ChunkSizeLoc
, diag::err_omp_negative_expression_in_clause
)
16468 << "schedule" << 1 << ChunkSize
->getSourceRange();
16471 } else if (getOpenMPCaptureRegionForClause(
16472 DSAStack
->getCurrentDirective(), OMPC_schedule
,
16473 getLangOpts().OpenMP
) != OMPD_unknown
&&
16474 !SemaRef
.CurContext
->isDependentContext()) {
16475 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
16476 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
16477 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
16478 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
16483 return new (getASTContext())
16484 OMPScheduleClause(StartLoc
, LParenLoc
, KindLoc
, CommaLoc
, EndLoc
, Kind
,
16485 ValExpr
, HelperValStmt
, M1
, M1Loc
, M2
, M2Loc
);
16488 OMPClause
*SemaOpenMP::ActOnOpenMPClause(OpenMPClauseKind Kind
,
16489 SourceLocation StartLoc
,
16490 SourceLocation EndLoc
) {
16491 OMPClause
*Res
= nullptr;
16494 Res
= ActOnOpenMPOrderedClause(StartLoc
, EndLoc
);
16497 Res
= ActOnOpenMPNowaitClause(StartLoc
, EndLoc
);
16500 Res
= ActOnOpenMPUntiedClause(StartLoc
, EndLoc
);
16502 case OMPC_mergeable
:
16503 Res
= ActOnOpenMPMergeableClause(StartLoc
, EndLoc
);
16506 Res
= ActOnOpenMPReadClause(StartLoc
, EndLoc
);
16509 Res
= ActOnOpenMPWriteClause(StartLoc
, EndLoc
);
16512 Res
= ActOnOpenMPUpdateClause(StartLoc
, EndLoc
);
16515 Res
= ActOnOpenMPCaptureClause(StartLoc
, EndLoc
);
16518 Res
= ActOnOpenMPCompareClause(StartLoc
, EndLoc
);
16521 Res
= ActOnOpenMPFailClause(StartLoc
, EndLoc
);
16524 Res
= ActOnOpenMPSeqCstClause(StartLoc
, EndLoc
);
16527 Res
= ActOnOpenMPAcqRelClause(StartLoc
, EndLoc
);
16530 Res
= ActOnOpenMPAcquireClause(StartLoc
, EndLoc
);
16533 Res
= ActOnOpenMPReleaseClause(StartLoc
, EndLoc
);
16536 Res
= ActOnOpenMPRelaxedClause(StartLoc
, EndLoc
);
16539 Res
= ActOnOpenMPWeakClause(StartLoc
, EndLoc
);
16542 Res
= ActOnOpenMPThreadsClause(StartLoc
, EndLoc
);
16545 Res
= ActOnOpenMPSIMDClause(StartLoc
, EndLoc
);
16548 Res
= ActOnOpenMPNogroupClause(StartLoc
, EndLoc
);
16550 case OMPC_unified_address
:
16551 Res
= ActOnOpenMPUnifiedAddressClause(StartLoc
, EndLoc
);
16553 case OMPC_unified_shared_memory
:
16554 Res
= ActOnOpenMPUnifiedSharedMemoryClause(StartLoc
, EndLoc
);
16556 case OMPC_reverse_offload
:
16557 Res
= ActOnOpenMPReverseOffloadClause(StartLoc
, EndLoc
);
16559 case OMPC_dynamic_allocators
:
16560 Res
= ActOnOpenMPDynamicAllocatorsClause(StartLoc
, EndLoc
);
16563 Res
= ActOnOpenMPDestroyClause(/*InteropVar=*/nullptr, StartLoc
,
16564 /*LParenLoc=*/SourceLocation(),
16565 /*VarLoc=*/SourceLocation(), EndLoc
);
16568 Res
= ActOnOpenMPFullClause(StartLoc
, EndLoc
);
16571 Res
= ActOnOpenMPPartialClause(nullptr, StartLoc
, /*LParenLoc=*/{}, EndLoc
);
16573 case OMPC_ompx_bare
:
16574 Res
= ActOnOpenMPXBareClause(StartLoc
, EndLoc
);
16578 case OMPC_num_threads
:
16582 case OMPC_allocator
:
16583 case OMPC_collapse
:
16584 case OMPC_schedule
:
16586 case OMPC_firstprivate
:
16587 case OMPC_lastprivate
:
16589 case OMPC_reduction
:
16590 case OMPC_task_reduction
:
16591 case OMPC_in_reduction
:
16595 case OMPC_copyprivate
:
16597 case OMPC_proc_bind
:
16598 case OMPC_threadprivate
:
16599 case OMPC_allocate
:
16605 case OMPC_num_teams
:
16606 case OMPC_thread_limit
:
16607 case OMPC_priority
:
16608 case OMPC_grainsize
:
16609 case OMPC_num_tasks
:
16611 case OMPC_dist_schedule
:
16612 case OMPC_defaultmap
:
16617 case OMPC_use_device_ptr
:
16618 case OMPC_use_device_addr
:
16619 case OMPC_is_device_ptr
:
16620 case OMPC_has_device_addr
:
16621 case OMPC_atomic_default_mem_order
:
16622 case OMPC_device_type
:
16624 case OMPC_nontemporal
:
16627 case OMPC_severity
:
16629 case OMPC_novariants
:
16630 case OMPC_nocontext
:
16632 case OMPC_inclusive
:
16633 case OMPC_exclusive
:
16634 case OMPC_uses_allocators
:
16635 case OMPC_affinity
:
16637 case OMPC_ompx_dyn_cgroup_mem
:
16639 llvm_unreachable("Clause is not allowed.");
16644 OMPClause
*SemaOpenMP::ActOnOpenMPNowaitClause(SourceLocation StartLoc
,
16645 SourceLocation EndLoc
) {
16646 DSAStack
->setNowaitRegion();
16647 return new (getASTContext()) OMPNowaitClause(StartLoc
, EndLoc
);
16650 OMPClause
*SemaOpenMP::ActOnOpenMPUntiedClause(SourceLocation StartLoc
,
16651 SourceLocation EndLoc
) {
16652 DSAStack
->setUntiedRegion();
16653 return new (getASTContext()) OMPUntiedClause(StartLoc
, EndLoc
);
16656 OMPClause
*SemaOpenMP::ActOnOpenMPMergeableClause(SourceLocation StartLoc
,
16657 SourceLocation EndLoc
) {
16658 return new (getASTContext()) OMPMergeableClause(StartLoc
, EndLoc
);
16661 OMPClause
*SemaOpenMP::ActOnOpenMPReadClause(SourceLocation StartLoc
,
16662 SourceLocation EndLoc
) {
16663 return new (getASTContext()) OMPReadClause(StartLoc
, EndLoc
);
16666 OMPClause
*SemaOpenMP::ActOnOpenMPWriteClause(SourceLocation StartLoc
,
16667 SourceLocation EndLoc
) {
16668 return new (getASTContext()) OMPWriteClause(StartLoc
, EndLoc
);
16671 OMPClause
*SemaOpenMP::ActOnOpenMPUpdateClause(SourceLocation StartLoc
,
16672 SourceLocation EndLoc
) {
16673 return OMPUpdateClause::Create(getASTContext(), StartLoc
, EndLoc
);
16676 OMPClause
*SemaOpenMP::ActOnOpenMPCaptureClause(SourceLocation StartLoc
,
16677 SourceLocation EndLoc
) {
16678 return new (getASTContext()) OMPCaptureClause(StartLoc
, EndLoc
);
16681 OMPClause
*SemaOpenMP::ActOnOpenMPCompareClause(SourceLocation StartLoc
,
16682 SourceLocation EndLoc
) {
16683 return new (getASTContext()) OMPCompareClause(StartLoc
, EndLoc
);
16686 OMPClause
*SemaOpenMP::ActOnOpenMPFailClause(SourceLocation StartLoc
,
16687 SourceLocation EndLoc
) {
16688 return new (getASTContext()) OMPFailClause(StartLoc
, EndLoc
);
16691 OMPClause
*SemaOpenMP::ActOnOpenMPFailClause(OpenMPClauseKind Parameter
,
16692 SourceLocation KindLoc
,
16693 SourceLocation StartLoc
,
16694 SourceLocation LParenLoc
,
16695 SourceLocation EndLoc
) {
16697 if (!checkFailClauseParameter(Parameter
)) {
16698 Diag(KindLoc
, diag::err_omp_atomic_fail_wrong_or_no_clauses
);
16701 return new (getASTContext())
16702 OMPFailClause(Parameter
, KindLoc
, StartLoc
, LParenLoc
, EndLoc
);
16705 OMPClause
*SemaOpenMP::ActOnOpenMPSeqCstClause(SourceLocation StartLoc
,
16706 SourceLocation EndLoc
) {
16707 return new (getASTContext()) OMPSeqCstClause(StartLoc
, EndLoc
);
16710 OMPClause
*SemaOpenMP::ActOnOpenMPAcqRelClause(SourceLocation StartLoc
,
16711 SourceLocation EndLoc
) {
16712 return new (getASTContext()) OMPAcqRelClause(StartLoc
, EndLoc
);
16715 OMPClause
*SemaOpenMP::ActOnOpenMPAcquireClause(SourceLocation StartLoc
,
16716 SourceLocation EndLoc
) {
16717 return new (getASTContext()) OMPAcquireClause(StartLoc
, EndLoc
);
16720 OMPClause
*SemaOpenMP::ActOnOpenMPReleaseClause(SourceLocation StartLoc
,
16721 SourceLocation EndLoc
) {
16722 return new (getASTContext()) OMPReleaseClause(StartLoc
, EndLoc
);
16725 OMPClause
*SemaOpenMP::ActOnOpenMPRelaxedClause(SourceLocation StartLoc
,
16726 SourceLocation EndLoc
) {
16727 return new (getASTContext()) OMPRelaxedClause(StartLoc
, EndLoc
);
16730 OMPClause
*SemaOpenMP::ActOnOpenMPWeakClause(SourceLocation StartLoc
,
16731 SourceLocation EndLoc
) {
16732 return new (getASTContext()) OMPWeakClause(StartLoc
, EndLoc
);
16735 OMPClause
*SemaOpenMP::ActOnOpenMPThreadsClause(SourceLocation StartLoc
,
16736 SourceLocation EndLoc
) {
16737 return new (getASTContext()) OMPThreadsClause(StartLoc
, EndLoc
);
16740 OMPClause
*SemaOpenMP::ActOnOpenMPSIMDClause(SourceLocation StartLoc
,
16741 SourceLocation EndLoc
) {
16742 return new (getASTContext()) OMPSIMDClause(StartLoc
, EndLoc
);
16745 OMPClause
*SemaOpenMP::ActOnOpenMPNogroupClause(SourceLocation StartLoc
,
16746 SourceLocation EndLoc
) {
16747 return new (getASTContext()) OMPNogroupClause(StartLoc
, EndLoc
);
16750 OMPClause
*SemaOpenMP::ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc
,
16751 SourceLocation EndLoc
) {
16752 return new (getASTContext()) OMPUnifiedAddressClause(StartLoc
, EndLoc
);
16756 SemaOpenMP::ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc
,
16757 SourceLocation EndLoc
) {
16758 return new (getASTContext()) OMPUnifiedSharedMemoryClause(StartLoc
, EndLoc
);
16761 OMPClause
*SemaOpenMP::ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc
,
16762 SourceLocation EndLoc
) {
16763 return new (getASTContext()) OMPReverseOffloadClause(StartLoc
, EndLoc
);
16767 SemaOpenMP::ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc
,
16768 SourceLocation EndLoc
) {
16769 return new (getASTContext()) OMPDynamicAllocatorsClause(StartLoc
, EndLoc
);
16773 SemaOpenMP::ActOnOpenMPInteropDirective(ArrayRef
<OMPClause
*> Clauses
,
16774 SourceLocation StartLoc
,
16775 SourceLocation EndLoc
) {
16777 // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
16778 // At least one action-clause must appear on a directive.
16779 if (!hasClauses(Clauses
, OMPC_init
, OMPC_use
, OMPC_destroy
, OMPC_nowait
)) {
16780 StringRef Expected
= "'init', 'use', 'destroy', or 'nowait'";
16781 Diag(StartLoc
, diag::err_omp_no_clause_for_directive
)
16782 << Expected
<< getOpenMPDirectiveName(OMPD_interop
);
16783 return StmtError();
16786 // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
16787 // A depend clause can only appear on the directive if a targetsync
16788 // interop-type is present or the interop-var was initialized with
16789 // the targetsync interop-type.
16791 // If there is any 'init' clause diagnose if there is no 'init' clause with
16792 // interop-type of 'targetsync'. Cases involving other directives cannot be
16794 const OMPDependClause
*DependClause
= nullptr;
16795 bool HasInitClause
= false;
16796 bool IsTargetSync
= false;
16797 for (const OMPClause
*C
: Clauses
) {
16800 if (const auto *InitClause
= dyn_cast
<OMPInitClause
>(C
)) {
16801 HasInitClause
= true;
16802 if (InitClause
->getIsTargetSync())
16803 IsTargetSync
= true;
16804 } else if (const auto *DC
= dyn_cast
<OMPDependClause
>(C
)) {
16808 if (DependClause
&& HasInitClause
&& !IsTargetSync
) {
16809 Diag(DependClause
->getBeginLoc(), diag::err_omp_interop_bad_depend_clause
);
16810 return StmtError();
16813 // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
16814 // Each interop-var may be specified for at most one action-clause of each
16815 // interop construct.
16816 llvm::SmallPtrSet
<const ValueDecl
*, 4> InteropVars
;
16817 for (OMPClause
*C
: Clauses
) {
16818 OpenMPClauseKind ClauseKind
= C
->getClauseKind();
16819 std::pair
<ValueDecl
*, bool> DeclResult
;
16820 SourceLocation ELoc
;
16821 SourceRange ERange
;
16823 if (ClauseKind
== OMPC_init
) {
16824 auto *E
= cast
<OMPInitClause
>(C
)->getInteropVar();
16825 DeclResult
= getPrivateItem(SemaRef
, E
, ELoc
, ERange
);
16826 } else if (ClauseKind
== OMPC_use
) {
16827 auto *E
= cast
<OMPUseClause
>(C
)->getInteropVar();
16828 DeclResult
= getPrivateItem(SemaRef
, E
, ELoc
, ERange
);
16829 } else if (ClauseKind
== OMPC_destroy
) {
16830 auto *E
= cast
<OMPDestroyClause
>(C
)->getInteropVar();
16831 DeclResult
= getPrivateItem(SemaRef
, E
, ELoc
, ERange
);
16834 if (DeclResult
.first
) {
16835 if (!InteropVars
.insert(DeclResult
.first
).second
) {
16836 Diag(ELoc
, diag::err_omp_interop_var_multiple_actions
)
16837 << DeclResult
.first
;
16838 return StmtError();
16843 return OMPInteropDirective::Create(getASTContext(), StartLoc
, EndLoc
,
16847 static bool isValidInteropVariable(Sema
&SemaRef
, Expr
*InteropVarExpr
,
16848 SourceLocation VarLoc
,
16849 OpenMPClauseKind Kind
) {
16850 SourceLocation ELoc
;
16851 SourceRange ERange
;
16852 Expr
*RefExpr
= InteropVarExpr
;
16854 getPrivateItem(SemaRef
, RefExpr
, ELoc
, ERange
,
16855 /*AllowArraySection=*/false, /*DiagType=*/"omp_interop_t");
16858 // It will be analyzed later.
16865 // Interop variable should be of type omp_interop_t.
16866 bool HasError
= false;
16867 QualType InteropType
;
16868 LookupResult
Result(SemaRef
, &SemaRef
.Context
.Idents
.get("omp_interop_t"),
16869 VarLoc
, Sema::LookupOrdinaryName
);
16870 if (SemaRef
.LookupName(Result
, SemaRef
.getCurScope())) {
16871 NamedDecl
*ND
= Result
.getFoundDecl();
16872 if (const auto *TD
= dyn_cast
<TypeDecl
>(ND
)) {
16873 InteropType
= QualType(TD
->getTypeForDecl(), 0);
16882 SemaRef
.Diag(VarLoc
, diag::err_omp_implied_type_not_found
)
16883 << "omp_interop_t";
16887 QualType VarType
= InteropVarExpr
->getType().getUnqualifiedType();
16888 if (!SemaRef
.Context
.hasSameType(InteropType
, VarType
)) {
16889 SemaRef
.Diag(VarLoc
, diag::err_omp_interop_variable_wrong_type
);
16893 // OpenMP 5.1 [2.15.1, interop Construct, Restrictions]
16894 // The interop-var passed to init or destroy must be non-const.
16895 if ((Kind
== OMPC_init
|| Kind
== OMPC_destroy
) &&
16896 isConstNotMutableType(SemaRef
, InteropVarExpr
->getType())) {
16897 SemaRef
.Diag(VarLoc
, diag::err_omp_interop_variable_expected
)
16898 << /*non-const*/ 1;
16904 OMPClause
*SemaOpenMP::ActOnOpenMPInitClause(
16905 Expr
*InteropVar
, OMPInteropInfo
&InteropInfo
, SourceLocation StartLoc
,
16906 SourceLocation LParenLoc
, SourceLocation VarLoc
, SourceLocation EndLoc
) {
16908 if (!isValidInteropVariable(SemaRef
, InteropVar
, VarLoc
, OMPC_init
))
16911 // Check prefer_type values. These foreign-runtime-id values are either
16912 // string literals or constant integral expressions.
16913 for (const Expr
*E
: InteropInfo
.PreferTypes
) {
16914 if (E
->isValueDependent() || E
->isTypeDependent() ||
16915 E
->isInstantiationDependent() || E
->containsUnexpandedParameterPack())
16917 if (E
->isIntegerConstantExpr(getASTContext()))
16919 if (isa
<StringLiteral
>(E
))
16921 Diag(E
->getExprLoc(), diag::err_omp_interop_prefer_type
);
16925 return OMPInitClause::Create(getASTContext(), InteropVar
, InteropInfo
,
16926 StartLoc
, LParenLoc
, VarLoc
, EndLoc
);
16929 OMPClause
*SemaOpenMP::ActOnOpenMPUseClause(Expr
*InteropVar
,
16930 SourceLocation StartLoc
,
16931 SourceLocation LParenLoc
,
16932 SourceLocation VarLoc
,
16933 SourceLocation EndLoc
) {
16935 if (!isValidInteropVariable(SemaRef
, InteropVar
, VarLoc
, OMPC_use
))
16938 return new (getASTContext())
16939 OMPUseClause(InteropVar
, StartLoc
, LParenLoc
, VarLoc
, EndLoc
);
16942 OMPClause
*SemaOpenMP::ActOnOpenMPDestroyClause(Expr
*InteropVar
,
16943 SourceLocation StartLoc
,
16944 SourceLocation LParenLoc
,
16945 SourceLocation VarLoc
,
16946 SourceLocation EndLoc
) {
16947 if (!InteropVar
&& getLangOpts().OpenMP
>= 52 &&
16948 DSAStack
->getCurrentDirective() == OMPD_depobj
) {
16949 Diag(StartLoc
, diag::err_omp_expected_clause_argument
)
16950 << getOpenMPClauseName(OMPC_destroy
)
16951 << getOpenMPDirectiveName(OMPD_depobj
);
16955 !isValidInteropVariable(SemaRef
, InteropVar
, VarLoc
, OMPC_destroy
))
16958 return new (getASTContext())
16959 OMPDestroyClause(InteropVar
, StartLoc
, LParenLoc
, VarLoc
, EndLoc
);
16962 OMPClause
*SemaOpenMP::ActOnOpenMPNovariantsClause(Expr
*Condition
,
16963 SourceLocation StartLoc
,
16964 SourceLocation LParenLoc
,
16965 SourceLocation EndLoc
) {
16966 Expr
*ValExpr
= Condition
;
16967 Stmt
*HelperValStmt
= nullptr;
16968 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
16969 if (!Condition
->isValueDependent() && !Condition
->isTypeDependent() &&
16970 !Condition
->isInstantiationDependent() &&
16971 !Condition
->containsUnexpandedParameterPack()) {
16972 ExprResult Val
= SemaRef
.CheckBooleanCondition(StartLoc
, Condition
);
16973 if (Val
.isInvalid())
16976 ValExpr
= SemaRef
.MakeFullExpr(Val
.get()).get();
16978 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
16979 CaptureRegion
= getOpenMPCaptureRegionForClause(DKind
, OMPC_novariants
,
16980 getLangOpts().OpenMP
);
16981 if (CaptureRegion
!= OMPD_unknown
&&
16982 !SemaRef
.CurContext
->isDependentContext()) {
16983 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
16984 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
16985 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
16986 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
16990 return new (getASTContext()) OMPNovariantsClause(
16991 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
16994 OMPClause
*SemaOpenMP::ActOnOpenMPNocontextClause(Expr
*Condition
,
16995 SourceLocation StartLoc
,
16996 SourceLocation LParenLoc
,
16997 SourceLocation EndLoc
) {
16998 Expr
*ValExpr
= Condition
;
16999 Stmt
*HelperValStmt
= nullptr;
17000 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
17001 if (!Condition
->isValueDependent() && !Condition
->isTypeDependent() &&
17002 !Condition
->isInstantiationDependent() &&
17003 !Condition
->containsUnexpandedParameterPack()) {
17004 ExprResult Val
= SemaRef
.CheckBooleanCondition(StartLoc
, Condition
);
17005 if (Val
.isInvalid())
17008 ValExpr
= SemaRef
.MakeFullExpr(Val
.get()).get();
17010 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
17011 CaptureRegion
= getOpenMPCaptureRegionForClause(DKind
, OMPC_nocontext
,
17012 getLangOpts().OpenMP
);
17013 if (CaptureRegion
!= OMPD_unknown
&&
17014 !SemaRef
.CurContext
->isDependentContext()) {
17015 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
17016 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
17017 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
17018 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
17022 return new (getASTContext()) OMPNocontextClause(
17023 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
17026 OMPClause
*SemaOpenMP::ActOnOpenMPFilterClause(Expr
*ThreadID
,
17027 SourceLocation StartLoc
,
17028 SourceLocation LParenLoc
,
17029 SourceLocation EndLoc
) {
17030 Expr
*ValExpr
= ThreadID
;
17031 Stmt
*HelperValStmt
= nullptr;
17033 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
17034 OpenMPDirectiveKind CaptureRegion
=
17035 getOpenMPCaptureRegionForClause(DKind
, OMPC_filter
, getLangOpts().OpenMP
);
17036 if (CaptureRegion
!= OMPD_unknown
&&
17037 !SemaRef
.CurContext
->isDependentContext()) {
17038 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
17039 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
17040 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
17041 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
17044 return new (getASTContext()) OMPFilterClause(
17045 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
17048 OMPClause
*SemaOpenMP::ActOnOpenMPVarListClause(OpenMPClauseKind Kind
,
17049 ArrayRef
<Expr
*> VarList
,
17050 const OMPVarListLocTy
&Locs
,
17051 OpenMPVarListDataTy
&Data
) {
17052 SourceLocation StartLoc
= Locs
.StartLoc
;
17053 SourceLocation LParenLoc
= Locs
.LParenLoc
;
17054 SourceLocation EndLoc
= Locs
.EndLoc
;
17055 OMPClause
*Res
= nullptr;
17056 int ExtraModifier
= Data
.ExtraModifier
;
17057 SourceLocation ExtraModifierLoc
= Data
.ExtraModifierLoc
;
17058 SourceLocation ColonLoc
= Data
.ColonLoc
;
17061 Res
= ActOnOpenMPPrivateClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17063 case OMPC_firstprivate
:
17064 Res
= ActOnOpenMPFirstprivateClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17066 case OMPC_lastprivate
:
17067 assert(0 <= ExtraModifier
&& ExtraModifier
<= OMPC_LASTPRIVATE_unknown
&&
17068 "Unexpected lastprivate modifier.");
17069 Res
= ActOnOpenMPLastprivateClause(
17070 VarList
, static_cast<OpenMPLastprivateModifier
>(ExtraModifier
),
17071 ExtraModifierLoc
, ColonLoc
, StartLoc
, LParenLoc
, EndLoc
);
17074 Res
= ActOnOpenMPSharedClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17076 case OMPC_reduction
:
17077 assert(0 <= ExtraModifier
&& ExtraModifier
<= OMPC_REDUCTION_unknown
&&
17078 "Unexpected lastprivate modifier.");
17079 Res
= ActOnOpenMPReductionClause(
17080 VarList
, static_cast<OpenMPReductionClauseModifier
>(ExtraModifier
),
17081 StartLoc
, LParenLoc
, ExtraModifierLoc
, ColonLoc
, EndLoc
,
17082 Data
.ReductionOrMapperIdScopeSpec
, Data
.ReductionOrMapperId
);
17084 case OMPC_task_reduction
:
17085 Res
= ActOnOpenMPTaskReductionClause(
17086 VarList
, StartLoc
, LParenLoc
, ColonLoc
, EndLoc
,
17087 Data
.ReductionOrMapperIdScopeSpec
, Data
.ReductionOrMapperId
);
17089 case OMPC_in_reduction
:
17090 Res
= ActOnOpenMPInReductionClause(
17091 VarList
, StartLoc
, LParenLoc
, ColonLoc
, EndLoc
,
17092 Data
.ReductionOrMapperIdScopeSpec
, Data
.ReductionOrMapperId
);
17095 assert(0 <= ExtraModifier
&& ExtraModifier
<= OMPC_LINEAR_unknown
&&
17096 "Unexpected linear modifier.");
17097 Res
= ActOnOpenMPLinearClause(
17098 VarList
, Data
.DepModOrTailExpr
, StartLoc
, LParenLoc
,
17099 static_cast<OpenMPLinearClauseKind
>(ExtraModifier
), ExtraModifierLoc
,
17100 ColonLoc
, Data
.StepModifierLoc
, EndLoc
);
17103 Res
= ActOnOpenMPAlignedClause(VarList
, Data
.DepModOrTailExpr
, StartLoc
,
17104 LParenLoc
, ColonLoc
, EndLoc
);
17107 Res
= ActOnOpenMPCopyinClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17109 case OMPC_copyprivate
:
17110 Res
= ActOnOpenMPCopyprivateClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17113 Res
= ActOnOpenMPFlushClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17116 assert(0 <= ExtraModifier
&& ExtraModifier
<= OMPC_DEPEND_unknown
&&
17117 "Unexpected depend modifier.");
17118 Res
= ActOnOpenMPDependClause(
17119 {static_cast<OpenMPDependClauseKind
>(ExtraModifier
), ExtraModifierLoc
,
17120 ColonLoc
, Data
.OmpAllMemoryLoc
},
17121 Data
.DepModOrTailExpr
, VarList
, StartLoc
, LParenLoc
, EndLoc
);
17124 assert(0 <= ExtraModifier
&& ExtraModifier
<= OMPC_MAP_unknown
&&
17125 "Unexpected map modifier.");
17126 Res
= ActOnOpenMPMapClause(
17127 Data
.IteratorExpr
, Data
.MapTypeModifiers
, Data
.MapTypeModifiersLoc
,
17128 Data
.ReductionOrMapperIdScopeSpec
, Data
.ReductionOrMapperId
,
17129 static_cast<OpenMPMapClauseKind
>(ExtraModifier
), Data
.IsMapTypeImplicit
,
17130 ExtraModifierLoc
, ColonLoc
, VarList
, Locs
);
17134 ActOnOpenMPToClause(Data
.MotionModifiers
, Data
.MotionModifiersLoc
,
17135 Data
.ReductionOrMapperIdScopeSpec
,
17136 Data
.ReductionOrMapperId
, ColonLoc
, VarList
, Locs
);
17139 Res
= ActOnOpenMPFromClause(Data
.MotionModifiers
, Data
.MotionModifiersLoc
,
17140 Data
.ReductionOrMapperIdScopeSpec
,
17141 Data
.ReductionOrMapperId
, ColonLoc
, VarList
,
17144 case OMPC_use_device_ptr
:
17145 Res
= ActOnOpenMPUseDevicePtrClause(VarList
, Locs
);
17147 case OMPC_use_device_addr
:
17148 Res
= ActOnOpenMPUseDeviceAddrClause(VarList
, Locs
);
17150 case OMPC_is_device_ptr
:
17151 Res
= ActOnOpenMPIsDevicePtrClause(VarList
, Locs
);
17153 case OMPC_has_device_addr
:
17154 Res
= ActOnOpenMPHasDeviceAddrClause(VarList
, Locs
);
17156 case OMPC_allocate
:
17157 Res
= ActOnOpenMPAllocateClause(Data
.DepModOrTailExpr
,
17158 Data
.AllocClauseModifier
, VarList
, StartLoc
,
17159 LParenLoc
, ColonLoc
, EndLoc
);
17161 case OMPC_nontemporal
:
17162 Res
= ActOnOpenMPNontemporalClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17164 case OMPC_inclusive
:
17165 Res
= ActOnOpenMPInclusiveClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17167 case OMPC_exclusive
:
17168 Res
= ActOnOpenMPExclusiveClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17170 case OMPC_affinity
:
17171 Res
= ActOnOpenMPAffinityClause(StartLoc
, LParenLoc
, ColonLoc
, EndLoc
,
17172 Data
.DepModOrTailExpr
, VarList
);
17174 case OMPC_doacross
:
17175 Res
= ActOnOpenMPDoacrossClause(
17176 static_cast<OpenMPDoacrossClauseModifier
>(ExtraModifier
),
17177 ExtraModifierLoc
, ColonLoc
, VarList
, StartLoc
, LParenLoc
, EndLoc
);
17179 case OMPC_num_teams
:
17180 Res
= ActOnOpenMPNumTeamsClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17182 case OMPC_thread_limit
:
17183 Res
= ActOnOpenMPThreadLimitClause(VarList
, StartLoc
, LParenLoc
, EndLoc
);
17188 case OMPC_num_threads
:
17192 case OMPC_allocator
:
17193 case OMPC_collapse
:
17195 case OMPC_proc_bind
:
17196 case OMPC_schedule
:
17200 case OMPC_mergeable
:
17201 case OMPC_threadprivate
:
17215 case OMPC_priority
:
17216 case OMPC_grainsize
:
17218 case OMPC_num_tasks
:
17220 case OMPC_dist_schedule
:
17221 case OMPC_defaultmap
:
17224 case OMPC_unified_address
:
17225 case OMPC_unified_shared_memory
:
17226 case OMPC_reverse_offload
:
17227 case OMPC_dynamic_allocators
:
17228 case OMPC_atomic_default_mem_order
:
17229 case OMPC_device_type
:
17233 case OMPC_severity
:
17236 case OMPC_novariants
:
17237 case OMPC_nocontext
:
17239 case OMPC_uses_allocators
:
17243 llvm_unreachable("Clause is not allowed.");
17248 ExprResult
SemaOpenMP::getOpenMPCapturedExpr(VarDecl
*Capture
, ExprValueKind VK
,
17250 SourceLocation Loc
) {
17251 ExprResult Res
= SemaRef
.BuildDeclRefExpr(
17252 Capture
, Capture
->getType().getNonReferenceType(), VK_LValue
, Loc
);
17253 if (!Res
.isUsable())
17254 return ExprError();
17255 if (OK
== OK_Ordinary
&& !getLangOpts().CPlusPlus
) {
17256 Res
= SemaRef
.CreateBuiltinUnaryOp(Loc
, UO_Deref
, Res
.get());
17257 if (!Res
.isUsable())
17258 return ExprError();
17260 if (VK
!= VK_LValue
&& Res
.get()->isGLValue()) {
17261 Res
= SemaRef
.DefaultLvalueConversion(Res
.get());
17262 if (!Res
.isUsable())
17263 return ExprError();
17268 OMPClause
*SemaOpenMP::ActOnOpenMPPrivateClause(ArrayRef
<Expr
*> VarList
,
17269 SourceLocation StartLoc
,
17270 SourceLocation LParenLoc
,
17271 SourceLocation EndLoc
) {
17272 SmallVector
<Expr
*, 8> Vars
;
17273 SmallVector
<Expr
*, 8> PrivateCopies
;
17274 bool IsImplicitClause
=
17275 StartLoc
.isInvalid() && LParenLoc
.isInvalid() && EndLoc
.isInvalid();
17276 for (Expr
*RefExpr
: VarList
) {
17277 assert(RefExpr
&& "NULL expr in OpenMP private clause.");
17278 SourceLocation ELoc
;
17279 SourceRange ERange
;
17280 Expr
*SimpleRefExpr
= RefExpr
;
17281 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
17283 // It will be analyzed later.
17284 Vars
.push_back(RefExpr
);
17285 PrivateCopies
.push_back(nullptr);
17287 ValueDecl
*D
= Res
.first
;
17291 QualType Type
= D
->getType();
17292 auto *VD
= dyn_cast
<VarDecl
>(D
);
17294 // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
17295 // A variable that appears in a private clause must not have an incomplete
17296 // type or a reference type.
17297 if (SemaRef
.RequireCompleteType(ELoc
, Type
,
17298 diag::err_omp_private_incomplete_type
))
17300 Type
= Type
.getNonReferenceType();
17302 // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
17303 // A variable that is privatized must not have a const-qualified type
17304 // unless it is of class type with a mutable member. This restriction does
17305 // not apply to the firstprivate clause.
17307 // OpenMP 3.1 [2.9.3.3, private clause, Restrictions]
17308 // A variable that appears in a private clause must not have a
17309 // const-qualified type unless it is of class type with a mutable member.
17310 if (rejectConstNotMutableType(SemaRef
, D
, Type
, OMPC_private
, ELoc
))
17313 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
17315 // Variables with the predetermined data-sharing attributes may not be
17316 // listed in data-sharing attributes clauses, except for the cases
17317 // listed below. For these exceptions only, listing a predetermined
17318 // variable in a data-sharing attribute clause is allowed and overrides
17319 // the variable's predetermined data-sharing attributes.
17320 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
17321 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_private
) {
17322 Diag(ELoc
, diag::err_omp_wrong_dsa
) << getOpenMPClauseName(DVar
.CKind
)
17323 << getOpenMPClauseName(OMPC_private
);
17324 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17328 OpenMPDirectiveKind CurrDir
= DSAStack
->getCurrentDirective();
17329 // Variably modified types are not supported for tasks.
17330 if (!Type
->isAnyPointerType() && Type
->isVariablyModifiedType() &&
17331 isOpenMPTaskingDirective(CurrDir
)) {
17332 Diag(ELoc
, diag::err_omp_variably_modified_type_not_supported
)
17333 << getOpenMPClauseName(OMPC_private
) << Type
17334 << getOpenMPDirectiveName(CurrDir
);
17335 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
17336 VarDecl::DeclarationOnly
;
17337 Diag(D
->getLocation(),
17338 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
17343 // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
17344 // A list item cannot appear in both a map clause and a data-sharing
17345 // attribute clause on the same construct
17347 // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
17348 // A list item cannot appear in both a map clause and a data-sharing
17349 // attribute clause on the same construct unless the construct is a
17350 // combined construct.
17351 if ((getLangOpts().OpenMP
<= 45 &&
17352 isOpenMPTargetExecutionDirective(CurrDir
)) ||
17353 CurrDir
== OMPD_target
) {
17354 OpenMPClauseKind ConflictKind
;
17355 if (DSAStack
->checkMappableExprComponentListsForDecl(
17356 VD
, /*CurrentRegionOnly=*/true,
17357 [&](OMPClauseMappableExprCommon::MappableExprComponentListRef
,
17358 OpenMPClauseKind WhereFoundClauseKind
) -> bool {
17359 ConflictKind
= WhereFoundClauseKind
;
17362 Diag(ELoc
, diag::err_omp_variable_in_given_clause_and_dsa
)
17363 << getOpenMPClauseName(OMPC_private
)
17364 << getOpenMPClauseName(ConflictKind
)
17365 << getOpenMPDirectiveName(CurrDir
);
17366 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17371 // OpenMP [2.9.3.3, Restrictions, C/C++, p.1]
17372 // A variable of class type (or array thereof) that appears in a private
17373 // clause requires an accessible, unambiguous default constructor for the
17375 // Generate helper private variable and initialize it with the default
17376 // value. The address of the original variable is replaced by the address of
17377 // the new private variable in CodeGen. This new variable is not added to
17378 // IdResolver, so the code in the OpenMP region uses original variable for
17379 // proper diagnostics.
17380 Type
= Type
.getUnqualifiedType();
17381 VarDecl
*VDPrivate
=
17382 buildVarDecl(SemaRef
, ELoc
, Type
, D
->getName(),
17383 D
->hasAttrs() ? &D
->getAttrs() : nullptr,
17384 VD
? cast
<DeclRefExpr
>(SimpleRefExpr
) : nullptr);
17385 SemaRef
.ActOnUninitializedDecl(VDPrivate
);
17386 if (VDPrivate
->isInvalidDecl())
17388 DeclRefExpr
*VDPrivateRefExpr
= buildDeclRefExpr(
17389 SemaRef
, VDPrivate
, RefExpr
->getType().getUnqualifiedType(), ELoc
);
17391 DeclRefExpr
*Ref
= nullptr;
17392 if (!VD
&& !SemaRef
.CurContext
->isDependentContext()) {
17393 auto *FD
= dyn_cast
<FieldDecl
>(D
);
17394 VarDecl
*VD
= FD
? DSAStack
->getImplicitFDCapExprDecl(FD
) : nullptr;
17396 Ref
= buildDeclRefExpr(SemaRef
, VD
, VD
->getType().getNonReferenceType(),
17397 RefExpr
->getExprLoc());
17399 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/false);
17401 if (!IsImplicitClause
)
17402 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_private
, Ref
);
17403 Vars
.push_back((VD
|| SemaRef
.CurContext
->isDependentContext())
17404 ? RefExpr
->IgnoreParens()
17406 PrivateCopies
.push_back(VDPrivateRefExpr
);
17412 return OMPPrivateClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
17413 Vars
, PrivateCopies
);
17416 OMPClause
*SemaOpenMP::ActOnOpenMPFirstprivateClause(ArrayRef
<Expr
*> VarList
,
17417 SourceLocation StartLoc
,
17418 SourceLocation LParenLoc
,
17419 SourceLocation EndLoc
) {
17420 SmallVector
<Expr
*, 8> Vars
;
17421 SmallVector
<Expr
*, 8> PrivateCopies
;
17422 SmallVector
<Expr
*, 8> Inits
;
17423 SmallVector
<Decl
*, 4> ExprCaptures
;
17424 bool IsImplicitClause
=
17425 StartLoc
.isInvalid() && LParenLoc
.isInvalid() && EndLoc
.isInvalid();
17426 SourceLocation ImplicitClauseLoc
= DSAStack
->getConstructLoc();
17428 for (Expr
*RefExpr
: VarList
) {
17429 assert(RefExpr
&& "NULL expr in OpenMP firstprivate clause.");
17430 SourceLocation ELoc
;
17431 SourceRange ERange
;
17432 Expr
*SimpleRefExpr
= RefExpr
;
17433 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
17435 // It will be analyzed later.
17436 Vars
.push_back(RefExpr
);
17437 PrivateCopies
.push_back(nullptr);
17438 Inits
.push_back(nullptr);
17440 ValueDecl
*D
= Res
.first
;
17444 ELoc
= IsImplicitClause
? ImplicitClauseLoc
: ELoc
;
17445 QualType Type
= D
->getType();
17446 auto *VD
= dyn_cast
<VarDecl
>(D
);
17448 // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
17449 // A variable that appears in a private clause must not have an incomplete
17450 // type or a reference type.
17451 if (SemaRef
.RequireCompleteType(ELoc
, Type
,
17452 diag::err_omp_firstprivate_incomplete_type
))
17454 Type
= Type
.getNonReferenceType();
17456 // OpenMP [2.9.3.4, Restrictions, C/C++, p.1]
17457 // A variable of class type (or array thereof) that appears in a private
17458 // clause requires an accessible, unambiguous copy constructor for the
17460 QualType ElemType
=
17461 getASTContext().getBaseElementType(Type
).getNonReferenceType();
17463 // If an implicit firstprivate variable found it was checked already.
17464 DSAStackTy::DSAVarData TopDVar
;
17465 if (!IsImplicitClause
) {
17466 DSAStackTy::DSAVarData DVar
=
17467 DSAStack
->getTopDSA(D
, /*FromParent=*/false);
17469 OpenMPDirectiveKind CurrDir
= DSAStack
->getCurrentDirective();
17470 bool IsConstant
= ElemType
.isConstant(getASTContext());
17471 // OpenMP [2.4.13, Data-sharing Attribute Clauses]
17472 // A list item that specifies a given variable may not appear in more
17473 // than one clause on the same directive, except that a variable may be
17474 // specified in both firstprivate and lastprivate clauses.
17475 // OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
17476 // A list item may appear in a firstprivate or lastprivate clause but not
17478 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_firstprivate
&&
17479 (isOpenMPDistributeDirective(CurrDir
) ||
17480 DVar
.CKind
!= OMPC_lastprivate
) &&
17482 Diag(ELoc
, diag::err_omp_wrong_dsa
)
17483 << getOpenMPClauseName(DVar
.CKind
)
17484 << getOpenMPClauseName(OMPC_firstprivate
);
17485 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17489 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
17491 // Variables with the predetermined data-sharing attributes may not be
17492 // listed in data-sharing attributes clauses, except for the cases
17493 // listed below. For these exceptions only, listing a predetermined
17494 // variable in a data-sharing attribute clause is allowed and overrides
17495 // the variable's predetermined data-sharing attributes.
17496 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
17497 // in a Construct, C/C++, p.2]
17498 // Variables with const-qualified type having no mutable member may be
17499 // listed in a firstprivate clause, even if they are static data members.
17500 if (!(IsConstant
|| (VD
&& VD
->isStaticDataMember())) && !DVar
.RefExpr
&&
17501 DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_shared
) {
17502 Diag(ELoc
, diag::err_omp_wrong_dsa
)
17503 << getOpenMPClauseName(DVar
.CKind
)
17504 << getOpenMPClauseName(OMPC_firstprivate
);
17505 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17509 // OpenMP [2.9.3.4, Restrictions, p.2]
17510 // A list item that is private within a parallel region must not appear
17511 // in a firstprivate clause on a worksharing construct if any of the
17512 // worksharing regions arising from the worksharing construct ever bind
17513 // to any of the parallel regions arising from the parallel construct.
17514 // OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
17515 // A list item that is private within a teams region must not appear in a
17516 // firstprivate clause on a distribute construct if any of the distribute
17517 // regions arising from the distribute construct ever bind to any of the
17518 // teams regions arising from the teams construct.
17519 // OpenMP 4.5 [2.15.3.4, Restrictions, p.3]
17520 // A list item that appears in a reduction clause of a teams construct
17521 // must not appear in a firstprivate clause on a distribute construct if
17522 // any of the distribute regions arising from the distribute construct
17523 // ever bind to any of the teams regions arising from the teams construct.
17524 if ((isOpenMPWorksharingDirective(CurrDir
) ||
17525 isOpenMPDistributeDirective(CurrDir
)) &&
17526 !isOpenMPParallelDirective(CurrDir
) &&
17527 !isOpenMPTeamsDirective(CurrDir
)) {
17528 DVar
= DSAStack
->getImplicitDSA(D
, true);
17529 if (DVar
.CKind
!= OMPC_shared
&&
17530 (isOpenMPParallelDirective(DVar
.DKind
) ||
17531 isOpenMPTeamsDirective(DVar
.DKind
) ||
17532 DVar
.DKind
== OMPD_unknown
)) {
17533 Diag(ELoc
, diag::err_omp_required_access
)
17534 << getOpenMPClauseName(OMPC_firstprivate
)
17535 << getOpenMPClauseName(OMPC_shared
);
17536 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17540 // OpenMP [2.9.3.4, Restrictions, p.3]
17541 // A list item that appears in a reduction clause of a parallel construct
17542 // must not appear in a firstprivate clause on a worksharing or task
17543 // construct if any of the worksharing or task regions arising from the
17544 // worksharing or task construct ever bind to any of the parallel regions
17545 // arising from the parallel construct.
17546 // OpenMP [2.9.3.4, Restrictions, p.4]
17547 // A list item that appears in a reduction clause in worksharing
17548 // construct must not appear in a firstprivate clause in a task construct
17549 // encountered during execution of any of the worksharing regions arising
17550 // from the worksharing construct.
17551 if (isOpenMPTaskingDirective(CurrDir
)) {
17552 DVar
= DSAStack
->hasInnermostDSA(
17554 [](OpenMPClauseKind C
, bool AppliedToPointee
) {
17555 return C
== OMPC_reduction
&& !AppliedToPointee
;
17557 [](OpenMPDirectiveKind K
) {
17558 return isOpenMPParallelDirective(K
) ||
17559 isOpenMPWorksharingDirective(K
) ||
17560 isOpenMPTeamsDirective(K
);
17562 /*FromParent=*/true);
17563 if (DVar
.CKind
== OMPC_reduction
&&
17564 (isOpenMPParallelDirective(DVar
.DKind
) ||
17565 isOpenMPWorksharingDirective(DVar
.DKind
) ||
17566 isOpenMPTeamsDirective(DVar
.DKind
))) {
17567 Diag(ELoc
, diag::err_omp_parallel_reduction_in_task_firstprivate
)
17568 << getOpenMPDirectiveName(DVar
.DKind
);
17569 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17574 // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
17575 // A list item cannot appear in both a map clause and a data-sharing
17576 // attribute clause on the same construct
17578 // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
17579 // A list item cannot appear in both a map clause and a data-sharing
17580 // attribute clause on the same construct unless the construct is a
17581 // combined construct.
17582 if ((getLangOpts().OpenMP
<= 45 &&
17583 isOpenMPTargetExecutionDirective(CurrDir
)) ||
17584 CurrDir
== OMPD_target
) {
17585 OpenMPClauseKind ConflictKind
;
17586 if (DSAStack
->checkMappableExprComponentListsForDecl(
17587 VD
, /*CurrentRegionOnly=*/true,
17589 OMPClauseMappableExprCommon::MappableExprComponentListRef
,
17590 OpenMPClauseKind WhereFoundClauseKind
) {
17591 ConflictKind
= WhereFoundClauseKind
;
17594 Diag(ELoc
, diag::err_omp_variable_in_given_clause_and_dsa
)
17595 << getOpenMPClauseName(OMPC_firstprivate
)
17596 << getOpenMPClauseName(ConflictKind
)
17597 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
17598 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17604 // Variably modified types are not supported for tasks.
17605 if (!Type
->isAnyPointerType() && Type
->isVariablyModifiedType() &&
17606 isOpenMPTaskingDirective(DSAStack
->getCurrentDirective())) {
17607 Diag(ELoc
, diag::err_omp_variably_modified_type_not_supported
)
17608 << getOpenMPClauseName(OMPC_firstprivate
) << Type
17609 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
17610 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
17611 VarDecl::DeclarationOnly
;
17612 Diag(D
->getLocation(),
17613 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
17618 Type
= Type
.getUnqualifiedType();
17619 VarDecl
*VDPrivate
=
17620 buildVarDecl(SemaRef
, ELoc
, Type
, D
->getName(),
17621 D
->hasAttrs() ? &D
->getAttrs() : nullptr,
17622 VD
? cast
<DeclRefExpr
>(SimpleRefExpr
) : nullptr);
17623 // Generate helper private variable and initialize it with the value of the
17624 // original variable. The address of the original variable is replaced by
17625 // the address of the new private variable in the CodeGen. This new variable
17626 // is not added to IdResolver, so the code in the OpenMP region uses
17627 // original variable for proper diagnostics and variable capturing.
17628 Expr
*VDInitRefExpr
= nullptr;
17629 // For arrays generate initializer for single element and replace it by the
17630 // original array element in CodeGen.
17631 if (Type
->isArrayType()) {
17633 buildVarDecl(SemaRef
, RefExpr
->getExprLoc(), ElemType
, D
->getName());
17634 VDInitRefExpr
= buildDeclRefExpr(SemaRef
, VDInit
, ElemType
, ELoc
);
17635 Expr
*Init
= SemaRef
.DefaultLvalueConversion(VDInitRefExpr
).get();
17636 ElemType
= ElemType
.getUnqualifiedType();
17637 VarDecl
*VDInitTemp
= buildVarDecl(SemaRef
, RefExpr
->getExprLoc(),
17638 ElemType
, ".firstprivate.temp");
17639 InitializedEntity Entity
=
17640 InitializedEntity::InitializeVariable(VDInitTemp
);
17641 InitializationKind Kind
= InitializationKind::CreateCopy(ELoc
, ELoc
);
17643 InitializationSequence
InitSeq(SemaRef
, Entity
, Kind
, Init
);
17644 ExprResult Result
= InitSeq
.Perform(SemaRef
, Entity
, Kind
, Init
);
17645 if (Result
.isInvalid())
17646 VDPrivate
->setInvalidDecl();
17648 VDPrivate
->setInit(Result
.getAs
<Expr
>());
17649 // Remove temp variable declaration.
17650 getASTContext().Deallocate(VDInitTemp
);
17652 VarDecl
*VDInit
= buildVarDecl(SemaRef
, RefExpr
->getExprLoc(), Type
,
17653 ".firstprivate.temp");
17654 VDInitRefExpr
= buildDeclRefExpr(SemaRef
, VDInit
, RefExpr
->getType(),
17655 RefExpr
->getExprLoc());
17656 SemaRef
.AddInitializerToDecl(
17657 VDPrivate
, SemaRef
.DefaultLvalueConversion(VDInitRefExpr
).get(),
17658 /*DirectInit=*/false);
17660 if (VDPrivate
->isInvalidDecl()) {
17661 if (IsImplicitClause
) {
17662 Diag(RefExpr
->getExprLoc(),
17663 diag::note_omp_task_predetermined_firstprivate_here
);
17667 SemaRef
.CurContext
->addDecl(VDPrivate
);
17668 DeclRefExpr
*VDPrivateRefExpr
= buildDeclRefExpr(
17669 SemaRef
, VDPrivate
, RefExpr
->getType().getUnqualifiedType(),
17670 RefExpr
->getExprLoc());
17671 DeclRefExpr
*Ref
= nullptr;
17672 if (!VD
&& !SemaRef
.CurContext
->isDependentContext()) {
17673 if (TopDVar
.CKind
== OMPC_lastprivate
) {
17674 Ref
= TopDVar
.PrivateCopy
;
17676 auto *FD
= dyn_cast
<FieldDecl
>(D
);
17677 VarDecl
*VD
= FD
? DSAStack
->getImplicitFDCapExprDecl(FD
) : nullptr;
17680 buildDeclRefExpr(SemaRef
, VD
, VD
->getType().getNonReferenceType(),
17681 RefExpr
->getExprLoc());
17683 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
17684 if (VD
|| !isOpenMPCapturedDecl(D
))
17685 ExprCaptures
.push_back(Ref
->getDecl());
17688 if (!IsImplicitClause
)
17689 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_firstprivate
, Ref
);
17690 Vars
.push_back((VD
|| SemaRef
.CurContext
->isDependentContext())
17691 ? RefExpr
->IgnoreParens()
17693 PrivateCopies
.push_back(VDPrivateRefExpr
);
17694 Inits
.push_back(VDInitRefExpr
);
17700 return OMPFirstprivateClause::Create(
17701 getASTContext(), StartLoc
, LParenLoc
, EndLoc
, Vars
, PrivateCopies
, Inits
,
17702 buildPreInits(getASTContext(), ExprCaptures
));
17705 OMPClause
*SemaOpenMP::ActOnOpenMPLastprivateClause(
17706 ArrayRef
<Expr
*> VarList
, OpenMPLastprivateModifier LPKind
,
17707 SourceLocation LPKindLoc
, SourceLocation ColonLoc
, SourceLocation StartLoc
,
17708 SourceLocation LParenLoc
, SourceLocation EndLoc
) {
17709 if (LPKind
== OMPC_LASTPRIVATE_unknown
&& LPKindLoc
.isValid()) {
17710 assert(ColonLoc
.isValid() && "Colon location must be valid.");
17711 Diag(LPKindLoc
, diag::err_omp_unexpected_clause_value
)
17712 << getListOfPossibleValues(OMPC_lastprivate
, /*First=*/0,
17713 /*Last=*/OMPC_LASTPRIVATE_unknown
)
17714 << getOpenMPClauseName(OMPC_lastprivate
);
17718 SmallVector
<Expr
*, 8> Vars
;
17719 SmallVector
<Expr
*, 8> SrcExprs
;
17720 SmallVector
<Expr
*, 8> DstExprs
;
17721 SmallVector
<Expr
*, 8> AssignmentOps
;
17722 SmallVector
<Decl
*, 4> ExprCaptures
;
17723 SmallVector
<Expr
*, 4> ExprPostUpdates
;
17724 for (Expr
*RefExpr
: VarList
) {
17725 assert(RefExpr
&& "NULL expr in OpenMP lastprivate clause.");
17726 SourceLocation ELoc
;
17727 SourceRange ERange
;
17728 Expr
*SimpleRefExpr
= RefExpr
;
17729 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
17731 // It will be analyzed later.
17732 Vars
.push_back(RefExpr
);
17733 SrcExprs
.push_back(nullptr);
17734 DstExprs
.push_back(nullptr);
17735 AssignmentOps
.push_back(nullptr);
17737 ValueDecl
*D
= Res
.first
;
17741 QualType Type
= D
->getType();
17742 auto *VD
= dyn_cast
<VarDecl
>(D
);
17744 // OpenMP [2.14.3.5, Restrictions, C/C++, p.2]
17745 // A variable that appears in a lastprivate clause must not have an
17746 // incomplete type or a reference type.
17747 if (SemaRef
.RequireCompleteType(ELoc
, Type
,
17748 diag::err_omp_lastprivate_incomplete_type
))
17750 Type
= Type
.getNonReferenceType();
17752 // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
17753 // A variable that is privatized must not have a const-qualified type
17754 // unless it is of class type with a mutable member. This restriction does
17755 // not apply to the firstprivate clause.
17757 // OpenMP 3.1 [2.9.3.5, lastprivate clause, Restrictions]
17758 // A variable that appears in a lastprivate clause must not have a
17759 // const-qualified type unless it is of class type with a mutable member.
17760 if (rejectConstNotMutableType(SemaRef
, D
, Type
, OMPC_lastprivate
, ELoc
))
17763 // OpenMP 5.0 [2.19.4.5 lastprivate Clause, Restrictions]
17764 // A list item that appears in a lastprivate clause with the conditional
17765 // modifier must be a scalar variable.
17766 if (LPKind
== OMPC_LASTPRIVATE_conditional
&& !Type
->isScalarType()) {
17767 Diag(ELoc
, diag::err_omp_lastprivate_conditional_non_scalar
);
17768 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
17769 VarDecl::DeclarationOnly
;
17770 Diag(D
->getLocation(),
17771 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
17776 OpenMPDirectiveKind CurrDir
= DSAStack
->getCurrentDirective();
17777 // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
17779 // Variables with the predetermined data-sharing attributes may not be
17780 // listed in data-sharing attributes clauses, except for the cases
17782 // OpenMP 4.5 [2.10.8, Distribute Construct, p.3]
17783 // A list item may appear in a firstprivate or lastprivate clause but not
17785 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
17786 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_lastprivate
&&
17787 (isOpenMPDistributeDirective(CurrDir
) ||
17788 DVar
.CKind
!= OMPC_firstprivate
) &&
17789 (DVar
.CKind
!= OMPC_private
|| DVar
.RefExpr
!= nullptr)) {
17790 Diag(ELoc
, diag::err_omp_wrong_dsa
)
17791 << getOpenMPClauseName(DVar
.CKind
)
17792 << getOpenMPClauseName(OMPC_lastprivate
);
17793 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17797 // OpenMP [2.14.3.5, Restrictions, p.2]
17798 // A list item that is private within a parallel region, or that appears in
17799 // the reduction clause of a parallel construct, must not appear in a
17800 // lastprivate clause on a worksharing construct if any of the corresponding
17801 // worksharing regions ever binds to any of the corresponding parallel
17803 DSAStackTy::DSAVarData TopDVar
= DVar
;
17804 if (isOpenMPWorksharingDirective(CurrDir
) &&
17805 !isOpenMPParallelDirective(CurrDir
) &&
17806 !isOpenMPTeamsDirective(CurrDir
)) {
17807 DVar
= DSAStack
->getImplicitDSA(D
, true);
17808 if (DVar
.CKind
!= OMPC_shared
) {
17809 Diag(ELoc
, diag::err_omp_required_access
)
17810 << getOpenMPClauseName(OMPC_lastprivate
)
17811 << getOpenMPClauseName(OMPC_shared
);
17812 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17817 // OpenMP [2.14.3.5, Restrictions, C++, p.1,2]
17818 // A variable of class type (or array thereof) that appears in a
17819 // lastprivate clause requires an accessible, unambiguous default
17820 // constructor for the class type, unless the list item is also specified
17821 // in a firstprivate clause.
17822 // A variable of class type (or array thereof) that appears in a
17823 // lastprivate clause requires an accessible, unambiguous copy assignment
17824 // operator for the class type.
17825 Type
= getASTContext().getBaseElementType(Type
).getNonReferenceType();
17826 VarDecl
*SrcVD
= buildVarDecl(SemaRef
, ERange
.getBegin(),
17827 Type
.getUnqualifiedType(), ".lastprivate.src",
17828 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
17829 DeclRefExpr
*PseudoSrcExpr
=
17830 buildDeclRefExpr(SemaRef
, SrcVD
, Type
.getUnqualifiedType(), ELoc
);
17832 buildVarDecl(SemaRef
, ERange
.getBegin(), Type
, ".lastprivate.dst",
17833 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
17834 DeclRefExpr
*PseudoDstExpr
= buildDeclRefExpr(SemaRef
, DstVD
, Type
, ELoc
);
17835 // For arrays generate assignment operation for single element and replace
17836 // it by the original array element in CodeGen.
17837 ExprResult AssignmentOp
= SemaRef
.BuildBinOp(/*S=*/nullptr, ELoc
, BO_Assign
,
17838 PseudoDstExpr
, PseudoSrcExpr
);
17839 if (AssignmentOp
.isInvalid())
17841 AssignmentOp
= SemaRef
.ActOnFinishFullExpr(AssignmentOp
.get(), ELoc
,
17842 /*DiscardedValue=*/false);
17843 if (AssignmentOp
.isInvalid())
17846 DeclRefExpr
*Ref
= nullptr;
17847 if (!VD
&& !SemaRef
.CurContext
->isDependentContext()) {
17848 if (TopDVar
.CKind
== OMPC_firstprivate
) {
17849 Ref
= TopDVar
.PrivateCopy
;
17851 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/false);
17852 if (!isOpenMPCapturedDecl(D
))
17853 ExprCaptures
.push_back(Ref
->getDecl());
17855 if ((TopDVar
.CKind
== OMPC_firstprivate
&& !TopDVar
.PrivateCopy
) ||
17856 (!isOpenMPCapturedDecl(D
) &&
17857 Ref
->getDecl()->hasAttr
<OMPCaptureNoInitAttr
>())) {
17858 ExprResult RefRes
= SemaRef
.DefaultLvalueConversion(Ref
);
17859 if (!RefRes
.isUsable())
17861 ExprResult PostUpdateRes
=
17862 SemaRef
.BuildBinOp(DSAStack
->getCurScope(), ELoc
, BO_Assign
,
17863 SimpleRefExpr
, RefRes
.get());
17864 if (!PostUpdateRes
.isUsable())
17866 ExprPostUpdates
.push_back(
17867 SemaRef
.IgnoredValueConversions(PostUpdateRes
.get()).get());
17870 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_lastprivate
, Ref
);
17871 Vars
.push_back((VD
|| SemaRef
.CurContext
->isDependentContext())
17872 ? RefExpr
->IgnoreParens()
17874 SrcExprs
.push_back(PseudoSrcExpr
);
17875 DstExprs
.push_back(PseudoDstExpr
);
17876 AssignmentOps
.push_back(AssignmentOp
.get());
17882 return OMPLastprivateClause::Create(
17883 getASTContext(), StartLoc
, LParenLoc
, EndLoc
, Vars
, SrcExprs
, DstExprs
,
17884 AssignmentOps
, LPKind
, LPKindLoc
, ColonLoc
,
17885 buildPreInits(getASTContext(), ExprCaptures
),
17886 buildPostUpdate(SemaRef
, ExprPostUpdates
));
17889 OMPClause
*SemaOpenMP::ActOnOpenMPSharedClause(ArrayRef
<Expr
*> VarList
,
17890 SourceLocation StartLoc
,
17891 SourceLocation LParenLoc
,
17892 SourceLocation EndLoc
) {
17893 SmallVector
<Expr
*, 8> Vars
;
17894 for (Expr
*RefExpr
: VarList
) {
17895 assert(RefExpr
&& "NULL expr in OpenMP lastprivate clause.");
17896 SourceLocation ELoc
;
17897 SourceRange ERange
;
17898 Expr
*SimpleRefExpr
= RefExpr
;
17899 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
17901 // It will be analyzed later.
17902 Vars
.push_back(RefExpr
);
17904 ValueDecl
*D
= Res
.first
;
17908 auto *VD
= dyn_cast
<VarDecl
>(D
);
17909 // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced
17911 // Variables with the predetermined data-sharing attributes may not be
17912 // listed in data-sharing attributes clauses, except for the cases
17913 // listed below. For these exceptions only, listing a predetermined
17914 // variable in a data-sharing attribute clause is allowed and overrides
17915 // the variable's predetermined data-sharing attributes.
17916 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
17917 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_shared
&&
17919 Diag(ELoc
, diag::err_omp_wrong_dsa
) << getOpenMPClauseName(DVar
.CKind
)
17920 << getOpenMPClauseName(OMPC_shared
);
17921 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
17925 DeclRefExpr
*Ref
= nullptr;
17926 if (!VD
&& isOpenMPCapturedDecl(D
) &&
17927 !SemaRef
.CurContext
->isDependentContext())
17928 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
17929 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_shared
, Ref
);
17930 Vars
.push_back((VD
|| !Ref
|| SemaRef
.CurContext
->isDependentContext())
17931 ? RefExpr
->IgnoreParens()
17938 return OMPSharedClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
17943 class DSARefChecker
: public StmtVisitor
<DSARefChecker
, bool> {
17947 bool VisitDeclRefExpr(DeclRefExpr
*E
) {
17948 if (auto *VD
= dyn_cast
<VarDecl
>(E
->getDecl())) {
17949 DSAStackTy::DSAVarData DVar
= Stack
->getTopDSA(VD
, /*FromParent=*/false);
17950 if (DVar
.CKind
== OMPC_shared
&& !DVar
.RefExpr
)
17952 if (DVar
.CKind
!= OMPC_unknown
)
17954 DSAStackTy::DSAVarData DVarPrivate
= Stack
->hasDSA(
17956 [](OpenMPClauseKind C
, bool AppliedToPointee
, bool) {
17957 return isOpenMPPrivate(C
) && !AppliedToPointee
;
17959 [](OpenMPDirectiveKind
) { return true; },
17960 /*FromParent=*/true);
17961 return DVarPrivate
.CKind
!= OMPC_unknown
;
17965 bool VisitStmt(Stmt
*S
) {
17966 for (Stmt
*Child
: S
->children()) {
17967 if (Child
&& Visit(Child
))
17972 explicit DSARefChecker(DSAStackTy
*S
) : Stack(S
) {}
17977 // Transform MemberExpression for specified FieldDecl of current class to
17978 // DeclRefExpr to specified OMPCapturedExprDecl.
17979 class TransformExprToCaptures
: public TreeTransform
<TransformExprToCaptures
> {
17980 typedef TreeTransform
<TransformExprToCaptures
> BaseTransform
;
17981 ValueDecl
*Field
= nullptr;
17982 DeclRefExpr
*CapturedExpr
= nullptr;
17985 TransformExprToCaptures(Sema
&SemaRef
, ValueDecl
*FieldDecl
)
17986 : BaseTransform(SemaRef
), Field(FieldDecl
), CapturedExpr(nullptr) {}
17988 ExprResult
TransformMemberExpr(MemberExpr
*E
) {
17989 if (isa
<CXXThisExpr
>(E
->getBase()->IgnoreParenImpCasts()) &&
17990 E
->getMemberDecl() == Field
) {
17991 CapturedExpr
= buildCapture(SemaRef
, Field
, E
, /*WithInit=*/false);
17992 return CapturedExpr
;
17994 return BaseTransform::TransformMemberExpr(E
);
17996 DeclRefExpr
*getCapturedExpr() { return CapturedExpr
; }
18000 template <typename T
, typename U
>
18001 static T
filterLookupForUDReductionAndMapper(
18002 SmallVectorImpl
<U
> &Lookups
, const llvm::function_ref
<T(ValueDecl
*)> Gen
) {
18003 for (U
&Set
: Lookups
) {
18004 for (auto *D
: Set
) {
18005 if (T Res
= Gen(cast
<ValueDecl
>(D
)))
18012 static NamedDecl
*findAcceptableDecl(Sema
&SemaRef
, NamedDecl
*D
) {
18013 assert(!LookupResult::isVisible(SemaRef
, D
) && "not in slow case");
18015 for (auto *RD
: D
->redecls()) {
18016 // Don't bother with extra checks if we already know this one isn't visible.
18020 auto ND
= cast
<NamedDecl
>(RD
);
18021 if (LookupResult::isVisible(SemaRef
, ND
))
18029 argumentDependentLookup(Sema
&SemaRef
, const DeclarationNameInfo
&Id
,
18030 SourceLocation Loc
, QualType Ty
,
18031 SmallVectorImpl
<UnresolvedSet
<8>> &Lookups
) {
18032 // Find all of the associated namespaces and classes based on the
18033 // arguments we have.
18034 Sema::AssociatedNamespaceSet AssociatedNamespaces
;
18035 Sema::AssociatedClassSet AssociatedClasses
;
18036 OpaqueValueExpr
OVE(Loc
, Ty
, VK_LValue
);
18037 SemaRef
.FindAssociatedClassesAndNamespaces(Loc
, &OVE
, AssociatedNamespaces
,
18038 AssociatedClasses
);
18040 // C++ [basic.lookup.argdep]p3:
18041 // Let X be the lookup set produced by unqualified lookup (3.4.1)
18042 // and let Y be the lookup set produced by argument dependent
18043 // lookup (defined as follows). If X contains [...] then Y is
18044 // empty. Otherwise Y is the set of declarations found in the
18045 // namespaces associated with the argument types as described
18046 // below. The set of declarations found by the lookup of the name
18047 // is the union of X and Y.
18049 // Here, we compute Y and add its members to the overloaded
18051 for (auto *NS
: AssociatedNamespaces
) {
18052 // When considering an associated namespace, the lookup is the
18053 // same as the lookup performed when the associated namespace is
18054 // used as a qualifier (3.4.3.2) except that:
18056 // -- Any using-directives in the associated namespace are
18059 // -- Any namespace-scope friend functions declared in
18060 // associated classes are visible within their respective
18061 // namespaces even if they are not visible during an ordinary
18063 DeclContext::lookup_result R
= NS
->lookup(Id
.getName());
18064 for (auto *D
: R
) {
18065 auto *Underlying
= D
;
18066 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(D
))
18067 Underlying
= USD
->getTargetDecl();
18069 if (!isa
<OMPDeclareReductionDecl
>(Underlying
) &&
18070 !isa
<OMPDeclareMapperDecl
>(Underlying
))
18073 if (!SemaRef
.isVisible(D
)) {
18074 D
= findAcceptableDecl(SemaRef
, D
);
18077 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(D
))
18078 Underlying
= USD
->getTargetDecl();
18080 Lookups
.emplace_back();
18081 Lookups
.back().addDecl(Underlying
);
18087 buildDeclareReductionRef(Sema
&SemaRef
, SourceLocation Loc
, SourceRange Range
,
18088 Scope
*S
, CXXScopeSpec
&ReductionIdScopeSpec
,
18089 const DeclarationNameInfo
&ReductionId
, QualType Ty
,
18090 CXXCastPath
&BasePath
, Expr
*UnresolvedReduction
) {
18091 if (ReductionIdScopeSpec
.isInvalid())
18092 return ExprError();
18093 SmallVector
<UnresolvedSet
<8>, 4> Lookups
;
18095 LookupResult
Lookup(SemaRef
, ReductionId
, Sema::LookupOMPReductionName
);
18096 Lookup
.suppressDiagnostics();
18097 while (S
&& SemaRef
.LookupParsedName(Lookup
, S
, &ReductionIdScopeSpec
,
18098 /*ObjectType=*/QualType())) {
18099 NamedDecl
*D
= Lookup
.getRepresentativeDecl();
18101 S
= S
->getParent();
18102 } while (S
&& !S
->isDeclScope(D
));
18104 S
= S
->getParent();
18105 Lookups
.emplace_back();
18106 Lookups
.back().append(Lookup
.begin(), Lookup
.end());
18109 } else if (auto *ULE
=
18110 cast_or_null
<UnresolvedLookupExpr
>(UnresolvedReduction
)) {
18111 Lookups
.push_back(UnresolvedSet
<8>());
18112 Decl
*PrevD
= nullptr;
18113 for (NamedDecl
*D
: ULE
->decls()) {
18115 Lookups
.push_back(UnresolvedSet
<8>());
18116 else if (auto *DRD
= dyn_cast
<OMPDeclareReductionDecl
>(D
))
18117 Lookups
.back().addDecl(DRD
);
18121 if (SemaRef
.CurContext
->isDependentContext() || Ty
->isDependentType() ||
18122 Ty
->isInstantiationDependentType() ||
18123 Ty
->containsUnexpandedParameterPack() ||
18124 filterLookupForUDReductionAndMapper
<bool>(Lookups
, [](ValueDecl
*D
) {
18125 return !D
->isInvalidDecl() &&
18126 (D
->getType()->isDependentType() ||
18127 D
->getType()->isInstantiationDependentType() ||
18128 D
->getType()->containsUnexpandedParameterPack());
18130 UnresolvedSet
<8> ResSet
;
18131 for (const UnresolvedSet
<8> &Set
: Lookups
) {
18134 ResSet
.append(Set
.begin(), Set
.end());
18135 // The last item marks the end of all declarations at the specified scope.
18136 ResSet
.addDecl(Set
[Set
.size() - 1]);
18138 return UnresolvedLookupExpr::Create(
18139 SemaRef
.Context
, /*NamingClass=*/nullptr,
18140 ReductionIdScopeSpec
.getWithLocInContext(SemaRef
.Context
), ReductionId
,
18141 /*ADL=*/true, ResSet
.begin(), ResSet
.end(), /*KnownDependent=*/false,
18142 /*KnownInstantiationDependent=*/false);
18144 // Lookup inside the classes.
18145 // C++ [over.match.oper]p3:
18146 // For a unary operator @ with an operand of a type whose
18147 // cv-unqualified version is T1, and for a binary operator @ with
18148 // a left operand of a type whose cv-unqualified version is T1 and
18149 // a right operand of a type whose cv-unqualified version is T2,
18150 // three sets of candidate functions, designated member
18151 // candidates, non-member candidates and built-in candidates, are
18152 // constructed as follows:
18153 // -- If T1 is a complete class type or a class currently being
18154 // defined, the set of member candidates is the result of the
18155 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
18156 // the set of member candidates is empty.
18157 LookupResult
Lookup(SemaRef
, ReductionId
, Sema::LookupOMPReductionName
);
18158 Lookup
.suppressDiagnostics();
18159 if (const auto *TyRec
= Ty
->getAs
<RecordType
>()) {
18160 // Complete the type if it can be completed.
18161 // If the type is neither complete nor being defined, bail out now.
18162 if (SemaRef
.isCompleteType(Loc
, Ty
) || TyRec
->isBeingDefined() ||
18163 TyRec
->getDecl()->getDefinition()) {
18165 SemaRef
.LookupQualifiedName(Lookup
, TyRec
->getDecl());
18166 if (Lookup
.empty()) {
18167 Lookups
.emplace_back();
18168 Lookups
.back().append(Lookup
.begin(), Lookup
.end());
18173 if (SemaRef
.getLangOpts().CPlusPlus
)
18174 argumentDependentLookup(SemaRef
, ReductionId
, Loc
, Ty
, Lookups
);
18175 if (auto *VD
= filterLookupForUDReductionAndMapper
<ValueDecl
*>(
18176 Lookups
, [&SemaRef
, Ty
](ValueDecl
*D
) -> ValueDecl
* {
18177 if (!D
->isInvalidDecl() &&
18178 SemaRef
.Context
.hasSameType(D
->getType(), Ty
))
18182 return SemaRef
.BuildDeclRefExpr(VD
, VD
->getType().getNonReferenceType(),
18184 if (SemaRef
.getLangOpts().CPlusPlus
) {
18185 if (auto *VD
= filterLookupForUDReductionAndMapper
<ValueDecl
*>(
18186 Lookups
, [&SemaRef
, Ty
, Loc
](ValueDecl
*D
) -> ValueDecl
* {
18187 if (!D
->isInvalidDecl() &&
18188 SemaRef
.IsDerivedFrom(Loc
, Ty
, D
->getType()) &&
18189 !Ty
.isMoreQualifiedThan(D
->getType(),
18190 SemaRef
.getASTContext()))
18194 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
18195 /*DetectVirtual=*/false);
18196 if (SemaRef
.IsDerivedFrom(Loc
, Ty
, VD
->getType(), Paths
)) {
18197 if (!Paths
.isAmbiguous(SemaRef
.Context
.getCanonicalType(
18198 VD
->getType().getUnqualifiedType()))) {
18199 if (SemaRef
.CheckBaseClassAccess(
18200 Loc
, VD
->getType(), Ty
, Paths
.front(),
18201 /*DiagID=*/0) != Sema::AR_inaccessible
) {
18202 SemaRef
.BuildBasePathArray(Paths
, BasePath
);
18203 return SemaRef
.BuildDeclRefExpr(
18204 VD
, VD
->getType().getNonReferenceType(), VK_LValue
, Loc
);
18210 if (ReductionIdScopeSpec
.isSet()) {
18211 SemaRef
.Diag(Loc
, diag::err_omp_not_resolved_reduction_identifier
)
18213 return ExprError();
18215 return ExprEmpty();
18219 /// Data for the reduction-based clauses.
18220 struct ReductionData
{
18221 /// List of original reduction items.
18222 SmallVector
<Expr
*, 8> Vars
;
18223 /// List of private copies of the reduction items.
18224 SmallVector
<Expr
*, 8> Privates
;
18225 /// LHS expressions for the reduction_op expressions.
18226 SmallVector
<Expr
*, 8> LHSs
;
18227 /// RHS expressions for the reduction_op expressions.
18228 SmallVector
<Expr
*, 8> RHSs
;
18229 /// Reduction operation expression.
18230 SmallVector
<Expr
*, 8> ReductionOps
;
18231 /// inscan copy operation expressions.
18232 SmallVector
<Expr
*, 8> InscanCopyOps
;
18233 /// inscan copy temp array expressions for prefix sums.
18234 SmallVector
<Expr
*, 8> InscanCopyArrayTemps
;
18235 /// inscan copy temp array element expressions for prefix sums.
18236 SmallVector
<Expr
*, 8> InscanCopyArrayElems
;
18237 /// Taskgroup descriptors for the corresponding reduction items in
18238 /// in_reduction clauses.
18239 SmallVector
<Expr
*, 8> TaskgroupDescriptors
;
18240 /// List of captures for clause.
18241 SmallVector
<Decl
*, 4> ExprCaptures
;
18242 /// List of postupdate expressions.
18243 SmallVector
<Expr
*, 4> ExprPostUpdates
;
18244 /// Reduction modifier.
18245 unsigned RedModifier
= 0;
18246 ReductionData() = delete;
18247 /// Reserves required memory for the reduction data.
18248 ReductionData(unsigned Size
, unsigned Modifier
= 0) : RedModifier(Modifier
) {
18249 Vars
.reserve(Size
);
18250 Privates
.reserve(Size
);
18251 LHSs
.reserve(Size
);
18252 RHSs
.reserve(Size
);
18253 ReductionOps
.reserve(Size
);
18254 if (RedModifier
== OMPC_REDUCTION_inscan
) {
18255 InscanCopyOps
.reserve(Size
);
18256 InscanCopyArrayTemps
.reserve(Size
);
18257 InscanCopyArrayElems
.reserve(Size
);
18259 TaskgroupDescriptors
.reserve(Size
);
18260 ExprCaptures
.reserve(Size
);
18261 ExprPostUpdates
.reserve(Size
);
18263 /// Stores reduction item and reduction operation only (required for dependent
18264 /// reduction item).
18265 void push(Expr
*Item
, Expr
*ReductionOp
) {
18266 Vars
.emplace_back(Item
);
18267 Privates
.emplace_back(nullptr);
18268 LHSs
.emplace_back(nullptr);
18269 RHSs
.emplace_back(nullptr);
18270 ReductionOps
.emplace_back(ReductionOp
);
18271 TaskgroupDescriptors
.emplace_back(nullptr);
18272 if (RedModifier
== OMPC_REDUCTION_inscan
) {
18273 InscanCopyOps
.push_back(nullptr);
18274 InscanCopyArrayTemps
.push_back(nullptr);
18275 InscanCopyArrayElems
.push_back(nullptr);
18278 /// Stores reduction data.
18279 void push(Expr
*Item
, Expr
*Private
, Expr
*LHS
, Expr
*RHS
, Expr
*ReductionOp
,
18280 Expr
*TaskgroupDescriptor
, Expr
*CopyOp
, Expr
*CopyArrayTemp
,
18281 Expr
*CopyArrayElem
) {
18282 Vars
.emplace_back(Item
);
18283 Privates
.emplace_back(Private
);
18284 LHSs
.emplace_back(LHS
);
18285 RHSs
.emplace_back(RHS
);
18286 ReductionOps
.emplace_back(ReductionOp
);
18287 TaskgroupDescriptors
.emplace_back(TaskgroupDescriptor
);
18288 if (RedModifier
== OMPC_REDUCTION_inscan
) {
18289 InscanCopyOps
.push_back(CopyOp
);
18290 InscanCopyArrayTemps
.push_back(CopyArrayTemp
);
18291 InscanCopyArrayElems
.push_back(CopyArrayElem
);
18293 assert(CopyOp
== nullptr && CopyArrayTemp
== nullptr &&
18294 CopyArrayElem
== nullptr &&
18295 "Copy operation must be used for inscan reductions only.");
18301 static bool checkOMPArraySectionConstantForReduction(
18302 ASTContext
&Context
, const ArraySectionExpr
*OASE
, bool &SingleElement
,
18303 SmallVectorImpl
<llvm::APSInt
> &ArraySizes
) {
18304 const Expr
*Length
= OASE
->getLength();
18305 if (Length
== nullptr) {
18306 // For array sections of the form [1:] or [:], we would need to analyze
18307 // the lower bound...
18308 if (OASE
->getColonLocFirst().isValid())
18311 // This is an array subscript which has implicit length 1!
18312 SingleElement
= true;
18313 ArraySizes
.push_back(llvm::APSInt::get(1));
18315 Expr::EvalResult Result
;
18316 if (!Length
->EvaluateAsInt(Result
, Context
))
18319 llvm::APSInt ConstantLengthValue
= Result
.Val
.getInt();
18320 SingleElement
= (ConstantLengthValue
.getSExtValue() == 1);
18321 ArraySizes
.push_back(ConstantLengthValue
);
18324 // Get the base of this array section and walk up from there.
18325 const Expr
*Base
= OASE
->getBase()->IgnoreParenImpCasts();
18327 // We require length = 1 for all array sections except the right-most to
18328 // guarantee that the memory region is contiguous and has no holes in it.
18329 while (const auto *TempOASE
= dyn_cast
<ArraySectionExpr
>(Base
)) {
18330 Length
= TempOASE
->getLength();
18331 if (Length
== nullptr) {
18332 // For array sections of the form [1:] or [:], we would need to analyze
18333 // the lower bound...
18334 if (OASE
->getColonLocFirst().isValid())
18337 // This is an array subscript which has implicit length 1!
18338 llvm::APSInt ConstantOne
= llvm::APSInt::get(1);
18339 ArraySizes
.push_back(ConstantOne
);
18341 Expr::EvalResult Result
;
18342 if (!Length
->EvaluateAsInt(Result
, Context
))
18345 llvm::APSInt ConstantLengthValue
= Result
.Val
.getInt();
18346 if (ConstantLengthValue
.getSExtValue() != 1)
18349 ArraySizes
.push_back(ConstantLengthValue
);
18351 Base
= TempOASE
->getBase()->IgnoreParenImpCasts();
18354 // If we have a single element, we don't need to add the implicit lengths.
18355 if (!SingleElement
) {
18356 while (const auto *TempASE
= dyn_cast
<ArraySubscriptExpr
>(Base
)) {
18357 // Has implicit length 1!
18358 llvm::APSInt ConstantOne
= llvm::APSInt::get(1);
18359 ArraySizes
.push_back(ConstantOne
);
18360 Base
= TempASE
->getBase()->IgnoreParenImpCasts();
18364 // This array section can be privatized as a single value or as a constant
18369 static BinaryOperatorKind
18370 getRelatedCompoundReductionOp(BinaryOperatorKind BOK
) {
18372 return BO_AddAssign
;
18374 return BO_MulAssign
;
18376 return BO_AndAssign
;
18378 return BO_OrAssign
;
18380 return BO_XorAssign
;
18384 static bool actOnOMPReductionKindClause(
18385 Sema
&S
, DSAStackTy
*Stack
, OpenMPClauseKind ClauseKind
,
18386 ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
, SourceLocation LParenLoc
,
18387 SourceLocation ColonLoc
, SourceLocation EndLoc
,
18388 CXXScopeSpec
&ReductionIdScopeSpec
, const DeclarationNameInfo
&ReductionId
,
18389 ArrayRef
<Expr
*> UnresolvedReductions
, ReductionData
&RD
) {
18390 DeclarationName DN
= ReductionId
.getName();
18391 OverloadedOperatorKind OOK
= DN
.getCXXOverloadedOperator();
18392 BinaryOperatorKind BOK
= BO_Comma
;
18394 ASTContext
&Context
= S
.Context
;
18395 // OpenMP [2.14.3.6, reduction clause]
18397 // reduction-identifier is either an identifier or one of the following
18398 // operators: +, -, *, &, |, ^, && and ||
18400 // reduction-identifier is either an id-expression or one of the following
18401 // operators: +, -, *, &, |, ^, && and ||
18407 // Minus(-) operator is not supported in TR11 (OpenMP 6.0). Setting BOK to
18408 // BO_Comma will automatically diagnose it for OpenMP > 52 as not allowed
18409 // reduction identifier.
18410 if (S
.LangOpts
.OpenMP
> 52)
18436 case OO_Array_Delete
:
18445 case OO_GreaterEqual
:
18447 case OO_MinusEqual
:
18449 case OO_SlashEqual
:
18450 case OO_PercentEqual
:
18451 case OO_CaretEqual
:
18455 case OO_GreaterGreater
:
18456 case OO_LessLessEqual
:
18457 case OO_GreaterGreaterEqual
:
18458 case OO_EqualEqual
:
18459 case OO_ExclaimEqual
:
18462 case OO_MinusMinus
:
18468 case OO_Conditional
:
18470 case NUM_OVERLOADED_OPERATORS
:
18471 llvm_unreachable("Unexpected reduction identifier");
18473 if (IdentifierInfo
*II
= DN
.getAsIdentifierInfo()) {
18474 if (II
->isStr("max"))
18476 else if (II
->isStr("min"))
18482 // OpenMP 5.2, 5.5.5 (see page 627, line 18) reduction Clause, Restrictions
18483 // A reduction clause with the minus (-) operator was deprecated
18484 if (OOK
== OO_Minus
&& S
.LangOpts
.OpenMP
== 52)
18485 S
.Diag(ReductionId
.getLoc(), diag::warn_omp_minus_in_reduction_deprecated
);
18487 SourceRange ReductionIdRange
;
18488 if (ReductionIdScopeSpec
.isValid())
18489 ReductionIdRange
.setBegin(ReductionIdScopeSpec
.getBeginLoc());
18491 ReductionIdRange
.setBegin(ReductionId
.getBeginLoc());
18492 ReductionIdRange
.setEnd(ReductionId
.getEndLoc());
18494 auto IR
= UnresolvedReductions
.begin(), ER
= UnresolvedReductions
.end();
18495 bool FirstIter
= true;
18496 for (Expr
*RefExpr
: VarList
) {
18497 assert(RefExpr
&& "nullptr expr in OpenMP reduction clause.");
18498 // OpenMP [2.1, C/C++]
18499 // A list item is a variable or array section, subject to the restrictions
18500 // specified in Section 2.4 on page 42 and in each of the sections
18501 // describing clauses and directives for which a list appears.
18502 // OpenMP [2.14.3.3, Restrictions, p.1]
18503 // A variable that is part of another variable (as an array or
18504 // structure element) cannot appear in a private clause.
18505 if (!FirstIter
&& IR
!= ER
)
18508 SourceLocation ELoc
;
18509 SourceRange ERange
;
18510 Expr
*SimpleRefExpr
= RefExpr
;
18511 auto Res
= getPrivateItem(S
, SimpleRefExpr
, ELoc
, ERange
,
18512 /*AllowArraySection=*/true);
18514 // Try to find 'declare reduction' corresponding construct before using
18515 // builtin/overloaded operators.
18516 QualType Type
= Context
.DependentTy
;
18517 CXXCastPath BasePath
;
18518 ExprResult DeclareReductionRef
= buildDeclareReductionRef(
18519 S
, ELoc
, ERange
, Stack
->getCurScope(), ReductionIdScopeSpec
,
18520 ReductionId
, Type
, BasePath
, IR
== ER
? nullptr : *IR
);
18521 Expr
*ReductionOp
= nullptr;
18522 if (S
.CurContext
->isDependentContext() &&
18523 (DeclareReductionRef
.isUnset() ||
18524 isa
<UnresolvedLookupExpr
>(DeclareReductionRef
.get())))
18525 ReductionOp
= DeclareReductionRef
.get();
18526 // It will be analyzed later.
18527 RD
.push(RefExpr
, ReductionOp
);
18529 ValueDecl
*D
= Res
.first
;
18533 Expr
*TaskgroupDescriptor
= nullptr;
18535 auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(RefExpr
->IgnoreParens());
18536 auto *OASE
= dyn_cast
<ArraySectionExpr
>(RefExpr
->IgnoreParens());
18538 Type
= ASE
->getType().getNonReferenceType();
18540 QualType BaseType
=
18541 ArraySectionExpr::getBaseOriginalType(OASE
->getBase());
18542 if (const auto *ATy
= BaseType
->getAsArrayTypeUnsafe())
18543 Type
= ATy
->getElementType();
18545 Type
= BaseType
->getPointeeType();
18546 Type
= Type
.getNonReferenceType();
18548 Type
= Context
.getBaseElementType(D
->getType().getNonReferenceType());
18550 auto *VD
= dyn_cast
<VarDecl
>(D
);
18552 // OpenMP [2.9.3.3, Restrictions, C/C++, p.3]
18553 // A variable that appears in a private clause must not have an incomplete
18554 // type or a reference type.
18555 if (S
.RequireCompleteType(ELoc
, D
->getType(),
18556 diag::err_omp_reduction_incomplete_type
))
18558 // OpenMP [2.14.3.6, reduction clause, Restrictions]
18559 // A list item that appears in a reduction clause must not be
18560 // const-qualified.
18561 if (rejectConstNotMutableType(S
, D
, Type
, ClauseKind
, ELoc
,
18562 /*AcceptIfMutable=*/false, ASE
|| OASE
))
18565 OpenMPDirectiveKind CurrDir
= Stack
->getCurrentDirective();
18566 // OpenMP [2.9.3.6, Restrictions, C/C++, p.4]
18567 // If a list-item is a reference type then it must bind to the same object
18568 // for all threads of the team.
18569 if (!ASE
&& !OASE
) {
18571 VarDecl
*VDDef
= VD
->getDefinition();
18572 if (VD
->getType()->isReferenceType() && VDDef
&& VDDef
->hasInit()) {
18573 DSARefChecker
Check(Stack
);
18574 if (Check
.Visit(VDDef
->getInit())) {
18575 S
.Diag(ELoc
, diag::err_omp_reduction_ref_type_arg
)
18576 << getOpenMPClauseName(ClauseKind
) << ERange
;
18577 S
.Diag(VDDef
->getLocation(), diag::note_defined_here
) << VDDef
;
18583 // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables Referenced
18585 // Variables with the predetermined data-sharing attributes may not be
18586 // listed in data-sharing attributes clauses, except for the cases
18587 // listed below. For these exceptions only, listing a predetermined
18588 // variable in a data-sharing attribute clause is allowed and overrides
18589 // the variable's predetermined data-sharing attributes.
18590 // OpenMP [2.14.3.6, Restrictions, p.3]
18591 // Any number of reduction clauses can be specified on the directive,
18592 // but a list item can appear only once in the reduction clauses for that
18594 DSAStackTy::DSAVarData DVar
= Stack
->getTopDSA(D
, /*FromParent=*/false);
18595 if (DVar
.CKind
== OMPC_reduction
) {
18596 S
.Diag(ELoc
, diag::err_omp_once_referenced
)
18597 << getOpenMPClauseName(ClauseKind
);
18599 S
.Diag(DVar
.RefExpr
->getExprLoc(), diag::note_omp_referenced
);
18602 if (DVar
.CKind
!= OMPC_unknown
) {
18603 S
.Diag(ELoc
, diag::err_omp_wrong_dsa
)
18604 << getOpenMPClauseName(DVar
.CKind
)
18605 << getOpenMPClauseName(OMPC_reduction
);
18606 reportOriginalDsa(S
, Stack
, D
, DVar
);
18610 // OpenMP [2.14.3.6, Restrictions, p.1]
18611 // A list item that appears in a reduction clause of a worksharing
18612 // construct must be shared in the parallel regions to which any of the
18613 // worksharing regions arising from the worksharing construct bind.
18614 if (isOpenMPWorksharingDirective(CurrDir
) &&
18615 !isOpenMPParallelDirective(CurrDir
) &&
18616 !isOpenMPTeamsDirective(CurrDir
)) {
18617 DVar
= Stack
->getImplicitDSA(D
, true);
18618 if (DVar
.CKind
!= OMPC_shared
) {
18619 S
.Diag(ELoc
, diag::err_omp_required_access
)
18620 << getOpenMPClauseName(OMPC_reduction
)
18621 << getOpenMPClauseName(OMPC_shared
);
18622 reportOriginalDsa(S
, Stack
, D
, DVar
);
18627 // Threadprivates cannot be shared between threads, so dignose if the base
18628 // is a threadprivate variable.
18629 DSAStackTy::DSAVarData DVar
= Stack
->getTopDSA(D
, /*FromParent=*/false);
18630 if (DVar
.CKind
== OMPC_threadprivate
) {
18631 S
.Diag(ELoc
, diag::err_omp_wrong_dsa
)
18632 << getOpenMPClauseName(DVar
.CKind
)
18633 << getOpenMPClauseName(OMPC_reduction
);
18634 reportOriginalDsa(S
, Stack
, D
, DVar
);
18639 // Try to find 'declare reduction' corresponding construct before using
18640 // builtin/overloaded operators.
18641 CXXCastPath BasePath
;
18642 ExprResult DeclareReductionRef
= buildDeclareReductionRef(
18643 S
, ELoc
, ERange
, Stack
->getCurScope(), ReductionIdScopeSpec
,
18644 ReductionId
, Type
, BasePath
, IR
== ER
? nullptr : *IR
);
18645 if (DeclareReductionRef
.isInvalid())
18647 if (S
.CurContext
->isDependentContext() &&
18648 (DeclareReductionRef
.isUnset() ||
18649 isa
<UnresolvedLookupExpr
>(DeclareReductionRef
.get()))) {
18650 RD
.push(RefExpr
, DeclareReductionRef
.get());
18653 if (BOK
== BO_Comma
&& DeclareReductionRef
.isUnset()) {
18654 // Not allowed reduction identifier is found.
18655 if (S
.LangOpts
.OpenMP
> 52)
18656 S
.Diag(ReductionId
.getBeginLoc(),
18657 diag::err_omp_unknown_reduction_identifier_since_omp_6_0
)
18658 << Type
<< ReductionIdRange
;
18660 S
.Diag(ReductionId
.getBeginLoc(),
18661 diag::err_omp_unknown_reduction_identifier_prior_omp_6_0
)
18662 << Type
<< ReductionIdRange
;
18666 // OpenMP [2.14.3.6, reduction clause, Restrictions]
18667 // The type of a list item that appears in a reduction clause must be valid
18668 // for the reduction-identifier. For a max or min reduction in C, the type
18669 // of the list item must be an allowed arithmetic data type: char, int,
18670 // float, double, or _Bool, possibly modified with long, short, signed, or
18671 // unsigned. For a max or min reduction in C++, the type of the list item
18672 // must be an allowed arithmetic data type: char, wchar_t, int, float,
18673 // double, or bool, possibly modified with long, short, signed, or unsigned.
18674 if (DeclareReductionRef
.isUnset()) {
18675 if ((BOK
== BO_GT
|| BOK
== BO_LT
) &&
18676 !(Type
->isScalarType() ||
18677 (S
.getLangOpts().CPlusPlus
&& Type
->isArithmeticType()))) {
18678 S
.Diag(ELoc
, diag::err_omp_clause_not_arithmetic_type_arg
)
18679 << getOpenMPClauseName(ClauseKind
) << S
.getLangOpts().CPlusPlus
;
18680 if (!ASE
&& !OASE
) {
18681 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(Context
) ==
18682 VarDecl::DeclarationOnly
;
18683 S
.Diag(D
->getLocation(),
18684 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
18689 if ((BOK
== BO_OrAssign
|| BOK
== BO_AndAssign
|| BOK
== BO_XorAssign
) &&
18690 !S
.getLangOpts().CPlusPlus
&& Type
->isFloatingType()) {
18691 S
.Diag(ELoc
, diag::err_omp_clause_floating_type_arg
)
18692 << getOpenMPClauseName(ClauseKind
);
18693 if (!ASE
&& !OASE
) {
18694 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(Context
) ==
18695 VarDecl::DeclarationOnly
;
18696 S
.Diag(D
->getLocation(),
18697 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
18704 Type
= Type
.getNonLValueExprType(Context
).getUnqualifiedType();
18705 VarDecl
*LHSVD
= buildVarDecl(S
, ELoc
, Type
, ".reduction.lhs",
18706 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
18707 VarDecl
*RHSVD
= buildVarDecl(S
, ELoc
, Type
, D
->getName(),
18708 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
18709 QualType PrivateTy
= Type
;
18711 // Try if we can determine constant lengths for all array sections and avoid
18713 bool ConstantLengthOASE
= false;
18715 bool SingleElement
;
18716 llvm::SmallVector
<llvm::APSInt
, 4> ArraySizes
;
18717 ConstantLengthOASE
= checkOMPArraySectionConstantForReduction(
18718 Context
, OASE
, SingleElement
, ArraySizes
);
18720 // If we don't have a single element, we must emit a constant array type.
18721 if (ConstantLengthOASE
&& !SingleElement
) {
18722 for (llvm::APSInt
&Size
: ArraySizes
)
18723 PrivateTy
= Context
.getConstantArrayType(PrivateTy
, Size
, nullptr,
18724 ArraySizeModifier::Normal
,
18725 /*IndexTypeQuals=*/0);
18729 if ((OASE
&& !ConstantLengthOASE
) ||
18731 D
->getType().getNonReferenceType()->isVariablyModifiedType())) {
18732 if (!Context
.getTargetInfo().isVLASupported()) {
18733 if (isOpenMPTargetExecutionDirective(Stack
->getCurrentDirective())) {
18734 S
.Diag(ELoc
, diag::err_omp_reduction_vla_unsupported
) << !!OASE
;
18735 S
.Diag(ELoc
, diag::note_vla_unsupported
);
18738 S
.targetDiag(ELoc
, diag::err_omp_reduction_vla_unsupported
) << !!OASE
;
18739 S
.targetDiag(ELoc
, diag::note_vla_unsupported
);
18742 // For arrays/array sections only:
18743 // Create pseudo array type for private copy. The size for this array will
18744 // be generated during codegen.
18745 // For array subscripts or single variables Private Ty is the same as Type
18746 // (type of the variable or single array element).
18747 PrivateTy
= Context
.getVariableArrayType(
18750 OpaqueValueExpr(ELoc
, Context
.getSizeType(), VK_PRValue
),
18751 ArraySizeModifier::Normal
, /*IndexTypeQuals=*/0, SourceRange());
18752 } else if (!ASE
&& !OASE
&&
18753 Context
.getAsArrayType(D
->getType().getNonReferenceType())) {
18754 PrivateTy
= D
->getType().getNonReferenceType();
18757 VarDecl
*PrivateVD
=
18758 buildVarDecl(S
, ELoc
, PrivateTy
, D
->getName(),
18759 D
->hasAttrs() ? &D
->getAttrs() : nullptr,
18760 VD
? cast
<DeclRefExpr
>(SimpleRefExpr
) : nullptr);
18761 // Add initializer for private variable.
18762 Expr
*Init
= nullptr;
18763 DeclRefExpr
*LHSDRE
= buildDeclRefExpr(S
, LHSVD
, Type
, ELoc
);
18764 DeclRefExpr
*RHSDRE
= buildDeclRefExpr(S
, RHSVD
, Type
, ELoc
);
18765 if (DeclareReductionRef
.isUsable()) {
18766 auto *DRDRef
= DeclareReductionRef
.getAs
<DeclRefExpr
>();
18767 auto *DRD
= cast
<OMPDeclareReductionDecl
>(DRDRef
->getDecl());
18768 if (DRD
->getInitializer()) {
18770 RHSVD
->setInit(DRDRef
);
18771 RHSVD
->setInitStyle(VarDecl::CallInit
);
18779 // '+', '-', '^', '|', '||' reduction ops - initializer is '0'.
18780 if (Type
->isScalarType() || Type
->isAnyComplexType())
18781 Init
= S
.ActOnIntegerConstant(ELoc
, /*Val=*/0).get();
18785 if (Type
->isScalarType() || Type
->isAnyComplexType()) {
18786 // '*' and '&&' reduction ops - initializer is '1'.
18787 Init
= S
.ActOnIntegerConstant(ELoc
, /*Val=*/1).get();
18791 // '&' reduction op - initializer is '~0'.
18792 QualType OrigType
= Type
;
18793 if (auto *ComplexTy
= OrigType
->getAs
<ComplexType
>())
18794 Type
= ComplexTy
->getElementType();
18795 if (Type
->isRealFloatingType()) {
18796 llvm::APFloat InitValue
= llvm::APFloat::getAllOnesValue(
18797 Context
.getFloatTypeSemantics(Type
));
18798 Init
= FloatingLiteral::Create(Context
, InitValue
, /*isexact=*/true,
18800 } else if (Type
->isScalarType()) {
18801 uint64_t Size
= Context
.getTypeSize(Type
);
18802 QualType IntTy
= Context
.getIntTypeForBitwidth(Size
, /*Signed=*/0);
18803 llvm::APInt InitValue
= llvm::APInt::getAllOnes(Size
);
18804 Init
= IntegerLiteral::Create(Context
, InitValue
, IntTy
, ELoc
);
18806 if (Init
&& OrigType
->isAnyComplexType()) {
18807 // Init = 0xFFFF + 0xFFFFi;
18808 auto *Im
= new (Context
) ImaginaryLiteral(Init
, OrigType
);
18809 Init
= S
.CreateBuiltinBinOp(ELoc
, BO_Add
, Init
, Im
).get();
18816 // 'min' reduction op - initializer is 'Largest representable number in
18817 // the reduction list item type'.
18818 // 'max' reduction op - initializer is 'Least representable number in
18819 // the reduction list item type'.
18820 if (Type
->isIntegerType() || Type
->isPointerType()) {
18821 bool IsSigned
= Type
->hasSignedIntegerRepresentation();
18822 uint64_t Size
= Context
.getTypeSize(Type
);
18824 Context
.getIntTypeForBitwidth(Size
, /*Signed=*/IsSigned
);
18825 llvm::APInt InitValue
=
18826 (BOK
!= BO_LT
) ? IsSigned
? llvm::APInt::getSignedMinValue(Size
)
18827 : llvm::APInt::getMinValue(Size
)
18828 : IsSigned
? llvm::APInt::getSignedMaxValue(Size
)
18829 : llvm::APInt::getMaxValue(Size
);
18830 Init
= IntegerLiteral::Create(Context
, InitValue
, IntTy
, ELoc
);
18831 if (Type
->isPointerType()) {
18832 // Cast to pointer type.
18833 ExprResult CastExpr
= S
.BuildCStyleCastExpr(
18834 ELoc
, Context
.getTrivialTypeSourceInfo(Type
, ELoc
), ELoc
, Init
);
18835 if (CastExpr
.isInvalid())
18837 Init
= CastExpr
.get();
18839 } else if (Type
->isRealFloatingType()) {
18840 llvm::APFloat InitValue
= llvm::APFloat::getLargest(
18841 Context
.getFloatTypeSemantics(Type
), BOK
!= BO_LT
);
18842 Init
= FloatingLiteral::Create(Context
, InitValue
, /*isexact=*/true,
18871 llvm_unreachable("Unexpected reduction operation");
18874 if (Init
&& DeclareReductionRef
.isUnset()) {
18875 S
.AddInitializerToDecl(RHSVD
, Init
, /*DirectInit=*/false);
18876 // Store initializer for single element in private copy. Will be used
18878 PrivateVD
->setInit(RHSVD
->getInit());
18879 PrivateVD
->setInitStyle(RHSVD
->getInitStyle());
18880 } else if (!Init
) {
18881 S
.ActOnUninitializedDecl(RHSVD
);
18882 // Store initializer for single element in private copy. Will be used
18884 PrivateVD
->setInit(RHSVD
->getInit());
18885 PrivateVD
->setInitStyle(RHSVD
->getInitStyle());
18887 if (RHSVD
->isInvalidDecl())
18889 if (!RHSVD
->hasInit() && DeclareReductionRef
.isUnset()) {
18890 S
.Diag(ELoc
, diag::err_omp_reduction_id_not_compatible
)
18891 << Type
<< ReductionIdRange
;
18892 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(Context
) ==
18893 VarDecl::DeclarationOnly
;
18894 S
.Diag(D
->getLocation(),
18895 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
18899 DeclRefExpr
*PrivateDRE
= buildDeclRefExpr(S
, PrivateVD
, PrivateTy
, ELoc
);
18900 ExprResult ReductionOp
;
18901 if (DeclareReductionRef
.isUsable()) {
18902 QualType RedTy
= DeclareReductionRef
.get()->getType();
18903 QualType PtrRedTy
= Context
.getPointerType(RedTy
);
18904 ExprResult LHS
= S
.CreateBuiltinUnaryOp(ELoc
, UO_AddrOf
, LHSDRE
);
18905 ExprResult RHS
= S
.CreateBuiltinUnaryOp(ELoc
, UO_AddrOf
, RHSDRE
);
18906 if (!BasePath
.empty()) {
18907 LHS
= S
.DefaultLvalueConversion(LHS
.get());
18908 RHS
= S
.DefaultLvalueConversion(RHS
.get());
18909 LHS
= ImplicitCastExpr::Create(
18910 Context
, PtrRedTy
, CK_UncheckedDerivedToBase
, LHS
.get(), &BasePath
,
18911 LHS
.get()->getValueKind(), FPOptionsOverride());
18912 RHS
= ImplicitCastExpr::Create(
18913 Context
, PtrRedTy
, CK_UncheckedDerivedToBase
, RHS
.get(), &BasePath
,
18914 RHS
.get()->getValueKind(), FPOptionsOverride());
18916 FunctionProtoType::ExtProtoInfo EPI
;
18917 QualType Params
[] = {PtrRedTy
, PtrRedTy
};
18918 QualType FnTy
= Context
.getFunctionType(Context
.VoidTy
, Params
, EPI
);
18919 auto *OVE
= new (Context
) OpaqueValueExpr(
18920 ELoc
, Context
.getPointerType(FnTy
), VK_PRValue
, OK_Ordinary
,
18921 S
.DefaultLvalueConversion(DeclareReductionRef
.get()).get());
18922 Expr
*Args
[] = {LHS
.get(), RHS
.get()};
18924 CallExpr::Create(Context
, OVE
, Args
, Context
.VoidTy
, VK_PRValue
, ELoc
,
18925 S
.CurFPFeatureOverrides());
18927 BinaryOperatorKind CombBOK
= getRelatedCompoundReductionOp(BOK
);
18928 if (Type
->isRecordType() && CombBOK
!= BOK
) {
18929 Sema::TentativeAnalysisScope
Trap(S
);
18931 S
.BuildBinOp(Stack
->getCurScope(), ReductionId
.getBeginLoc(),
18932 CombBOK
, LHSDRE
, RHSDRE
);
18934 if (!ReductionOp
.isUsable()) {
18936 S
.BuildBinOp(Stack
->getCurScope(), ReductionId
.getBeginLoc(), BOK
,
18938 if (ReductionOp
.isUsable()) {
18939 if (BOK
!= BO_LT
&& BOK
!= BO_GT
) {
18941 S
.BuildBinOp(Stack
->getCurScope(), ReductionId
.getBeginLoc(),
18942 BO_Assign
, LHSDRE
, ReductionOp
.get());
18944 auto *ConditionalOp
= new (Context
)
18945 ConditionalOperator(ReductionOp
.get(), ELoc
, LHSDRE
, ELoc
,
18946 RHSDRE
, Type
, VK_LValue
, OK_Ordinary
);
18948 S
.BuildBinOp(Stack
->getCurScope(), ReductionId
.getBeginLoc(),
18949 BO_Assign
, LHSDRE
, ConditionalOp
);
18953 if (ReductionOp
.isUsable())
18954 ReductionOp
= S
.ActOnFinishFullExpr(ReductionOp
.get(),
18955 /*DiscardedValue=*/false);
18956 if (!ReductionOp
.isUsable())
18960 // Add copy operations for inscan reductions.
18962 ExprResult CopyOpRes
, TempArrayRes
, TempArrayElem
;
18963 if (ClauseKind
== OMPC_reduction
&&
18964 RD
.RedModifier
== OMPC_REDUCTION_inscan
) {
18965 ExprResult RHS
= S
.DefaultLvalueConversion(RHSDRE
);
18966 CopyOpRes
= S
.BuildBinOp(Stack
->getCurScope(), ELoc
, BO_Assign
, LHSDRE
,
18968 if (!CopyOpRes
.isUsable())
18971 S
.ActOnFinishFullExpr(CopyOpRes
.get(), /*DiscardedValue=*/true);
18972 if (!CopyOpRes
.isUsable())
18974 // For simd directive and simd-based directives in simd mode no need to
18975 // construct temp array, need just a single temp element.
18976 if (Stack
->getCurrentDirective() == OMPD_simd
||
18977 (S
.getLangOpts().OpenMPSimd
&&
18978 isOpenMPSimdDirective(Stack
->getCurrentDirective()))) {
18979 VarDecl
*TempArrayVD
=
18980 buildVarDecl(S
, ELoc
, PrivateTy
, D
->getName(),
18981 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
18982 // Add a constructor to the temp decl.
18983 S
.ActOnUninitializedDecl(TempArrayVD
);
18984 TempArrayRes
= buildDeclRefExpr(S
, TempArrayVD
, PrivateTy
, ELoc
);
18986 // Build temp array for prefix sum.
18987 auto *Dim
= new (S
.Context
)
18988 OpaqueValueExpr(ELoc
, S
.Context
.getSizeType(), VK_PRValue
);
18989 QualType ArrayTy
= S
.Context
.getVariableArrayType(
18990 PrivateTy
, Dim
, ArraySizeModifier::Normal
,
18991 /*IndexTypeQuals=*/0, {ELoc
, ELoc
});
18992 VarDecl
*TempArrayVD
=
18993 buildVarDecl(S
, ELoc
, ArrayTy
, D
->getName(),
18994 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
18995 // Add a constructor to the temp decl.
18996 S
.ActOnUninitializedDecl(TempArrayVD
);
18997 TempArrayRes
= buildDeclRefExpr(S
, TempArrayVD
, ArrayTy
, ELoc
);
18999 S
.DefaultFunctionArrayLvalueConversion(TempArrayRes
.get());
19000 auto *Idx
= new (S
.Context
)
19001 OpaqueValueExpr(ELoc
, S
.Context
.getSizeType(), VK_PRValue
);
19002 TempArrayElem
= S
.CreateBuiltinArraySubscriptExpr(TempArrayElem
.get(),
19007 // OpenMP [2.15.4.6, Restrictions, p.2]
19008 // A list item that appears in an in_reduction clause of a task construct
19009 // must appear in a task_reduction clause of a construct associated with a
19010 // taskgroup region that includes the participating task in its taskgroup
19011 // set. The construct associated with the innermost region that meets this
19012 // condition must specify the same reduction-identifier as the in_reduction
19014 if (ClauseKind
== OMPC_in_reduction
) {
19015 SourceRange ParentSR
;
19016 BinaryOperatorKind ParentBOK
;
19017 const Expr
*ParentReductionOp
= nullptr;
19018 Expr
*ParentBOKTD
= nullptr, *ParentReductionOpTD
= nullptr;
19019 DSAStackTy::DSAVarData ParentBOKDSA
=
19020 Stack
->getTopMostTaskgroupReductionData(D
, ParentSR
, ParentBOK
,
19022 DSAStackTy::DSAVarData ParentReductionOpDSA
=
19023 Stack
->getTopMostTaskgroupReductionData(
19024 D
, ParentSR
, ParentReductionOp
, ParentReductionOpTD
);
19025 bool IsParentBOK
= ParentBOKDSA
.DKind
!= OMPD_unknown
;
19026 bool IsParentReductionOp
= ParentReductionOpDSA
.DKind
!= OMPD_unknown
;
19027 if ((DeclareReductionRef
.isUnset() && IsParentReductionOp
) ||
19028 (DeclareReductionRef
.isUsable() && IsParentBOK
) ||
19029 (IsParentBOK
&& BOK
!= ParentBOK
) || IsParentReductionOp
) {
19030 bool EmitError
= true;
19031 if (IsParentReductionOp
&& DeclareReductionRef
.isUsable()) {
19032 llvm::FoldingSetNodeID RedId
, ParentRedId
;
19033 ParentReductionOp
->Profile(ParentRedId
, Context
, /*Canonical=*/true);
19034 DeclareReductionRef
.get()->Profile(RedId
, Context
,
19035 /*Canonical=*/true);
19036 EmitError
= RedId
!= ParentRedId
;
19039 S
.Diag(ReductionId
.getBeginLoc(),
19040 diag::err_omp_reduction_identifier_mismatch
)
19041 << ReductionIdRange
<< RefExpr
->getSourceRange();
19042 S
.Diag(ParentSR
.getBegin(),
19043 diag::note_omp_previous_reduction_identifier
)
19045 << (IsParentBOK
? ParentBOKDSA
.RefExpr
19046 : ParentReductionOpDSA
.RefExpr
)
19047 ->getSourceRange();
19051 TaskgroupDescriptor
= IsParentBOK
? ParentBOKTD
: ParentReductionOpTD
;
19054 DeclRefExpr
*Ref
= nullptr;
19055 Expr
*VarsExpr
= RefExpr
->IgnoreParens();
19056 if (!VD
&& !S
.CurContext
->isDependentContext()) {
19058 TransformExprToCaptures
RebuildToCapture(S
, D
);
19060 RebuildToCapture
.TransformExpr(RefExpr
->IgnoreParens()).get();
19061 Ref
= RebuildToCapture
.getCapturedExpr();
19063 VarsExpr
= Ref
= buildCapture(S
, D
, SimpleRefExpr
, /*WithInit=*/false);
19065 if (!S
.OpenMP().isOpenMPCapturedDecl(D
)) {
19066 RD
.ExprCaptures
.emplace_back(Ref
->getDecl());
19067 if (Ref
->getDecl()->hasAttr
<OMPCaptureNoInitAttr
>()) {
19068 ExprResult RefRes
= S
.DefaultLvalueConversion(Ref
);
19069 if (!RefRes
.isUsable())
19071 ExprResult PostUpdateRes
=
19072 S
.BuildBinOp(Stack
->getCurScope(), ELoc
, BO_Assign
, SimpleRefExpr
,
19074 if (!PostUpdateRes
.isUsable())
19076 if (isOpenMPTaskingDirective(Stack
->getCurrentDirective()) ||
19077 Stack
->getCurrentDirective() == OMPD_taskgroup
) {
19078 S
.Diag(RefExpr
->getExprLoc(),
19079 diag::err_omp_reduction_non_addressable_expression
)
19080 << RefExpr
->getSourceRange();
19083 RD
.ExprPostUpdates
.emplace_back(
19084 S
.IgnoredValueConversions(PostUpdateRes
.get()).get());
19088 // All reduction items are still marked as reduction (to do not increase
19089 // code base size).
19090 unsigned Modifier
= RD
.RedModifier
;
19091 // Consider task_reductions as reductions with task modifier. Required for
19092 // correct analysis of in_reduction clauses.
19093 if (CurrDir
== OMPD_taskgroup
&& ClauseKind
== OMPC_task_reduction
)
19094 Modifier
= OMPC_REDUCTION_task
;
19095 Stack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_reduction
, Ref
, Modifier
,
19097 if (Modifier
== OMPC_REDUCTION_task
&&
19098 (CurrDir
== OMPD_taskgroup
||
19099 ((isOpenMPParallelDirective(CurrDir
) ||
19100 isOpenMPWorksharingDirective(CurrDir
)) &&
19101 !isOpenMPSimdDirective(CurrDir
)))) {
19102 if (DeclareReductionRef
.isUsable())
19103 Stack
->addTaskgroupReductionData(D
, ReductionIdRange
,
19104 DeclareReductionRef
.get());
19106 Stack
->addTaskgroupReductionData(D
, ReductionIdRange
, BOK
);
19108 RD
.push(VarsExpr
, PrivateDRE
, LHSDRE
, RHSDRE
, ReductionOp
.get(),
19109 TaskgroupDescriptor
, CopyOpRes
.get(), TempArrayRes
.get(),
19110 TempArrayElem
.get());
19112 return RD
.Vars
.empty();
19115 OMPClause
*SemaOpenMP::ActOnOpenMPReductionClause(
19116 ArrayRef
<Expr
*> VarList
, OpenMPReductionClauseModifier Modifier
,
19117 SourceLocation StartLoc
, SourceLocation LParenLoc
,
19118 SourceLocation ModifierLoc
, SourceLocation ColonLoc
, SourceLocation EndLoc
,
19119 CXXScopeSpec
&ReductionIdScopeSpec
, const DeclarationNameInfo
&ReductionId
,
19120 ArrayRef
<Expr
*> UnresolvedReductions
) {
19121 if (ModifierLoc
.isValid() && Modifier
== OMPC_REDUCTION_unknown
) {
19122 Diag(LParenLoc
, diag::err_omp_unexpected_clause_value
)
19123 << getListOfPossibleValues(OMPC_reduction
, /*First=*/0,
19124 /*Last=*/OMPC_REDUCTION_unknown
)
19125 << getOpenMPClauseName(OMPC_reduction
);
19128 // OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions
19129 // A reduction clause with the inscan reduction-modifier may only appear on a
19130 // worksharing-loop construct, a worksharing-loop SIMD construct, a simd
19131 // construct, a parallel worksharing-loop construct or a parallel
19132 // worksharing-loop SIMD construct.
19133 if (Modifier
== OMPC_REDUCTION_inscan
&&
19134 (DSAStack
->getCurrentDirective() != OMPD_for
&&
19135 DSAStack
->getCurrentDirective() != OMPD_for_simd
&&
19136 DSAStack
->getCurrentDirective() != OMPD_simd
&&
19137 DSAStack
->getCurrentDirective() != OMPD_parallel_for
&&
19138 DSAStack
->getCurrentDirective() != OMPD_parallel_for_simd
)) {
19139 Diag(ModifierLoc
, diag::err_omp_wrong_inscan_reduction
);
19143 ReductionData
RD(VarList
.size(), Modifier
);
19144 if (actOnOMPReductionKindClause(SemaRef
, DSAStack
, OMPC_reduction
, VarList
,
19145 StartLoc
, LParenLoc
, ColonLoc
, EndLoc
,
19146 ReductionIdScopeSpec
, ReductionId
,
19147 UnresolvedReductions
, RD
))
19150 return OMPReductionClause::Create(
19151 getASTContext(), StartLoc
, LParenLoc
, ModifierLoc
, ColonLoc
, EndLoc
,
19153 ReductionIdScopeSpec
.getWithLocInContext(getASTContext()), ReductionId
,
19154 RD
.Privates
, RD
.LHSs
, RD
.RHSs
, RD
.ReductionOps
, RD
.InscanCopyOps
,
19155 RD
.InscanCopyArrayTemps
, RD
.InscanCopyArrayElems
,
19156 buildPreInits(getASTContext(), RD
.ExprCaptures
),
19157 buildPostUpdate(SemaRef
, RD
.ExprPostUpdates
));
19160 OMPClause
*SemaOpenMP::ActOnOpenMPTaskReductionClause(
19161 ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
, SourceLocation LParenLoc
,
19162 SourceLocation ColonLoc
, SourceLocation EndLoc
,
19163 CXXScopeSpec
&ReductionIdScopeSpec
, const DeclarationNameInfo
&ReductionId
,
19164 ArrayRef
<Expr
*> UnresolvedReductions
) {
19165 ReductionData
RD(VarList
.size());
19166 if (actOnOMPReductionKindClause(SemaRef
, DSAStack
, OMPC_task_reduction
,
19167 VarList
, StartLoc
, LParenLoc
, ColonLoc
,
19168 EndLoc
, ReductionIdScopeSpec
, ReductionId
,
19169 UnresolvedReductions
, RD
))
19172 return OMPTaskReductionClause::Create(
19173 getASTContext(), StartLoc
, LParenLoc
, ColonLoc
, EndLoc
, RD
.Vars
,
19174 ReductionIdScopeSpec
.getWithLocInContext(getASTContext()), ReductionId
,
19175 RD
.Privates
, RD
.LHSs
, RD
.RHSs
, RD
.ReductionOps
,
19176 buildPreInits(getASTContext(), RD
.ExprCaptures
),
19177 buildPostUpdate(SemaRef
, RD
.ExprPostUpdates
));
19180 OMPClause
*SemaOpenMP::ActOnOpenMPInReductionClause(
19181 ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
, SourceLocation LParenLoc
,
19182 SourceLocation ColonLoc
, SourceLocation EndLoc
,
19183 CXXScopeSpec
&ReductionIdScopeSpec
, const DeclarationNameInfo
&ReductionId
,
19184 ArrayRef
<Expr
*> UnresolvedReductions
) {
19185 ReductionData
RD(VarList
.size());
19186 if (actOnOMPReductionKindClause(SemaRef
, DSAStack
, OMPC_in_reduction
, VarList
,
19187 StartLoc
, LParenLoc
, ColonLoc
, EndLoc
,
19188 ReductionIdScopeSpec
, ReductionId
,
19189 UnresolvedReductions
, RD
))
19192 return OMPInReductionClause::Create(
19193 getASTContext(), StartLoc
, LParenLoc
, ColonLoc
, EndLoc
, RD
.Vars
,
19194 ReductionIdScopeSpec
.getWithLocInContext(getASTContext()), ReductionId
,
19195 RD
.Privates
, RD
.LHSs
, RD
.RHSs
, RD
.ReductionOps
, RD
.TaskgroupDescriptors
,
19196 buildPreInits(getASTContext(), RD
.ExprCaptures
),
19197 buildPostUpdate(SemaRef
, RD
.ExprPostUpdates
));
19200 bool SemaOpenMP::CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind
,
19201 SourceLocation LinLoc
) {
19202 if ((!getLangOpts().CPlusPlus
&& LinKind
!= OMPC_LINEAR_val
) ||
19203 LinKind
== OMPC_LINEAR_unknown
|| LinKind
== OMPC_LINEAR_step
) {
19204 Diag(LinLoc
, diag::err_omp_wrong_linear_modifier
)
19205 << getLangOpts().CPlusPlus
;
19211 bool SemaOpenMP::CheckOpenMPLinearDecl(const ValueDecl
*D
, SourceLocation ELoc
,
19212 OpenMPLinearClauseKind LinKind
,
19213 QualType Type
, bool IsDeclareSimd
) {
19214 const auto *VD
= dyn_cast_or_null
<VarDecl
>(D
);
19215 // A variable must not have an incomplete type or a reference type.
19216 if (SemaRef
.RequireCompleteType(ELoc
, Type
,
19217 diag::err_omp_linear_incomplete_type
))
19219 if ((LinKind
== OMPC_LINEAR_uval
|| LinKind
== OMPC_LINEAR_ref
) &&
19220 !Type
->isReferenceType()) {
19221 Diag(ELoc
, diag::err_omp_wrong_linear_modifier_non_reference
)
19222 << Type
<< getOpenMPSimpleClauseTypeName(OMPC_linear
, LinKind
);
19225 Type
= Type
.getNonReferenceType();
19227 // OpenMP 5.0 [2.19.3, List Item Privatization, Restrictions]
19228 // A variable that is privatized must not have a const-qualified type
19229 // unless it is of class type with a mutable member. This restriction does
19230 // not apply to the firstprivate clause, nor to the linear clause on
19231 // declarative directives (like declare simd).
19232 if (!IsDeclareSimd
&&
19233 rejectConstNotMutableType(SemaRef
, D
, Type
, OMPC_linear
, ELoc
))
19236 // A list item must be of integral or pointer type.
19237 Type
= Type
.getUnqualifiedType().getCanonicalType();
19238 const auto *Ty
= Type
.getTypePtrOrNull();
19239 if (!Ty
|| (LinKind
!= OMPC_LINEAR_ref
&& !Ty
->isDependentType() &&
19240 !Ty
->isIntegralType(getASTContext()) && !Ty
->isPointerType())) {
19241 Diag(ELoc
, diag::err_omp_linear_expected_int_or_ptr
) << Type
;
19243 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
19244 VarDecl::DeclarationOnly
;
19245 Diag(D
->getLocation(),
19246 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
19254 OMPClause
*SemaOpenMP::ActOnOpenMPLinearClause(
19255 ArrayRef
<Expr
*> VarList
, Expr
*Step
, SourceLocation StartLoc
,
19256 SourceLocation LParenLoc
, OpenMPLinearClauseKind LinKind
,
19257 SourceLocation LinLoc
, SourceLocation ColonLoc
,
19258 SourceLocation StepModifierLoc
, SourceLocation EndLoc
) {
19259 SmallVector
<Expr
*, 8> Vars
;
19260 SmallVector
<Expr
*, 8> Privates
;
19261 SmallVector
<Expr
*, 8> Inits
;
19262 SmallVector
<Decl
*, 4> ExprCaptures
;
19263 SmallVector
<Expr
*, 4> ExprPostUpdates
;
19264 // OpenMP 5.2 [Section 5.4.6, linear clause]
19265 // step-simple-modifier is exclusive, can't be used with 'val', 'uval', or
19267 if (LinLoc
.isValid() && StepModifierLoc
.isInvalid() && Step
&&
19268 getLangOpts().OpenMP
>= 52)
19269 Diag(Step
->getBeginLoc(), diag::err_omp_step_simple_modifier_exclusive
);
19270 if (CheckOpenMPLinearModifier(LinKind
, LinLoc
))
19271 LinKind
= OMPC_LINEAR_val
;
19272 for (Expr
*RefExpr
: VarList
) {
19273 assert(RefExpr
&& "NULL expr in OpenMP linear clause.");
19274 SourceLocation ELoc
;
19275 SourceRange ERange
;
19276 Expr
*SimpleRefExpr
= RefExpr
;
19277 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
19279 // It will be analyzed later.
19280 Vars
.push_back(RefExpr
);
19281 Privates
.push_back(nullptr);
19282 Inits
.push_back(nullptr);
19284 ValueDecl
*D
= Res
.first
;
19288 QualType Type
= D
->getType();
19289 auto *VD
= dyn_cast
<VarDecl
>(D
);
19291 // OpenMP [2.14.3.7, linear clause]
19292 // A list-item cannot appear in more than one linear clause.
19293 // A list-item that appears in a linear clause cannot appear in any
19294 // other data-sharing attribute clause.
19295 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
19296 if (DVar
.RefExpr
) {
19297 Diag(ELoc
, diag::err_omp_wrong_dsa
) << getOpenMPClauseName(DVar
.CKind
)
19298 << getOpenMPClauseName(OMPC_linear
);
19299 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
19303 if (CheckOpenMPLinearDecl(D
, ELoc
, LinKind
, Type
))
19305 Type
= Type
.getNonReferenceType().getUnqualifiedType().getCanonicalType();
19307 // Build private copy of original var.
19309 buildVarDecl(SemaRef
, ELoc
, Type
, D
->getName(),
19310 D
->hasAttrs() ? &D
->getAttrs() : nullptr,
19311 VD
? cast
<DeclRefExpr
>(SimpleRefExpr
) : nullptr);
19312 DeclRefExpr
*PrivateRef
= buildDeclRefExpr(SemaRef
, Private
, Type
, ELoc
);
19313 // Build var to save initial value.
19314 VarDecl
*Init
= buildVarDecl(SemaRef
, ELoc
, Type
, ".linear.start");
19316 DeclRefExpr
*Ref
= nullptr;
19317 if (!VD
&& !SemaRef
.CurContext
->isDependentContext()) {
19318 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/false);
19319 if (!isOpenMPCapturedDecl(D
)) {
19320 ExprCaptures
.push_back(Ref
->getDecl());
19321 if (Ref
->getDecl()->hasAttr
<OMPCaptureNoInitAttr
>()) {
19322 ExprResult RefRes
= SemaRef
.DefaultLvalueConversion(Ref
);
19323 if (!RefRes
.isUsable())
19325 ExprResult PostUpdateRes
=
19326 SemaRef
.BuildBinOp(DSAStack
->getCurScope(), ELoc
, BO_Assign
,
19327 SimpleRefExpr
, RefRes
.get());
19328 if (!PostUpdateRes
.isUsable())
19330 ExprPostUpdates
.push_back(
19331 SemaRef
.IgnoredValueConversions(PostUpdateRes
.get()).get());
19335 if (LinKind
== OMPC_LINEAR_uval
)
19336 InitExpr
= VD
? VD
->getInit() : SimpleRefExpr
;
19338 InitExpr
= VD
? SimpleRefExpr
: Ref
;
19339 SemaRef
.AddInitializerToDecl(
19340 Init
, SemaRef
.DefaultLvalueConversion(InitExpr
).get(),
19341 /*DirectInit=*/false);
19342 DeclRefExpr
*InitRef
= buildDeclRefExpr(SemaRef
, Init
, Type
, ELoc
);
19344 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_linear
, Ref
);
19345 Vars
.push_back((VD
|| SemaRef
.CurContext
->isDependentContext())
19346 ? RefExpr
->IgnoreParens()
19348 Privates
.push_back(PrivateRef
);
19349 Inits
.push_back(InitRef
);
19355 Expr
*StepExpr
= Step
;
19356 Expr
*CalcStepExpr
= nullptr;
19357 if (Step
&& !Step
->isValueDependent() && !Step
->isTypeDependent() &&
19358 !Step
->isInstantiationDependent() &&
19359 !Step
->containsUnexpandedParameterPack()) {
19360 SourceLocation StepLoc
= Step
->getBeginLoc();
19361 ExprResult Val
= PerformOpenMPImplicitIntegerConversion(StepLoc
, Step
);
19362 if (Val
.isInvalid())
19364 StepExpr
= Val
.get();
19366 // Build var to save the step value.
19368 buildVarDecl(SemaRef
, StepLoc
, StepExpr
->getType(), ".linear.step");
19369 ExprResult SaveRef
=
19370 buildDeclRefExpr(SemaRef
, SaveVar
, StepExpr
->getType(), StepLoc
);
19371 ExprResult CalcStep
= SemaRef
.BuildBinOp(
19372 SemaRef
.getCurScope(), StepLoc
, BO_Assign
, SaveRef
.get(), StepExpr
);
19374 SemaRef
.ActOnFinishFullExpr(CalcStep
.get(), /*DiscardedValue=*/false);
19376 // Warn about zero linear step (it would be probably better specified as
19377 // making corresponding variables 'const').
19378 if (std::optional
<llvm::APSInt
> Result
=
19379 StepExpr
->getIntegerConstantExpr(getASTContext())) {
19380 if (!Result
->isNegative() && !Result
->isStrictlyPositive())
19381 Diag(StepLoc
, diag::warn_omp_linear_step_zero
)
19382 << Vars
[0] << (Vars
.size() > 1);
19383 } else if (CalcStep
.isUsable()) {
19384 // Calculate the step beforehand instead of doing this on each iteration.
19385 // (This is not used if the number of iterations may be kfold-ed).
19386 CalcStepExpr
= CalcStep
.get();
19390 return OMPLinearClause::Create(getASTContext(), StartLoc
, LParenLoc
, LinKind
,
19391 LinLoc
, ColonLoc
, StepModifierLoc
, EndLoc
,
19392 Vars
, Privates
, Inits
, StepExpr
, CalcStepExpr
,
19393 buildPreInits(getASTContext(), ExprCaptures
),
19394 buildPostUpdate(SemaRef
, ExprPostUpdates
));
19397 static bool FinishOpenMPLinearClause(OMPLinearClause
&Clause
, DeclRefExpr
*IV
,
19398 Expr
*NumIterations
, Sema
&SemaRef
,
19399 Scope
*S
, DSAStackTy
*Stack
) {
19400 // Walk the vars and build update/final expressions for the CodeGen.
19401 SmallVector
<Expr
*, 8> Updates
;
19402 SmallVector
<Expr
*, 8> Finals
;
19403 SmallVector
<Expr
*, 8> UsedExprs
;
19404 Expr
*Step
= Clause
.getStep();
19405 Expr
*CalcStep
= Clause
.getCalcStep();
19406 // OpenMP [2.14.3.7, linear clause]
19407 // If linear-step is not specified it is assumed to be 1.
19409 Step
= SemaRef
.ActOnIntegerConstant(SourceLocation(), 1).get();
19411 Step
= cast
<BinaryOperator
>(CalcStep
)->getLHS();
19412 bool HasErrors
= false;
19413 auto CurInit
= Clause
.inits().begin();
19414 auto CurPrivate
= Clause
.privates().begin();
19415 OpenMPLinearClauseKind LinKind
= Clause
.getModifier();
19416 for (Expr
*RefExpr
: Clause
.varlist()) {
19417 SourceLocation ELoc
;
19418 SourceRange ERange
;
19419 Expr
*SimpleRefExpr
= RefExpr
;
19420 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
19421 ValueDecl
*D
= Res
.first
;
19422 if (Res
.second
|| !D
) {
19423 Updates
.push_back(nullptr);
19424 Finals
.push_back(nullptr);
19428 auto &&Info
= Stack
->isLoopControlVariable(D
);
19429 // OpenMP [2.15.11, distribute simd Construct]
19430 // A list item may not appear in a linear clause, unless it is the loop
19431 // iteration variable.
19432 if (isOpenMPDistributeDirective(Stack
->getCurrentDirective()) &&
19433 isOpenMPSimdDirective(Stack
->getCurrentDirective()) && !Info
.first
) {
19435 diag::err_omp_linear_distribute_var_non_loop_iteration
);
19436 Updates
.push_back(nullptr);
19437 Finals
.push_back(nullptr);
19441 Expr
*InitExpr
= *CurInit
;
19443 // Build privatized reference to the current linear var.
19444 auto *DE
= cast
<DeclRefExpr
>(SimpleRefExpr
);
19446 if (LinKind
== OMPC_LINEAR_uval
)
19447 CapturedRef
= cast
<VarDecl
>(DE
->getDecl())->getInit();
19450 buildDeclRefExpr(SemaRef
, cast
<VarDecl
>(DE
->getDecl()),
19451 DE
->getType().getUnqualifiedType(), DE
->getExprLoc(),
19452 /*RefersToCapture=*/true);
19454 // Build update: Var = InitExpr + IV * Step
19457 Update
= buildCounterUpdate(
19458 SemaRef
, S
, RefExpr
->getExprLoc(), *CurPrivate
, InitExpr
, IV
, Step
,
19459 /*Subtract=*/false, /*IsNonRectangularLB=*/false);
19461 Update
= *CurPrivate
;
19462 Update
= SemaRef
.ActOnFinishFullExpr(Update
.get(), DE
->getBeginLoc(),
19463 /*DiscardedValue=*/false);
19465 // Build final: Var = PrivCopy;
19468 Final
= SemaRef
.BuildBinOp(
19469 S
, RefExpr
->getExprLoc(), BO_Assign
, CapturedRef
,
19470 SemaRef
.DefaultLvalueConversion(*CurPrivate
).get());
19472 Final
= *CurPrivate
;
19473 Final
= SemaRef
.ActOnFinishFullExpr(Final
.get(), DE
->getBeginLoc(),
19474 /*DiscardedValue=*/false);
19476 if (!Update
.isUsable() || !Final
.isUsable()) {
19477 Updates
.push_back(nullptr);
19478 Finals
.push_back(nullptr);
19479 UsedExprs
.push_back(nullptr);
19482 Updates
.push_back(Update
.get());
19483 Finals
.push_back(Final
.get());
19485 UsedExprs
.push_back(SimpleRefExpr
);
19490 if (Expr
*S
= Clause
.getStep())
19491 UsedExprs
.push_back(S
);
19492 // Fill the remaining part with the nullptr.
19493 UsedExprs
.append(Clause
.varlist_size() + 1 - UsedExprs
.size(), nullptr);
19494 Clause
.setUpdates(Updates
);
19495 Clause
.setFinals(Finals
);
19496 Clause
.setUsedExprs(UsedExprs
);
19500 OMPClause
*SemaOpenMP::ActOnOpenMPAlignedClause(
19501 ArrayRef
<Expr
*> VarList
, Expr
*Alignment
, SourceLocation StartLoc
,
19502 SourceLocation LParenLoc
, SourceLocation ColonLoc
, SourceLocation EndLoc
) {
19503 SmallVector
<Expr
*, 8> Vars
;
19504 for (Expr
*RefExpr
: VarList
) {
19505 assert(RefExpr
&& "NULL expr in OpenMP linear clause.");
19506 SourceLocation ELoc
;
19507 SourceRange ERange
;
19508 Expr
*SimpleRefExpr
= RefExpr
;
19509 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
19511 // It will be analyzed later.
19512 Vars
.push_back(RefExpr
);
19514 ValueDecl
*D
= Res
.first
;
19518 QualType QType
= D
->getType();
19519 auto *VD
= dyn_cast
<VarDecl
>(D
);
19521 // OpenMP [2.8.1, simd construct, Restrictions]
19522 // The type of list items appearing in the aligned clause must be
19523 // array, pointer, reference to array, or reference to pointer.
19524 QType
= QType
.getNonReferenceType().getUnqualifiedType().getCanonicalType();
19525 const Type
*Ty
= QType
.getTypePtrOrNull();
19526 if (!Ty
|| (!Ty
->isArrayType() && !Ty
->isPointerType())) {
19527 Diag(ELoc
, diag::err_omp_aligned_expected_array_or_ptr
)
19528 << QType
<< getLangOpts().CPlusPlus
<< ERange
;
19529 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
19530 VarDecl::DeclarationOnly
;
19531 Diag(D
->getLocation(),
19532 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
19537 // OpenMP [2.8.1, simd construct, Restrictions]
19538 // A list-item cannot appear in more than one aligned clause.
19539 if (const Expr
*PrevRef
= DSAStack
->addUniqueAligned(D
, SimpleRefExpr
)) {
19540 Diag(ELoc
, diag::err_omp_used_in_clause_twice
)
19541 << 0 << getOpenMPClauseName(OMPC_aligned
) << ERange
;
19542 Diag(PrevRef
->getExprLoc(), diag::note_omp_explicit_dsa
)
19543 << getOpenMPClauseName(OMPC_aligned
);
19547 DeclRefExpr
*Ref
= nullptr;
19548 if (!VD
&& isOpenMPCapturedDecl(D
))
19549 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
19550 Vars
.push_back(SemaRef
19551 .DefaultFunctionArrayConversion(
19552 (VD
|| !Ref
) ? RefExpr
->IgnoreParens() : Ref
)
19556 // OpenMP [2.8.1, simd construct, Description]
19557 // The parameter of the aligned clause, alignment, must be a constant
19558 // positive integer expression.
19559 // If no optional parameter is specified, implementation-defined default
19560 // alignments for SIMD instructions on the target platforms are assumed.
19561 if (Alignment
!= nullptr) {
19562 ExprResult AlignResult
=
19563 VerifyPositiveIntegerConstantInClause(Alignment
, OMPC_aligned
);
19564 if (AlignResult
.isInvalid())
19566 Alignment
= AlignResult
.get();
19571 return OMPAlignedClause::Create(getASTContext(), StartLoc
, LParenLoc
,
19572 ColonLoc
, EndLoc
, Vars
, Alignment
);
19575 OMPClause
*SemaOpenMP::ActOnOpenMPCopyinClause(ArrayRef
<Expr
*> VarList
,
19576 SourceLocation StartLoc
,
19577 SourceLocation LParenLoc
,
19578 SourceLocation EndLoc
) {
19579 SmallVector
<Expr
*, 8> Vars
;
19580 SmallVector
<Expr
*, 8> SrcExprs
;
19581 SmallVector
<Expr
*, 8> DstExprs
;
19582 SmallVector
<Expr
*, 8> AssignmentOps
;
19583 for (Expr
*RefExpr
: VarList
) {
19584 assert(RefExpr
&& "NULL expr in OpenMP copyin clause.");
19585 if (isa
<DependentScopeDeclRefExpr
>(RefExpr
)) {
19586 // It will be analyzed later.
19587 Vars
.push_back(RefExpr
);
19588 SrcExprs
.push_back(nullptr);
19589 DstExprs
.push_back(nullptr);
19590 AssignmentOps
.push_back(nullptr);
19594 SourceLocation ELoc
= RefExpr
->getExprLoc();
19595 // OpenMP [2.1, C/C++]
19596 // A list item is a variable name.
19597 // OpenMP [2.14.4.1, Restrictions, p.1]
19598 // A list item that appears in a copyin clause must be threadprivate.
19599 auto *DE
= dyn_cast
<DeclRefExpr
>(RefExpr
);
19600 if (!DE
|| !isa
<VarDecl
>(DE
->getDecl())) {
19601 Diag(ELoc
, diag::err_omp_expected_var_name_member_expr
)
19602 << 0 << RefExpr
->getSourceRange();
19606 Decl
*D
= DE
->getDecl();
19607 auto *VD
= cast
<VarDecl
>(D
);
19609 QualType Type
= VD
->getType();
19610 if (Type
->isDependentType() || Type
->isInstantiationDependentType()) {
19611 // It will be analyzed later.
19612 Vars
.push_back(DE
);
19613 SrcExprs
.push_back(nullptr);
19614 DstExprs
.push_back(nullptr);
19615 AssignmentOps
.push_back(nullptr);
19619 // OpenMP [2.14.4.1, Restrictions, C/C++, p.1]
19620 // A list item that appears in a copyin clause must be threadprivate.
19621 if (!DSAStack
->isThreadPrivate(VD
)) {
19622 Diag(ELoc
, diag::err_omp_required_access
)
19623 << getOpenMPClauseName(OMPC_copyin
)
19624 << getOpenMPDirectiveName(OMPD_threadprivate
);
19628 // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
19629 // A variable of class type (or array thereof) that appears in a
19630 // copyin clause requires an accessible, unambiguous copy assignment
19631 // operator for the class type.
19632 QualType ElemType
=
19633 getASTContext().getBaseElementType(Type
).getNonReferenceType();
19635 buildVarDecl(SemaRef
, DE
->getBeginLoc(), ElemType
.getUnqualifiedType(),
19636 ".copyin.src", VD
->hasAttrs() ? &VD
->getAttrs() : nullptr);
19637 DeclRefExpr
*PseudoSrcExpr
= buildDeclRefExpr(
19638 SemaRef
, SrcVD
, ElemType
.getUnqualifiedType(), DE
->getExprLoc());
19640 buildVarDecl(SemaRef
, DE
->getBeginLoc(), ElemType
, ".copyin.dst",
19641 VD
->hasAttrs() ? &VD
->getAttrs() : nullptr);
19642 DeclRefExpr
*PseudoDstExpr
=
19643 buildDeclRefExpr(SemaRef
, DstVD
, ElemType
, DE
->getExprLoc());
19644 // For arrays generate assignment operation for single element and replace
19645 // it by the original array element in CodeGen.
19646 ExprResult AssignmentOp
=
19647 SemaRef
.BuildBinOp(/*S=*/nullptr, DE
->getExprLoc(), BO_Assign
,
19648 PseudoDstExpr
, PseudoSrcExpr
);
19649 if (AssignmentOp
.isInvalid())
19652 SemaRef
.ActOnFinishFullExpr(AssignmentOp
.get(), DE
->getExprLoc(),
19653 /*DiscardedValue=*/false);
19654 if (AssignmentOp
.isInvalid())
19657 DSAStack
->addDSA(VD
, DE
, OMPC_copyin
);
19658 Vars
.push_back(DE
);
19659 SrcExprs
.push_back(PseudoSrcExpr
);
19660 DstExprs
.push_back(PseudoDstExpr
);
19661 AssignmentOps
.push_back(AssignmentOp
.get());
19667 return OMPCopyinClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
19668 Vars
, SrcExprs
, DstExprs
, AssignmentOps
);
19671 OMPClause
*SemaOpenMP::ActOnOpenMPCopyprivateClause(ArrayRef
<Expr
*> VarList
,
19672 SourceLocation StartLoc
,
19673 SourceLocation LParenLoc
,
19674 SourceLocation EndLoc
) {
19675 SmallVector
<Expr
*, 8> Vars
;
19676 SmallVector
<Expr
*, 8> SrcExprs
;
19677 SmallVector
<Expr
*, 8> DstExprs
;
19678 SmallVector
<Expr
*, 8> AssignmentOps
;
19679 for (Expr
*RefExpr
: VarList
) {
19680 assert(RefExpr
&& "NULL expr in OpenMP linear clause.");
19681 SourceLocation ELoc
;
19682 SourceRange ERange
;
19683 Expr
*SimpleRefExpr
= RefExpr
;
19684 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
19686 // It will be analyzed later.
19687 Vars
.push_back(RefExpr
);
19688 SrcExprs
.push_back(nullptr);
19689 DstExprs
.push_back(nullptr);
19690 AssignmentOps
.push_back(nullptr);
19692 ValueDecl
*D
= Res
.first
;
19696 QualType Type
= D
->getType();
19697 auto *VD
= dyn_cast
<VarDecl
>(D
);
19699 // OpenMP [2.14.4.2, Restrictions, p.2]
19700 // A list item that appears in a copyprivate clause may not appear in a
19701 // private or firstprivate clause on the single construct.
19702 if (!VD
|| !DSAStack
->isThreadPrivate(VD
)) {
19703 DSAStackTy::DSAVarData DVar
=
19704 DSAStack
->getTopDSA(D
, /*FromParent=*/false);
19705 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_copyprivate
&&
19707 Diag(ELoc
, diag::err_omp_wrong_dsa
)
19708 << getOpenMPClauseName(DVar
.CKind
)
19709 << getOpenMPClauseName(OMPC_copyprivate
);
19710 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
19714 // OpenMP [2.11.4.2, Restrictions, p.1]
19715 // All list items that appear in a copyprivate clause must be either
19716 // threadprivate or private in the enclosing context.
19717 if (DVar
.CKind
== OMPC_unknown
) {
19718 DVar
= DSAStack
->getImplicitDSA(D
, false);
19719 if (DVar
.CKind
== OMPC_shared
) {
19720 Diag(ELoc
, diag::err_omp_required_access
)
19721 << getOpenMPClauseName(OMPC_copyprivate
)
19722 << "threadprivate or private in the enclosing context";
19723 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
19729 // Variably modified types are not supported.
19730 if (!Type
->isAnyPointerType() && Type
->isVariablyModifiedType()) {
19731 Diag(ELoc
, diag::err_omp_variably_modified_type_not_supported
)
19732 << getOpenMPClauseName(OMPC_copyprivate
) << Type
19733 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
19734 bool IsDecl
= !VD
|| VD
->isThisDeclarationADefinition(getASTContext()) ==
19735 VarDecl::DeclarationOnly
;
19736 Diag(D
->getLocation(),
19737 IsDecl
? diag::note_previous_decl
: diag::note_defined_here
)
19742 // OpenMP [2.14.4.1, Restrictions, C/C++, p.2]
19743 // A variable of class type (or array thereof) that appears in a
19744 // copyin clause requires an accessible, unambiguous copy assignment
19745 // operator for the class type.
19746 Type
= getASTContext()
19747 .getBaseElementType(Type
.getNonReferenceType())
19748 .getUnqualifiedType();
19750 buildVarDecl(SemaRef
, RefExpr
->getBeginLoc(), Type
, ".copyprivate.src",
19751 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
19752 DeclRefExpr
*PseudoSrcExpr
= buildDeclRefExpr(SemaRef
, SrcVD
, Type
, ELoc
);
19754 buildVarDecl(SemaRef
, RefExpr
->getBeginLoc(), Type
, ".copyprivate.dst",
19755 D
->hasAttrs() ? &D
->getAttrs() : nullptr);
19756 DeclRefExpr
*PseudoDstExpr
= buildDeclRefExpr(SemaRef
, DstVD
, Type
, ELoc
);
19757 ExprResult AssignmentOp
= SemaRef
.BuildBinOp(
19758 DSAStack
->getCurScope(), ELoc
, BO_Assign
, PseudoDstExpr
, PseudoSrcExpr
);
19759 if (AssignmentOp
.isInvalid())
19761 AssignmentOp
= SemaRef
.ActOnFinishFullExpr(AssignmentOp
.get(), ELoc
,
19762 /*DiscardedValue=*/false);
19763 if (AssignmentOp
.isInvalid())
19766 // No need to mark vars as copyprivate, they are already threadprivate or
19767 // implicitly private.
19768 assert(VD
|| isOpenMPCapturedDecl(D
));
19770 VD
? RefExpr
->IgnoreParens()
19771 : buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/false));
19772 SrcExprs
.push_back(PseudoSrcExpr
);
19773 DstExprs
.push_back(PseudoDstExpr
);
19774 AssignmentOps
.push_back(AssignmentOp
.get());
19780 return OMPCopyprivateClause::Create(getASTContext(), StartLoc
, LParenLoc
,
19781 EndLoc
, Vars
, SrcExprs
, DstExprs
,
19785 OMPClause
*SemaOpenMP::ActOnOpenMPFlushClause(ArrayRef
<Expr
*> VarList
,
19786 SourceLocation StartLoc
,
19787 SourceLocation LParenLoc
,
19788 SourceLocation EndLoc
) {
19789 if (VarList
.empty())
19792 return OMPFlushClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
19796 /// Tries to find omp_depend_t. type.
19797 static bool findOMPDependT(Sema
&S
, SourceLocation Loc
, DSAStackTy
*Stack
,
19798 bool Diagnose
= true) {
19799 QualType OMPDependT
= Stack
->getOMPDependT();
19800 if (!OMPDependT
.isNull())
19802 IdentifierInfo
*II
= &S
.PP
.getIdentifierTable().get("omp_depend_t");
19803 ParsedType PT
= S
.getTypeName(*II
, Loc
, S
.getCurScope());
19804 if (!PT
.getAsOpaquePtr() || PT
.get().isNull()) {
19806 S
.Diag(Loc
, diag::err_omp_implied_type_not_found
) << "omp_depend_t";
19809 Stack
->setOMPDependT(PT
.get());
19813 OMPClause
*SemaOpenMP::ActOnOpenMPDepobjClause(Expr
*Depobj
,
19814 SourceLocation StartLoc
,
19815 SourceLocation LParenLoc
,
19816 SourceLocation EndLoc
) {
19820 bool OMPDependTFound
= findOMPDependT(SemaRef
, StartLoc
, DSAStack
);
19822 // OpenMP 5.0, 2.17.10.1 depobj Construct
19823 // depobj is an lvalue expression of type omp_depend_t.
19824 if (!Depobj
->isTypeDependent() && !Depobj
->isValueDependent() &&
19825 !Depobj
->isInstantiationDependent() &&
19826 !Depobj
->containsUnexpandedParameterPack() &&
19827 (OMPDependTFound
&& !getASTContext().typesAreCompatible(
19828 DSAStack
->getOMPDependT(), Depobj
->getType(),
19829 /*CompareUnqualified=*/true))) {
19830 Diag(Depobj
->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue
)
19831 << 0 << Depobj
->getType() << Depobj
->getSourceRange();
19834 if (!Depobj
->isLValue()) {
19835 Diag(Depobj
->getExprLoc(), diag::err_omp_expected_omp_depend_t_lvalue
)
19836 << 1 << Depobj
->getSourceRange();
19839 return OMPDepobjClause::Create(getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
19844 // Utility struct that gathers the related info for doacross clause.
19845 struct DoacrossDataInfoTy
{
19846 // The list of expressions.
19847 SmallVector
<Expr
*, 8> Vars
;
19848 // The OperatorOffset for doacross loop.
19849 DSAStackTy::OperatorOffsetTy OpsOffs
;
19850 // The depended loop count.
19851 llvm::APSInt TotalDepCount
;
19854 static DoacrossDataInfoTy
19855 ProcessOpenMPDoacrossClauseCommon(Sema
&SemaRef
, bool IsSource
,
19856 ArrayRef
<Expr
*> VarList
, DSAStackTy
*Stack
,
19857 SourceLocation EndLoc
) {
19859 SmallVector
<Expr
*, 8> Vars
;
19860 DSAStackTy::OperatorOffsetTy OpsOffs
;
19861 llvm::APSInt
DepCounter(/*BitWidth=*/32);
19862 llvm::APSInt
TotalDepCount(/*BitWidth=*/32);
19864 if (const Expr
*OrderedCountExpr
=
19865 Stack
->getParentOrderedRegionParam().first
) {
19866 TotalDepCount
= OrderedCountExpr
->EvaluateKnownConstInt(SemaRef
.Context
);
19867 TotalDepCount
.setIsUnsigned(/*Val=*/true);
19870 for (Expr
*RefExpr
: VarList
) {
19871 assert(RefExpr
&& "NULL expr in OpenMP doacross clause.");
19872 if (isa
<DependentScopeDeclRefExpr
>(RefExpr
)) {
19873 // It will be analyzed later.
19874 Vars
.push_back(RefExpr
);
19878 SourceLocation ELoc
= RefExpr
->getExprLoc();
19879 Expr
*SimpleExpr
= RefExpr
->IgnoreParenCasts();
19881 if (Stack
->getParentOrderedRegionParam().first
&&
19882 DepCounter
>= TotalDepCount
) {
19883 SemaRef
.Diag(ELoc
, diag::err_omp_depend_sink_unexpected_expr
);
19887 // OpenMP [2.13.9, Summary]
19888 // depend(dependence-type : vec), where dependence-type is:
19889 // 'sink' and where vec is the iteration vector, which has the form:
19890 // x1 [+- d1], x2 [+- d2 ], . . . , xn [+- dn]
19891 // where n is the value specified by the ordered clause in the loop
19892 // directive, xi denotes the loop iteration variable of the i-th nested
19893 // loop associated with the loop directive, and di is a constant
19894 // non-negative integer.
19895 if (SemaRef
.CurContext
->isDependentContext()) {
19896 // It will be analyzed later.
19897 Vars
.push_back(RefExpr
);
19900 SimpleExpr
= SimpleExpr
->IgnoreImplicit();
19901 OverloadedOperatorKind OOK
= OO_None
;
19902 SourceLocation OOLoc
;
19903 Expr
*LHS
= SimpleExpr
;
19904 Expr
*RHS
= nullptr;
19905 if (auto *BO
= dyn_cast
<BinaryOperator
>(SimpleExpr
)) {
19906 OOK
= BinaryOperator::getOverloadedOperator(BO
->getOpcode());
19907 OOLoc
= BO
->getOperatorLoc();
19908 LHS
= BO
->getLHS()->IgnoreParenImpCasts();
19909 RHS
= BO
->getRHS()->IgnoreParenImpCasts();
19910 } else if (auto *OCE
= dyn_cast
<CXXOperatorCallExpr
>(SimpleExpr
)) {
19911 OOK
= OCE
->getOperator();
19912 OOLoc
= OCE
->getOperatorLoc();
19913 LHS
= OCE
->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
19914 RHS
= OCE
->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
19915 } else if (auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(SimpleExpr
)) {
19916 OOK
= MCE
->getMethodDecl()
19919 .getCXXOverloadedOperator();
19920 OOLoc
= MCE
->getCallee()->getExprLoc();
19921 LHS
= MCE
->getImplicitObjectArgument()->IgnoreParenImpCasts();
19922 RHS
= MCE
->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
19924 SourceLocation ELoc
;
19925 SourceRange ERange
;
19926 auto Res
= getPrivateItem(SemaRef
, LHS
, ELoc
, ERange
);
19928 // It will be analyzed later.
19929 Vars
.push_back(RefExpr
);
19931 ValueDecl
*D
= Res
.first
;
19935 if (OOK
!= OO_Plus
&& OOK
!= OO_Minus
&& (RHS
|| OOK
!= OO_None
)) {
19936 SemaRef
.Diag(OOLoc
, diag::err_omp_depend_sink_expected_plus_minus
);
19940 ExprResult RHSRes
=
19941 SemaRef
.OpenMP().VerifyPositiveIntegerConstantInClause(
19942 RHS
, OMPC_depend
, /*StrictlyPositive=*/false);
19943 if (RHSRes
.isInvalid())
19946 if (!SemaRef
.CurContext
->isDependentContext() &&
19947 Stack
->getParentOrderedRegionParam().first
&&
19948 DepCounter
!= Stack
->isParentLoopControlVariable(D
).first
) {
19949 const ValueDecl
*VD
=
19950 Stack
->getParentLoopControlVariable(DepCounter
.getZExtValue());
19952 SemaRef
.Diag(ELoc
, diag::err_omp_depend_sink_expected_loop_iteration
)
19955 SemaRef
.Diag(ELoc
, diag::err_omp_depend_sink_expected_loop_iteration
)
19959 OpsOffs
.emplace_back(RHS
, OOK
);
19961 Vars
.push_back(RefExpr
->IgnoreParenImpCasts());
19963 if (!SemaRef
.CurContext
->isDependentContext() && !IsSource
&&
19964 TotalDepCount
> VarList
.size() &&
19965 Stack
->getParentOrderedRegionParam().first
&&
19966 Stack
->getParentLoopControlVariable(VarList
.size() + 1)) {
19967 SemaRef
.Diag(EndLoc
, diag::err_omp_depend_sink_expected_loop_iteration
)
19968 << 1 << Stack
->getParentLoopControlVariable(VarList
.size() + 1);
19970 return {Vars
, OpsOffs
, TotalDepCount
};
19973 OMPClause
*SemaOpenMP::ActOnOpenMPDependClause(
19974 const OMPDependClause::DependDataTy
&Data
, Expr
*DepModifier
,
19975 ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
, SourceLocation LParenLoc
,
19976 SourceLocation EndLoc
) {
19977 OpenMPDependClauseKind DepKind
= Data
.DepKind
;
19978 SourceLocation DepLoc
= Data
.DepLoc
;
19979 if (DSAStack
->getCurrentDirective() == OMPD_ordered
&&
19980 DepKind
!= OMPC_DEPEND_source
&& DepKind
!= OMPC_DEPEND_sink
) {
19981 Diag(DepLoc
, diag::err_omp_unexpected_clause_value
)
19982 << "'source' or 'sink'" << getOpenMPClauseName(OMPC_depend
);
19985 if (DSAStack
->getCurrentDirective() == OMPD_taskwait
&&
19986 DepKind
== OMPC_DEPEND_mutexinoutset
) {
19987 Diag(DepLoc
, diag::err_omp_taskwait_depend_mutexinoutset_not_allowed
);
19990 if ((DSAStack
->getCurrentDirective() != OMPD_ordered
||
19991 DSAStack
->getCurrentDirective() == OMPD_depobj
) &&
19992 (DepKind
== OMPC_DEPEND_unknown
|| DepKind
== OMPC_DEPEND_source
||
19993 DepKind
== OMPC_DEPEND_sink
||
19994 ((getLangOpts().OpenMP
< 50 ||
19995 DSAStack
->getCurrentDirective() == OMPD_depobj
) &&
19996 DepKind
== OMPC_DEPEND_depobj
))) {
19997 SmallVector
<unsigned, 6> Except
= {OMPC_DEPEND_source
, OMPC_DEPEND_sink
,
19998 OMPC_DEPEND_outallmemory
,
19999 OMPC_DEPEND_inoutallmemory
};
20000 if (getLangOpts().OpenMP
< 50 ||
20001 DSAStack
->getCurrentDirective() == OMPD_depobj
)
20002 Except
.push_back(OMPC_DEPEND_depobj
);
20003 if (getLangOpts().OpenMP
< 51)
20004 Except
.push_back(OMPC_DEPEND_inoutset
);
20005 std::string Expected
= (getLangOpts().OpenMP
>= 50 && !DepModifier
)
20006 ? "depend modifier(iterator) or "
20008 Diag(DepLoc
, diag::err_omp_unexpected_clause_value
)
20009 << Expected
+ getListOfPossibleValues(OMPC_depend
, /*First=*/0,
20010 /*Last=*/OMPC_DEPEND_unknown
,
20012 << getOpenMPClauseName(OMPC_depend
);
20016 (DepKind
== OMPC_DEPEND_source
|| DepKind
== OMPC_DEPEND_sink
)) {
20017 Diag(DepModifier
->getExprLoc(),
20018 diag::err_omp_depend_sink_source_with_modifier
);
20022 !DepModifier
->getType()->isSpecificBuiltinType(BuiltinType::OMPIterator
))
20023 Diag(DepModifier
->getExprLoc(), diag::err_omp_depend_modifier_not_iterator
);
20025 SmallVector
<Expr
*, 8> Vars
;
20026 DSAStackTy::OperatorOffsetTy OpsOffs
;
20027 llvm::APSInt
TotalDepCount(/*BitWidth=*/32);
20029 if (DepKind
== OMPC_DEPEND_sink
|| DepKind
== OMPC_DEPEND_source
) {
20030 DoacrossDataInfoTy VarOffset
= ProcessOpenMPDoacrossClauseCommon(
20031 SemaRef
, DepKind
== OMPC_DEPEND_source
, VarList
, DSAStack
, EndLoc
);
20032 Vars
= VarOffset
.Vars
;
20033 OpsOffs
= VarOffset
.OpsOffs
;
20034 TotalDepCount
= VarOffset
.TotalDepCount
;
20036 for (Expr
*RefExpr
: VarList
) {
20037 assert(RefExpr
&& "NULL expr in OpenMP shared clause.");
20038 if (isa
<DependentScopeDeclRefExpr
>(RefExpr
)) {
20039 // It will be analyzed later.
20040 Vars
.push_back(RefExpr
);
20044 SourceLocation ELoc
= RefExpr
->getExprLoc();
20045 Expr
*SimpleExpr
= RefExpr
->IgnoreParenCasts();
20046 if (DepKind
!= OMPC_DEPEND_sink
&& DepKind
!= OMPC_DEPEND_source
) {
20047 bool OMPDependTFound
= getLangOpts().OpenMP
>= 50;
20048 if (OMPDependTFound
)
20049 OMPDependTFound
= findOMPDependT(SemaRef
, StartLoc
, DSAStack
,
20050 DepKind
== OMPC_DEPEND_depobj
);
20051 if (DepKind
== OMPC_DEPEND_depobj
) {
20052 // OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
20053 // List items used in depend clauses with the depobj dependence type
20054 // must be expressions of the omp_depend_t type.
20055 if (!RefExpr
->isValueDependent() && !RefExpr
->isTypeDependent() &&
20056 !RefExpr
->isInstantiationDependent() &&
20057 !RefExpr
->containsUnexpandedParameterPack() &&
20058 (OMPDependTFound
&&
20059 !getASTContext().hasSameUnqualifiedType(
20060 DSAStack
->getOMPDependT(), RefExpr
->getType()))) {
20061 Diag(ELoc
, diag::err_omp_expected_omp_depend_t_lvalue
)
20062 << 0 << RefExpr
->getType() << RefExpr
->getSourceRange();
20065 if (!RefExpr
->isLValue()) {
20066 Diag(ELoc
, diag::err_omp_expected_omp_depend_t_lvalue
)
20067 << 1 << RefExpr
->getType() << RefExpr
->getSourceRange();
20071 // OpenMP 5.0 [2.17.11, Restrictions]
20072 // List items used in depend clauses cannot be zero-length array
20074 QualType ExprTy
= RefExpr
->getType().getNonReferenceType();
20075 const auto *OASE
= dyn_cast
<ArraySectionExpr
>(SimpleExpr
);
20077 QualType BaseType
=
20078 ArraySectionExpr::getBaseOriginalType(OASE
->getBase());
20079 if (BaseType
.isNull())
20081 if (const auto *ATy
= BaseType
->getAsArrayTypeUnsafe())
20082 ExprTy
= ATy
->getElementType();
20084 ExprTy
= BaseType
->getPointeeType();
20085 if (BaseType
.isNull() || ExprTy
.isNull())
20087 ExprTy
= ExprTy
.getNonReferenceType();
20088 const Expr
*Length
= OASE
->getLength();
20089 Expr::EvalResult Result
;
20090 if (Length
&& !Length
->isValueDependent() &&
20091 Length
->EvaluateAsInt(Result
, getASTContext()) &&
20092 Result
.Val
.getInt().isZero()) {
20094 diag::err_omp_depend_zero_length_array_section_not_allowed
)
20095 << SimpleExpr
->getSourceRange();
20100 // OpenMP 5.0, 2.17.11 depend Clause, Restrictions, C/C++
20101 // List items used in depend clauses with the in, out, inout,
20102 // inoutset, or mutexinoutset dependence types cannot be
20103 // expressions of the omp_depend_t type.
20104 if (!RefExpr
->isValueDependent() && !RefExpr
->isTypeDependent() &&
20105 !RefExpr
->isInstantiationDependent() &&
20106 !RefExpr
->containsUnexpandedParameterPack() &&
20107 (!RefExpr
->IgnoreParenImpCasts()->isLValue() ||
20108 (OMPDependTFound
&& DSAStack
->getOMPDependT().getTypePtr() ==
20109 ExprTy
.getTypePtr()))) {
20110 Diag(ELoc
, diag::err_omp_expected_addressable_lvalue_or_array_item
)
20111 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20112 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20113 << RefExpr
->getSourceRange();
20117 auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(SimpleExpr
);
20118 if (ASE
&& !ASE
->getBase()->isTypeDependent() &&
20121 .getNonReferenceType()
20122 ->isPointerType() &&
20123 !ASE
->getBase()->getType().getNonReferenceType()->isArrayType()) {
20124 Diag(ELoc
, diag::err_omp_expected_addressable_lvalue_or_array_item
)
20125 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20126 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20127 << RefExpr
->getSourceRange();
20133 Sema::TentativeAnalysisScope
Trap(SemaRef
);
20134 Res
= SemaRef
.CreateBuiltinUnaryOp(ELoc
, UO_AddrOf
,
20135 RefExpr
->IgnoreParenImpCasts());
20137 if (!Res
.isUsable() && !isa
<ArraySectionExpr
>(SimpleExpr
) &&
20138 !isa
<OMPArrayShapingExpr
>(SimpleExpr
)) {
20139 Diag(ELoc
, diag::err_omp_expected_addressable_lvalue_or_array_item
)
20140 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20141 << (getLangOpts().OpenMP
>= 50 ? 1 : 0)
20142 << RefExpr
->getSourceRange();
20147 Vars
.push_back(RefExpr
->IgnoreParenImpCasts());
20151 if (DepKind
!= OMPC_DEPEND_source
&& DepKind
!= OMPC_DEPEND_sink
&&
20152 DepKind
!= OMPC_DEPEND_outallmemory
&&
20153 DepKind
!= OMPC_DEPEND_inoutallmemory
&& Vars
.empty())
20156 auto *C
= OMPDependClause::Create(
20157 getASTContext(), StartLoc
, LParenLoc
, EndLoc
,
20158 {DepKind
, DepLoc
, Data
.ColonLoc
, Data
.OmpAllMemoryLoc
}, DepModifier
, Vars
,
20159 TotalDepCount
.getZExtValue());
20160 if ((DepKind
== OMPC_DEPEND_sink
|| DepKind
== OMPC_DEPEND_source
) &&
20161 DSAStack
->isParentOrderedRegion())
20162 DSAStack
->addDoacrossDependClause(C
, OpsOffs
);
20166 OMPClause
*SemaOpenMP::ActOnOpenMPDeviceClause(
20167 OpenMPDeviceClauseModifier Modifier
, Expr
*Device
, SourceLocation StartLoc
,
20168 SourceLocation LParenLoc
, SourceLocation ModifierLoc
,
20169 SourceLocation EndLoc
) {
20170 assert((ModifierLoc
.isInvalid() || getLangOpts().OpenMP
>= 50) &&
20171 "Unexpected device modifier in OpenMP < 50.");
20173 bool ErrorFound
= false;
20174 if (ModifierLoc
.isValid() && Modifier
== OMPC_DEVICE_unknown
) {
20175 std::string Values
=
20176 getListOfPossibleValues(OMPC_device
, /*First=*/0, OMPC_DEVICE_unknown
);
20177 Diag(ModifierLoc
, diag::err_omp_unexpected_clause_value
)
20178 << Values
<< getOpenMPClauseName(OMPC_device
);
20182 Expr
*ValExpr
= Device
;
20183 Stmt
*HelperValStmt
= nullptr;
20185 // OpenMP [2.9.1, Restrictions]
20186 // The device expression must evaluate to a non-negative integer value.
20187 ErrorFound
= !isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_device
,
20188 /*StrictlyPositive=*/false) ||
20193 // OpenMP 5.0 [2.12.5, Restrictions]
20194 // In case of ancestor device-modifier, a requires directive with
20195 // the reverse_offload clause must be specified.
20196 if (Modifier
== OMPC_DEVICE_ancestor
) {
20197 if (!DSAStack
->hasRequiresDeclWithClause
<OMPReverseOffloadClause
>()) {
20198 SemaRef
.targetDiag(
20200 diag::err_omp_device_ancestor_without_requires_reverse_offload
);
20205 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
20206 OpenMPDirectiveKind CaptureRegion
=
20207 getOpenMPCaptureRegionForClause(DKind
, OMPC_device
, getLangOpts().OpenMP
);
20208 if (CaptureRegion
!= OMPD_unknown
&&
20209 !SemaRef
.CurContext
->isDependentContext()) {
20210 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
20211 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
20212 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
20213 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
20216 return new (getASTContext())
20217 OMPDeviceClause(Modifier
, ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
,
20218 LParenLoc
, ModifierLoc
, EndLoc
);
20221 static bool checkTypeMappable(SourceLocation SL
, SourceRange SR
, Sema
&SemaRef
,
20222 DSAStackTy
*Stack
, QualType QTy
,
20223 bool FullCheck
= true) {
20224 if (SemaRef
.RequireCompleteType(SL
, QTy
, diag::err_incomplete_type
))
20226 if (FullCheck
&& !SemaRef
.CurContext
->isDependentContext() &&
20227 !QTy
.isTriviallyCopyableType(SemaRef
.Context
))
20228 SemaRef
.Diag(SL
, diag::warn_omp_non_trivial_type_mapped
) << QTy
<< SR
;
20232 /// Return true if it can be proven that the provided array expression
20233 /// (array section or array subscript) does NOT specify the whole size of the
20234 /// array whose base type is \a BaseQTy.
20235 static bool checkArrayExpressionDoesNotReferToWholeSize(Sema
&SemaRef
,
20237 QualType BaseQTy
) {
20238 const auto *OASE
= dyn_cast
<ArraySectionExpr
>(E
);
20240 // If this is an array subscript, it refers to the whole size if the size of
20241 // the dimension is constant and equals 1. Also, an array section assumes the
20242 // format of an array subscript if no colon is used.
20243 if (isa
<ArraySubscriptExpr
>(E
) ||
20244 (OASE
&& OASE
->getColonLocFirst().isInvalid())) {
20245 if (const auto *ATy
= dyn_cast
<ConstantArrayType
>(BaseQTy
.getTypePtr()))
20246 return ATy
->getSExtSize() != 1;
20247 // Size can't be evaluated statically.
20251 assert(OASE
&& "Expecting array section if not an array subscript.");
20252 const Expr
*LowerBound
= OASE
->getLowerBound();
20253 const Expr
*Length
= OASE
->getLength();
20255 // If there is a lower bound that does not evaluates to zero, we are not
20256 // covering the whole dimension.
20258 Expr::EvalResult Result
;
20259 if (!LowerBound
->EvaluateAsInt(Result
, SemaRef
.getASTContext()))
20260 return false; // Can't get the integer value as a constant.
20262 llvm::APSInt ConstLowerBound
= Result
.Val
.getInt();
20263 if (ConstLowerBound
.getSExtValue())
20267 // If we don't have a length we covering the whole dimension.
20271 // If the base is a pointer, we don't have a way to get the size of the
20273 if (BaseQTy
->isPointerType())
20276 // We can only check if the length is the same as the size of the dimension
20277 // if we have a constant array.
20278 const auto *CATy
= dyn_cast
<ConstantArrayType
>(BaseQTy
.getTypePtr());
20282 Expr::EvalResult Result
;
20283 if (!Length
->EvaluateAsInt(Result
, SemaRef
.getASTContext()))
20284 return false; // Can't get the integer value as a constant.
20286 llvm::APSInt ConstLength
= Result
.Val
.getInt();
20287 return CATy
->getSExtSize() != ConstLength
.getSExtValue();
20290 // Return true if it can be proven that the provided array expression (array
20291 // section or array subscript) does NOT specify a single element of the array
20292 // whose base type is \a BaseQTy.
20293 static bool checkArrayExpressionDoesNotReferToUnitySize(Sema
&SemaRef
,
20295 QualType BaseQTy
) {
20296 const auto *OASE
= dyn_cast
<ArraySectionExpr
>(E
);
20298 // An array subscript always refer to a single element. Also, an array section
20299 // assumes the format of an array subscript if no colon is used.
20300 if (isa
<ArraySubscriptExpr
>(E
) ||
20301 (OASE
&& OASE
->getColonLocFirst().isInvalid()))
20304 assert(OASE
&& "Expecting array section if not an array subscript.");
20305 const Expr
*Length
= OASE
->getLength();
20307 // If we don't have a length we have to check if the array has unitary size
20308 // for this dimension. Also, we should always expect a length if the base type
20311 if (const auto *ATy
= dyn_cast
<ConstantArrayType
>(BaseQTy
.getTypePtr()))
20312 return ATy
->getSExtSize() != 1;
20313 // We cannot assume anything.
20317 // Check if the length evaluates to 1.
20318 Expr::EvalResult Result
;
20319 if (!Length
->EvaluateAsInt(Result
, SemaRef
.getASTContext()))
20320 return false; // Can't get the integer value as a constant.
20322 llvm::APSInt ConstLength
= Result
.Val
.getInt();
20323 return ConstLength
.getSExtValue() != 1;
20326 // The base of elements of list in a map clause have to be either:
20327 // - a reference to variable or field.
20328 // - a member expression.
20329 // - an array expression.
20331 // E.g. if we have the expression 'r.S.Arr[:12]', we want to retrieve the
20332 // reference to 'r'.
20339 // #pragma omp target map (S.Arr[:12]);
20343 // We want to retrieve the member expression 'this->S';
20345 // OpenMP 5.0 [2.19.7.1, map Clause, Restrictions, p.2]
20346 // If a list item is an array section, it must specify contiguous storage.
20348 // For this restriction it is sufficient that we make sure only references
20349 // to variables or fields and array expressions, and that no array sections
20350 // exist except in the rightmost expression (unless they cover the whole
20351 // dimension of the array). E.g. these would be invalid:
20353 // r.ArrS[3:5].Arr[6:7]
20357 // but these would be valid:
20358 // r.ArrS[3].Arr[6:7]
20362 class MapBaseChecker final
: public StmtVisitor
<MapBaseChecker
, bool> {
20364 OpenMPClauseKind CKind
= OMPC_unknown
;
20365 OpenMPDirectiveKind DKind
= OMPD_unknown
;
20366 OMPClauseMappableExprCommon::MappableExprComponentList
&Components
;
20367 bool IsNonContiguous
= false;
20368 bool NoDiagnose
= false;
20369 const Expr
*RelevantExpr
= nullptr;
20370 bool AllowUnitySizeArraySection
= true;
20371 bool AllowWholeSizeArraySection
= true;
20372 bool AllowAnotherPtr
= true;
20373 SourceLocation ELoc
;
20374 SourceRange ERange
;
20376 void emitErrorMsg() {
20377 // If nothing else worked, this is not a valid map clause expression.
20378 if (SemaRef
.getLangOpts().OpenMP
< 50) {
20380 diag::err_omp_expected_named_var_member_or_array_expression
)
20383 SemaRef
.Diag(ELoc
, diag::err_omp_non_lvalue_in_map_or_motion_clauses
)
20384 << getOpenMPClauseName(CKind
) << ERange
;
20389 bool VisitDeclRefExpr(DeclRefExpr
*DRE
) {
20390 if (!isa
<VarDecl
>(DRE
->getDecl())) {
20394 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20395 RelevantExpr
= DRE
;
20396 // Record the component.
20397 Components
.emplace_back(DRE
, DRE
->getDecl(), IsNonContiguous
);
20401 bool VisitMemberExpr(MemberExpr
*ME
) {
20403 Expr
*BaseE
= ME
->getBase()->IgnoreParenCasts();
20405 if (isa
<CXXThisExpr
>(BaseE
)) {
20406 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20407 // We found a base expression: this->Val.
20413 if (!isa
<FieldDecl
>(ME
->getMemberDecl())) {
20415 SemaRef
.Diag(ELoc
, diag::err_omp_expected_access_to_data_field
)
20416 << ME
->getSourceRange();
20424 auto *FD
= cast
<FieldDecl
>(ME
->getMemberDecl());
20426 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3]
20427 // A bit-field cannot appear in a map clause.
20429 if (FD
->isBitField()) {
20431 SemaRef
.Diag(ELoc
, diag::err_omp_bit_fields_forbidden_in_clause
)
20432 << ME
->getSourceRange() << getOpenMPClauseName(CKind
);
20440 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
20441 // If the type of a list item is a reference to a type T then the type
20442 // will be considered to be T for all purposes of this clause.
20443 QualType CurType
= BaseE
->getType().getNonReferenceType();
20445 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.2]
20446 // A list item cannot be a variable that is a member of a structure with
20449 if (CurType
->isUnionType()) {
20451 SemaRef
.Diag(ELoc
, diag::err_omp_union_type_not_allowed
)
20452 << ME
->getSourceRange();
20455 return RelevantExpr
|| Visit(E
);
20458 // If we got a member expression, we should not expect any array section
20461 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.7]
20462 // If a list item is an element of a structure, only the rightmost symbol
20463 // of the variable reference can be an array section.
20465 AllowUnitySizeArraySection
= false;
20466 AllowWholeSizeArraySection
= false;
20468 // Record the component.
20469 Components
.emplace_back(ME
, FD
, IsNonContiguous
);
20470 return RelevantExpr
|| Visit(E
);
20473 bool VisitArraySubscriptExpr(ArraySubscriptExpr
*AE
) {
20474 Expr
*E
= AE
->getBase()->IgnoreParenImpCasts();
20476 if (!E
->getType()->isAnyPointerType() && !E
->getType()->isArrayType()) {
20478 SemaRef
.Diag(ELoc
, diag::err_omp_expected_base_var_name
)
20479 << 0 << AE
->getSourceRange();
20482 return RelevantExpr
|| Visit(E
);
20485 // If we got an array subscript that express the whole dimension we
20486 // can have any array expressions before. If it only expressing part of
20487 // the dimension, we can only have unitary-size array expressions.
20488 if (checkArrayExpressionDoesNotReferToWholeSize(SemaRef
, AE
, E
->getType()))
20489 AllowWholeSizeArraySection
= false;
20491 if (const auto *TE
= dyn_cast
<CXXThisExpr
>(E
->IgnoreParenCasts())) {
20492 Expr::EvalResult Result
;
20493 if (!AE
->getIdx()->isValueDependent() &&
20494 AE
->getIdx()->EvaluateAsInt(Result
, SemaRef
.getASTContext()) &&
20495 !Result
.Val
.getInt().isZero()) {
20496 SemaRef
.Diag(AE
->getIdx()->getExprLoc(),
20497 diag::err_omp_invalid_map_this_expr
);
20498 SemaRef
.Diag(AE
->getIdx()->getExprLoc(),
20499 diag::note_omp_invalid_subscript_on_this_ptr_map
);
20501 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20505 // Record the component - we don't have any declaration associated.
20506 Components
.emplace_back(AE
, nullptr, IsNonContiguous
);
20508 return RelevantExpr
|| Visit(E
);
20511 bool VisitArraySectionExpr(ArraySectionExpr
*OASE
) {
20512 // After OMP 5.0 Array section in reduction clause will be implicitly
20514 assert(!(SemaRef
.getLangOpts().OpenMP
< 50 && NoDiagnose
) &&
20515 "Array sections cannot be implicitly mapped.");
20516 Expr
*E
= OASE
->getBase()->IgnoreParenImpCasts();
20518 ArraySectionExpr::getBaseOriginalType(E
).getCanonicalType();
20520 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
20521 // If the type of a list item is a reference to a type T then the type
20522 // will be considered to be T for all purposes of this clause.
20523 if (CurType
->isReferenceType())
20524 CurType
= CurType
->getPointeeType();
20526 bool IsPointer
= CurType
->isAnyPointerType();
20528 if (!IsPointer
&& !CurType
->isArrayType()) {
20529 SemaRef
.Diag(ELoc
, diag::err_omp_expected_base_var_name
)
20530 << 0 << OASE
->getSourceRange();
20535 checkArrayExpressionDoesNotReferToWholeSize(SemaRef
, OASE
, CurType
);
20537 checkArrayExpressionDoesNotReferToUnitySize(SemaRef
, OASE
, CurType
);
20539 if (AllowWholeSizeArraySection
) {
20540 // Any array section is currently allowed. Allowing a whole size array
20541 // section implies allowing a unity array section as well.
20543 // If this array section refers to the whole dimension we can still
20544 // accept other array sections before this one, except if the base is a
20545 // pointer. Otherwise, only unitary sections are accepted.
20546 if (NotWhole
|| IsPointer
)
20547 AllowWholeSizeArraySection
= false;
20548 } else if (DKind
== OMPD_target_update
&&
20549 SemaRef
.getLangOpts().OpenMP
>= 50) {
20550 if (IsPointer
&& !AllowAnotherPtr
)
20551 SemaRef
.Diag(ELoc
, diag::err_omp_section_length_undefined
)
20552 << /*array of unknown bound */ 1;
20554 IsNonContiguous
= true;
20555 } else if (AllowUnitySizeArraySection
&& NotUnity
) {
20556 // A unity or whole array section is not allowed and that is not
20557 // compatible with the properties of the current array section.
20561 diag::err_array_section_does_not_specify_contiguous_storage
)
20562 << OASE
->getSourceRange();
20567 AllowAnotherPtr
= false;
20569 if (const auto *TE
= dyn_cast
<CXXThisExpr
>(E
)) {
20570 Expr::EvalResult ResultR
;
20571 Expr::EvalResult ResultL
;
20572 if (!OASE
->getLength()->isValueDependent() &&
20573 OASE
->getLength()->EvaluateAsInt(ResultR
, SemaRef
.getASTContext()) &&
20574 !ResultR
.Val
.getInt().isOne()) {
20575 SemaRef
.Diag(OASE
->getLength()->getExprLoc(),
20576 diag::err_omp_invalid_map_this_expr
);
20577 SemaRef
.Diag(OASE
->getLength()->getExprLoc(),
20578 diag::note_omp_invalid_length_on_this_ptr_mapping
);
20580 if (OASE
->getLowerBound() && !OASE
->getLowerBound()->isValueDependent() &&
20581 OASE
->getLowerBound()->EvaluateAsInt(ResultL
,
20582 SemaRef
.getASTContext()) &&
20583 !ResultL
.Val
.getInt().isZero()) {
20584 SemaRef
.Diag(OASE
->getLowerBound()->getExprLoc(),
20585 diag::err_omp_invalid_map_this_expr
);
20586 SemaRef
.Diag(OASE
->getLowerBound()->getExprLoc(),
20587 diag::note_omp_invalid_lower_bound_on_this_ptr_mapping
);
20589 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20593 // Record the component - we don't have any declaration associated.
20594 Components
.emplace_back(OASE
, nullptr, /*IsNonContiguous=*/false);
20595 return RelevantExpr
|| Visit(E
);
20597 bool VisitOMPArrayShapingExpr(OMPArrayShapingExpr
*E
) {
20598 Expr
*Base
= E
->getBase();
20600 // Record the component - we don't have any declaration associated.
20601 Components
.emplace_back(E
, nullptr, IsNonContiguous
);
20603 return Visit(Base
->IgnoreParenImpCasts());
20606 bool VisitUnaryOperator(UnaryOperator
*UO
) {
20607 if (SemaRef
.getLangOpts().OpenMP
< 50 || !UO
->isLValue() ||
20608 UO
->getOpcode() != UO_Deref
) {
20612 if (!RelevantExpr
) {
20613 // Record the component if haven't found base decl.
20614 Components
.emplace_back(UO
, nullptr, /*IsNonContiguous=*/false);
20616 return RelevantExpr
|| Visit(UO
->getSubExpr()->IgnoreParenImpCasts());
20618 bool VisitBinaryOperator(BinaryOperator
*BO
) {
20619 if (SemaRef
.getLangOpts().OpenMP
< 50 || !BO
->getType()->isPointerType()) {
20624 // Pointer arithmetic is the only thing we expect to happen here so after we
20625 // make sure the binary operator is a pointer type, the only thing we need
20626 // to do is to visit the subtree that has the same type as root (so that we
20627 // know the other subtree is just an offset)
20628 Expr
*LE
= BO
->getLHS()->IgnoreParenImpCasts();
20629 Expr
*RE
= BO
->getRHS()->IgnoreParenImpCasts();
20630 Components
.emplace_back(BO
, nullptr, false);
20631 assert((LE
->getType().getTypePtr() == BO
->getType().getTypePtr() ||
20632 RE
->getType().getTypePtr() == BO
->getType().getTypePtr()) &&
20633 "Either LHS or RHS have base decl inside");
20634 if (BO
->getType().getTypePtr() == LE
->getType().getTypePtr())
20635 return RelevantExpr
|| Visit(LE
);
20636 return RelevantExpr
|| Visit(RE
);
20638 bool VisitCXXThisExpr(CXXThisExpr
*CTE
) {
20639 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20640 RelevantExpr
= CTE
;
20641 Components
.emplace_back(CTE
, nullptr, IsNonContiguous
);
20644 bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr
*COCE
) {
20645 assert(!RelevantExpr
&& "RelevantExpr is expected to be nullptr");
20646 Components
.emplace_back(COCE
, nullptr, IsNonContiguous
);
20649 bool VisitOpaqueValueExpr(OpaqueValueExpr
*E
) {
20650 Expr
*Source
= E
->getSourceExpr();
20655 return Visit(Source
);
20657 bool VisitStmt(Stmt
*) {
20661 const Expr
*getFoundBase() const { return RelevantExpr
; }
20662 explicit MapBaseChecker(
20663 Sema
&SemaRef
, OpenMPClauseKind CKind
, OpenMPDirectiveKind DKind
,
20664 OMPClauseMappableExprCommon::MappableExprComponentList
&Components
,
20665 bool NoDiagnose
, SourceLocation
&ELoc
, SourceRange
&ERange
)
20666 : SemaRef(SemaRef
), CKind(CKind
), DKind(DKind
), Components(Components
),
20667 NoDiagnose(NoDiagnose
), ELoc(ELoc
), ERange(ERange
) {}
20671 /// Return the expression of the base of the mappable expression or null if it
20672 /// cannot be determined and do all the necessary checks to see if the
20673 /// expression is valid as a standalone mappable expression. In the process,
20674 /// record all the components of the expression.
20675 static const Expr
*checkMapClauseExpressionBase(
20676 Sema
&SemaRef
, Expr
*E
,
20677 OMPClauseMappableExprCommon::MappableExprComponentList
&CurComponents
,
20678 OpenMPClauseKind CKind
, OpenMPDirectiveKind DKind
, bool NoDiagnose
) {
20679 SourceLocation ELoc
= E
->getExprLoc();
20680 SourceRange ERange
= E
->getSourceRange();
20681 MapBaseChecker
Checker(SemaRef
, CKind
, DKind
, CurComponents
, NoDiagnose
, ELoc
,
20683 if (Checker
.Visit(E
->IgnoreParens())) {
20684 // Check if the highest dimension array section has length specified
20685 if (SemaRef
.getLangOpts().OpenMP
>= 50 && !CurComponents
.empty() &&
20686 (CKind
== OMPC_to
|| CKind
== OMPC_from
)) {
20687 auto CI
= CurComponents
.rbegin();
20688 auto CE
= CurComponents
.rend();
20689 for (; CI
!= CE
; ++CI
) {
20691 dyn_cast
<ArraySectionExpr
>(CI
->getAssociatedExpression());
20694 if (OASE
&& OASE
->getLength())
20696 SemaRef
.Diag(ELoc
, diag::err_array_section_does_not_specify_length
)
20700 return Checker
.getFoundBase();
20705 // Return true if expression E associated with value VD has conflicts with other
20706 // map information.
20707 static bool checkMapConflicts(
20708 Sema
&SemaRef
, DSAStackTy
*DSAS
, const ValueDecl
*VD
, const Expr
*E
,
20709 bool CurrentRegionOnly
,
20710 OMPClauseMappableExprCommon::MappableExprComponentListRef CurComponents
,
20711 OpenMPClauseKind CKind
) {
20713 SourceLocation ELoc
= E
->getExprLoc();
20714 SourceRange ERange
= E
->getSourceRange();
20716 // In order to easily check the conflicts we need to match each component of
20717 // the expression under test with the components of the expressions that are
20718 // already in the stack.
20720 assert(!CurComponents
.empty() && "Map clause expression with no components!");
20721 assert(CurComponents
.back().getAssociatedDeclaration() == VD
&&
20722 "Map clause expression with unexpected base!");
20724 // Variables to help detecting enclosing problems in data environment nests.
20725 bool IsEnclosedByDataEnvironmentExpr
= false;
20726 const Expr
*EnclosingExpr
= nullptr;
20728 bool FoundError
= DSAS
->checkMappableExprComponentListsForDecl(
20729 VD
, CurrentRegionOnly
,
20730 [&IsEnclosedByDataEnvironmentExpr
, &SemaRef
, VD
, CurrentRegionOnly
, ELoc
,
20731 ERange
, CKind
, &EnclosingExpr
,
20732 CurComponents
](OMPClauseMappableExprCommon::MappableExprComponentListRef
20734 OpenMPClauseKind Kind
) {
20735 if (CKind
== Kind
&& SemaRef
.LangOpts
.OpenMP
>= 50)
20737 assert(!StackComponents
.empty() &&
20738 "Map clause expression with no components!");
20739 assert(StackComponents
.back().getAssociatedDeclaration() == VD
&&
20740 "Map clause expression with unexpected base!");
20743 // The whole expression in the stack.
20744 const Expr
*RE
= StackComponents
.front().getAssociatedExpression();
20746 // Expressions must start from the same base. Here we detect at which
20747 // point both expressions diverge from each other and see if we can
20748 // detect if the memory referred to both expressions is contiguous and
20750 auto CI
= CurComponents
.rbegin();
20751 auto CE
= CurComponents
.rend();
20752 auto SI
= StackComponents
.rbegin();
20753 auto SE
= StackComponents
.rend();
20754 for (; CI
!= CE
&& SI
!= SE
; ++CI
, ++SI
) {
20756 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.3]
20757 // At most one list item can be an array item derived from a given
20758 // variable in map clauses of the same construct.
20759 if (CurrentRegionOnly
&&
20760 (isa
<ArraySubscriptExpr
>(CI
->getAssociatedExpression()) ||
20761 isa
<ArraySectionExpr
>(CI
->getAssociatedExpression()) ||
20762 isa
<OMPArrayShapingExpr
>(CI
->getAssociatedExpression())) &&
20763 (isa
<ArraySubscriptExpr
>(SI
->getAssociatedExpression()) ||
20764 isa
<ArraySectionExpr
>(SI
->getAssociatedExpression()) ||
20765 isa
<OMPArrayShapingExpr
>(SI
->getAssociatedExpression()))) {
20766 SemaRef
.Diag(CI
->getAssociatedExpression()->getExprLoc(),
20767 diag::err_omp_multiple_array_items_in_map_clause
)
20768 << CI
->getAssociatedExpression()->getSourceRange();
20769 SemaRef
.Diag(SI
->getAssociatedExpression()->getExprLoc(),
20770 diag::note_used_here
)
20771 << SI
->getAssociatedExpression()->getSourceRange();
20775 // Do both expressions have the same kind?
20776 if (CI
->getAssociatedExpression()->getStmtClass() !=
20777 SI
->getAssociatedExpression()->getStmtClass())
20780 // Are we dealing with different variables/fields?
20781 if (CI
->getAssociatedDeclaration() != SI
->getAssociatedDeclaration())
20784 // Check if the extra components of the expressions in the enclosing
20785 // data environment are redundant for the current base declaration.
20786 // If they are, the maps completely overlap, which is legal.
20787 for (; SI
!= SE
; ++SI
) {
20789 if (const auto *ASE
=
20790 dyn_cast
<ArraySubscriptExpr
>(SI
->getAssociatedExpression())) {
20791 Type
= ASE
->getBase()->IgnoreParenImpCasts()->getType();
20792 } else if (const auto *OASE
= dyn_cast
<ArraySectionExpr
>(
20793 SI
->getAssociatedExpression())) {
20794 const Expr
*E
= OASE
->getBase()->IgnoreParenImpCasts();
20795 Type
= ArraySectionExpr::getBaseOriginalType(E
).getCanonicalType();
20796 } else if (const auto *OASE
= dyn_cast
<OMPArrayShapingExpr
>(
20797 SI
->getAssociatedExpression())) {
20798 Type
= OASE
->getBase()->getType()->getPointeeType();
20800 if (Type
.isNull() || Type
->isAnyPointerType() ||
20801 checkArrayExpressionDoesNotReferToWholeSize(
20802 SemaRef
, SI
->getAssociatedExpression(), Type
))
20806 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
20807 // List items of map clauses in the same construct must not share
20808 // original storage.
20810 // If the expressions are exactly the same or one is a subset of the
20811 // other, it means they are sharing storage.
20812 if (CI
== CE
&& SI
== SE
) {
20813 if (CurrentRegionOnly
) {
20814 if (CKind
== OMPC_map
) {
20815 SemaRef
.Diag(ELoc
, diag::err_omp_map_shared_storage
) << ERange
;
20817 assert(CKind
== OMPC_to
|| CKind
== OMPC_from
);
20818 SemaRef
.Diag(ELoc
, diag::err_omp_once_referenced_in_target_update
)
20821 SemaRef
.Diag(RE
->getExprLoc(), diag::note_used_here
)
20822 << RE
->getSourceRange();
20825 // If we find the same expression in the enclosing data environment,
20827 IsEnclosedByDataEnvironmentExpr
= true;
20831 QualType DerivedType
=
20832 std::prev(CI
)->getAssociatedDeclaration()->getType();
20833 SourceLocation DerivedLoc
=
20834 std::prev(CI
)->getAssociatedExpression()->getExprLoc();
20836 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
20837 // If the type of a list item is a reference to a type T then the type
20838 // will be considered to be T for all purposes of this clause.
20839 DerivedType
= DerivedType
.getNonReferenceType();
20841 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.1]
20842 // A variable for which the type is pointer and an array section
20843 // derived from that variable must not appear as list items of map
20844 // clauses of the same construct.
20846 // Also, cover one of the cases in:
20847 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
20848 // If any part of the original storage of a list item has corresponding
20849 // storage in the device data environment, all of the original storage
20850 // must have corresponding storage in the device data environment.
20852 if (DerivedType
->isAnyPointerType()) {
20853 if (CI
== CE
|| SI
== SE
) {
20856 diag::err_omp_pointer_mapped_along_with_derived_section
)
20858 SemaRef
.Diag(RE
->getExprLoc(), diag::note_used_here
)
20859 << RE
->getSourceRange();
20862 if (CI
->getAssociatedExpression()->getStmtClass() !=
20863 SI
->getAssociatedExpression()->getStmtClass() ||
20864 CI
->getAssociatedDeclaration()->getCanonicalDecl() ==
20865 SI
->getAssociatedDeclaration()->getCanonicalDecl()) {
20866 assert(CI
!= CE
&& SI
!= SE
);
20867 SemaRef
.Diag(DerivedLoc
, diag::err_omp_same_pointer_dereferenced
)
20869 SemaRef
.Diag(RE
->getExprLoc(), diag::note_used_here
)
20870 << RE
->getSourceRange();
20875 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.4]
20876 // List items of map clauses in the same construct must not share
20877 // original storage.
20879 // An expression is a subset of the other.
20880 if (CurrentRegionOnly
&& (CI
== CE
|| SI
== SE
)) {
20881 if (CKind
== OMPC_map
) {
20882 if (CI
!= CE
|| SI
!= SE
) {
20883 // Allow constructs like this: map(s, s.ptr[0:1]), where s.ptr is
20886 CI
!= CE
? CurComponents
.begin() : StackComponents
.begin();
20887 auto End
= CI
!= CE
? CurComponents
.end() : StackComponents
.end();
20889 while (It
!= End
&& !It
->getAssociatedDeclaration())
20890 std::advance(It
, 1);
20891 assert(It
!= End
&&
20892 "Expected at least one component with the declaration.");
20893 if (It
!= Begin
&& It
->getAssociatedDeclaration()
20895 .getCanonicalType()
20896 ->isAnyPointerType()) {
20897 IsEnclosedByDataEnvironmentExpr
= false;
20898 EnclosingExpr
= nullptr;
20902 SemaRef
.Diag(ELoc
, diag::err_omp_map_shared_storage
) << ERange
;
20904 assert(CKind
== OMPC_to
|| CKind
== OMPC_from
);
20905 SemaRef
.Diag(ELoc
, diag::err_omp_once_referenced_in_target_update
)
20908 SemaRef
.Diag(RE
->getExprLoc(), diag::note_used_here
)
20909 << RE
->getSourceRange();
20913 // The current expression uses the same base as other expression in the
20914 // data environment but does not contain it completely.
20915 if (!CurrentRegionOnly
&& SI
!= SE
)
20916 EnclosingExpr
= RE
;
20918 // The current expression is a subset of the expression in the data
20920 IsEnclosedByDataEnvironmentExpr
|=
20921 (!CurrentRegionOnly
&& CI
!= CE
&& SI
== SE
);
20926 if (CurrentRegionOnly
)
20929 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.5]
20930 // If any part of the original storage of a list item has corresponding
20931 // storage in the device data environment, all of the original storage must
20932 // have corresponding storage in the device data environment.
20933 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.6]
20934 // If a list item is an element of a structure, and a different element of
20935 // the structure has a corresponding list item in the device data environment
20936 // prior to a task encountering the construct associated with the map clause,
20937 // then the list item must also have a corresponding list item in the device
20938 // data environment prior to the task encountering the construct.
20940 if (EnclosingExpr
&& !IsEnclosedByDataEnvironmentExpr
) {
20942 diag::err_omp_original_storage_is_shared_and_does_not_contain
)
20944 SemaRef
.Diag(EnclosingExpr
->getExprLoc(), diag::note_used_here
)
20945 << EnclosingExpr
->getSourceRange();
20952 // Look up the user-defined mapper given the mapper name and mapped type, and
20953 // build a reference to it.
20954 static ExprResult
buildUserDefinedMapperRef(Sema
&SemaRef
, Scope
*S
,
20955 CXXScopeSpec
&MapperIdScopeSpec
,
20956 const DeclarationNameInfo
&MapperId
,
20958 Expr
*UnresolvedMapper
) {
20959 if (MapperIdScopeSpec
.isInvalid())
20960 return ExprError();
20961 // Get the actual type for the array type.
20962 if (Type
->isArrayType()) {
20963 assert(Type
->getAsArrayTypeUnsafe() && "Expect to get a valid array type");
20964 Type
= Type
->getAsArrayTypeUnsafe()->getElementType().getCanonicalType();
20966 // Find all user-defined mappers with the given MapperId.
20967 SmallVector
<UnresolvedSet
<8>, 4> Lookups
;
20968 LookupResult
Lookup(SemaRef
, MapperId
, Sema::LookupOMPMapperName
);
20969 Lookup
.suppressDiagnostics();
20971 while (S
&& SemaRef
.LookupParsedName(Lookup
, S
, &MapperIdScopeSpec
,
20972 /*ObjectType=*/QualType())) {
20973 NamedDecl
*D
= Lookup
.getRepresentativeDecl();
20974 while (S
&& !S
->isDeclScope(D
))
20975 S
= S
->getParent();
20977 S
= S
->getParent();
20978 Lookups
.emplace_back();
20979 Lookups
.back().append(Lookup
.begin(), Lookup
.end());
20982 } else if (auto *ULE
= cast_or_null
<UnresolvedLookupExpr
>(UnresolvedMapper
)) {
20983 // Extract the user-defined mappers with the given MapperId.
20984 Lookups
.push_back(UnresolvedSet
<8>());
20985 for (NamedDecl
*D
: ULE
->decls()) {
20986 auto *DMD
= cast
<OMPDeclareMapperDecl
>(D
);
20987 assert(DMD
&& "Expect valid OMPDeclareMapperDecl during instantiation.");
20988 Lookups
.back().addDecl(DMD
);
20991 // Defer the lookup for dependent types. The results will be passed through
20992 // UnresolvedMapper on instantiation.
20993 if (SemaRef
.CurContext
->isDependentContext() || Type
->isDependentType() ||
20994 Type
->isInstantiationDependentType() ||
20995 Type
->containsUnexpandedParameterPack() ||
20996 filterLookupForUDReductionAndMapper
<bool>(Lookups
, [](ValueDecl
*D
) {
20997 return !D
->isInvalidDecl() &&
20998 (D
->getType()->isDependentType() ||
20999 D
->getType()->isInstantiationDependentType() ||
21000 D
->getType()->containsUnexpandedParameterPack());
21002 UnresolvedSet
<8> URS
;
21003 for (const UnresolvedSet
<8> &Set
: Lookups
) {
21006 URS
.append(Set
.begin(), Set
.end());
21008 return UnresolvedLookupExpr::Create(
21009 SemaRef
.Context
, /*NamingClass=*/nullptr,
21010 MapperIdScopeSpec
.getWithLocInContext(SemaRef
.Context
), MapperId
,
21011 /*ADL=*/false, URS
.begin(), URS
.end(), /*KnownDependent=*/false,
21012 /*KnownInstantiationDependent=*/false);
21014 SourceLocation Loc
= MapperId
.getLoc();
21015 // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
21016 // The type must be of struct, union or class type in C and C++
21017 if (!Type
->isStructureOrClassType() && !Type
->isUnionType() &&
21018 (MapperIdScopeSpec
.isSet() || MapperId
.getAsString() != "default")) {
21019 SemaRef
.Diag(Loc
, diag::err_omp_mapper_wrong_type
);
21020 return ExprError();
21022 // Perform argument dependent lookup.
21023 if (SemaRef
.getLangOpts().CPlusPlus
&& !MapperIdScopeSpec
.isSet())
21024 argumentDependentLookup(SemaRef
, MapperId
, Loc
, Type
, Lookups
);
21025 // Return the first user-defined mapper with the desired type.
21026 if (auto *VD
= filterLookupForUDReductionAndMapper
<ValueDecl
*>(
21027 Lookups
, [&SemaRef
, Type
](ValueDecl
*D
) -> ValueDecl
* {
21028 if (!D
->isInvalidDecl() &&
21029 SemaRef
.Context
.hasSameType(D
->getType(), Type
))
21033 return SemaRef
.BuildDeclRefExpr(VD
, Type
, VK_LValue
, Loc
);
21034 // Find the first user-defined mapper with a type derived from the desired
21036 if (auto *VD
= filterLookupForUDReductionAndMapper
<ValueDecl
*>(
21037 Lookups
, [&SemaRef
, Type
, Loc
](ValueDecl
*D
) -> ValueDecl
* {
21038 if (!D
->isInvalidDecl() &&
21039 SemaRef
.IsDerivedFrom(Loc
, Type
, D
->getType()) &&
21040 !Type
.isMoreQualifiedThan(D
->getType(),
21041 SemaRef
.getASTContext()))
21045 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
21046 /*DetectVirtual=*/false);
21047 if (SemaRef
.IsDerivedFrom(Loc
, Type
, VD
->getType(), Paths
)) {
21048 if (!Paths
.isAmbiguous(SemaRef
.Context
.getCanonicalType(
21049 VD
->getType().getUnqualifiedType()))) {
21050 if (SemaRef
.CheckBaseClassAccess(
21051 Loc
, VD
->getType(), Type
, Paths
.front(),
21052 /*DiagID=*/0) != Sema::AR_inaccessible
) {
21053 return SemaRef
.BuildDeclRefExpr(VD
, Type
, VK_LValue
, Loc
);
21058 // Report error if a mapper is specified, but cannot be found.
21059 if (MapperIdScopeSpec
.isSet() || MapperId
.getAsString() != "default") {
21060 SemaRef
.Diag(Loc
, diag::err_omp_invalid_mapper
)
21061 << Type
<< MapperId
.getName();
21062 return ExprError();
21064 return ExprEmpty();
21068 // Utility struct that gathers all the related lists associated with a mappable
21070 struct MappableVarListInfo
{
21071 // The list of expressions.
21072 ArrayRef
<Expr
*> VarList
;
21073 // The list of processed expressions.
21074 SmallVector
<Expr
*, 16> ProcessedVarList
;
21075 // The mappble components for each expression.
21076 OMPClauseMappableExprCommon::MappableExprComponentLists VarComponents
;
21077 // The base declaration of the variable.
21078 SmallVector
<ValueDecl
*, 16> VarBaseDeclarations
;
21079 // The reference to the user-defined mapper associated with every expression.
21080 SmallVector
<Expr
*, 16> UDMapperList
;
21082 MappableVarListInfo(ArrayRef
<Expr
*> VarList
) : VarList(VarList
) {
21083 // We have a list of components and base declarations for each entry in the
21085 VarComponents
.reserve(VarList
.size());
21086 VarBaseDeclarations
.reserve(VarList
.size());
21091 static DeclRefExpr
*buildImplicitMap(Sema
&S
, QualType BaseType
,
21093 SmallVectorImpl
<OMPClause
*> &Maps
) {
21095 const RecordDecl
*RD
= BaseType
->getAsRecordDecl();
21096 SourceRange Range
= RD
->getSourceRange();
21097 DeclarationNameInfo ImplicitName
;
21098 // Dummy variable _s for Mapper.
21099 VarDecl
*VD
= buildVarDecl(S
, Range
.getEnd(), BaseType
, "_s");
21100 DeclRefExpr
*MapperVarRef
=
21101 buildDeclRefExpr(S
, VD
, BaseType
, SourceLocation());
21103 // Create implicit map clause for mapper.
21104 SmallVector
<Expr
*, 4> SExprs
;
21105 for (auto *FD
: RD
->fields()) {
21106 Expr
*BE
= S
.BuildMemberExpr(
21107 MapperVarRef
, /*IsArrow=*/false, Range
.getBegin(),
21108 NestedNameSpecifierLoc(), Range
.getBegin(), FD
,
21109 DeclAccessPair::make(FD
, FD
->getAccess()),
21110 /*HadMultipleCandidates=*/false,
21111 DeclarationNameInfo(FD
->getDeclName(), FD
->getSourceRange().getBegin()),
21112 FD
->getType(), VK_LValue
, OK_Ordinary
);
21113 SExprs
.push_back(BE
);
21115 CXXScopeSpec MapperIdScopeSpec
;
21116 DeclarationNameInfo MapperId
;
21117 OpenMPDirectiveKind DKind
= Stack
->getCurrentDirective();
21119 OMPClause
*MapClause
= S
.OpenMP().ActOnOpenMPMapClause(
21120 nullptr, OMPC_MAP_MODIFIER_unknown
, SourceLocation(), MapperIdScopeSpec
,
21121 MapperId
, DKind
== OMPD_target_enter_data
? OMPC_MAP_to
: OMPC_MAP_tofrom
,
21122 /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(), SExprs
,
21123 OMPVarListLocTy());
21124 Maps
.push_back(MapClause
);
21125 return MapperVarRef
;
21128 static ExprResult
buildImplicitMapper(Sema
&S
, QualType BaseType
,
21129 DSAStackTy
*Stack
) {
21131 // Build impilicit map for mapper
21132 SmallVector
<OMPClause
*, 4> Maps
;
21133 DeclRefExpr
*MapperVarRef
= buildImplicitMap(S
, BaseType
, Stack
, Maps
);
21135 const RecordDecl
*RD
= BaseType
->getAsRecordDecl();
21136 // AST context is RD's ParentASTContext().
21137 ASTContext
&Ctx
= RD
->getParentASTContext();
21138 // DeclContext is RD's DeclContext.
21139 DeclContext
*DCT
= const_cast<DeclContext
*>(RD
->getDeclContext());
21141 // Create implicit default mapper for "RD".
21142 DeclarationName MapperId
;
21143 auto &DeclNames
= Ctx
.DeclarationNames
;
21144 MapperId
= DeclNames
.getIdentifier(&Ctx
.Idents
.get("default"));
21145 auto *DMD
= OMPDeclareMapperDecl::Create(Ctx
, DCT
, SourceLocation(), MapperId
,
21146 BaseType
, MapperId
, Maps
, nullptr);
21147 Scope
*Scope
= S
.getScopeForContext(DCT
);
21149 S
.PushOnScopeChains(DMD
, Scope
, /*AddToContext=*/false);
21151 DMD
->setAccess(clang::AS_none
);
21152 auto *VD
= cast
<DeclRefExpr
>(MapperVarRef
)->getDecl();
21153 VD
->setDeclContext(DMD
);
21154 VD
->setLexicalDeclContext(DMD
);
21156 DMD
->setMapperVarRef(MapperVarRef
);
21157 FieldDecl
*FD
= *RD
->field_begin();
21158 // create mapper refence.
21159 return DeclRefExpr::Create(Ctx
, NestedNameSpecifierLoc
{}, FD
->getLocation(),
21160 DMD
, false, SourceLocation(), BaseType
, VK_LValue
);
21163 // Look up the user-defined mapper given the mapper name and mapper type,
21164 // return true if found one.
21165 static bool hasUserDefinedMapper(Sema
&SemaRef
, Scope
*S
,
21166 CXXScopeSpec
&MapperIdScopeSpec
,
21167 const DeclarationNameInfo
&MapperId
,
21169 // Find all user-defined mappers with the given MapperId.
21170 SmallVector
<UnresolvedSet
<8>, 4> Lookups
;
21171 LookupResult
Lookup(SemaRef
, MapperId
, Sema::LookupOMPMapperName
);
21172 Lookup
.suppressDiagnostics();
21173 while (S
&& SemaRef
.LookupParsedName(Lookup
, S
, &MapperIdScopeSpec
,
21174 /*ObjectType=*/QualType())) {
21175 NamedDecl
*D
= Lookup
.getRepresentativeDecl();
21176 while (S
&& !S
->isDeclScope(D
))
21177 S
= S
->getParent();
21179 S
= S
->getParent();
21180 Lookups
.emplace_back();
21181 Lookups
.back().append(Lookup
.begin(), Lookup
.end());
21184 if (SemaRef
.CurContext
->isDependentContext() || Type
->isDependentType() ||
21185 Type
->isInstantiationDependentType() ||
21186 Type
->containsUnexpandedParameterPack() ||
21187 filterLookupForUDReductionAndMapper
<bool>(Lookups
, [](ValueDecl
*D
) {
21188 return !D
->isInvalidDecl() &&
21189 (D
->getType()->isDependentType() ||
21190 D
->getType()->isInstantiationDependentType() ||
21191 D
->getType()->containsUnexpandedParameterPack());
21194 // Perform argument dependent lookup.
21195 SourceLocation Loc
= MapperId
.getLoc();
21196 if (SemaRef
.getLangOpts().CPlusPlus
&& !MapperIdScopeSpec
.isSet())
21197 argumentDependentLookup(SemaRef
, MapperId
, Loc
, Type
, Lookups
);
21198 if (filterLookupForUDReductionAndMapper
<ValueDecl
*>(
21199 Lookups
, [&SemaRef
, Type
](ValueDecl
*D
) -> ValueDecl
* {
21200 if (!D
->isInvalidDecl() &&
21201 SemaRef
.Context
.hasSameType(D
->getType(), Type
))
21206 // Find the first user-defined mapper with a type derived from the desired
21208 auto *VD
= filterLookupForUDReductionAndMapper
<ValueDecl
*>(
21209 Lookups
, [&SemaRef
, Type
, Loc
](ValueDecl
*D
) -> ValueDecl
* {
21210 if (!D
->isInvalidDecl() &&
21211 SemaRef
.IsDerivedFrom(Loc
, Type
, D
->getType()) &&
21212 !Type
.isMoreQualifiedThan(D
->getType(), SemaRef
.getASTContext()))
21218 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
21219 /*DetectVirtual=*/false);
21220 if (SemaRef
.IsDerivedFrom(Loc
, Type
, VD
->getType(), Paths
)) {
21221 bool IsAmbiguous
= !Paths
.isAmbiguous(
21222 SemaRef
.Context
.getCanonicalType(VD
->getType().getUnqualifiedType()));
21225 if (SemaRef
.CheckBaseClassAccess(Loc
, VD
->getType(), Type
, Paths
.front(),
21226 /*DiagID=*/0) != Sema::AR_inaccessible
)
21232 static bool isImplicitMapperNeeded(Sema
&S
, DSAStackTy
*Stack
,
21233 QualType CanonType
, const Expr
*E
) {
21235 // DFS over data members in structures/classes.
21236 SmallVector
<std::pair
<QualType
, FieldDecl
*>, 4> Types(1,
21237 {CanonType
, nullptr});
21238 llvm::DenseMap
<const Type
*, bool> Visited
;
21239 SmallVector
<std::pair
<FieldDecl
*, unsigned>, 4> ParentChain(1, {nullptr, 1});
21240 while (!Types
.empty()) {
21241 auto [BaseType
, CurFD
] = Types
.pop_back_val();
21242 while (ParentChain
.back().second
== 0)
21243 ParentChain
.pop_back();
21244 --ParentChain
.back().second
;
21245 if (BaseType
.isNull())
21247 // Only structs/classes are allowed to have mappers.
21248 const RecordDecl
*RD
= BaseType
.getCanonicalType()->getAsRecordDecl();
21251 auto It
= Visited
.find(BaseType
.getTypePtr());
21252 if (It
== Visited
.end()) {
21253 // Try to find the associated user-defined mapper.
21254 CXXScopeSpec MapperIdScopeSpec
;
21255 DeclarationNameInfo DefaultMapperId
;
21256 DefaultMapperId
.setName(S
.Context
.DeclarationNames
.getIdentifier(
21257 &S
.Context
.Idents
.get("default")));
21258 DefaultMapperId
.setLoc(E
->getExprLoc());
21260 hasUserDefinedMapper(S
, Stack
->getCurScope(), MapperIdScopeSpec
,
21261 DefaultMapperId
, BaseType
);
21262 It
= Visited
.try_emplace(BaseType
.getTypePtr(), HasUDMapper
).first
;
21264 // Found default mapper.
21267 // Check for the "default" mapper for data members.
21268 bool FirstIter
= true;
21269 for (FieldDecl
*FD
: RD
->fields()) {
21272 QualType FieldTy
= FD
->getType();
21273 if (FieldTy
.isNull() ||
21274 !(FieldTy
->isStructureOrClassType() || FieldTy
->isUnionType()))
21278 ParentChain
.emplace_back(CurFD
, 1);
21280 ++ParentChain
.back().second
;
21282 Types
.emplace_back(FieldTy
, FD
);
21288 // Check the validity of the provided variable list for the provided clause kind
21289 // \a CKind. In the check process the valid expressions, mappable expression
21290 // components, variables, and user-defined mappers are extracted and used to
21291 // fill \a ProcessedVarList, \a VarComponents, \a VarBaseDeclarations, and \a
21292 // UDMapperList in MVLI. \a MapType, \a IsMapTypeImplicit, \a MapperIdScopeSpec,
21293 // and \a MapperId are expected to be valid if the clause kind is 'map'.
21294 static void checkMappableExpressionList(
21295 Sema
&SemaRef
, DSAStackTy
*DSAS
, OpenMPClauseKind CKind
,
21296 MappableVarListInfo
&MVLI
, SourceLocation StartLoc
,
21297 CXXScopeSpec
&MapperIdScopeSpec
, DeclarationNameInfo MapperId
,
21298 ArrayRef
<Expr
*> UnresolvedMappers
,
21299 OpenMPMapClauseKind MapType
= OMPC_MAP_unknown
,
21300 ArrayRef
<OpenMPMapModifierKind
> Modifiers
= {},
21301 bool IsMapTypeImplicit
= false, bool NoDiagnose
= false) {
21302 // We only expect mappable expressions in 'to', 'from', and 'map' clauses.
21303 assert((CKind
== OMPC_map
|| CKind
== OMPC_to
|| CKind
== OMPC_from
) &&
21304 "Unexpected clause kind with mappable expressions!");
21306 // If the identifier of user-defined mapper is not specified, it is "default".
21307 // We do not change the actual name in this clause to distinguish whether a
21308 // mapper is specified explicitly, i.e., it is not explicitly specified when
21309 // MapperId.getName() is empty.
21310 if (!MapperId
.getName() || MapperId
.getName().isEmpty()) {
21311 auto &DeclNames
= SemaRef
.getASTContext().DeclarationNames
;
21312 MapperId
.setName(DeclNames
.getIdentifier(
21313 &SemaRef
.getASTContext().Idents
.get("default")));
21314 MapperId
.setLoc(StartLoc
);
21317 // Iterators to find the current unresolved mapper expression.
21318 auto UMIt
= UnresolvedMappers
.begin(), UMEnd
= UnresolvedMappers
.end();
21319 bool UpdateUMIt
= false;
21320 Expr
*UnresolvedMapper
= nullptr;
21322 bool HasHoldModifier
=
21323 llvm::is_contained(Modifiers
, OMPC_MAP_MODIFIER_ompx_hold
);
21325 // Keep track of the mappable components and base declarations in this clause.
21326 // Each entry in the list is going to have a list of components associated. We
21327 // record each set of the components so that we can build the clause later on.
21328 // In the end we should have the same amount of declarations and component
21331 for (Expr
*RE
: MVLI
.VarList
) {
21332 assert(RE
&& "Null expr in omp to/from/map clause");
21333 SourceLocation ELoc
= RE
->getExprLoc();
21335 // Find the current unresolved mapper expression.
21336 if (UpdateUMIt
&& UMIt
!= UMEnd
) {
21340 "Expect the size of UnresolvedMappers to match with that of VarList");
21344 UnresolvedMapper
= *UMIt
;
21346 const Expr
*VE
= RE
->IgnoreParenLValueCasts();
21348 if (VE
->isValueDependent() || VE
->isTypeDependent() ||
21349 VE
->isInstantiationDependent() ||
21350 VE
->containsUnexpandedParameterPack()) {
21351 // Try to find the associated user-defined mapper.
21352 ExprResult ER
= buildUserDefinedMapperRef(
21353 SemaRef
, DSAS
->getCurScope(), MapperIdScopeSpec
, MapperId
,
21354 VE
->getType().getCanonicalType(), UnresolvedMapper
);
21355 if (ER
.isInvalid())
21357 MVLI
.UDMapperList
.push_back(ER
.get());
21358 // We can only analyze this information once the missing information is
21360 MVLI
.ProcessedVarList
.push_back(RE
);
21364 Expr
*SimpleExpr
= RE
->IgnoreParenCasts();
21366 if (!RE
->isLValue()) {
21367 if (SemaRef
.getLangOpts().OpenMP
< 50) {
21369 ELoc
, diag::err_omp_expected_named_var_member_or_array_expression
)
21370 << RE
->getSourceRange();
21372 SemaRef
.Diag(ELoc
, diag::err_omp_non_lvalue_in_map_or_motion_clauses
)
21373 << getOpenMPClauseName(CKind
) << RE
->getSourceRange();
21378 OMPClauseMappableExprCommon::MappableExprComponentList CurComponents
;
21379 ValueDecl
*CurDeclaration
= nullptr;
21381 // Obtain the array or member expression bases if required. Also, fill the
21382 // components array with all the components identified in the process.
21384 checkMapClauseExpressionBase(SemaRef
, SimpleExpr
, CurComponents
, CKind
,
21385 DSAS
->getCurrentDirective(), NoDiagnose
);
21389 assert(!CurComponents
.empty() &&
21390 "Invalid mappable expression information.");
21392 if (const auto *TE
= dyn_cast
<CXXThisExpr
>(BE
)) {
21393 // Add store "this" pointer to class in DSAStackTy for future checking
21394 DSAS
->addMappedClassesQualTypes(TE
->getType());
21395 // Try to find the associated user-defined mapper.
21396 ExprResult ER
= buildUserDefinedMapperRef(
21397 SemaRef
, DSAS
->getCurScope(), MapperIdScopeSpec
, MapperId
,
21398 VE
->getType().getCanonicalType(), UnresolvedMapper
);
21399 if (ER
.isInvalid())
21401 MVLI
.UDMapperList
.push_back(ER
.get());
21402 // Skip restriction checking for variable or field declarations
21403 MVLI
.ProcessedVarList
.push_back(RE
);
21404 MVLI
.VarComponents
.resize(MVLI
.VarComponents
.size() + 1);
21405 MVLI
.VarComponents
.back().append(CurComponents
.begin(),
21406 CurComponents
.end());
21407 MVLI
.VarBaseDeclarations
.push_back(nullptr);
21411 // For the following checks, we rely on the base declaration which is
21412 // expected to be associated with the last component. The declaration is
21413 // expected to be a variable or a field (if 'this' is being mapped).
21414 CurDeclaration
= CurComponents
.back().getAssociatedDeclaration();
21415 assert(CurDeclaration
&& "Null decl on map clause.");
21417 CurDeclaration
->isCanonicalDecl() &&
21418 "Expecting components to have associated only canonical declarations.");
21420 auto *VD
= dyn_cast
<VarDecl
>(CurDeclaration
);
21421 const auto *FD
= dyn_cast
<FieldDecl
>(CurDeclaration
);
21423 assert((VD
|| FD
) && "Only variables or fields are expected here!");
21426 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.10]
21427 // threadprivate variables cannot appear in a map clause.
21428 // OpenMP 4.5 [2.10.5, target update Construct]
21429 // threadprivate variables cannot appear in a from clause.
21430 if (VD
&& DSAS
->isThreadPrivate(VD
)) {
21433 DSAStackTy::DSAVarData DVar
= DSAS
->getTopDSA(VD
, /*FromParent=*/false);
21434 SemaRef
.Diag(ELoc
, diag::err_omp_threadprivate_in_clause
)
21435 << getOpenMPClauseName(CKind
);
21436 reportOriginalDsa(SemaRef
, DSAS
, VD
, DVar
);
21440 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
21441 // A list item cannot appear in both a map clause and a data-sharing
21442 // attribute clause on the same construct.
21444 // Check conflicts with other map clause expressions. We check the conflicts
21445 // with the current construct separately from the enclosing data
21446 // environment, because the restrictions are different. We only have to
21447 // check conflicts across regions for the map clauses.
21448 if (checkMapConflicts(SemaRef
, DSAS
, CurDeclaration
, SimpleExpr
,
21449 /*CurrentRegionOnly=*/true, CurComponents
, CKind
))
21451 if (CKind
== OMPC_map
&&
21452 (SemaRef
.getLangOpts().OpenMP
<= 45 || StartLoc
.isValid()) &&
21453 checkMapConflicts(SemaRef
, DSAS
, CurDeclaration
, SimpleExpr
,
21454 /*CurrentRegionOnly=*/false, CurComponents
, CKind
))
21457 // OpenMP 4.5 [2.10.5, target update Construct]
21458 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C++, p.1]
21459 // If the type of a list item is a reference to a type T then the type will
21460 // be considered to be T for all purposes of this clause.
21461 auto I
= llvm::find_if(
21463 [](const OMPClauseMappableExprCommon::MappableComponent
&MC
) {
21464 return MC
.getAssociatedDeclaration();
21466 assert(I
!= CurComponents
.end() && "Null decl on map clause.");
21469 auto *ASE
= dyn_cast
<ArraySubscriptExpr
>(VE
->IgnoreParens());
21470 auto *OASE
= dyn_cast
<ArraySectionExpr
>(VE
->IgnoreParens());
21471 auto *OAShE
= dyn_cast
<OMPArrayShapingExpr
>(VE
->IgnoreParens());
21473 Type
= ASE
->getType().getNonReferenceType();
21475 QualType BaseType
=
21476 ArraySectionExpr::getBaseOriginalType(OASE
->getBase());
21477 if (const auto *ATy
= BaseType
->getAsArrayTypeUnsafe())
21478 Type
= ATy
->getElementType();
21480 Type
= BaseType
->getPointeeType();
21481 Type
= Type
.getNonReferenceType();
21482 } else if (OAShE
) {
21483 Type
= OAShE
->getBase()->getType()->getPointeeType();
21485 Type
= VE
->getType();
21488 // OpenMP 4.5 [2.10.5, target update Construct, Restrictions, p.4]
21489 // A list item in a to or from clause must have a mappable type.
21490 // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, p.9]
21491 // A list item must have a mappable type.
21492 if (!checkTypeMappable(VE
->getExprLoc(), VE
->getSourceRange(), SemaRef
,
21493 DSAS
, Type
, /*FullCheck=*/true))
21496 if (CKind
== OMPC_map
) {
21497 // target enter data
21498 // OpenMP [2.10.2, Restrictions, p. 99]
21499 // A map-type must be specified in all map clauses and must be either
21500 // to or alloc. Starting with OpenMP 5.2 the default map type is `to` if
21501 // no map type is present.
21502 OpenMPDirectiveKind DKind
= DSAS
->getCurrentDirective();
21503 if (DKind
== OMPD_target_enter_data
&&
21504 !(MapType
== OMPC_MAP_to
|| MapType
== OMPC_MAP_alloc
||
21505 SemaRef
.getLangOpts().OpenMP
>= 52)) {
21506 SemaRef
.Diag(StartLoc
, diag::err_omp_invalid_map_type_for_directive
)
21507 << (IsMapTypeImplicit
? 1 : 0)
21508 << getOpenMPSimpleClauseTypeName(OMPC_map
, MapType
)
21509 << getOpenMPDirectiveName(DKind
);
21513 // target exit_data
21514 // OpenMP [2.10.3, Restrictions, p. 102]
21515 // A map-type must be specified in all map clauses and must be either
21516 // from, release, or delete. Starting with OpenMP 5.2 the default map
21517 // type is `from` if no map type is present.
21518 if (DKind
== OMPD_target_exit_data
&&
21519 !(MapType
== OMPC_MAP_from
|| MapType
== OMPC_MAP_release
||
21520 MapType
== OMPC_MAP_delete
|| SemaRef
.getLangOpts().OpenMP
>= 52)) {
21521 SemaRef
.Diag(StartLoc
, diag::err_omp_invalid_map_type_for_directive
)
21522 << (IsMapTypeImplicit
? 1 : 0)
21523 << getOpenMPSimpleClauseTypeName(OMPC_map
, MapType
)
21524 << getOpenMPDirectiveName(DKind
);
21528 // The 'ompx_hold' modifier is specifically intended to be used on a
21529 // 'target' or 'target data' directive to prevent data from being unmapped
21530 // during the associated statement. It is not permitted on a 'target
21531 // enter data' or 'target exit data' directive, which have no associated
21533 if ((DKind
== OMPD_target_enter_data
|| DKind
== OMPD_target_exit_data
) &&
21535 SemaRef
.Diag(StartLoc
,
21536 diag::err_omp_invalid_map_type_modifier_for_directive
)
21537 << getOpenMPSimpleClauseTypeName(OMPC_map
,
21538 OMPC_MAP_MODIFIER_ompx_hold
)
21539 << getOpenMPDirectiveName(DKind
);
21543 // target, target data
21544 // OpenMP 5.0 [2.12.2, Restrictions, p. 163]
21545 // OpenMP 5.0 [2.12.5, Restrictions, p. 174]
21546 // A map-type in a map clause must be to, from, tofrom or alloc
21547 if ((DKind
== OMPD_target_data
||
21548 isOpenMPTargetExecutionDirective(DKind
)) &&
21549 !(MapType
== OMPC_MAP_to
|| MapType
== OMPC_MAP_from
||
21550 MapType
== OMPC_MAP_tofrom
|| MapType
== OMPC_MAP_alloc
)) {
21551 SemaRef
.Diag(StartLoc
, diag::err_omp_invalid_map_type_for_directive
)
21552 << (IsMapTypeImplicit
? 1 : 0)
21553 << getOpenMPSimpleClauseTypeName(OMPC_map
, MapType
)
21554 << getOpenMPDirectiveName(DKind
);
21558 // OpenMP 4.5 [2.15.5.1, Restrictions, p.3]
21559 // A list item cannot appear in both a map clause and a data-sharing
21560 // attribute clause on the same construct
21562 // OpenMP 5.0 [2.19.7.1, Restrictions, p.7]
21563 // A list item cannot appear in both a map clause and a data-sharing
21564 // attribute clause on the same construct unless the construct is a
21565 // combined construct.
21566 if (VD
&& ((SemaRef
.LangOpts
.OpenMP
<= 45 &&
21567 isOpenMPTargetExecutionDirective(DKind
)) ||
21568 DKind
== OMPD_target
)) {
21569 DSAStackTy::DSAVarData DVar
= DSAS
->getTopDSA(VD
, /*FromParent=*/false);
21570 if (isOpenMPPrivate(DVar
.CKind
)) {
21571 SemaRef
.Diag(ELoc
, diag::err_omp_variable_in_given_clause_and_dsa
)
21572 << getOpenMPClauseName(DVar
.CKind
)
21573 << getOpenMPClauseName(OMPC_map
)
21574 << getOpenMPDirectiveName(DSAS
->getCurrentDirective());
21575 reportOriginalDsa(SemaRef
, DSAS
, CurDeclaration
, DVar
);
21581 // Try to find the associated user-defined mapper.
21582 ExprResult ER
= buildUserDefinedMapperRef(
21583 SemaRef
, DSAS
->getCurScope(), MapperIdScopeSpec
, MapperId
,
21584 Type
.getCanonicalType(), UnresolvedMapper
);
21585 if (ER
.isInvalid())
21587 if (!ER
.get() && isa
<ArraySectionExpr
>(VE
)) {
21588 // Create implicit mapper as needed.
21589 QualType BaseType
= VE
->getType().getCanonicalType();
21590 if (BaseType
->isSpecificBuiltinType(BuiltinType::ArraySection
)) {
21591 const auto *OASE
= cast
<ArraySectionExpr
>(VE
->IgnoreParenImpCasts());
21592 QualType BType
= ArraySectionExpr::getBaseOriginalType(OASE
->getBase());
21594 if (const auto *ATy
= BType
->getAsArrayTypeUnsafe())
21595 ElemType
= ATy
->getElementType();
21597 ElemType
= BType
->getPointeeType();
21598 BaseType
= ElemType
.getCanonicalType();
21600 if (BaseType
->getAsRecordDecl() &&
21601 isImplicitMapperNeeded(SemaRef
, DSAS
, BaseType
, VE
)) {
21602 ER
= buildImplicitMapper(SemaRef
, BaseType
, DSAS
);
21605 MVLI
.UDMapperList
.push_back(ER
.get());
21607 // Save the current expression.
21608 MVLI
.ProcessedVarList
.push_back(RE
);
21610 // Store the components in the stack so that they can be used to check
21611 // against other clauses later on.
21612 DSAS
->addMappableExpressionComponents(CurDeclaration
, CurComponents
,
21613 /*WhereFoundClauseKind=*/OMPC_map
);
21615 // Save the components and declaration to create the clause. For purposes of
21616 // the clause creation, any component list that has base 'this' uses
21617 // null as base declaration.
21618 MVLI
.VarComponents
.resize(MVLI
.VarComponents
.size() + 1);
21619 MVLI
.VarComponents
.back().append(CurComponents
.begin(),
21620 CurComponents
.end());
21621 MVLI
.VarBaseDeclarations
.push_back(isa
<MemberExpr
>(BE
) ? nullptr
21626 OMPClause
*SemaOpenMP::ActOnOpenMPMapClause(
21627 Expr
*IteratorModifier
, ArrayRef
<OpenMPMapModifierKind
> MapTypeModifiers
,
21628 ArrayRef
<SourceLocation
> MapTypeModifiersLoc
,
21629 CXXScopeSpec
&MapperIdScopeSpec
, DeclarationNameInfo
&MapperId
,
21630 OpenMPMapClauseKind MapType
, bool IsMapTypeImplicit
, SourceLocation MapLoc
,
21631 SourceLocation ColonLoc
, ArrayRef
<Expr
*> VarList
,
21632 const OMPVarListLocTy
&Locs
, bool NoDiagnose
,
21633 ArrayRef
<Expr
*> UnresolvedMappers
) {
21634 OpenMPMapModifierKind Modifiers
[] = {
21635 OMPC_MAP_MODIFIER_unknown
, OMPC_MAP_MODIFIER_unknown
,
21636 OMPC_MAP_MODIFIER_unknown
, OMPC_MAP_MODIFIER_unknown
,
21637 OMPC_MAP_MODIFIER_unknown
, OMPC_MAP_MODIFIER_unknown
};
21638 SourceLocation ModifiersLoc
[NumberOfOMPMapClauseModifiers
];
21640 if (IteratorModifier
&& !IteratorModifier
->getType()->isSpecificBuiltinType(
21641 BuiltinType::OMPIterator
))
21642 Diag(IteratorModifier
->getExprLoc(),
21643 diag::err_omp_map_modifier_not_iterator
);
21645 // Process map-type-modifiers, flag errors for duplicate modifiers.
21646 unsigned Count
= 0;
21647 for (unsigned I
= 0, E
= MapTypeModifiers
.size(); I
< E
; ++I
) {
21648 if (MapTypeModifiers
[I
] != OMPC_MAP_MODIFIER_unknown
&&
21649 llvm::is_contained(Modifiers
, MapTypeModifiers
[I
])) {
21650 Diag(MapTypeModifiersLoc
[I
], diag::err_omp_duplicate_map_type_modifier
);
21653 assert(Count
< NumberOfOMPMapClauseModifiers
&&
21654 "Modifiers exceed the allowed number of map type modifiers");
21655 Modifiers
[Count
] = MapTypeModifiers
[I
];
21656 ModifiersLoc
[Count
] = MapTypeModifiersLoc
[I
];
21660 MappableVarListInfo
MVLI(VarList
);
21661 checkMappableExpressionList(SemaRef
, DSAStack
, OMPC_map
, MVLI
, Locs
.StartLoc
,
21662 MapperIdScopeSpec
, MapperId
, UnresolvedMappers
,
21663 MapType
, Modifiers
, IsMapTypeImplicit
,
21666 // We need to produce a map clause even if we don't have variables so that
21667 // other diagnostics related with non-existing map clauses are accurate.
21668 return OMPMapClause::Create(
21669 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
21670 MVLI
.VarComponents
, MVLI
.UDMapperList
, IteratorModifier
, Modifiers
,
21671 ModifiersLoc
, MapperIdScopeSpec
.getWithLocInContext(getASTContext()),
21672 MapperId
, MapType
, IsMapTypeImplicit
, MapLoc
);
21675 QualType
SemaOpenMP::ActOnOpenMPDeclareReductionType(SourceLocation TyLoc
,
21676 TypeResult ParsedType
) {
21677 assert(ParsedType
.isUsable());
21679 QualType ReductionType
= SemaRef
.GetTypeFromParser(ParsedType
.get());
21680 if (ReductionType
.isNull())
21683 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions, C\C++
21684 // A type name in a declare reduction directive cannot be a function type, an
21685 // array type, a reference type, or a type qualified with const, volatile or
21687 if (ReductionType
.hasQualifiers()) {
21688 Diag(TyLoc
, diag::err_omp_reduction_wrong_type
) << 0;
21692 if (ReductionType
->isFunctionType()) {
21693 Diag(TyLoc
, diag::err_omp_reduction_wrong_type
) << 1;
21696 if (ReductionType
->isReferenceType()) {
21697 Diag(TyLoc
, diag::err_omp_reduction_wrong_type
) << 2;
21700 if (ReductionType
->isArrayType()) {
21701 Diag(TyLoc
, diag::err_omp_reduction_wrong_type
) << 3;
21704 return ReductionType
;
21707 SemaOpenMP::DeclGroupPtrTy
21708 SemaOpenMP::ActOnOpenMPDeclareReductionDirectiveStart(
21709 Scope
*S
, DeclContext
*DC
, DeclarationName Name
,
21710 ArrayRef
<std::pair
<QualType
, SourceLocation
>> ReductionTypes
,
21711 AccessSpecifier AS
, Decl
*PrevDeclInScope
) {
21712 SmallVector
<Decl
*, 8> Decls
;
21713 Decls
.reserve(ReductionTypes
.size());
21715 LookupResult
Lookup(SemaRef
, Name
, SourceLocation(),
21716 Sema::LookupOMPReductionName
,
21717 SemaRef
.forRedeclarationInCurContext());
21718 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
21719 // A reduction-identifier may not be re-declared in the current scope for the
21720 // same type or for a type that is compatible according to the base language
21722 llvm::DenseMap
<QualType
, SourceLocation
> PreviousRedeclTypes
;
21723 OMPDeclareReductionDecl
*PrevDRD
= nullptr;
21724 bool InCompoundScope
= true;
21725 if (S
!= nullptr) {
21726 // Find previous declaration with the same name not referenced in other
21728 FunctionScopeInfo
*ParentFn
= SemaRef
.getEnclosingFunction();
21730 (ParentFn
!= nullptr) && !ParentFn
->CompoundScopes
.empty();
21731 SemaRef
.LookupName(Lookup
, S
);
21732 SemaRef
.FilterLookupForScope(Lookup
, DC
, S
, /*ConsiderLinkage=*/false,
21733 /*AllowInlineNamespace=*/false);
21734 llvm::DenseMap
<OMPDeclareReductionDecl
*, bool> UsedAsPrevious
;
21735 LookupResult::Filter Filter
= Lookup
.makeFilter();
21736 while (Filter
.hasNext()) {
21737 auto *PrevDecl
= cast
<OMPDeclareReductionDecl
>(Filter
.next());
21738 if (InCompoundScope
) {
21739 UsedAsPrevious
.try_emplace(PrevDecl
, false);
21740 if (OMPDeclareReductionDecl
*D
= PrevDecl
->getPrevDeclInScope())
21741 UsedAsPrevious
[D
] = true;
21743 PreviousRedeclTypes
[PrevDecl
->getType().getCanonicalType()] =
21744 PrevDecl
->getLocation();
21747 if (InCompoundScope
) {
21748 for (const auto &PrevData
: UsedAsPrevious
) {
21749 if (!PrevData
.second
) {
21750 PrevDRD
= PrevData
.first
;
21755 } else if (PrevDeclInScope
!= nullptr) {
21756 auto *PrevDRDInScope
= PrevDRD
=
21757 cast
<OMPDeclareReductionDecl
>(PrevDeclInScope
);
21759 PreviousRedeclTypes
[PrevDRDInScope
->getType().getCanonicalType()] =
21760 PrevDRDInScope
->getLocation();
21761 PrevDRDInScope
= PrevDRDInScope
->getPrevDeclInScope();
21762 } while (PrevDRDInScope
!= nullptr);
21764 for (const auto &TyData
: ReductionTypes
) {
21765 const auto I
= PreviousRedeclTypes
.find(TyData
.first
.getCanonicalType());
21766 bool Invalid
= false;
21767 if (I
!= PreviousRedeclTypes
.end()) {
21768 Diag(TyData
.second
, diag::err_omp_declare_reduction_redefinition
)
21770 Diag(I
->second
, diag::note_previous_definition
);
21773 PreviousRedeclTypes
[TyData
.first
.getCanonicalType()] = TyData
.second
;
21774 auto *DRD
= OMPDeclareReductionDecl::Create(
21775 getASTContext(), DC
, TyData
.second
, Name
, TyData
.first
, PrevDRD
);
21777 DRD
->setAccess(AS
);
21778 Decls
.push_back(DRD
);
21780 DRD
->setInvalidDecl();
21785 return DeclGroupPtrTy::make(
21786 DeclGroupRef::Create(getASTContext(), Decls
.begin(), Decls
.size()));
21789 void SemaOpenMP::ActOnOpenMPDeclareReductionCombinerStart(Scope
*S
, Decl
*D
) {
21790 auto *DRD
= cast
<OMPDeclareReductionDecl
>(D
);
21792 // Enter new function scope.
21793 SemaRef
.PushFunctionScope();
21794 SemaRef
.setFunctionHasBranchProtectedScope();
21795 SemaRef
.getCurFunction()->setHasOMPDeclareReductionCombiner();
21798 SemaRef
.PushDeclContext(S
, DRD
);
21800 SemaRef
.CurContext
= DRD
;
21802 SemaRef
.PushExpressionEvaluationContext(
21803 Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
21805 QualType ReductionType
= DRD
->getType();
21806 // Create 'T* omp_parm;T omp_in;'. All references to 'omp_in' will
21807 // be replaced by '*omp_parm' during codegen. This required because 'omp_in'
21808 // uses semantics of argument handles by value, but it should be passed by
21809 // reference. C lang does not support references, so pass all parameters as
21811 // Create 'T omp_in;' variable.
21812 VarDecl
*OmpInParm
=
21813 buildVarDecl(SemaRef
, D
->getLocation(), ReductionType
, "omp_in");
21814 // Create 'T* omp_parm;T omp_out;'. All references to 'omp_out' will
21815 // be replaced by '*omp_parm' during codegen. This required because 'omp_out'
21816 // uses semantics of argument handles by value, but it should be passed by
21817 // reference. C lang does not support references, so pass all parameters as
21819 // Create 'T omp_out;' variable.
21820 VarDecl
*OmpOutParm
=
21821 buildVarDecl(SemaRef
, D
->getLocation(), ReductionType
, "omp_out");
21822 if (S
!= nullptr) {
21823 SemaRef
.PushOnScopeChains(OmpInParm
, S
);
21824 SemaRef
.PushOnScopeChains(OmpOutParm
, S
);
21826 DRD
->addDecl(OmpInParm
);
21827 DRD
->addDecl(OmpOutParm
);
21830 ::buildDeclRefExpr(SemaRef
, OmpInParm
, ReductionType
, D
->getLocation());
21832 ::buildDeclRefExpr(SemaRef
, OmpOutParm
, ReductionType
, D
->getLocation());
21833 DRD
->setCombinerData(InE
, OutE
);
21836 void SemaOpenMP::ActOnOpenMPDeclareReductionCombinerEnd(Decl
*D
,
21838 auto *DRD
= cast
<OMPDeclareReductionDecl
>(D
);
21839 SemaRef
.DiscardCleanupsInEvaluationContext();
21840 SemaRef
.PopExpressionEvaluationContext();
21842 SemaRef
.PopDeclContext();
21843 SemaRef
.PopFunctionScopeInfo();
21845 if (Combiner
!= nullptr)
21846 DRD
->setCombiner(Combiner
);
21848 DRD
->setInvalidDecl();
21851 VarDecl
*SemaOpenMP::ActOnOpenMPDeclareReductionInitializerStart(Scope
*S
,
21853 auto *DRD
= cast
<OMPDeclareReductionDecl
>(D
);
21855 // Enter new function scope.
21856 SemaRef
.PushFunctionScope();
21857 SemaRef
.setFunctionHasBranchProtectedScope();
21860 SemaRef
.PushDeclContext(S
, DRD
);
21862 SemaRef
.CurContext
= DRD
;
21864 SemaRef
.PushExpressionEvaluationContext(
21865 Sema::ExpressionEvaluationContext::PotentiallyEvaluated
);
21867 QualType ReductionType
= DRD
->getType();
21868 // Create 'T* omp_parm;T omp_priv;'. All references to 'omp_priv' will
21869 // be replaced by '*omp_parm' during codegen. This required because 'omp_priv'
21870 // uses semantics of argument handles by value, but it should be passed by
21871 // reference. C lang does not support references, so pass all parameters as
21873 // Create 'T omp_priv;' variable.
21874 VarDecl
*OmpPrivParm
=
21875 buildVarDecl(SemaRef
, D
->getLocation(), ReductionType
, "omp_priv");
21876 // Create 'T* omp_parm;T omp_orig;'. All references to 'omp_orig' will
21877 // be replaced by '*omp_parm' during codegen. This required because 'omp_orig'
21878 // uses semantics of argument handles by value, but it should be passed by
21879 // reference. C lang does not support references, so pass all parameters as
21881 // Create 'T omp_orig;' variable.
21882 VarDecl
*OmpOrigParm
=
21883 buildVarDecl(SemaRef
, D
->getLocation(), ReductionType
, "omp_orig");
21884 if (S
!= nullptr) {
21885 SemaRef
.PushOnScopeChains(OmpPrivParm
, S
);
21886 SemaRef
.PushOnScopeChains(OmpOrigParm
, S
);
21888 DRD
->addDecl(OmpPrivParm
);
21889 DRD
->addDecl(OmpOrigParm
);
21892 ::buildDeclRefExpr(SemaRef
, OmpOrigParm
, ReductionType
, D
->getLocation());
21894 ::buildDeclRefExpr(SemaRef
, OmpPrivParm
, ReductionType
, D
->getLocation());
21895 DRD
->setInitializerData(OrigE
, PrivE
);
21896 return OmpPrivParm
;
21899 void SemaOpenMP::ActOnOpenMPDeclareReductionInitializerEnd(
21900 Decl
*D
, Expr
*Initializer
, VarDecl
*OmpPrivParm
) {
21901 auto *DRD
= cast
<OMPDeclareReductionDecl
>(D
);
21902 SemaRef
.DiscardCleanupsInEvaluationContext();
21903 SemaRef
.PopExpressionEvaluationContext();
21905 SemaRef
.PopDeclContext();
21906 SemaRef
.PopFunctionScopeInfo();
21908 if (Initializer
!= nullptr) {
21909 DRD
->setInitializer(Initializer
, OMPDeclareReductionInitKind::Call
);
21910 } else if (OmpPrivParm
->hasInit()) {
21911 DRD
->setInitializer(OmpPrivParm
->getInit(),
21912 OmpPrivParm
->isDirectInit()
21913 ? OMPDeclareReductionInitKind::Direct
21914 : OMPDeclareReductionInitKind::Copy
);
21916 DRD
->setInvalidDecl();
21920 SemaOpenMP::DeclGroupPtrTy
SemaOpenMP::ActOnOpenMPDeclareReductionDirectiveEnd(
21921 Scope
*S
, DeclGroupPtrTy DeclReductions
, bool IsValid
) {
21922 for (Decl
*D
: DeclReductions
.get()) {
21925 SemaRef
.PushOnScopeChains(cast
<OMPDeclareReductionDecl
>(D
), S
,
21926 /*AddToContext=*/false);
21928 D
->setInvalidDecl();
21931 return DeclReductions
;
21934 TypeResult
SemaOpenMP::ActOnOpenMPDeclareMapperVarDecl(Scope
*S
,
21936 TypeSourceInfo
*TInfo
= SemaRef
.GetTypeForDeclarator(D
);
21937 QualType T
= TInfo
->getType();
21938 if (D
.isInvalidType())
21941 if (getLangOpts().CPlusPlus
) {
21942 // Check that there are no default arguments (C++ only).
21943 SemaRef
.CheckExtraCXXDefaultArguments(D
);
21946 return SemaRef
.CreateParsedType(T
, TInfo
);
21949 QualType
SemaOpenMP::ActOnOpenMPDeclareMapperType(SourceLocation TyLoc
,
21950 TypeResult ParsedType
) {
21951 assert(ParsedType
.isUsable() && "Expect usable parsed mapper type");
21953 QualType MapperType
= SemaRef
.GetTypeFromParser(ParsedType
.get());
21954 assert(!MapperType
.isNull() && "Expect valid mapper type");
21956 // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
21957 // The type must be of struct, union or class type in C and C++
21958 if (!MapperType
->isStructureOrClassType() && !MapperType
->isUnionType()) {
21959 Diag(TyLoc
, diag::err_omp_mapper_wrong_type
);
21965 SemaOpenMP::DeclGroupPtrTy
SemaOpenMP::ActOnOpenMPDeclareMapperDirective(
21966 Scope
*S
, DeclContext
*DC
, DeclarationName Name
, QualType MapperType
,
21967 SourceLocation StartLoc
, DeclarationName VN
, AccessSpecifier AS
,
21968 Expr
*MapperVarRef
, ArrayRef
<OMPClause
*> Clauses
, Decl
*PrevDeclInScope
) {
21969 LookupResult
Lookup(SemaRef
, Name
, SourceLocation(),
21970 Sema::LookupOMPMapperName
,
21971 SemaRef
.forRedeclarationInCurContext());
21972 // [OpenMP 5.0], 2.19.7.3 declare mapper Directive, Restrictions
21973 // A mapper-identifier may not be redeclared in the current scope for the
21974 // same type or for a type that is compatible according to the base language
21976 llvm::DenseMap
<QualType
, SourceLocation
> PreviousRedeclTypes
;
21977 OMPDeclareMapperDecl
*PrevDMD
= nullptr;
21978 bool InCompoundScope
= true;
21979 if (S
!= nullptr) {
21980 // Find previous declaration with the same name not referenced in other
21982 FunctionScopeInfo
*ParentFn
= SemaRef
.getEnclosingFunction();
21984 (ParentFn
!= nullptr) && !ParentFn
->CompoundScopes
.empty();
21985 SemaRef
.LookupName(Lookup
, S
);
21986 SemaRef
.FilterLookupForScope(Lookup
, DC
, S
, /*ConsiderLinkage=*/false,
21987 /*AllowInlineNamespace=*/false);
21988 llvm::DenseMap
<OMPDeclareMapperDecl
*, bool> UsedAsPrevious
;
21989 LookupResult::Filter Filter
= Lookup
.makeFilter();
21990 while (Filter
.hasNext()) {
21991 auto *PrevDecl
= cast
<OMPDeclareMapperDecl
>(Filter
.next());
21992 if (InCompoundScope
) {
21993 UsedAsPrevious
.try_emplace(PrevDecl
, false);
21994 if (OMPDeclareMapperDecl
*D
= PrevDecl
->getPrevDeclInScope())
21995 UsedAsPrevious
[D
] = true;
21997 PreviousRedeclTypes
[PrevDecl
->getType().getCanonicalType()] =
21998 PrevDecl
->getLocation();
22001 if (InCompoundScope
) {
22002 for (const auto &PrevData
: UsedAsPrevious
) {
22003 if (!PrevData
.second
) {
22004 PrevDMD
= PrevData
.first
;
22009 } else if (PrevDeclInScope
) {
22010 auto *PrevDMDInScope
= PrevDMD
=
22011 cast
<OMPDeclareMapperDecl
>(PrevDeclInScope
);
22013 PreviousRedeclTypes
[PrevDMDInScope
->getType().getCanonicalType()] =
22014 PrevDMDInScope
->getLocation();
22015 PrevDMDInScope
= PrevDMDInScope
->getPrevDeclInScope();
22016 } while (PrevDMDInScope
!= nullptr);
22018 const auto I
= PreviousRedeclTypes
.find(MapperType
.getCanonicalType());
22019 bool Invalid
= false;
22020 if (I
!= PreviousRedeclTypes
.end()) {
22021 Diag(StartLoc
, diag::err_omp_declare_mapper_redefinition
)
22022 << MapperType
<< Name
;
22023 Diag(I
->second
, diag::note_previous_definition
);
22026 // Build expressions for implicit maps of data members with 'default'
22028 SmallVector
<OMPClause
*, 4> ClausesWithImplicit(Clauses
);
22029 if (getLangOpts().OpenMP
>= 50)
22030 processImplicitMapsWithDefaultMappers(SemaRef
, DSAStack
,
22031 ClausesWithImplicit
);
22032 auto *DMD
= OMPDeclareMapperDecl::Create(getASTContext(), DC
, StartLoc
, Name
,
22033 MapperType
, VN
, ClausesWithImplicit
,
22036 SemaRef
.PushOnScopeChains(DMD
, S
);
22039 DMD
->setAccess(AS
);
22041 DMD
->setInvalidDecl();
22043 auto *VD
= cast
<DeclRefExpr
>(MapperVarRef
)->getDecl();
22044 VD
->setDeclContext(DMD
);
22045 VD
->setLexicalDeclContext(DMD
);
22047 DMD
->setMapperVarRef(MapperVarRef
);
22049 return DeclGroupPtrTy::make(DeclGroupRef(DMD
));
22052 ExprResult
SemaOpenMP::ActOnOpenMPDeclareMapperDirectiveVarDecl(
22053 Scope
*S
, QualType MapperType
, SourceLocation StartLoc
,
22054 DeclarationName VN
) {
22055 TypeSourceInfo
*TInfo
=
22056 getASTContext().getTrivialTypeSourceInfo(MapperType
, StartLoc
);
22057 auto *VD
= VarDecl::Create(
22058 getASTContext(), getASTContext().getTranslationUnitDecl(), StartLoc
,
22059 StartLoc
, VN
.getAsIdentifierInfo(), MapperType
, TInfo
, SC_None
);
22061 SemaRef
.PushOnScopeChains(VD
, S
, /*AddToContext=*/false);
22062 Expr
*E
= buildDeclRefExpr(SemaRef
, VD
, MapperType
, StartLoc
);
22063 DSAStack
->addDeclareMapperVarRef(E
);
22067 void SemaOpenMP::ActOnOpenMPIteratorVarDecl(VarDecl
*VD
) {
22068 if (DSAStack
->getDeclareMapperVarRef())
22069 DSAStack
->addIteratorVarDecl(VD
);
22072 bool SemaOpenMP::isOpenMPDeclareMapperVarDeclAllowed(const VarDecl
*VD
) const {
22073 assert(getLangOpts().OpenMP
&& "Expected OpenMP mode.");
22074 const Expr
*Ref
= DSAStack
->getDeclareMapperVarRef();
22075 if (const auto *DRE
= cast_or_null
<DeclRefExpr
>(Ref
)) {
22076 if (VD
->getCanonicalDecl() == DRE
->getDecl()->getCanonicalDecl())
22078 if (VD
->isUsableInConstantExpressions(getASTContext()))
22080 if (getLangOpts().OpenMP
>= 52 && DSAStack
->isIteratorVarDecl(VD
))
22087 const ValueDecl
*SemaOpenMP::getOpenMPDeclareMapperVarName() const {
22088 assert(getLangOpts().OpenMP
&& "Expected OpenMP mode.");
22089 return cast
<DeclRefExpr
>(DSAStack
->getDeclareMapperVarRef())->getDecl();
22092 OMPClause
*SemaOpenMP::ActOnOpenMPNumTeamsClause(ArrayRef
<Expr
*> VarList
,
22093 SourceLocation StartLoc
,
22094 SourceLocation LParenLoc
,
22095 SourceLocation EndLoc
) {
22096 if (VarList
.empty())
22099 for (Expr
*ValExpr
: VarList
) {
22100 // OpenMP [teams Constrcut, Restrictions]
22101 // The num_teams expression must evaluate to a positive integer value.
22102 if (!isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_num_teams
,
22103 /*StrictlyPositive=*/true))
22107 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
22108 OpenMPDirectiveKind CaptureRegion
= getOpenMPCaptureRegionForClause(
22109 DKind
, OMPC_num_teams
, getLangOpts().OpenMP
);
22110 if (CaptureRegion
== OMPD_unknown
|| SemaRef
.CurContext
->isDependentContext())
22111 return OMPNumTeamsClause::Create(getASTContext(), CaptureRegion
, StartLoc
,
22112 LParenLoc
, EndLoc
, VarList
,
22113 /*PreInit=*/nullptr);
22115 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
22116 SmallVector
<Expr
*, 3> Vars
;
22117 for (Expr
*ValExpr
: VarList
) {
22118 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
22119 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
22120 Vars
.push_back(ValExpr
);
22123 Stmt
*PreInit
= buildPreInits(getASTContext(), Captures
);
22124 return OMPNumTeamsClause::Create(getASTContext(), CaptureRegion
, StartLoc
,
22125 LParenLoc
, EndLoc
, Vars
, PreInit
);
22128 OMPClause
*SemaOpenMP::ActOnOpenMPThreadLimitClause(ArrayRef
<Expr
*> VarList
,
22129 SourceLocation StartLoc
,
22130 SourceLocation LParenLoc
,
22131 SourceLocation EndLoc
) {
22132 if (VarList
.empty())
22135 for (Expr
*ValExpr
: VarList
) {
22136 // OpenMP [teams Constrcut, Restrictions]
22137 // The thread_limit expression must evaluate to a positive integer value.
22138 if (!isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_thread_limit
,
22139 /*StrictlyPositive=*/true))
22143 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
22144 OpenMPDirectiveKind CaptureRegion
= getOpenMPCaptureRegionForClause(
22145 DKind
, OMPC_thread_limit
, getLangOpts().OpenMP
);
22146 if (CaptureRegion
== OMPD_unknown
|| SemaRef
.CurContext
->isDependentContext())
22147 return OMPThreadLimitClause::Create(getASTContext(), CaptureRegion
,
22148 StartLoc
, LParenLoc
, EndLoc
, VarList
,
22149 /*PreInit=*/nullptr);
22151 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
22152 SmallVector
<Expr
*, 3> Vars
;
22153 for (Expr
*ValExpr
: VarList
) {
22154 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
22155 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
22156 Vars
.push_back(ValExpr
);
22159 Stmt
*PreInit
= buildPreInits(getASTContext(), Captures
);
22160 return OMPThreadLimitClause::Create(getASTContext(), CaptureRegion
, StartLoc
,
22161 LParenLoc
, EndLoc
, Vars
, PreInit
);
22164 OMPClause
*SemaOpenMP::ActOnOpenMPPriorityClause(Expr
*Priority
,
22165 SourceLocation StartLoc
,
22166 SourceLocation LParenLoc
,
22167 SourceLocation EndLoc
) {
22168 Expr
*ValExpr
= Priority
;
22169 Stmt
*HelperValStmt
= nullptr;
22170 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
22172 // OpenMP [2.9.1, task Constrcut]
22173 // The priority-value is a non-negative numerical scalar expression.
22174 if (!isNonNegativeIntegerValue(
22175 ValExpr
, SemaRef
, OMPC_priority
,
22176 /*StrictlyPositive=*/false, /*BuildCapture=*/true,
22177 DSAStack
->getCurrentDirective(), &CaptureRegion
, &HelperValStmt
))
22180 return new (getASTContext()) OMPPriorityClause(
22181 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
22184 OMPClause
*SemaOpenMP::ActOnOpenMPGrainsizeClause(
22185 OpenMPGrainsizeClauseModifier Modifier
, Expr
*Grainsize
,
22186 SourceLocation StartLoc
, SourceLocation LParenLoc
,
22187 SourceLocation ModifierLoc
, SourceLocation EndLoc
) {
22188 assert((ModifierLoc
.isInvalid() || getLangOpts().OpenMP
>= 51) &&
22189 "Unexpected grainsize modifier in OpenMP < 51.");
22191 if (ModifierLoc
.isValid() && Modifier
== OMPC_GRAINSIZE_unknown
) {
22192 std::string Values
= getListOfPossibleValues(OMPC_grainsize
, /*First=*/0,
22193 OMPC_GRAINSIZE_unknown
);
22194 Diag(ModifierLoc
, diag::err_omp_unexpected_clause_value
)
22195 << Values
<< getOpenMPClauseName(OMPC_grainsize
);
22199 Expr
*ValExpr
= Grainsize
;
22200 Stmt
*HelperValStmt
= nullptr;
22201 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
22203 // OpenMP [2.9.2, taskloop Constrcut]
22204 // The parameter of the grainsize clause must be a positive integer
22206 if (!isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_grainsize
,
22207 /*StrictlyPositive=*/true,
22208 /*BuildCapture=*/true,
22209 DSAStack
->getCurrentDirective(),
22210 &CaptureRegion
, &HelperValStmt
))
22213 return new (getASTContext())
22214 OMPGrainsizeClause(Modifier
, ValExpr
, HelperValStmt
, CaptureRegion
,
22215 StartLoc
, LParenLoc
, ModifierLoc
, EndLoc
);
22218 OMPClause
*SemaOpenMP::ActOnOpenMPNumTasksClause(
22219 OpenMPNumTasksClauseModifier Modifier
, Expr
*NumTasks
,
22220 SourceLocation StartLoc
, SourceLocation LParenLoc
,
22221 SourceLocation ModifierLoc
, SourceLocation EndLoc
) {
22222 assert((ModifierLoc
.isInvalid() || getLangOpts().OpenMP
>= 51) &&
22223 "Unexpected num_tasks modifier in OpenMP < 51.");
22225 if (ModifierLoc
.isValid() && Modifier
== OMPC_NUMTASKS_unknown
) {
22226 std::string Values
= getListOfPossibleValues(OMPC_num_tasks
, /*First=*/0,
22227 OMPC_NUMTASKS_unknown
);
22228 Diag(ModifierLoc
, diag::err_omp_unexpected_clause_value
)
22229 << Values
<< getOpenMPClauseName(OMPC_num_tasks
);
22233 Expr
*ValExpr
= NumTasks
;
22234 Stmt
*HelperValStmt
= nullptr;
22235 OpenMPDirectiveKind CaptureRegion
= OMPD_unknown
;
22237 // OpenMP [2.9.2, taskloop Constrcut]
22238 // The parameter of the num_tasks clause must be a positive integer
22240 if (!isNonNegativeIntegerValue(
22241 ValExpr
, SemaRef
, OMPC_num_tasks
,
22242 /*StrictlyPositive=*/true, /*BuildCapture=*/true,
22243 DSAStack
->getCurrentDirective(), &CaptureRegion
, &HelperValStmt
))
22246 return new (getASTContext())
22247 OMPNumTasksClause(Modifier
, ValExpr
, HelperValStmt
, CaptureRegion
,
22248 StartLoc
, LParenLoc
, ModifierLoc
, EndLoc
);
22251 OMPClause
*SemaOpenMP::ActOnOpenMPHintClause(Expr
*Hint
,
22252 SourceLocation StartLoc
,
22253 SourceLocation LParenLoc
,
22254 SourceLocation EndLoc
) {
22255 // OpenMP [2.13.2, critical construct, Description]
22256 // ... where hint-expression is an integer constant expression that evaluates
22257 // to a valid lock hint.
22258 ExprResult HintExpr
=
22259 VerifyPositiveIntegerConstantInClause(Hint
, OMPC_hint
, false);
22260 if (HintExpr
.isInvalid())
22262 return new (getASTContext())
22263 OMPHintClause(HintExpr
.get(), StartLoc
, LParenLoc
, EndLoc
);
22266 /// Tries to find omp_event_handle_t type.
22267 static bool findOMPEventHandleT(Sema
&S
, SourceLocation Loc
,
22268 DSAStackTy
*Stack
) {
22269 QualType OMPEventHandleT
= Stack
->getOMPEventHandleT();
22270 if (!OMPEventHandleT
.isNull())
22272 IdentifierInfo
*II
= &S
.PP
.getIdentifierTable().get("omp_event_handle_t");
22273 ParsedType PT
= S
.getTypeName(*II
, Loc
, S
.getCurScope());
22274 if (!PT
.getAsOpaquePtr() || PT
.get().isNull()) {
22275 S
.Diag(Loc
, diag::err_omp_implied_type_not_found
) << "omp_event_handle_t";
22278 Stack
->setOMPEventHandleT(PT
.get());
22282 OMPClause
*SemaOpenMP::ActOnOpenMPDetachClause(Expr
*Evt
,
22283 SourceLocation StartLoc
,
22284 SourceLocation LParenLoc
,
22285 SourceLocation EndLoc
) {
22286 if (!Evt
->isValueDependent() && !Evt
->isTypeDependent() &&
22287 !Evt
->isInstantiationDependent() &&
22288 !Evt
->containsUnexpandedParameterPack()) {
22289 if (!findOMPEventHandleT(SemaRef
, Evt
->getExprLoc(), DSAStack
))
22291 // OpenMP 5.0, 2.10.1 task Construct.
22292 // event-handle is a variable of the omp_event_handle_t type.
22293 auto *Ref
= dyn_cast
<DeclRefExpr
>(Evt
->IgnoreParenImpCasts());
22295 Diag(Evt
->getExprLoc(), diag::err_omp_var_expected
)
22296 << "omp_event_handle_t" << 0 << Evt
->getSourceRange();
22299 auto *VD
= dyn_cast_or_null
<VarDecl
>(Ref
->getDecl());
22301 Diag(Evt
->getExprLoc(), diag::err_omp_var_expected
)
22302 << "omp_event_handle_t" << 0 << Evt
->getSourceRange();
22305 if (!getASTContext().hasSameUnqualifiedType(DSAStack
->getOMPEventHandleT(),
22307 VD
->getType().isConstant(getASTContext())) {
22308 Diag(Evt
->getExprLoc(), diag::err_omp_var_expected
)
22309 << "omp_event_handle_t" << 1 << VD
->getType()
22310 << Evt
->getSourceRange();
22313 // OpenMP 5.0, 2.10.1 task Construct
22314 // [detach clause]... The event-handle will be considered as if it was
22315 // specified on a firstprivate clause.
22316 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(VD
, /*FromParent=*/false);
22317 if (DVar
.CKind
!= OMPC_unknown
&& DVar
.CKind
!= OMPC_firstprivate
&&
22319 Diag(Evt
->getExprLoc(), diag::err_omp_wrong_dsa
)
22320 << getOpenMPClauseName(DVar
.CKind
)
22321 << getOpenMPClauseName(OMPC_firstprivate
);
22322 reportOriginalDsa(SemaRef
, DSAStack
, VD
, DVar
);
22327 return new (getASTContext())
22328 OMPDetachClause(Evt
, StartLoc
, LParenLoc
, EndLoc
);
22331 OMPClause
*SemaOpenMP::ActOnOpenMPDistScheduleClause(
22332 OpenMPDistScheduleClauseKind Kind
, Expr
*ChunkSize
, SourceLocation StartLoc
,
22333 SourceLocation LParenLoc
, SourceLocation KindLoc
, SourceLocation CommaLoc
,
22334 SourceLocation EndLoc
) {
22335 if (Kind
== OMPC_DIST_SCHEDULE_unknown
) {
22336 std::string Values
;
22338 Values
+= getOpenMPSimpleClauseTypeName(OMPC_dist_schedule
, 0);
22340 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
22341 << Values
<< getOpenMPClauseName(OMPC_dist_schedule
);
22344 Expr
*ValExpr
= ChunkSize
;
22345 Stmt
*HelperValStmt
= nullptr;
22347 if (!ChunkSize
->isValueDependent() && !ChunkSize
->isTypeDependent() &&
22348 !ChunkSize
->isInstantiationDependent() &&
22349 !ChunkSize
->containsUnexpandedParameterPack()) {
22350 SourceLocation ChunkSizeLoc
= ChunkSize
->getBeginLoc();
22352 PerformOpenMPImplicitIntegerConversion(ChunkSizeLoc
, ChunkSize
);
22353 if (Val
.isInvalid())
22356 ValExpr
= Val
.get();
22358 // OpenMP [2.7.1, Restrictions]
22359 // chunk_size must be a loop invariant integer expression with a positive
22361 if (std::optional
<llvm::APSInt
> Result
=
22362 ValExpr
->getIntegerConstantExpr(getASTContext())) {
22363 if (Result
->isSigned() && !Result
->isStrictlyPositive()) {
22364 Diag(ChunkSizeLoc
, diag::err_omp_negative_expression_in_clause
)
22365 << "dist_schedule" << ChunkSize
->getSourceRange();
22368 } else if (getOpenMPCaptureRegionForClause(
22369 DSAStack
->getCurrentDirective(), OMPC_dist_schedule
,
22370 getLangOpts().OpenMP
) != OMPD_unknown
&&
22371 !SemaRef
.CurContext
->isDependentContext()) {
22372 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
22373 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
22374 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
22375 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
22380 return new (getASTContext())
22381 OMPDistScheduleClause(StartLoc
, LParenLoc
, KindLoc
, CommaLoc
, EndLoc
,
22382 Kind
, ValExpr
, HelperValStmt
);
22385 OMPClause
*SemaOpenMP::ActOnOpenMPDefaultmapClause(
22386 OpenMPDefaultmapClauseModifier M
, OpenMPDefaultmapClauseKind Kind
,
22387 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation MLoc
,
22388 SourceLocation KindLoc
, SourceLocation EndLoc
) {
22389 if (getLangOpts().OpenMP
< 50) {
22390 if (M
!= OMPC_DEFAULTMAP_MODIFIER_tofrom
||
22391 Kind
!= OMPC_DEFAULTMAP_scalar
) {
22393 SourceLocation Loc
;
22395 if (M
!= OMPC_DEFAULTMAP_MODIFIER_tofrom
) {
22396 Value
+= getOpenMPSimpleClauseTypeName(OMPC_defaultmap
,
22397 OMPC_DEFAULTMAP_MODIFIER_tofrom
);
22400 Value
+= getOpenMPSimpleClauseTypeName(OMPC_defaultmap
,
22401 OMPC_DEFAULTMAP_scalar
);
22405 Diag(Loc
, diag::err_omp_unexpected_clause_value
)
22406 << Value
<< getOpenMPClauseName(OMPC_defaultmap
);
22410 bool isDefaultmapModifier
= (M
!= OMPC_DEFAULTMAP_MODIFIER_unknown
);
22411 bool isDefaultmapKind
= (Kind
!= OMPC_DEFAULTMAP_unknown
) ||
22412 (getLangOpts().OpenMP
>= 50 && KindLoc
.isInvalid());
22413 if (!isDefaultmapKind
|| !isDefaultmapModifier
) {
22414 StringRef KindValue
= getLangOpts().OpenMP
< 52
22415 ? "'scalar', 'aggregate', 'pointer'"
22416 : "'scalar', 'aggregate', 'pointer', 'all'";
22417 if (getLangOpts().OpenMP
== 50) {
22418 StringRef ModifierValue
= "'alloc', 'from', 'to', 'tofrom', "
22419 "'firstprivate', 'none', 'default'";
22420 if (!isDefaultmapKind
&& isDefaultmapModifier
) {
22421 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
22422 << KindValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22423 } else if (isDefaultmapKind
&& !isDefaultmapModifier
) {
22424 Diag(MLoc
, diag::err_omp_unexpected_clause_value
)
22425 << ModifierValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22427 Diag(MLoc
, diag::err_omp_unexpected_clause_value
)
22428 << ModifierValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22429 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
22430 << KindValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22433 StringRef ModifierValue
=
22434 "'alloc', 'from', 'to', 'tofrom', "
22435 "'firstprivate', 'none', 'default', 'present'";
22436 if (!isDefaultmapKind
&& isDefaultmapModifier
) {
22437 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
22438 << KindValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22439 } else if (isDefaultmapKind
&& !isDefaultmapModifier
) {
22440 Diag(MLoc
, diag::err_omp_unexpected_clause_value
)
22441 << ModifierValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22443 Diag(MLoc
, diag::err_omp_unexpected_clause_value
)
22444 << ModifierValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22445 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
22446 << KindValue
<< getOpenMPClauseName(OMPC_defaultmap
);
22452 // OpenMP [5.0, 2.12.5, Restrictions, p. 174]
22453 // At most one defaultmap clause for each category can appear on the
22455 if (DSAStack
->checkDefaultmapCategory(Kind
)) {
22456 Diag(StartLoc
, diag::err_omp_one_defaultmap_each_category
);
22460 if (Kind
== OMPC_DEFAULTMAP_unknown
|| Kind
== OMPC_DEFAULTMAP_all
) {
22461 // Variable category is not specified - mark all categories.
22462 DSAStack
->setDefaultDMAAttr(M
, OMPC_DEFAULTMAP_aggregate
, StartLoc
);
22463 DSAStack
->setDefaultDMAAttr(M
, OMPC_DEFAULTMAP_scalar
, StartLoc
);
22464 DSAStack
->setDefaultDMAAttr(M
, OMPC_DEFAULTMAP_pointer
, StartLoc
);
22466 DSAStack
->setDefaultDMAAttr(M
, Kind
, StartLoc
);
22469 return new (getASTContext())
22470 OMPDefaultmapClause(StartLoc
, LParenLoc
, MLoc
, KindLoc
, EndLoc
, Kind
, M
);
22473 bool SemaOpenMP::ActOnStartOpenMPDeclareTargetContext(
22474 DeclareTargetContextInfo
&DTCI
) {
22475 DeclContext
*CurLexicalContext
= SemaRef
.getCurLexicalContext();
22476 if (!CurLexicalContext
->isFileContext() &&
22477 !CurLexicalContext
->isExternCContext() &&
22478 !CurLexicalContext
->isExternCXXContext() &&
22479 !isa
<CXXRecordDecl
>(CurLexicalContext
) &&
22480 !isa
<ClassTemplateDecl
>(CurLexicalContext
) &&
22481 !isa
<ClassTemplatePartialSpecializationDecl
>(CurLexicalContext
) &&
22482 !isa
<ClassTemplateSpecializationDecl
>(CurLexicalContext
)) {
22483 Diag(DTCI
.Loc
, diag::err_omp_region_not_file_context
);
22487 // Report affected OpenMP target offloading behavior when in HIP lang-mode.
22488 if (getLangOpts().HIP
)
22489 Diag(DTCI
.Loc
, diag::warn_hip_omp_target_directives
);
22491 DeclareTargetNesting
.push_back(DTCI
);
22495 const SemaOpenMP::DeclareTargetContextInfo
22496 SemaOpenMP::ActOnOpenMPEndDeclareTargetDirective() {
22497 assert(!DeclareTargetNesting
.empty() &&
22498 "check isInOpenMPDeclareTargetContext() first!");
22499 return DeclareTargetNesting
.pop_back_val();
22502 void SemaOpenMP::ActOnFinishedOpenMPDeclareTargetContext(
22503 DeclareTargetContextInfo
&DTCI
) {
22504 for (auto &It
: DTCI
.ExplicitlyMapped
)
22505 ActOnOpenMPDeclareTargetName(It
.first
, It
.second
.Loc
, It
.second
.MT
, DTCI
);
22508 void SemaOpenMP::DiagnoseUnterminatedOpenMPDeclareTarget() {
22509 if (DeclareTargetNesting
.empty())
22511 DeclareTargetContextInfo
&DTCI
= DeclareTargetNesting
.back();
22512 Diag(DTCI
.Loc
, diag::warn_omp_unterminated_declare_target
)
22513 << getOpenMPDirectiveName(DTCI
.Kind
);
22516 NamedDecl
*SemaOpenMP::lookupOpenMPDeclareTargetName(
22517 Scope
*CurScope
, CXXScopeSpec
&ScopeSpec
, const DeclarationNameInfo
&Id
) {
22518 LookupResult
Lookup(SemaRef
, Id
, Sema::LookupOrdinaryName
);
22519 SemaRef
.LookupParsedName(Lookup
, CurScope
, &ScopeSpec
,
22520 /*ObjectType=*/QualType(),
22521 /*AllowBuiltinCreation=*/true);
22523 if (Lookup
.isAmbiguous())
22525 Lookup
.suppressDiagnostics();
22527 if (!Lookup
.isSingleResult()) {
22528 VarOrFuncDeclFilterCCC
CCC(SemaRef
);
22529 if (TypoCorrection Corrected
=
22530 SemaRef
.CorrectTypo(Id
, Sema::LookupOrdinaryName
, CurScope
, nullptr,
22531 CCC
, Sema::CTK_ErrorRecovery
)) {
22532 SemaRef
.diagnoseTypo(Corrected
,
22533 SemaRef
.PDiag(diag::err_undeclared_var_use_suggest
)
22535 checkDeclIsAllowedInOpenMPTarget(nullptr, Corrected
.getCorrectionDecl());
22539 Diag(Id
.getLoc(), diag::err_undeclared_var_use
) << Id
.getName();
22543 NamedDecl
*ND
= Lookup
.getAsSingle
<NamedDecl
>();
22544 if (!isa
<VarDecl
>(ND
) && !isa
<FunctionDecl
>(ND
) &&
22545 !isa
<FunctionTemplateDecl
>(ND
)) {
22546 Diag(Id
.getLoc(), diag::err_omp_invalid_target_decl
) << Id
.getName();
22552 void SemaOpenMP::ActOnOpenMPDeclareTargetName(
22553 NamedDecl
*ND
, SourceLocation Loc
, OMPDeclareTargetDeclAttr::MapTypeTy MT
,
22554 DeclareTargetContextInfo
&DTCI
) {
22555 assert((isa
<VarDecl
>(ND
) || isa
<FunctionDecl
>(ND
) ||
22556 isa
<FunctionTemplateDecl
>(ND
)) &&
22557 "Expected variable, function or function template.");
22559 if (auto *VD
= dyn_cast
<VarDecl
>(ND
)) {
22560 // Only global variables can be marked as declare target.
22561 if (!VD
->isFileVarDecl() && !VD
->isStaticLocal() &&
22562 !VD
->isStaticDataMember()) {
22563 Diag(Loc
, diag::err_omp_declare_target_has_local_vars
)
22564 << VD
->getNameAsString();
22568 // Diagnose marking after use as it may lead to incorrect diagnosis and
22570 if (getLangOpts().OpenMP
>= 50 &&
22571 (ND
->isUsed(/*CheckUsedAttr=*/false) || ND
->isReferenced()))
22572 Diag(Loc
, diag::warn_omp_declare_target_after_first_use
);
22574 // Report affected OpenMP target offloading behavior when in HIP lang-mode.
22575 if (getLangOpts().HIP
)
22576 Diag(Loc
, diag::warn_hip_omp_target_directives
);
22578 // Explicit declare target lists have precedence.
22579 const unsigned Level
= -1;
22581 auto *VD
= cast
<ValueDecl
>(ND
);
22582 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
22583 OMPDeclareTargetDeclAttr::getActiveAttr(VD
);
22584 if (ActiveAttr
&& (*ActiveAttr
)->getDevType() != DTCI
.DT
&&
22585 (*ActiveAttr
)->getLevel() == Level
) {
22586 Diag(Loc
, diag::err_omp_device_type_mismatch
)
22587 << OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(DTCI
.DT
)
22588 << OMPDeclareTargetDeclAttr::ConvertDevTypeTyToStr(
22589 (*ActiveAttr
)->getDevType());
22592 if (ActiveAttr
&& (*ActiveAttr
)->getMapType() != MT
&&
22593 (*ActiveAttr
)->getLevel() == Level
) {
22594 Diag(Loc
, diag::err_omp_declare_target_to_and_link
) << ND
;
22598 if (ActiveAttr
&& (*ActiveAttr
)->getLevel() == Level
)
22601 Expr
*IndirectE
= nullptr;
22602 bool IsIndirect
= false;
22603 if (DTCI
.Indirect
) {
22604 IndirectE
= *DTCI
.Indirect
;
22608 auto *A
= OMPDeclareTargetDeclAttr::CreateImplicit(
22609 getASTContext(), MT
, DTCI
.DT
, IndirectE
, IsIndirect
, Level
,
22610 SourceRange(Loc
, Loc
));
22612 if (ASTMutationListener
*ML
= getASTContext().getASTMutationListener())
22613 ML
->DeclarationMarkedOpenMPDeclareTarget(ND
, A
);
22614 checkDeclIsAllowedInOpenMPTarget(nullptr, ND
, Loc
);
22615 if (auto *VD
= dyn_cast
<VarDecl
>(ND
);
22616 getLangOpts().OpenMP
&& VD
&& VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
22617 VD
->hasGlobalStorage())
22618 ActOnOpenMPDeclareTargetInitializer(ND
);
22621 static void checkDeclInTargetContext(SourceLocation SL
, SourceRange SR
,
22622 Sema
&SemaRef
, Decl
*D
) {
22623 if (!D
|| !isa
<VarDecl
>(D
))
22625 auto *VD
= cast
<VarDecl
>(D
);
22626 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> MapTy
=
22627 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
);
22628 if (SemaRef
.LangOpts
.OpenMP
>= 50 &&
22629 (SemaRef
.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true) ||
22630 SemaRef
.getCurBlock() || SemaRef
.getCurCapturedRegion()) &&
22631 VD
->hasGlobalStorage()) {
22632 if (!MapTy
|| (*MapTy
!= OMPDeclareTargetDeclAttr::MT_To
&&
22633 *MapTy
!= OMPDeclareTargetDeclAttr::MT_Enter
)) {
22634 // OpenMP 5.0, 2.12.7 declare target Directive, Restrictions
22635 // If a lambda declaration and definition appears between a
22636 // declare target directive and the matching end declare target
22637 // directive, all variables that are captured by the lambda
22638 // expression must also appear in a to clause.
22639 SemaRef
.Diag(VD
->getLocation(),
22640 diag::err_omp_lambda_capture_in_declare_target_not_to
);
22641 SemaRef
.Diag(SL
, diag::note_var_explicitly_captured_here
)
22648 SemaRef
.Diag(VD
->getLocation(), diag::warn_omp_not_in_target_context
);
22649 SemaRef
.Diag(SL
, diag::note_used_here
) << SR
;
22652 static bool checkValueDeclInTarget(SourceLocation SL
, SourceRange SR
,
22653 Sema
&SemaRef
, DSAStackTy
*Stack
,
22655 return OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD
) ||
22656 checkTypeMappable(SL
, SR
, SemaRef
, Stack
, VD
->getType(),
22657 /*FullCheck=*/false);
22660 void SemaOpenMP::checkDeclIsAllowedInOpenMPTarget(Expr
*E
, Decl
*D
,
22661 SourceLocation IdLoc
) {
22662 if (!D
|| D
->isInvalidDecl())
22664 SourceRange SR
= E
? E
->getSourceRange() : D
->getSourceRange();
22665 SourceLocation SL
= E
? E
->getBeginLoc() : D
->getLocation();
22666 if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
22667 // Only global variables can be marked as declare target.
22668 if (!VD
->isFileVarDecl() && !VD
->isStaticLocal() &&
22669 !VD
->isStaticDataMember())
22671 // 2.10.6: threadprivate variable cannot appear in a declare target
22673 if (DSAStack
->isThreadPrivate(VD
)) {
22674 Diag(SL
, diag::err_omp_threadprivate_in_target
);
22675 reportOriginalDsa(SemaRef
, DSAStack
, VD
, DSAStack
->getTopDSA(VD
, false));
22679 if (const auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(D
))
22680 D
= FTD
->getTemplatedDecl();
22681 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
22682 std::optional
<OMPDeclareTargetDeclAttr::MapTypeTy
> Res
=
22683 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD
);
22684 if (IdLoc
.isValid() && Res
&& *Res
== OMPDeclareTargetDeclAttr::MT_Link
) {
22685 Diag(IdLoc
, diag::err_omp_function_in_link_clause
);
22686 Diag(FD
->getLocation(), diag::note_defined_here
) << FD
;
22690 if (auto *VD
= dyn_cast
<ValueDecl
>(D
)) {
22691 // Problem if any with var declared with incomplete type will be reported
22692 // as normal, so no need to check it here.
22693 if ((E
|| !VD
->getType()->isIncompleteType()) &&
22694 !checkValueDeclInTarget(SL
, SR
, SemaRef
, DSAStack
, VD
))
22696 if (!E
&& isInOpenMPDeclareTargetContext()) {
22697 // Checking declaration inside declare target region.
22698 if (isa
<VarDecl
>(D
) || isa
<FunctionDecl
>(D
) ||
22699 isa
<FunctionTemplateDecl
>(D
)) {
22700 std::optional
<OMPDeclareTargetDeclAttr
*> ActiveAttr
=
22701 OMPDeclareTargetDeclAttr::getActiveAttr(VD
);
22702 unsigned Level
= DeclareTargetNesting
.size();
22703 if (ActiveAttr
&& (*ActiveAttr
)->getLevel() >= Level
)
22705 DeclareTargetContextInfo
&DTCI
= DeclareTargetNesting
.back();
22706 Expr
*IndirectE
= nullptr;
22707 bool IsIndirect
= false;
22708 if (DTCI
.Indirect
) {
22709 IndirectE
= *DTCI
.Indirect
;
22713 auto *A
= OMPDeclareTargetDeclAttr::CreateImplicit(
22715 getLangOpts().OpenMP
>= 52 ? OMPDeclareTargetDeclAttr::MT_Enter
22716 : OMPDeclareTargetDeclAttr::MT_To
,
22717 DTCI
.DT
, IndirectE
, IsIndirect
, Level
,
22718 SourceRange(DTCI
.Loc
, DTCI
.Loc
));
22720 if (ASTMutationListener
*ML
= getASTContext().getASTMutationListener())
22721 ML
->DeclarationMarkedOpenMPDeclareTarget(D
, A
);
22728 checkDeclInTargetContext(E
->getExprLoc(), E
->getSourceRange(), SemaRef
, D
);
22731 /// This class visits every VarDecl that the initializer references and adds
22732 /// OMPDeclareTargetDeclAttr to each of them.
22733 class GlobalDeclRefChecker final
: public StmtVisitor
<GlobalDeclRefChecker
> {
22734 SmallVector
<VarDecl
*> DeclVector
;
22738 /// A StmtVisitor class function that visits all DeclRefExpr and adds
22739 /// OMPDeclareTargetDeclAttr to them.
22740 void VisitDeclRefExpr(DeclRefExpr
*Node
) {
22741 if (auto *VD
= dyn_cast
<VarDecl
>(Node
->getDecl())) {
22743 DeclVector
.push_back(VD
);
22746 /// A function that iterates across each of the Expr's children.
22747 void VisitExpr(Expr
*Ex
) {
22748 for (auto *Child
: Ex
->children()) {
22752 /// A function that keeps a record of all the Decls that are variables, has
22753 /// OMPDeclareTargetDeclAttr, and has global storage in the DeclVector. Pop
22754 /// each Decl one at a time and use the inherited 'visit' functions to look
22755 /// for DeclRefExpr.
22756 void declareTargetInitializer(Decl
*TD
) {
22757 A
= TD
->getAttr
<OMPDeclareTargetDeclAttr
>();
22758 DeclVector
.push_back(cast
<VarDecl
>(TD
));
22759 while (!DeclVector
.empty()) {
22760 VarDecl
*TargetVarDecl
= DeclVector
.pop_back_val();
22761 if (TargetVarDecl
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
22762 TargetVarDecl
->hasInit() && TargetVarDecl
->hasGlobalStorage()) {
22763 if (Expr
*Ex
= TargetVarDecl
->getInit())
22770 /// Adding OMPDeclareTargetDeclAttr to variables with static storage
22771 /// duration that are referenced in the initializer expression list of
22772 /// variables with static storage duration in declare target directive.
22773 void SemaOpenMP::ActOnOpenMPDeclareTargetInitializer(Decl
*TargetDecl
) {
22774 GlobalDeclRefChecker Checker
;
22775 if (isa
<VarDecl
>(TargetDecl
))
22776 Checker
.declareTargetInitializer(TargetDecl
);
22779 OMPClause
*SemaOpenMP::ActOnOpenMPToClause(
22780 ArrayRef
<OpenMPMotionModifierKind
> MotionModifiers
,
22781 ArrayRef
<SourceLocation
> MotionModifiersLoc
,
22782 CXXScopeSpec
&MapperIdScopeSpec
, DeclarationNameInfo
&MapperId
,
22783 SourceLocation ColonLoc
, ArrayRef
<Expr
*> VarList
,
22784 const OMPVarListLocTy
&Locs
, ArrayRef
<Expr
*> UnresolvedMappers
) {
22785 OpenMPMotionModifierKind Modifiers
[] = {OMPC_MOTION_MODIFIER_unknown
,
22786 OMPC_MOTION_MODIFIER_unknown
};
22787 SourceLocation ModifiersLoc
[NumberOfOMPMotionModifiers
];
22789 // Process motion-modifiers, flag errors for duplicate modifiers.
22790 unsigned Count
= 0;
22791 for (unsigned I
= 0, E
= MotionModifiers
.size(); I
< E
; ++I
) {
22792 if (MotionModifiers
[I
] != OMPC_MOTION_MODIFIER_unknown
&&
22793 llvm::is_contained(Modifiers
, MotionModifiers
[I
])) {
22794 Diag(MotionModifiersLoc
[I
], diag::err_omp_duplicate_motion_modifier
);
22797 assert(Count
< NumberOfOMPMotionModifiers
&&
22798 "Modifiers exceed the allowed number of motion modifiers");
22799 Modifiers
[Count
] = MotionModifiers
[I
];
22800 ModifiersLoc
[Count
] = MotionModifiersLoc
[I
];
22804 MappableVarListInfo
MVLI(VarList
);
22805 checkMappableExpressionList(SemaRef
, DSAStack
, OMPC_to
, MVLI
, Locs
.StartLoc
,
22806 MapperIdScopeSpec
, MapperId
, UnresolvedMappers
);
22807 if (MVLI
.ProcessedVarList
.empty())
22810 return OMPToClause::Create(
22811 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
22812 MVLI
.VarComponents
, MVLI
.UDMapperList
, Modifiers
, ModifiersLoc
,
22813 MapperIdScopeSpec
.getWithLocInContext(getASTContext()), MapperId
);
22816 OMPClause
*SemaOpenMP::ActOnOpenMPFromClause(
22817 ArrayRef
<OpenMPMotionModifierKind
> MotionModifiers
,
22818 ArrayRef
<SourceLocation
> MotionModifiersLoc
,
22819 CXXScopeSpec
&MapperIdScopeSpec
, DeclarationNameInfo
&MapperId
,
22820 SourceLocation ColonLoc
, ArrayRef
<Expr
*> VarList
,
22821 const OMPVarListLocTy
&Locs
, ArrayRef
<Expr
*> UnresolvedMappers
) {
22822 OpenMPMotionModifierKind Modifiers
[] = {OMPC_MOTION_MODIFIER_unknown
,
22823 OMPC_MOTION_MODIFIER_unknown
};
22824 SourceLocation ModifiersLoc
[NumberOfOMPMotionModifiers
];
22826 // Process motion-modifiers, flag errors for duplicate modifiers.
22827 unsigned Count
= 0;
22828 for (unsigned I
= 0, E
= MotionModifiers
.size(); I
< E
; ++I
) {
22829 if (MotionModifiers
[I
] != OMPC_MOTION_MODIFIER_unknown
&&
22830 llvm::is_contained(Modifiers
, MotionModifiers
[I
])) {
22831 Diag(MotionModifiersLoc
[I
], diag::err_omp_duplicate_motion_modifier
);
22834 assert(Count
< NumberOfOMPMotionModifiers
&&
22835 "Modifiers exceed the allowed number of motion modifiers");
22836 Modifiers
[Count
] = MotionModifiers
[I
];
22837 ModifiersLoc
[Count
] = MotionModifiersLoc
[I
];
22841 MappableVarListInfo
MVLI(VarList
);
22842 checkMappableExpressionList(SemaRef
, DSAStack
, OMPC_from
, MVLI
, Locs
.StartLoc
,
22843 MapperIdScopeSpec
, MapperId
, UnresolvedMappers
);
22844 if (MVLI
.ProcessedVarList
.empty())
22847 return OMPFromClause::Create(
22848 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
22849 MVLI
.VarComponents
, MVLI
.UDMapperList
, Modifiers
, ModifiersLoc
,
22850 MapperIdScopeSpec
.getWithLocInContext(getASTContext()), MapperId
);
22854 SemaOpenMP::ActOnOpenMPUseDevicePtrClause(ArrayRef
<Expr
*> VarList
,
22855 const OMPVarListLocTy
&Locs
) {
22856 MappableVarListInfo
MVLI(VarList
);
22857 SmallVector
<Expr
*, 8> PrivateCopies
;
22858 SmallVector
<Expr
*, 8> Inits
;
22860 for (Expr
*RefExpr
: VarList
) {
22861 assert(RefExpr
&& "NULL expr in OpenMP use_device_ptr clause.");
22862 SourceLocation ELoc
;
22863 SourceRange ERange
;
22864 Expr
*SimpleRefExpr
= RefExpr
;
22865 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
22867 // It will be analyzed later.
22868 MVLI
.ProcessedVarList
.push_back(RefExpr
);
22869 PrivateCopies
.push_back(nullptr);
22870 Inits
.push_back(nullptr);
22872 ValueDecl
*D
= Res
.first
;
22876 QualType Type
= D
->getType();
22877 Type
= Type
.getNonReferenceType().getUnqualifiedType();
22879 auto *VD
= dyn_cast
<VarDecl
>(D
);
22881 // Item should be a pointer or reference to pointer.
22882 if (!Type
->isPointerType()) {
22883 Diag(ELoc
, diag::err_omp_usedeviceptr_not_a_pointer
)
22884 << 0 << RefExpr
->getSourceRange();
22888 // Build the private variable and the expression that refers to it.
22890 buildVarDecl(SemaRef
, ELoc
, Type
, D
->getName(),
22891 D
->hasAttrs() ? &D
->getAttrs() : nullptr,
22892 VD
? cast
<DeclRefExpr
>(SimpleRefExpr
) : nullptr);
22893 if (VDPrivate
->isInvalidDecl())
22896 SemaRef
.CurContext
->addDecl(VDPrivate
);
22897 DeclRefExpr
*VDPrivateRefExpr
= buildDeclRefExpr(
22898 SemaRef
, VDPrivate
, RefExpr
->getType().getUnqualifiedType(), ELoc
);
22900 // Add temporary variable to initialize the private copy of the pointer.
22902 buildVarDecl(SemaRef
, RefExpr
->getExprLoc(), Type
, ".devptr.temp");
22903 DeclRefExpr
*VDInitRefExpr
= buildDeclRefExpr(
22904 SemaRef
, VDInit
, RefExpr
->getType(), RefExpr
->getExprLoc());
22905 SemaRef
.AddInitializerToDecl(
22906 VDPrivate
, SemaRef
.DefaultLvalueConversion(VDInitRefExpr
).get(),
22907 /*DirectInit=*/false);
22909 // If required, build a capture to implement the privatization initialized
22910 // with the current list item value.
22911 DeclRefExpr
*Ref
= nullptr;
22913 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
22914 MVLI
.ProcessedVarList
.push_back(VD
? RefExpr
->IgnoreParens() : Ref
);
22915 PrivateCopies
.push_back(VDPrivateRefExpr
);
22916 Inits
.push_back(VDInitRefExpr
);
22918 // We need to add a data sharing attribute for this variable to make sure it
22919 // is correctly captured. A variable that shows up in a use_device_ptr has
22920 // similar properties of a first private variable.
22921 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_firstprivate
, Ref
);
22923 // Create a mappable component for the list item. List items in this clause
22924 // only need a component.
22925 MVLI
.VarBaseDeclarations
.push_back(D
);
22926 MVLI
.VarComponents
.resize(MVLI
.VarComponents
.size() + 1);
22927 MVLI
.VarComponents
.back().emplace_back(SimpleRefExpr
, D
,
22928 /*IsNonContiguous=*/false);
22931 if (MVLI
.ProcessedVarList
.empty())
22934 return OMPUseDevicePtrClause::Create(
22935 getASTContext(), Locs
, MVLI
.ProcessedVarList
, PrivateCopies
, Inits
,
22936 MVLI
.VarBaseDeclarations
, MVLI
.VarComponents
);
22940 SemaOpenMP::ActOnOpenMPUseDeviceAddrClause(ArrayRef
<Expr
*> VarList
,
22941 const OMPVarListLocTy
&Locs
) {
22942 MappableVarListInfo
MVLI(VarList
);
22944 for (Expr
*RefExpr
: VarList
) {
22945 assert(RefExpr
&& "NULL expr in OpenMP use_device_addr clause.");
22946 SourceLocation ELoc
;
22947 SourceRange ERange
;
22948 Expr
*SimpleRefExpr
= RefExpr
;
22949 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
,
22950 /*AllowArraySection=*/true);
22952 // It will be analyzed later.
22953 MVLI
.ProcessedVarList
.push_back(RefExpr
);
22955 ValueDecl
*D
= Res
.first
;
22958 auto *VD
= dyn_cast
<VarDecl
>(D
);
22960 // If required, build a capture to implement the privatization initialized
22961 // with the current list item value.
22962 DeclRefExpr
*Ref
= nullptr;
22964 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
22965 MVLI
.ProcessedVarList
.push_back(VD
? RefExpr
->IgnoreParens() : Ref
);
22967 // We need to add a data sharing attribute for this variable to make sure it
22968 // is correctly captured. A variable that shows up in a use_device_addr has
22969 // similar properties of a first private variable.
22970 DSAStack
->addDSA(D
, RefExpr
->IgnoreParens(), OMPC_firstprivate
, Ref
);
22972 // Create a mappable component for the list item. List items in this clause
22973 // only need a component.
22974 MVLI
.VarBaseDeclarations
.push_back(D
);
22975 MVLI
.VarComponents
.emplace_back();
22976 Expr
*Component
= SimpleRefExpr
;
22977 if (VD
&& (isa
<ArraySectionExpr
>(RefExpr
->IgnoreParenImpCasts()) ||
22978 isa
<ArraySubscriptExpr
>(RefExpr
->IgnoreParenImpCasts())))
22980 SemaRef
.DefaultFunctionArrayLvalueConversion(SimpleRefExpr
).get();
22981 MVLI
.VarComponents
.back().emplace_back(Component
, D
,
22982 /*IsNonContiguous=*/false);
22985 if (MVLI
.ProcessedVarList
.empty())
22988 return OMPUseDeviceAddrClause::Create(
22989 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
22990 MVLI
.VarComponents
);
22994 SemaOpenMP::ActOnOpenMPIsDevicePtrClause(ArrayRef
<Expr
*> VarList
,
22995 const OMPVarListLocTy
&Locs
) {
22996 MappableVarListInfo
MVLI(VarList
);
22997 for (Expr
*RefExpr
: VarList
) {
22998 assert(RefExpr
&& "NULL expr in OpenMP is_device_ptr clause.");
22999 SourceLocation ELoc
;
23000 SourceRange ERange
;
23001 Expr
*SimpleRefExpr
= RefExpr
;
23002 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
23004 // It will be analyzed later.
23005 MVLI
.ProcessedVarList
.push_back(RefExpr
);
23007 ValueDecl
*D
= Res
.first
;
23011 QualType Type
= D
->getType();
23012 // item should be a pointer or array or reference to pointer or array
23013 if (!Type
.getNonReferenceType()->isPointerType() &&
23014 !Type
.getNonReferenceType()->isArrayType()) {
23015 Diag(ELoc
, diag::err_omp_argument_type_isdeviceptr
)
23016 << 0 << RefExpr
->getSourceRange();
23020 // Check if the declaration in the clause does not show up in any data
23021 // sharing attribute.
23022 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
23023 if (isOpenMPPrivate(DVar
.CKind
)) {
23024 Diag(ELoc
, diag::err_omp_variable_in_given_clause_and_dsa
)
23025 << getOpenMPClauseName(DVar
.CKind
)
23026 << getOpenMPClauseName(OMPC_is_device_ptr
)
23027 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
23028 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
23032 const Expr
*ConflictExpr
;
23033 if (DSAStack
->checkMappableExprComponentListsForDecl(
23034 D
, /*CurrentRegionOnly=*/true,
23036 OMPClauseMappableExprCommon::MappableExprComponentListRef R
,
23037 OpenMPClauseKind
) -> bool {
23038 ConflictExpr
= R
.front().getAssociatedExpression();
23041 Diag(ELoc
, diag::err_omp_map_shared_storage
) << RefExpr
->getSourceRange();
23042 Diag(ConflictExpr
->getExprLoc(), diag::note_used_here
)
23043 << ConflictExpr
->getSourceRange();
23047 // Store the components in the stack so that they can be used to check
23048 // against other clauses later on.
23049 OMPClauseMappableExprCommon::MappableComponent
MC(
23050 SimpleRefExpr
, D
, /*IsNonContiguous=*/false);
23051 DSAStack
->addMappableExpressionComponents(
23052 D
, MC
, /*WhereFoundClauseKind=*/OMPC_is_device_ptr
);
23054 // Record the expression we've just processed.
23055 MVLI
.ProcessedVarList
.push_back(SimpleRefExpr
);
23057 // Create a mappable component for the list item. List items in this clause
23058 // only need a component. We use a null declaration to signal fields in
23060 assert((isa
<DeclRefExpr
>(SimpleRefExpr
) ||
23061 isa
<CXXThisExpr
>(cast
<MemberExpr
>(SimpleRefExpr
)->getBase())) &&
23062 "Unexpected device pointer expression!");
23063 MVLI
.VarBaseDeclarations
.push_back(
23064 isa
<DeclRefExpr
>(SimpleRefExpr
) ? D
: nullptr);
23065 MVLI
.VarComponents
.resize(MVLI
.VarComponents
.size() + 1);
23066 MVLI
.VarComponents
.back().push_back(MC
);
23069 if (MVLI
.ProcessedVarList
.empty())
23072 return OMPIsDevicePtrClause::Create(
23073 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
23074 MVLI
.VarComponents
);
23078 SemaOpenMP::ActOnOpenMPHasDeviceAddrClause(ArrayRef
<Expr
*> VarList
,
23079 const OMPVarListLocTy
&Locs
) {
23080 MappableVarListInfo
MVLI(VarList
);
23081 for (Expr
*RefExpr
: VarList
) {
23082 assert(RefExpr
&& "NULL expr in OpenMP has_device_addr clause.");
23083 SourceLocation ELoc
;
23084 SourceRange ERange
;
23085 Expr
*SimpleRefExpr
= RefExpr
;
23086 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
,
23087 /*AllowArraySection=*/true);
23089 // It will be analyzed later.
23090 MVLI
.ProcessedVarList
.push_back(RefExpr
);
23092 ValueDecl
*D
= Res
.first
;
23096 // Check if the declaration in the clause does not show up in any data
23097 // sharing attribute.
23098 DSAStackTy::DSAVarData DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/false);
23099 if (isOpenMPPrivate(DVar
.CKind
)) {
23100 Diag(ELoc
, diag::err_omp_variable_in_given_clause_and_dsa
)
23101 << getOpenMPClauseName(DVar
.CKind
)
23102 << getOpenMPClauseName(OMPC_has_device_addr
)
23103 << getOpenMPDirectiveName(DSAStack
->getCurrentDirective());
23104 reportOriginalDsa(SemaRef
, DSAStack
, D
, DVar
);
23108 const Expr
*ConflictExpr
;
23109 if (DSAStack
->checkMappableExprComponentListsForDecl(
23110 D
, /*CurrentRegionOnly=*/true,
23112 OMPClauseMappableExprCommon::MappableExprComponentListRef R
,
23113 OpenMPClauseKind
) -> bool {
23114 ConflictExpr
= R
.front().getAssociatedExpression();
23117 Diag(ELoc
, diag::err_omp_map_shared_storage
) << RefExpr
->getSourceRange();
23118 Diag(ConflictExpr
->getExprLoc(), diag::note_used_here
)
23119 << ConflictExpr
->getSourceRange();
23123 // Store the components in the stack so that they can be used to check
23124 // against other clauses later on.
23125 Expr
*Component
= SimpleRefExpr
;
23126 auto *VD
= dyn_cast
<VarDecl
>(D
);
23127 if (VD
&& (isa
<ArraySectionExpr
>(RefExpr
->IgnoreParenImpCasts()) ||
23128 isa
<ArraySubscriptExpr
>(RefExpr
->IgnoreParenImpCasts())))
23130 SemaRef
.DefaultFunctionArrayLvalueConversion(SimpleRefExpr
).get();
23131 OMPClauseMappableExprCommon::MappableComponent
MC(
23132 Component
, D
, /*IsNonContiguous=*/false);
23133 DSAStack
->addMappableExpressionComponents(
23134 D
, MC
, /*WhereFoundClauseKind=*/OMPC_has_device_addr
);
23136 // Record the expression we've just processed.
23137 if (!VD
&& !SemaRef
.CurContext
->isDependentContext()) {
23139 buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/true);
23140 assert(Ref
&& "has_device_addr capture failed");
23141 MVLI
.ProcessedVarList
.push_back(Ref
);
23143 MVLI
.ProcessedVarList
.push_back(RefExpr
->IgnoreParens());
23145 // Create a mappable component for the list item. List items in this clause
23146 // only need a component. We use a null declaration to signal fields in
23148 assert((isa
<DeclRefExpr
>(SimpleRefExpr
) ||
23149 isa
<CXXThisExpr
>(cast
<MemberExpr
>(SimpleRefExpr
)->getBase())) &&
23150 "Unexpected device pointer expression!");
23151 MVLI
.VarBaseDeclarations
.push_back(
23152 isa
<DeclRefExpr
>(SimpleRefExpr
) ? D
: nullptr);
23153 MVLI
.VarComponents
.resize(MVLI
.VarComponents
.size() + 1);
23154 MVLI
.VarComponents
.back().push_back(MC
);
23157 if (MVLI
.ProcessedVarList
.empty())
23160 return OMPHasDeviceAddrClause::Create(
23161 getASTContext(), Locs
, MVLI
.ProcessedVarList
, MVLI
.VarBaseDeclarations
,
23162 MVLI
.VarComponents
);
23165 OMPClause
*SemaOpenMP::ActOnOpenMPAllocateClause(
23166 Expr
*Allocator
, OpenMPAllocateClauseModifier AllocClauseModifier
,
23167 ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
, SourceLocation LParenLoc
,
23168 SourceLocation ColonLoc
, SourceLocation EndLoc
) {
23171 // Allocator expression is dependent - skip it for now and build the
23172 // allocator when instantiated.
23173 if (Allocator
->isTypeDependent() || Allocator
->isValueDependent() ||
23174 Allocator
->isInstantiationDependent() ||
23175 Allocator
->containsUnexpandedParameterPack())
23177 // OpenMP [2.11.4 allocate Clause, Description]
23178 // allocator is an expression of omp_allocator_handle_t type.
23179 if (!findOMPAllocatorHandleT(SemaRef
, Allocator
->getExprLoc(), DSAStack
))
23182 ExprResult AllocatorRes
= SemaRef
.DefaultLvalueConversion(Allocator
);
23183 if (AllocatorRes
.isInvalid())
23185 AllocatorRes
= SemaRef
.PerformImplicitConversion(
23186 AllocatorRes
.get(), DSAStack
->getOMPAllocatorHandleT(),
23187 AssignmentAction::Initializing
,
23188 /*AllowExplicit=*/true);
23189 if (AllocatorRes
.isInvalid())
23191 Allocator
= AllocatorRes
.get();
23193 // OpenMP 5.0, 2.11.4 allocate Clause, Restrictions.
23194 // allocate clauses that appear on a target construct or on constructs in a
23195 // target region must specify an allocator expression unless a requires
23196 // directive with the dynamic_allocators clause is present in the same
23197 // compilation unit.
23198 if (getLangOpts().OpenMPIsTargetDevice
&&
23199 !DSAStack
->hasRequiresDeclWithClause
<OMPDynamicAllocatorsClause
>())
23200 SemaRef
.targetDiag(StartLoc
, diag::err_expected_allocator_expression
);
23202 // Analyze and build list of variables.
23203 SmallVector
<Expr
*, 8> Vars
;
23204 for (Expr
*RefExpr
: VarList
) {
23205 assert(RefExpr
&& "NULL expr in OpenMP private clause.");
23206 SourceLocation ELoc
;
23207 SourceRange ERange
;
23208 Expr
*SimpleRefExpr
= RefExpr
;
23209 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
23211 // It will be analyzed later.
23212 Vars
.push_back(RefExpr
);
23214 ValueDecl
*D
= Res
.first
;
23218 auto *VD
= dyn_cast
<VarDecl
>(D
);
23219 DeclRefExpr
*Ref
= nullptr;
23220 if (!VD
&& !SemaRef
.CurContext
->isDependentContext())
23221 Ref
= buildCapture(SemaRef
, D
, SimpleRefExpr
, /*WithInit=*/false);
23222 Vars
.push_back((VD
|| SemaRef
.CurContext
->isDependentContext())
23223 ? RefExpr
->IgnoreParens()
23231 DSAStack
->addInnerAllocatorExpr(Allocator
);
23233 OpenMPAllocateClauseModifier AllocatorModifier
= AllocClauseModifier
;
23234 SourceLocation AllocatorModifierLoc
;
23235 return OMPAllocateClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23236 Allocator
, ColonLoc
, AllocatorModifier
,
23237 AllocatorModifierLoc
, EndLoc
, Vars
);
23240 OMPClause
*SemaOpenMP::ActOnOpenMPNontemporalClause(ArrayRef
<Expr
*> VarList
,
23241 SourceLocation StartLoc
,
23242 SourceLocation LParenLoc
,
23243 SourceLocation EndLoc
) {
23244 SmallVector
<Expr
*, 8> Vars
;
23245 for (Expr
*RefExpr
: VarList
) {
23246 assert(RefExpr
&& "NULL expr in OpenMP nontemporal clause.");
23247 SourceLocation ELoc
;
23248 SourceRange ERange
;
23249 Expr
*SimpleRefExpr
= RefExpr
;
23250 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
);
23252 // It will be analyzed later.
23253 Vars
.push_back(RefExpr
);
23254 ValueDecl
*D
= Res
.first
;
23258 // OpenMP 5.0, 2.9.3.1 simd Construct, Restrictions.
23259 // A list-item cannot appear in more than one nontemporal clause.
23260 if (const Expr
*PrevRef
=
23261 DSAStack
->addUniqueNontemporal(D
, SimpleRefExpr
)) {
23262 Diag(ELoc
, diag::err_omp_used_in_clause_twice
)
23263 << 0 << getOpenMPClauseName(OMPC_nontemporal
) << ERange
;
23264 Diag(PrevRef
->getExprLoc(), diag::note_omp_explicit_dsa
)
23265 << getOpenMPClauseName(OMPC_nontemporal
);
23269 Vars
.push_back(RefExpr
);
23275 return OMPNontemporalClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23279 StmtResult
SemaOpenMP::ActOnOpenMPScopeDirective(ArrayRef
<OMPClause
*> Clauses
,
23281 SourceLocation StartLoc
,
23282 SourceLocation EndLoc
) {
23284 return StmtError();
23286 SemaRef
.setFunctionHasBranchProtectedScope();
23288 return OMPScopeDirective::Create(getASTContext(), StartLoc
, EndLoc
, Clauses
,
23292 OMPClause
*SemaOpenMP::ActOnOpenMPInclusiveClause(ArrayRef
<Expr
*> VarList
,
23293 SourceLocation StartLoc
,
23294 SourceLocation LParenLoc
,
23295 SourceLocation EndLoc
) {
23296 SmallVector
<Expr
*, 8> Vars
;
23297 for (Expr
*RefExpr
: VarList
) {
23298 assert(RefExpr
&& "NULL expr in OpenMP nontemporal clause.");
23299 SourceLocation ELoc
;
23300 SourceRange ERange
;
23301 Expr
*SimpleRefExpr
= RefExpr
;
23302 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
,
23303 /*AllowArraySection=*/true);
23305 // It will be analyzed later.
23306 Vars
.push_back(RefExpr
);
23307 ValueDecl
*D
= Res
.first
;
23311 const DSAStackTy::DSAVarData DVar
=
23312 DSAStack
->getTopDSA(D
, /*FromParent=*/true);
23313 // OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
23314 // A list item that appears in the inclusive or exclusive clause must appear
23315 // in a reduction clause with the inscan modifier on the enclosing
23316 // worksharing-loop, worksharing-loop SIMD, or simd construct.
23317 if (DVar
.CKind
!= OMPC_reduction
|| DVar
.Modifier
!= OMPC_REDUCTION_inscan
)
23318 Diag(ELoc
, diag::err_omp_inclusive_exclusive_not_reduction
)
23319 << RefExpr
->getSourceRange();
23321 if (DSAStack
->getParentDirective() != OMPD_unknown
)
23322 DSAStack
->markDeclAsUsedInScanDirective(D
);
23323 Vars
.push_back(RefExpr
);
23329 return OMPInclusiveClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23333 OMPClause
*SemaOpenMP::ActOnOpenMPExclusiveClause(ArrayRef
<Expr
*> VarList
,
23334 SourceLocation StartLoc
,
23335 SourceLocation LParenLoc
,
23336 SourceLocation EndLoc
) {
23337 SmallVector
<Expr
*, 8> Vars
;
23338 for (Expr
*RefExpr
: VarList
) {
23339 assert(RefExpr
&& "NULL expr in OpenMP nontemporal clause.");
23340 SourceLocation ELoc
;
23341 SourceRange ERange
;
23342 Expr
*SimpleRefExpr
= RefExpr
;
23343 auto Res
= getPrivateItem(SemaRef
, SimpleRefExpr
, ELoc
, ERange
,
23344 /*AllowArraySection=*/true);
23346 // It will be analyzed later.
23347 Vars
.push_back(RefExpr
);
23348 ValueDecl
*D
= Res
.first
;
23352 OpenMPDirectiveKind ParentDirective
= DSAStack
->getParentDirective();
23353 DSAStackTy::DSAVarData DVar
;
23354 if (ParentDirective
!= OMPD_unknown
)
23355 DVar
= DSAStack
->getTopDSA(D
, /*FromParent=*/true);
23356 // OpenMP 5.0, 2.9.6, scan Directive, Restrictions.
23357 // A list item that appears in the inclusive or exclusive clause must appear
23358 // in a reduction clause with the inscan modifier on the enclosing
23359 // worksharing-loop, worksharing-loop SIMD, or simd construct.
23360 if (ParentDirective
== OMPD_unknown
|| DVar
.CKind
!= OMPC_reduction
||
23361 DVar
.Modifier
!= OMPC_REDUCTION_inscan
) {
23362 Diag(ELoc
, diag::err_omp_inclusive_exclusive_not_reduction
)
23363 << RefExpr
->getSourceRange();
23365 DSAStack
->markDeclAsUsedInScanDirective(D
);
23367 Vars
.push_back(RefExpr
);
23373 return OMPExclusiveClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23377 /// Tries to find omp_alloctrait_t type.
23378 static bool findOMPAlloctraitT(Sema
&S
, SourceLocation Loc
, DSAStackTy
*Stack
) {
23379 QualType OMPAlloctraitT
= Stack
->getOMPAlloctraitT();
23380 if (!OMPAlloctraitT
.isNull())
23382 IdentifierInfo
&II
= S
.PP
.getIdentifierTable().get("omp_alloctrait_t");
23383 ParsedType PT
= S
.getTypeName(II
, Loc
, S
.getCurScope());
23384 if (!PT
.getAsOpaquePtr() || PT
.get().isNull()) {
23385 S
.Diag(Loc
, diag::err_omp_implied_type_not_found
) << "omp_alloctrait_t";
23388 Stack
->setOMPAlloctraitT(PT
.get());
23392 OMPClause
*SemaOpenMP::ActOnOpenMPUsesAllocatorClause(
23393 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation EndLoc
,
23394 ArrayRef
<UsesAllocatorsData
> Data
) {
23395 ASTContext
&Context
= getASTContext();
23396 // OpenMP [2.12.5, target Construct]
23397 // allocator is an identifier of omp_allocator_handle_t type.
23398 if (!findOMPAllocatorHandleT(SemaRef
, StartLoc
, DSAStack
))
23400 // OpenMP [2.12.5, target Construct]
23401 // allocator-traits-array is an identifier of const omp_alloctrait_t * type.
23404 [](const UsesAllocatorsData
&D
) { return D
.AllocatorTraits
; }) &&
23405 !findOMPAlloctraitT(SemaRef
, StartLoc
, DSAStack
))
23407 llvm::SmallPtrSet
<CanonicalDeclPtr
<Decl
>, 4> PredefinedAllocators
;
23408 for (int I
= 0; I
< OMPAllocateDeclAttr::OMPUserDefinedMemAlloc
; ++I
) {
23409 auto AllocatorKind
= static_cast<OMPAllocateDeclAttr::AllocatorTypeTy
>(I
);
23410 StringRef Allocator
=
23411 OMPAllocateDeclAttr::ConvertAllocatorTypeTyToStr(AllocatorKind
);
23412 DeclarationName AllocatorName
= &Context
.Idents
.get(Allocator
);
23413 PredefinedAllocators
.insert(SemaRef
.LookupSingleName(
23414 SemaRef
.TUScope
, AllocatorName
, StartLoc
, Sema::LookupAnyName
));
23417 SmallVector
<OMPUsesAllocatorsClause::Data
, 4> NewData
;
23418 for (const UsesAllocatorsData
&D
: Data
) {
23419 Expr
*AllocatorExpr
= nullptr;
23420 // Check allocator expression.
23421 if (D
.Allocator
->isTypeDependent()) {
23422 AllocatorExpr
= D
.Allocator
;
23424 // Traits were specified - need to assign new allocator to the specified
23425 // allocator, so it must be an lvalue.
23426 AllocatorExpr
= D
.Allocator
->IgnoreParenImpCasts();
23427 auto *DRE
= dyn_cast
<DeclRefExpr
>(AllocatorExpr
);
23428 bool IsPredefinedAllocator
= false;
23430 OMPAllocateDeclAttr::AllocatorTypeTy AllocatorTy
=
23431 getAllocatorKind(SemaRef
, DSAStack
, AllocatorExpr
);
23432 IsPredefinedAllocator
=
23434 OMPAllocateDeclAttr::AllocatorTypeTy::OMPUserDefinedMemAlloc
;
23436 QualType OMPAllocatorHandleT
= DSAStack
->getOMPAllocatorHandleT();
23437 QualType AllocatorExprType
= AllocatorExpr
->getType();
23438 bool IsTypeCompatible
= IsPredefinedAllocator
;
23439 IsTypeCompatible
= IsTypeCompatible
||
23440 Context
.hasSameUnqualifiedType(AllocatorExprType
,
23441 OMPAllocatorHandleT
);
23443 IsTypeCompatible
||
23444 Context
.typesAreCompatible(AllocatorExprType
, OMPAllocatorHandleT
);
23445 bool IsNonConstantLValue
=
23446 !AllocatorExprType
.isConstant(Context
) && AllocatorExpr
->isLValue();
23447 if (!DRE
|| !IsTypeCompatible
||
23448 (!IsPredefinedAllocator
&& !IsNonConstantLValue
)) {
23449 Diag(D
.Allocator
->getExprLoc(), diag::err_omp_var_expected
)
23450 << "omp_allocator_handle_t" << (DRE
? 1 : 0)
23451 << AllocatorExpr
->getType() << D
.Allocator
->getSourceRange();
23454 // OpenMP [2.12.5, target Construct]
23455 // Predefined allocators appearing in a uses_allocators clause cannot have
23456 // traits specified.
23457 if (IsPredefinedAllocator
&& D
.AllocatorTraits
) {
23458 Diag(D
.AllocatorTraits
->getExprLoc(),
23459 diag::err_omp_predefined_allocator_with_traits
)
23460 << D
.AllocatorTraits
->getSourceRange();
23461 Diag(D
.Allocator
->getExprLoc(), diag::note_omp_predefined_allocator
)
23462 << cast
<NamedDecl
>(DRE
->getDecl())->getName()
23463 << D
.Allocator
->getSourceRange();
23466 // OpenMP [2.12.5, target Construct]
23467 // Non-predefined allocators appearing in a uses_allocators clause must
23468 // have traits specified.
23469 if (!IsPredefinedAllocator
&& !D
.AllocatorTraits
) {
23470 Diag(D
.Allocator
->getExprLoc(),
23471 diag::err_omp_nonpredefined_allocator_without_traits
);
23474 // No allocator traits - just convert it to rvalue.
23475 if (!D
.AllocatorTraits
)
23476 AllocatorExpr
= SemaRef
.DefaultLvalueConversion(AllocatorExpr
).get();
23477 DSAStack
->addUsesAllocatorsDecl(
23479 IsPredefinedAllocator
23480 ? DSAStackTy::UsesAllocatorsDeclKind::PredefinedAllocator
23481 : DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator
);
23483 Expr
*AllocatorTraitsExpr
= nullptr;
23484 if (D
.AllocatorTraits
) {
23485 if (D
.AllocatorTraits
->isTypeDependent()) {
23486 AllocatorTraitsExpr
= D
.AllocatorTraits
;
23488 // OpenMP [2.12.5, target Construct]
23489 // Arrays that contain allocator traits that appear in a uses_allocators
23490 // clause must be constant arrays, have constant values and be defined
23491 // in the same scope as the construct in which the clause appears.
23492 AllocatorTraitsExpr
= D
.AllocatorTraits
->IgnoreParenImpCasts();
23493 // Check that traits expr is a constant array.
23495 if (const ArrayType
*Ty
=
23496 AllocatorTraitsExpr
->getType()->getAsArrayTypeUnsafe())
23497 if (const auto *ConstArrayTy
= dyn_cast
<ConstantArrayType
>(Ty
))
23498 TraitTy
= ConstArrayTy
->getElementType();
23499 if (TraitTy
.isNull() ||
23500 !(Context
.hasSameUnqualifiedType(TraitTy
,
23501 DSAStack
->getOMPAlloctraitT()) ||
23502 Context
.typesAreCompatible(TraitTy
, DSAStack
->getOMPAlloctraitT(),
23503 /*CompareUnqualified=*/true))) {
23504 Diag(D
.AllocatorTraits
->getExprLoc(),
23505 diag::err_omp_expected_array_alloctraits
)
23506 << AllocatorTraitsExpr
->getType();
23509 // Do not map by default allocator traits if it is a standalone
23511 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(AllocatorTraitsExpr
))
23512 DSAStack
->addUsesAllocatorsDecl(
23514 DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait
);
23517 OMPUsesAllocatorsClause::Data
&NewD
= NewData
.emplace_back();
23518 NewD
.Allocator
= AllocatorExpr
;
23519 NewD
.AllocatorTraits
= AllocatorTraitsExpr
;
23520 NewD
.LParenLoc
= D
.LParenLoc
;
23521 NewD
.RParenLoc
= D
.RParenLoc
;
23523 return OMPUsesAllocatorsClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23527 OMPClause
*SemaOpenMP::ActOnOpenMPAffinityClause(
23528 SourceLocation StartLoc
, SourceLocation LParenLoc
, SourceLocation ColonLoc
,
23529 SourceLocation EndLoc
, Expr
*Modifier
, ArrayRef
<Expr
*> Locators
) {
23530 SmallVector
<Expr
*, 8> Vars
;
23531 for (Expr
*RefExpr
: Locators
) {
23532 assert(RefExpr
&& "NULL expr in OpenMP shared clause.");
23533 if (isa
<DependentScopeDeclRefExpr
>(RefExpr
) || RefExpr
->isTypeDependent()) {
23534 // It will be analyzed later.
23535 Vars
.push_back(RefExpr
);
23539 SourceLocation ELoc
= RefExpr
->getExprLoc();
23540 Expr
*SimpleExpr
= RefExpr
->IgnoreParenImpCasts();
23542 if (!SimpleExpr
->isLValue()) {
23543 Diag(ELoc
, diag::err_omp_expected_addressable_lvalue_or_array_item
)
23544 << 1 << 0 << RefExpr
->getSourceRange();
23550 Sema::TentativeAnalysisScope
Trap(SemaRef
);
23551 Res
= SemaRef
.CreateBuiltinUnaryOp(ELoc
, UO_AddrOf
, SimpleExpr
);
23553 if (!Res
.isUsable() && !isa
<ArraySectionExpr
>(SimpleExpr
) &&
23554 !isa
<OMPArrayShapingExpr
>(SimpleExpr
)) {
23555 Diag(ELoc
, diag::err_omp_expected_addressable_lvalue_or_array_item
)
23556 << 1 << 0 << RefExpr
->getSourceRange();
23559 Vars
.push_back(SimpleExpr
);
23562 return OMPAffinityClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23563 ColonLoc
, EndLoc
, Modifier
, Vars
);
23566 OMPClause
*SemaOpenMP::ActOnOpenMPBindClause(OpenMPBindClauseKind Kind
,
23567 SourceLocation KindLoc
,
23568 SourceLocation StartLoc
,
23569 SourceLocation LParenLoc
,
23570 SourceLocation EndLoc
) {
23571 if (Kind
== OMPC_BIND_unknown
) {
23572 Diag(KindLoc
, diag::err_omp_unexpected_clause_value
)
23573 << getListOfPossibleValues(OMPC_bind
, /*First=*/0,
23574 /*Last=*/unsigned(OMPC_BIND_unknown
))
23575 << getOpenMPClauseName(OMPC_bind
);
23579 return OMPBindClause::Create(getASTContext(), Kind
, KindLoc
, StartLoc
,
23580 LParenLoc
, EndLoc
);
23583 OMPClause
*SemaOpenMP::ActOnOpenMPXDynCGroupMemClause(Expr
*Size
,
23584 SourceLocation StartLoc
,
23585 SourceLocation LParenLoc
,
23586 SourceLocation EndLoc
) {
23587 Expr
*ValExpr
= Size
;
23588 Stmt
*HelperValStmt
= nullptr;
23590 // OpenMP [2.5, Restrictions]
23591 // The ompx_dyn_cgroup_mem expression must evaluate to a positive integer
23593 if (!isNonNegativeIntegerValue(ValExpr
, SemaRef
, OMPC_ompx_dyn_cgroup_mem
,
23594 /*StrictlyPositive=*/false))
23597 OpenMPDirectiveKind DKind
= DSAStack
->getCurrentDirective();
23598 OpenMPDirectiveKind CaptureRegion
= getOpenMPCaptureRegionForClause(
23599 DKind
, OMPC_ompx_dyn_cgroup_mem
, getLangOpts().OpenMP
);
23600 if (CaptureRegion
!= OMPD_unknown
&&
23601 !SemaRef
.CurContext
->isDependentContext()) {
23602 ValExpr
= SemaRef
.MakeFullExpr(ValExpr
).get();
23603 llvm::MapVector
<const Expr
*, DeclRefExpr
*> Captures
;
23604 ValExpr
= tryBuildCapture(SemaRef
, ValExpr
, Captures
).get();
23605 HelperValStmt
= buildPreInits(getASTContext(), Captures
);
23608 return new (getASTContext()) OMPXDynCGroupMemClause(
23609 ValExpr
, HelperValStmt
, CaptureRegion
, StartLoc
, LParenLoc
, EndLoc
);
23612 OMPClause
*SemaOpenMP::ActOnOpenMPDoacrossClause(
23613 OpenMPDoacrossClauseModifier DepType
, SourceLocation DepLoc
,
23614 SourceLocation ColonLoc
, ArrayRef
<Expr
*> VarList
, SourceLocation StartLoc
,
23615 SourceLocation LParenLoc
, SourceLocation EndLoc
) {
23617 if (DSAStack
->getCurrentDirective() == OMPD_ordered
&&
23618 DepType
!= OMPC_DOACROSS_source
&& DepType
!= OMPC_DOACROSS_sink
&&
23619 DepType
!= OMPC_DOACROSS_sink_omp_cur_iteration
&&
23620 DepType
!= OMPC_DOACROSS_source_omp_cur_iteration
) {
23621 Diag(DepLoc
, diag::err_omp_unexpected_clause_value
)
23622 << "'source' or 'sink'" << getOpenMPClauseName(OMPC_doacross
);
23626 SmallVector
<Expr
*, 8> Vars
;
23627 DSAStackTy::OperatorOffsetTy OpsOffs
;
23628 llvm::APSInt
TotalDepCount(/*BitWidth=*/32);
23629 DoacrossDataInfoTy VarOffset
= ProcessOpenMPDoacrossClauseCommon(
23631 DepType
== OMPC_DOACROSS_source
||
23632 DepType
== OMPC_DOACROSS_source_omp_cur_iteration
||
23633 DepType
== OMPC_DOACROSS_sink_omp_cur_iteration
,
23634 VarList
, DSAStack
, EndLoc
);
23635 Vars
= VarOffset
.Vars
;
23636 OpsOffs
= VarOffset
.OpsOffs
;
23637 TotalDepCount
= VarOffset
.TotalDepCount
;
23638 auto *C
= OMPDoacrossClause::Create(getASTContext(), StartLoc
, LParenLoc
,
23639 EndLoc
, DepType
, DepLoc
, ColonLoc
, Vars
,
23640 TotalDepCount
.getZExtValue());
23641 if (DSAStack
->isParentOrderedRegion())
23642 DSAStack
->addDoacrossDependClause(C
, OpsOffs
);
23646 OMPClause
*SemaOpenMP::ActOnOpenMPXAttributeClause(ArrayRef
<const Attr
*> Attrs
,
23647 SourceLocation StartLoc
,
23648 SourceLocation LParenLoc
,
23649 SourceLocation EndLoc
) {
23650 return new (getASTContext())
23651 OMPXAttributeClause(Attrs
, StartLoc
, LParenLoc
, EndLoc
);
23654 OMPClause
*SemaOpenMP::ActOnOpenMPXBareClause(SourceLocation StartLoc
,
23655 SourceLocation EndLoc
) {
23656 return new (getASTContext()) OMPXBareClause(StartLoc
, EndLoc
);
23659 OMPClause
*SemaOpenMP::ActOnOpenMPHoldsClause(Expr
*E
, SourceLocation StartLoc
,
23660 SourceLocation LParenLoc
,
23661 SourceLocation EndLoc
) {
23662 return new (getASTContext()) OMPHoldsClause(E
, StartLoc
, LParenLoc
, EndLoc
);
23665 OMPClause
*SemaOpenMP::ActOnOpenMPDirectivePresenceClause(
23666 OpenMPClauseKind CK
, llvm::ArrayRef
<OpenMPDirectiveKind
> DKVec
,
23667 SourceLocation Loc
, SourceLocation LLoc
, SourceLocation RLoc
) {
23670 return OMPAbsentClause::Create(getASTContext(), DKVec
, Loc
, LLoc
, RLoc
);
23671 case OMPC_contains
:
23672 return OMPContainsClause::Create(getASTContext(), DKVec
, Loc
, LLoc
, RLoc
);
23674 llvm_unreachable("Unexpected OpenMP clause");
23678 OMPClause
*SemaOpenMP::ActOnOpenMPNullaryAssumptionClause(OpenMPClauseKind CK
,
23679 SourceLocation Loc
,
23680 SourceLocation RLoc
) {
23682 case OMPC_no_openmp
:
23683 return new (getASTContext()) OMPNoOpenMPClause(Loc
, RLoc
);
23684 case OMPC_no_openmp_routines
:
23685 return new (getASTContext()) OMPNoOpenMPRoutinesClause(Loc
, RLoc
);
23686 case OMPC_no_parallelism
:
23687 return new (getASTContext()) OMPNoParallelismClause(Loc
, RLoc
);
23689 llvm_unreachable("Unexpected OpenMP clause");
23693 ExprResult
SemaOpenMP::ActOnOMPArraySectionExpr(
23694 Expr
*Base
, SourceLocation LBLoc
, Expr
*LowerBound
,
23695 SourceLocation ColonLocFirst
, SourceLocation ColonLocSecond
, Expr
*Length
,
23696 Expr
*Stride
, SourceLocation RBLoc
) {
23697 ASTContext
&Context
= getASTContext();
23698 if (Base
->hasPlaceholderType() &&
23699 !Base
->hasPlaceholderType(BuiltinType::ArraySection
)) {
23700 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(Base
);
23701 if (Result
.isInvalid())
23702 return ExprError();
23703 Base
= Result
.get();
23705 if (LowerBound
&& LowerBound
->getType()->isNonOverloadPlaceholderType()) {
23706 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(LowerBound
);
23707 if (Result
.isInvalid())
23708 return ExprError();
23709 Result
= SemaRef
.DefaultLvalueConversion(Result
.get());
23710 if (Result
.isInvalid())
23711 return ExprError();
23712 LowerBound
= Result
.get();
23714 if (Length
&& Length
->getType()->isNonOverloadPlaceholderType()) {
23715 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(Length
);
23716 if (Result
.isInvalid())
23717 return ExprError();
23718 Result
= SemaRef
.DefaultLvalueConversion(Result
.get());
23719 if (Result
.isInvalid())
23720 return ExprError();
23721 Length
= Result
.get();
23723 if (Stride
&& Stride
->getType()->isNonOverloadPlaceholderType()) {
23724 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(Stride
);
23725 if (Result
.isInvalid())
23726 return ExprError();
23727 Result
= SemaRef
.DefaultLvalueConversion(Result
.get());
23728 if (Result
.isInvalid())
23729 return ExprError();
23730 Stride
= Result
.get();
23733 // Build an unanalyzed expression if either operand is type-dependent.
23734 if (Base
->isTypeDependent() ||
23736 (LowerBound
->isTypeDependent() || LowerBound
->isValueDependent())) ||
23737 (Length
&& (Length
->isTypeDependent() || Length
->isValueDependent())) ||
23738 (Stride
&& (Stride
->isTypeDependent() || Stride
->isValueDependent()))) {
23739 return new (Context
) ArraySectionExpr(
23740 Base
, LowerBound
, Length
, Stride
, Context
.DependentTy
, VK_LValue
,
23741 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
23744 // Perform default conversions.
23745 QualType OriginalTy
= ArraySectionExpr::getBaseOriginalType(Base
);
23747 if (OriginalTy
->isAnyPointerType()) {
23748 ResultTy
= OriginalTy
->getPointeeType();
23749 } else if (OriginalTy
->isArrayType()) {
23750 ResultTy
= OriginalTy
->getAsArrayTypeUnsafe()->getElementType();
23753 Diag(Base
->getExprLoc(), diag::err_omp_typecheck_section_value
)
23754 << Base
->getSourceRange());
23758 auto Res
= PerformOpenMPImplicitIntegerConversion(LowerBound
->getExprLoc(),
23760 if (Res
.isInvalid())
23761 return ExprError(Diag(LowerBound
->getExprLoc(),
23762 diag::err_omp_typecheck_section_not_integer
)
23763 << 0 << LowerBound
->getSourceRange());
23764 LowerBound
= Res
.get();
23766 if (LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
23767 LowerBound
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
23768 Diag(LowerBound
->getExprLoc(), diag::warn_omp_section_is_char
)
23769 << 0 << LowerBound
->getSourceRange();
23773 PerformOpenMPImplicitIntegerConversion(Length
->getExprLoc(), Length
);
23774 if (Res
.isInvalid())
23775 return ExprError(Diag(Length
->getExprLoc(),
23776 diag::err_omp_typecheck_section_not_integer
)
23777 << 1 << Length
->getSourceRange());
23778 Length
= Res
.get();
23780 if (Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
23781 Length
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
23782 Diag(Length
->getExprLoc(), diag::warn_omp_section_is_char
)
23783 << 1 << Length
->getSourceRange();
23787 PerformOpenMPImplicitIntegerConversion(Stride
->getExprLoc(), Stride
);
23788 if (Res
.isInvalid())
23789 return ExprError(Diag(Stride
->getExprLoc(),
23790 diag::err_omp_typecheck_section_not_integer
)
23791 << 1 << Stride
->getSourceRange());
23792 Stride
= Res
.get();
23794 if (Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_S
) ||
23795 Stride
->getType()->isSpecificBuiltinType(BuiltinType::Char_U
))
23796 Diag(Stride
->getExprLoc(), diag::warn_omp_section_is_char
)
23797 << 1 << Stride
->getSourceRange();
23800 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
23801 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
23802 // type. Note that functions are not objects, and that (in C99 parlance)
23803 // incomplete types are not object types.
23804 if (ResultTy
->isFunctionType()) {
23805 Diag(Base
->getExprLoc(), diag::err_omp_section_function_type
)
23806 << ResultTy
<< Base
->getSourceRange();
23807 return ExprError();
23810 if (SemaRef
.RequireCompleteType(Base
->getExprLoc(), ResultTy
,
23811 diag::err_omp_section_incomplete_type
, Base
))
23812 return ExprError();
23814 if (LowerBound
&& !OriginalTy
->isAnyPointerType()) {
23815 Expr::EvalResult Result
;
23816 if (LowerBound
->EvaluateAsInt(Result
, Context
)) {
23817 // OpenMP 5.0, [2.1.5 Array Sections]
23818 // The array section must be a subset of the original array.
23819 llvm::APSInt LowerBoundValue
= Result
.Val
.getInt();
23820 if (LowerBoundValue
.isNegative()) {
23821 Diag(LowerBound
->getExprLoc(),
23822 diag::err_omp_section_not_subset_of_array
)
23823 << LowerBound
->getSourceRange();
23824 return ExprError();
23830 Expr::EvalResult Result
;
23831 if (Length
->EvaluateAsInt(Result
, Context
)) {
23832 // OpenMP 5.0, [2.1.5 Array Sections]
23833 // The length must evaluate to non-negative integers.
23834 llvm::APSInt LengthValue
= Result
.Val
.getInt();
23835 if (LengthValue
.isNegative()) {
23836 Diag(Length
->getExprLoc(), diag::err_omp_section_length_negative
)
23837 << toString(LengthValue
, /*Radix=*/10, /*Signed=*/true)
23838 << Length
->getSourceRange();
23839 return ExprError();
23842 } else if (ColonLocFirst
.isValid() &&
23843 (OriginalTy
.isNull() || (!OriginalTy
->isConstantArrayType() &&
23844 !OriginalTy
->isVariableArrayType()))) {
23845 // OpenMP 5.0, [2.1.5 Array Sections]
23846 // When the size of the array dimension is not known, the length must be
23847 // specified explicitly.
23848 Diag(ColonLocFirst
, diag::err_omp_section_length_undefined
)
23849 << (!OriginalTy
.isNull() && OriginalTy
->isArrayType());
23850 return ExprError();
23854 Expr::EvalResult Result
;
23855 if (Stride
->EvaluateAsInt(Result
, Context
)) {
23856 // OpenMP 5.0, [2.1.5 Array Sections]
23857 // The stride must evaluate to a positive integer.
23858 llvm::APSInt StrideValue
= Result
.Val
.getInt();
23859 if (!StrideValue
.isStrictlyPositive()) {
23860 Diag(Stride
->getExprLoc(), diag::err_omp_section_stride_non_positive
)
23861 << toString(StrideValue
, /*Radix=*/10, /*Signed=*/true)
23862 << Stride
->getSourceRange();
23863 return ExprError();
23868 if (!Base
->hasPlaceholderType(BuiltinType::ArraySection
)) {
23869 ExprResult Result
= SemaRef
.DefaultFunctionArrayLvalueConversion(Base
);
23870 if (Result
.isInvalid())
23871 return ExprError();
23872 Base
= Result
.get();
23874 return new (Context
) ArraySectionExpr(
23875 Base
, LowerBound
, Length
, Stride
, Context
.ArraySectionTy
, VK_LValue
,
23876 OK_Ordinary
, ColonLocFirst
, ColonLocSecond
, RBLoc
);
23879 ExprResult
SemaOpenMP::ActOnOMPArrayShapingExpr(
23880 Expr
*Base
, SourceLocation LParenLoc
, SourceLocation RParenLoc
,
23881 ArrayRef
<Expr
*> Dims
, ArrayRef
<SourceRange
> Brackets
) {
23882 ASTContext
&Context
= getASTContext();
23883 if (Base
->hasPlaceholderType()) {
23884 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(Base
);
23885 if (Result
.isInvalid())
23886 return ExprError();
23887 Result
= SemaRef
.DefaultLvalueConversion(Result
.get());
23888 if (Result
.isInvalid())
23889 return ExprError();
23890 Base
= Result
.get();
23892 QualType BaseTy
= Base
->getType();
23893 // Delay analysis of the types/expressions if instantiation/specialization is
23895 if (!BaseTy
->isPointerType() && Base
->isTypeDependent())
23896 return OMPArrayShapingExpr::Create(Context
, Context
.DependentTy
, Base
,
23897 LParenLoc
, RParenLoc
, Dims
, Brackets
);
23898 if (!BaseTy
->isPointerType() ||
23899 (!Base
->isTypeDependent() &&
23900 BaseTy
->getPointeeType()->isIncompleteType()))
23901 return ExprError(Diag(Base
->getExprLoc(),
23902 diag::err_omp_non_pointer_type_array_shaping_base
)
23903 << Base
->getSourceRange());
23905 SmallVector
<Expr
*, 4> NewDims
;
23906 bool ErrorFound
= false;
23907 for (Expr
*Dim
: Dims
) {
23908 if (Dim
->hasPlaceholderType()) {
23909 ExprResult Result
= SemaRef
.CheckPlaceholderExpr(Dim
);
23910 if (Result
.isInvalid()) {
23914 Result
= SemaRef
.DefaultLvalueConversion(Result
.get());
23915 if (Result
.isInvalid()) {
23919 Dim
= Result
.get();
23921 if (!Dim
->isTypeDependent()) {
23922 ExprResult Result
=
23923 PerformOpenMPImplicitIntegerConversion(Dim
->getExprLoc(), Dim
);
23924 if (Result
.isInvalid()) {
23926 Diag(Dim
->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer
)
23927 << Dim
->getSourceRange();
23930 Dim
= Result
.get();
23931 Expr::EvalResult EvResult
;
23932 if (!Dim
->isValueDependent() && Dim
->EvaluateAsInt(EvResult
, Context
)) {
23933 // OpenMP 5.0, [2.1.4 Array Shaping]
23934 // Each si is an integral type expression that must evaluate to a
23935 // positive integer.
23936 llvm::APSInt Value
= EvResult
.Val
.getInt();
23937 if (!Value
.isStrictlyPositive()) {
23938 Diag(Dim
->getExprLoc(), diag::err_omp_shaping_dimension_not_positive
)
23939 << toString(Value
, /*Radix=*/10, /*Signed=*/true)
23940 << Dim
->getSourceRange();
23946 NewDims
.push_back(Dim
);
23949 return ExprError();
23950 return OMPArrayShapingExpr::Create(Context
, Context
.OMPArrayShapingTy
, Base
,
23951 LParenLoc
, RParenLoc
, NewDims
, Brackets
);
23954 ExprResult
SemaOpenMP::ActOnOMPIteratorExpr(Scope
*S
,
23955 SourceLocation IteratorKwLoc
,
23956 SourceLocation LLoc
,
23957 SourceLocation RLoc
,
23958 ArrayRef
<OMPIteratorData
> Data
) {
23959 ASTContext
&Context
= getASTContext();
23960 SmallVector
<OMPIteratorExpr::IteratorDefinition
, 4> ID
;
23961 bool IsCorrect
= true;
23962 for (const OMPIteratorData
&D
: Data
) {
23963 TypeSourceInfo
*TInfo
= nullptr;
23964 SourceLocation StartLoc
;
23966 if (!D
.Type
.getAsOpaquePtr()) {
23967 // OpenMP 5.0, 2.1.6 Iterators
23968 // In an iterator-specifier, if the iterator-type is not specified then
23969 // the type of that iterator is of int type.
23970 DeclTy
= Context
.IntTy
;
23971 StartLoc
= D
.DeclIdentLoc
;
23973 DeclTy
= Sema::GetTypeFromParser(D
.Type
, &TInfo
);
23974 StartLoc
= TInfo
->getTypeLoc().getBeginLoc();
23977 bool IsDeclTyDependent
= DeclTy
->isDependentType() ||
23978 DeclTy
->containsUnexpandedParameterPack() ||
23979 DeclTy
->isInstantiationDependentType();
23980 if (!IsDeclTyDependent
) {
23981 if (!DeclTy
->isIntegralType(Context
) && !DeclTy
->isAnyPointerType()) {
23982 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
23983 // The iterator-type must be an integral or pointer type.
23984 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
23989 if (DeclTy
.isConstant(Context
)) {
23990 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
23991 // The iterator-type must not be const qualified.
23992 Diag(StartLoc
, diag::err_omp_iterator_not_integral_or_pointer
)
23999 // Iterator declaration.
24000 assert(D
.DeclIdent
&& "Identifier expected.");
24001 // Always try to create iterator declarator to avoid extra error messages
24002 // about unknown declarations use.
24004 VarDecl::Create(Context
, SemaRef
.CurContext
, StartLoc
, D
.DeclIdentLoc
,
24005 D
.DeclIdent
, DeclTy
, TInfo
, SC_None
);
24008 // Check for conflicting previous declaration.
24009 DeclarationNameInfo
NameInfo(VD
->getDeclName(), D
.DeclIdentLoc
);
24010 LookupResult
Previous(SemaRef
, NameInfo
, Sema::LookupOrdinaryName
,
24011 RedeclarationKind::ForVisibleRedeclaration
);
24012 Previous
.suppressDiagnostics();
24013 SemaRef
.LookupName(Previous
, S
);
24015 SemaRef
.FilterLookupForScope(Previous
, SemaRef
.CurContext
, S
,
24016 /*ConsiderLinkage=*/false,
24017 /*AllowInlineNamespace=*/false);
24018 if (!Previous
.empty()) {
24019 NamedDecl
*Old
= Previous
.getRepresentativeDecl();
24020 Diag(D
.DeclIdentLoc
, diag::err_redefinition
) << VD
->getDeclName();
24021 Diag(Old
->getLocation(), diag::note_previous_definition
);
24023 SemaRef
.PushOnScopeChains(VD
, S
);
24026 SemaRef
.CurContext
->addDecl(VD
);
24029 /// Act on the iterator variable declaration.
24030 ActOnOpenMPIteratorVarDecl(VD
);
24032 Expr
*Begin
= D
.Range
.Begin
;
24033 if (!IsDeclTyDependent
&& Begin
&& !Begin
->isTypeDependent()) {
24034 ExprResult BeginRes
= SemaRef
.PerformImplicitConversion(
24035 Begin
, DeclTy
, AssignmentAction::Converting
);
24036 Begin
= BeginRes
.get();
24038 Expr
*End
= D
.Range
.End
;
24039 if (!IsDeclTyDependent
&& End
&& !End
->isTypeDependent()) {
24040 ExprResult EndRes
= SemaRef
.PerformImplicitConversion(
24041 End
, DeclTy
, AssignmentAction::Converting
);
24042 End
= EndRes
.get();
24044 Expr
*Step
= D
.Range
.Step
;
24045 if (!IsDeclTyDependent
&& Step
&& !Step
->isTypeDependent()) {
24046 if (!Step
->getType()->isIntegralType(Context
)) {
24047 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_not_integral
)
24048 << Step
<< Step
->getSourceRange();
24052 std::optional
<llvm::APSInt
> Result
=
24053 Step
->getIntegerConstantExpr(Context
);
24054 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
24055 // If the step expression of a range-specification equals zero, the
24056 // behavior is unspecified.
24057 if (Result
&& Result
->isZero()) {
24058 Diag(Step
->getExprLoc(), diag::err_omp_iterator_step_constant_zero
)
24059 << Step
<< Step
->getSourceRange();
24064 if (!Begin
|| !End
|| !IsCorrect
) {
24068 OMPIteratorExpr::IteratorDefinition
&IDElem
= ID
.emplace_back();
24069 IDElem
.IteratorDecl
= VD
;
24070 IDElem
.AssignmentLoc
= D
.AssignLoc
;
24071 IDElem
.Range
.Begin
= Begin
;
24072 IDElem
.Range
.End
= End
;
24073 IDElem
.Range
.Step
= Step
;
24074 IDElem
.ColonLoc
= D
.ColonLoc
;
24075 IDElem
.SecondColonLoc
= D
.SecColonLoc
;
24078 // Invalidate all created iterator declarations if error is found.
24079 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
24080 if (Decl
*ID
= D
.IteratorDecl
)
24081 ID
->setInvalidDecl();
24083 return ExprError();
24085 SmallVector
<OMPIteratorHelperData
, 4> Helpers
;
24086 if (!SemaRef
.CurContext
->isDependentContext()) {
24087 // Build number of ityeration for each iteration range.
24088 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
24089 // ((Begini-Stepi-1-Endi) / -Stepi);
24090 for (OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
24092 ExprResult Res
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Sub
,
24093 D
.Range
.End
, D
.Range
.Begin
);
24094 if (!Res
.isUsable()) {
24098 ExprResult St
, St1
;
24099 if (D
.Range
.Step
) {
24101 // (Endi - Begini) + Stepi
24102 Res
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res
.get(),
24104 if (!Res
.isUsable()) {
24108 // (Endi - Begini) + Stepi - 1
24109 Res
= SemaRef
.CreateBuiltinBinOp(
24110 D
.AssignmentLoc
, BO_Sub
, Res
.get(),
24111 SemaRef
.ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
24112 if (!Res
.isUsable()) {
24116 // ((Endi - Begini) + Stepi - 1) / Stepi
24117 Res
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res
.get(),
24119 if (!Res
.isUsable()) {
24123 St1
= SemaRef
.CreateBuiltinUnaryOp(D
.AssignmentLoc
, UO_Minus
,
24126 ExprResult Res1
= SemaRef
.CreateBuiltinBinOp(
24127 D
.AssignmentLoc
, BO_Sub
, D
.Range
.Begin
, D
.Range
.End
);
24128 if (!Res1
.isUsable()) {
24132 // (Begini - Endi) - Stepi
24133 Res1
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
, Res1
.get(),
24135 if (!Res1
.isUsable()) {
24139 // (Begini - Endi) - Stepi - 1
24140 Res1
= SemaRef
.CreateBuiltinBinOp(
24141 D
.AssignmentLoc
, BO_Sub
, Res1
.get(),
24142 SemaRef
.ActOnIntegerConstant(D
.AssignmentLoc
, 1).get());
24143 if (!Res1
.isUsable()) {
24147 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
24148 Res1
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Div
, Res1
.get(),
24150 if (!Res1
.isUsable()) {
24155 ExprResult CmpRes
= SemaRef
.CreateBuiltinBinOp(
24156 D
.AssignmentLoc
, BO_GT
, D
.Range
.Step
,
24157 SemaRef
.ActOnIntegerConstant(D
.AssignmentLoc
, 0).get());
24158 if (!CmpRes
.isUsable()) {
24162 Res
= SemaRef
.ActOnConditionalOp(D
.AssignmentLoc
, D
.AssignmentLoc
,
24163 CmpRes
.get(), Res
.get(), Res1
.get());
24164 if (!Res
.isUsable()) {
24169 Res
= SemaRef
.ActOnFinishFullExpr(Res
.get(), /*DiscardedValue=*/false);
24170 if (!Res
.isUsable()) {
24175 // Build counter update.
24177 auto *CounterVD
= VarDecl::Create(Context
, SemaRef
.CurContext
,
24178 D
.IteratorDecl
->getBeginLoc(),
24179 D
.IteratorDecl
->getBeginLoc(), nullptr,
24180 Res
.get()->getType(), nullptr, SC_None
);
24181 CounterVD
->setImplicit();
24182 ExprResult RefRes
=
24183 SemaRef
.BuildDeclRefExpr(CounterVD
, CounterVD
->getType(), VK_LValue
,
24184 D
.IteratorDecl
->getBeginLoc());
24185 // Build counter update.
24186 // I = Begini + counter * Stepi;
24187 ExprResult UpdateRes
;
24188 if (D
.Range
.Step
) {
24189 UpdateRes
= SemaRef
.CreateBuiltinBinOp(
24190 D
.AssignmentLoc
, BO_Mul
,
24191 SemaRef
.DefaultLvalueConversion(RefRes
.get()).get(), St
.get());
24193 UpdateRes
= SemaRef
.DefaultLvalueConversion(RefRes
.get());
24195 if (!UpdateRes
.isUsable()) {
24199 UpdateRes
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Add
,
24200 D
.Range
.Begin
, UpdateRes
.get());
24201 if (!UpdateRes
.isUsable()) {
24206 SemaRef
.BuildDeclRefExpr(cast
<VarDecl
>(D
.IteratorDecl
),
24207 cast
<VarDecl
>(D
.IteratorDecl
)->getType(),
24208 VK_LValue
, D
.IteratorDecl
->getBeginLoc());
24209 UpdateRes
= SemaRef
.CreateBuiltinBinOp(D
.AssignmentLoc
, BO_Assign
,
24210 VDRes
.get(), UpdateRes
.get());
24211 if (!UpdateRes
.isUsable()) {
24216 SemaRef
.ActOnFinishFullExpr(UpdateRes
.get(), /*DiscardedValue=*/true);
24217 if (!UpdateRes
.isUsable()) {
24221 ExprResult CounterUpdateRes
= SemaRef
.CreateBuiltinUnaryOp(
24222 D
.AssignmentLoc
, UO_PreInc
, RefRes
.get());
24223 if (!CounterUpdateRes
.isUsable()) {
24227 CounterUpdateRes
= SemaRef
.ActOnFinishFullExpr(CounterUpdateRes
.get(),
24228 /*DiscardedValue=*/true);
24229 if (!CounterUpdateRes
.isUsable()) {
24233 OMPIteratorHelperData
&HD
= Helpers
.emplace_back();
24234 HD
.CounterVD
= CounterVD
;
24235 HD
.Upper
= Res
.get();
24236 HD
.Update
= UpdateRes
.get();
24237 HD
.CounterUpdate
= CounterUpdateRes
.get();
24240 Helpers
.assign(ID
.size(), {});
24243 // Invalidate all created iterator declarations if error is found.
24244 for (const OMPIteratorExpr::IteratorDefinition
&D
: ID
) {
24245 if (Decl
*ID
= D
.IteratorDecl
)
24246 ID
->setInvalidDecl();
24248 return ExprError();
24250 return OMPIteratorExpr::Create(Context
, Context
.OMPIteratorTy
, IteratorKwLoc
,
24251 LLoc
, RLoc
, ID
, Helpers
);
24254 /// Check if \p AssumptionStr is a known assumption and warn if not.
24255 static void checkOMPAssumeAttr(Sema
&S
, SourceLocation Loc
,
24256 StringRef AssumptionStr
) {
24257 if (llvm::KnownAssumptionStrings
.count(AssumptionStr
))
24260 unsigned BestEditDistance
= 3;
24261 StringRef Suggestion
;
24262 for (const auto &KnownAssumptionIt
: llvm::KnownAssumptionStrings
) {
24263 unsigned EditDistance
=
24264 AssumptionStr
.edit_distance(KnownAssumptionIt
.getKey());
24265 if (EditDistance
< BestEditDistance
) {
24266 Suggestion
= KnownAssumptionIt
.getKey();
24267 BestEditDistance
= EditDistance
;
24271 if (!Suggestion
.empty())
24272 S
.Diag(Loc
, diag::warn_omp_assume_attribute_string_unknown_suggested
)
24273 << AssumptionStr
<< Suggestion
;
24275 S
.Diag(Loc
, diag::warn_omp_assume_attribute_string_unknown
)
24279 void SemaOpenMP::handleOMPAssumeAttr(Decl
*D
, const ParsedAttr
&AL
) {
24280 // Handle the case where the attribute has a text message.
24282 SourceLocation AttrStrLoc
;
24283 if (!SemaRef
.checkStringLiteralArgumentAttr(AL
, 0, Str
, &AttrStrLoc
))
24286 checkOMPAssumeAttr(SemaRef
, AttrStrLoc
, Str
);
24288 D
->addAttr(::new (getASTContext()) OMPAssumeAttr(getASTContext(), AL
, Str
));
24291 SemaOpenMP::SemaOpenMP(Sema
&S
)
24292 : SemaBase(S
), VarDataSharingAttributesStack(nullptr) {}