[HLSL] Implement RWBuffer::operator[] via __builtin_hlsl_resource_getpointer (#117017)
[llvm-project.git] / clang / lib / Sema / SemaType.cpp
blobf32edc5ac06440d9cd291e86405420b3454d5309
1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements type-related semantic analysis.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/LocInfoType.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeLocVisitor.h"
28 #include "clang/Basic/LangOptions.h"
29 #include "clang/Basic/SourceLocation.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/DelayedDiagnostic.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedAttr.h"
37 #include "clang/Sema/ParsedTemplate.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "clang/Sema/SemaCUDA.h"
40 #include "clang/Sema/SemaHLSL.h"
41 #include "clang/Sema/SemaObjC.h"
42 #include "clang/Sema/SemaOpenMP.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateInstCallback.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/STLForwardCompat.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <bitset>
51 #include <optional>
53 using namespace clang;
55 enum TypeDiagSelector {
56 TDS_Function,
57 TDS_Pointer,
58 TDS_ObjCObjOrBlock
61 /// isOmittedBlockReturnType - Return true if this declarator is missing a
62 /// return type because this is a omitted return type on a block literal.
63 static bool isOmittedBlockReturnType(const Declarator &D) {
64 if (D.getContext() != DeclaratorContext::BlockLiteral ||
65 D.getDeclSpec().hasTypeSpecifier())
66 return false;
68 if (D.getNumTypeObjects() == 0)
69 return true; // ^{ ... }
71 if (D.getNumTypeObjects() == 1 &&
72 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
73 return true; // ^(int X, float Y) { ... }
75 return false;
78 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
79 /// doesn't apply to the given type.
80 static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
81 QualType type) {
82 TypeDiagSelector WhichType;
83 bool useExpansionLoc = true;
84 switch (attr.getKind()) {
85 case ParsedAttr::AT_ObjCGC:
86 WhichType = TDS_Pointer;
87 break;
88 case ParsedAttr::AT_ObjCOwnership:
89 WhichType = TDS_ObjCObjOrBlock;
90 break;
91 default:
92 // Assume everything else was a function attribute.
93 WhichType = TDS_Function;
94 useExpansionLoc = false;
95 break;
98 SourceLocation loc = attr.getLoc();
99 StringRef name = attr.getAttrName()->getName();
101 // The GC attributes are usually written with macros; special-case them.
102 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
103 : nullptr;
104 if (useExpansionLoc && loc.isMacroID() && II) {
105 if (II->isStr("strong")) {
106 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
107 } else if (II->isStr("weak")) {
108 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
112 S.Diag(loc, attr.isRegularKeywordAttribute()
113 ? diag::err_type_attribute_wrong_type
114 : diag::warn_type_attribute_wrong_type)
115 << name << WhichType << type;
118 // objc_gc applies to Objective-C pointers or, otherwise, to the
119 // smallest available pointer type (i.e. 'void*' in 'void**').
120 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
121 case ParsedAttr::AT_ObjCGC: \
122 case ParsedAttr::AT_ObjCOwnership
124 // Calling convention attributes.
125 #define CALLING_CONV_ATTRS_CASELIST \
126 case ParsedAttr::AT_CDecl: \
127 case ParsedAttr::AT_FastCall: \
128 case ParsedAttr::AT_StdCall: \
129 case ParsedAttr::AT_ThisCall: \
130 case ParsedAttr::AT_RegCall: \
131 case ParsedAttr::AT_Pascal: \
132 case ParsedAttr::AT_SwiftCall: \
133 case ParsedAttr::AT_SwiftAsyncCall: \
134 case ParsedAttr::AT_VectorCall: \
135 case ParsedAttr::AT_AArch64VectorPcs: \
136 case ParsedAttr::AT_AArch64SVEPcs: \
137 case ParsedAttr::AT_AMDGPUKernelCall: \
138 case ParsedAttr::AT_MSABI: \
139 case ParsedAttr::AT_SysVABI: \
140 case ParsedAttr::AT_Pcs: \
141 case ParsedAttr::AT_IntelOclBicc: \
142 case ParsedAttr::AT_PreserveMost: \
143 case ParsedAttr::AT_PreserveAll: \
144 case ParsedAttr::AT_M68kRTD: \
145 case ParsedAttr::AT_PreserveNone: \
146 case ParsedAttr::AT_RISCVVectorCC
148 // Function type attributes.
149 #define FUNCTION_TYPE_ATTRS_CASELIST \
150 case ParsedAttr::AT_NSReturnsRetained: \
151 case ParsedAttr::AT_NoReturn: \
152 case ParsedAttr::AT_NonBlocking: \
153 case ParsedAttr::AT_NonAllocating: \
154 case ParsedAttr::AT_Blocking: \
155 case ParsedAttr::AT_Allocating: \
156 case ParsedAttr::AT_Regparm: \
157 case ParsedAttr::AT_CmseNSCall: \
158 case ParsedAttr::AT_ArmStreaming: \
159 case ParsedAttr::AT_ArmStreamingCompatible: \
160 case ParsedAttr::AT_ArmPreserves: \
161 case ParsedAttr::AT_ArmIn: \
162 case ParsedAttr::AT_ArmOut: \
163 case ParsedAttr::AT_ArmInOut: \
164 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
165 case ParsedAttr::AT_AnyX86NoCfCheck: \
166 CALLING_CONV_ATTRS_CASELIST
168 // Microsoft-specific type qualifiers.
169 #define MS_TYPE_ATTRS_CASELIST \
170 case ParsedAttr::AT_Ptr32: \
171 case ParsedAttr::AT_Ptr64: \
172 case ParsedAttr::AT_SPtr: \
173 case ParsedAttr::AT_UPtr
175 // Nullability qualifiers.
176 #define NULLABILITY_TYPE_ATTRS_CASELIST \
177 case ParsedAttr::AT_TypeNonNull: \
178 case ParsedAttr::AT_TypeNullable: \
179 case ParsedAttr::AT_TypeNullableResult: \
180 case ParsedAttr::AT_TypeNullUnspecified
182 namespace {
183 /// An object which stores processing state for the entire
184 /// GetTypeForDeclarator process.
185 class TypeProcessingState {
186 Sema &sema;
188 /// The declarator being processed.
189 Declarator &declarator;
191 /// The index of the declarator chunk we're currently processing.
192 /// May be the total number of valid chunks, indicating the
193 /// DeclSpec.
194 unsigned chunkIndex;
196 /// The original set of attributes on the DeclSpec.
197 SmallVector<ParsedAttr *, 2> savedAttrs;
199 /// A list of attributes to diagnose the uselessness of when the
200 /// processing is complete.
201 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
203 /// Attributes corresponding to AttributedTypeLocs that we have not yet
204 /// populated.
205 // FIXME: The two-phase mechanism by which we construct Types and fill
206 // their TypeLocs makes it hard to correctly assign these. We keep the
207 // attributes in creation order as an attempt to make them line up
208 // properly.
209 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
210 SmallVector<TypeAttrPair, 8> AttrsForTypes;
211 bool AttrsForTypesSorted = true;
213 /// MacroQualifiedTypes mapping to macro expansion locations that will be
214 /// stored in a MacroQualifiedTypeLoc.
215 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
217 /// Flag to indicate we parsed a noderef attribute. This is used for
218 /// validating that noderef was used on a pointer or array.
219 bool parsedNoDeref;
221 // Flag to indicate that we already parsed a HLSL parameter modifier
222 // attribute. This prevents double-mutating the type.
223 bool ParsedHLSLParamMod;
225 public:
226 TypeProcessingState(Sema &sema, Declarator &declarator)
227 : sema(sema), declarator(declarator),
228 chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false),
229 ParsedHLSLParamMod(false) {}
231 Sema &getSema() const {
232 return sema;
235 Declarator &getDeclarator() const {
236 return declarator;
239 bool isProcessingDeclSpec() const {
240 return chunkIndex == declarator.getNumTypeObjects();
243 unsigned getCurrentChunkIndex() const {
244 return chunkIndex;
247 void setCurrentChunkIndex(unsigned idx) {
248 assert(idx <= declarator.getNumTypeObjects());
249 chunkIndex = idx;
252 ParsedAttributesView &getCurrentAttributes() const {
253 if (isProcessingDeclSpec())
254 return getMutableDeclSpec().getAttributes();
255 return declarator.getTypeObject(chunkIndex).getAttrs();
258 /// Save the current set of attributes on the DeclSpec.
259 void saveDeclSpecAttrs() {
260 // Don't try to save them multiple times.
261 if (!savedAttrs.empty())
262 return;
264 DeclSpec &spec = getMutableDeclSpec();
265 llvm::append_range(savedAttrs,
266 llvm::make_pointer_range(spec.getAttributes()));
269 /// Record that we had nowhere to put the given type attribute.
270 /// We will diagnose such attributes later.
271 void addIgnoredTypeAttr(ParsedAttr &attr) {
272 ignoredTypeAttrs.push_back(&attr);
275 /// Diagnose all the ignored type attributes, given that the
276 /// declarator worked out to the given type.
277 void diagnoseIgnoredTypeAttrs(QualType type) const {
278 for (auto *Attr : ignoredTypeAttrs)
279 diagnoseBadTypeAttribute(getSema(), *Attr, type);
282 /// Get an attributed type for the given attribute, and remember the Attr
283 /// object so that we can attach it to the AttributedTypeLoc.
284 QualType getAttributedType(Attr *A, QualType ModifiedType,
285 QualType EquivType) {
286 QualType T =
287 sema.Context.getAttributedType(A, ModifiedType, EquivType);
288 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
289 AttrsForTypesSorted = false;
290 return T;
293 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
294 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
295 QualType WrappedType) {
296 return sema.Context.getBTFTagAttributedType(BTFAttr, WrappedType);
299 /// Completely replace the \c auto in \p TypeWithAuto by
300 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
301 /// necessary.
302 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
303 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
304 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
305 // Attributed type still should be an attributed type after replacement.
306 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
307 for (TypeAttrPair &A : AttrsForTypes) {
308 if (A.first == AttrTy)
309 A.first = NewAttrTy;
311 AttrsForTypesSorted = false;
313 return T;
316 /// Extract and remove the Attr* for a given attributed type.
317 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
318 if (!AttrsForTypesSorted) {
319 llvm::stable_sort(AttrsForTypes, llvm::less_first());
320 AttrsForTypesSorted = true;
323 // FIXME: This is quadratic if we have lots of reuses of the same
324 // attributed type.
325 for (auto It = std::partition_point(
326 AttrsForTypes.begin(), AttrsForTypes.end(),
327 [=](const TypeAttrPair &A) { return A.first < AT; });
328 It != AttrsForTypes.end() && It->first == AT; ++It) {
329 if (It->second) {
330 const Attr *Result = It->second;
331 It->second = nullptr;
332 return Result;
336 llvm_unreachable("no Attr* for AttributedType*");
339 SourceLocation
340 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
341 auto FoundLoc = LocsForMacros.find(MQT);
342 assert(FoundLoc != LocsForMacros.end() &&
343 "Unable to find macro expansion location for MacroQualifedType");
344 return FoundLoc->second;
347 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
348 SourceLocation Loc) {
349 LocsForMacros[MQT] = Loc;
352 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
354 bool didParseNoDeref() const { return parsedNoDeref; }
356 void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; }
358 bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; }
360 ~TypeProcessingState() {
361 if (savedAttrs.empty())
362 return;
364 getMutableDeclSpec().getAttributes().clearListOnly();
365 for (ParsedAttr *AL : savedAttrs)
366 getMutableDeclSpec().getAttributes().addAtEnd(AL);
369 private:
370 DeclSpec &getMutableDeclSpec() const {
371 return const_cast<DeclSpec&>(declarator.getDeclSpec());
374 } // end anonymous namespace
376 static void moveAttrFromListToList(ParsedAttr &attr,
377 ParsedAttributesView &fromList,
378 ParsedAttributesView &toList) {
379 fromList.remove(&attr);
380 toList.addAtEnd(&attr);
383 /// The location of a type attribute.
384 enum TypeAttrLocation {
385 /// The attribute is in the decl-specifier-seq.
386 TAL_DeclSpec,
387 /// The attribute is part of a DeclaratorChunk.
388 TAL_DeclChunk,
389 /// The attribute is immediately after the declaration's name.
390 TAL_DeclName
393 static void
394 processTypeAttrs(TypeProcessingState &state, QualType &type,
395 TypeAttrLocation TAL, const ParsedAttributesView &attrs,
396 CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice);
398 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
399 QualType &type, CUDAFunctionTarget CFT);
401 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
402 ParsedAttr &attr, QualType &type);
404 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
405 QualType &type);
407 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
408 ParsedAttr &attr, QualType &type);
410 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
411 ParsedAttr &attr, QualType &type) {
412 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
413 return handleObjCGCTypeAttr(state, attr, type);
414 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
415 return handleObjCOwnershipTypeAttr(state, attr, type);
418 /// Given the index of a declarator chunk, check whether that chunk
419 /// directly specifies the return type of a function and, if so, find
420 /// an appropriate place for it.
422 /// \param i - a notional index which the search will start
423 /// immediately inside
425 /// \param onlyBlockPointers Whether we should only look into block
426 /// pointer types (vs. all pointer types).
427 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
428 unsigned i,
429 bool onlyBlockPointers) {
430 assert(i <= declarator.getNumTypeObjects());
432 DeclaratorChunk *result = nullptr;
434 // First, look inwards past parens for a function declarator.
435 for (; i != 0; --i) {
436 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
437 switch (fnChunk.Kind) {
438 case DeclaratorChunk::Paren:
439 continue;
441 // If we find anything except a function, bail out.
442 case DeclaratorChunk::Pointer:
443 case DeclaratorChunk::BlockPointer:
444 case DeclaratorChunk::Array:
445 case DeclaratorChunk::Reference:
446 case DeclaratorChunk::MemberPointer:
447 case DeclaratorChunk::Pipe:
448 return result;
450 // If we do find a function declarator, scan inwards from that,
451 // looking for a (block-)pointer declarator.
452 case DeclaratorChunk::Function:
453 for (--i; i != 0; --i) {
454 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
455 switch (ptrChunk.Kind) {
456 case DeclaratorChunk::Paren:
457 case DeclaratorChunk::Array:
458 case DeclaratorChunk::Function:
459 case DeclaratorChunk::Reference:
460 case DeclaratorChunk::Pipe:
461 continue;
463 case DeclaratorChunk::MemberPointer:
464 case DeclaratorChunk::Pointer:
465 if (onlyBlockPointers)
466 continue;
468 [[fallthrough]];
470 case DeclaratorChunk::BlockPointer:
471 result = &ptrChunk;
472 goto continue_outer;
474 llvm_unreachable("bad declarator chunk kind");
477 // If we run out of declarators doing that, we're done.
478 return result;
480 llvm_unreachable("bad declarator chunk kind");
482 // Okay, reconsider from our new point.
483 continue_outer: ;
486 // Ran out of chunks, bail out.
487 return result;
490 /// Given that an objc_gc attribute was written somewhere on a
491 /// declaration *other* than on the declarator itself (for which, use
492 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
493 /// didn't apply in whatever position it was written in, try to move
494 /// it to a more appropriate position.
495 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
496 ParsedAttr &attr, QualType type) {
497 Declarator &declarator = state.getDeclarator();
499 // Move it to the outermost normal or block pointer declarator.
500 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
501 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
502 switch (chunk.Kind) {
503 case DeclaratorChunk::Pointer:
504 case DeclaratorChunk::BlockPointer: {
505 // But don't move an ARC ownership attribute to the return type
506 // of a block.
507 DeclaratorChunk *destChunk = nullptr;
508 if (state.isProcessingDeclSpec() &&
509 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
510 destChunk = maybeMovePastReturnType(declarator, i - 1,
511 /*onlyBlockPointers=*/true);
512 if (!destChunk) destChunk = &chunk;
514 moveAttrFromListToList(attr, state.getCurrentAttributes(),
515 destChunk->getAttrs());
516 return;
519 case DeclaratorChunk::Paren:
520 case DeclaratorChunk::Array:
521 continue;
523 // We may be starting at the return type of a block.
524 case DeclaratorChunk::Function:
525 if (state.isProcessingDeclSpec() &&
526 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
527 if (DeclaratorChunk *dest = maybeMovePastReturnType(
528 declarator, i,
529 /*onlyBlockPointers=*/true)) {
530 moveAttrFromListToList(attr, state.getCurrentAttributes(),
531 dest->getAttrs());
532 return;
535 goto error;
537 // Don't walk through these.
538 case DeclaratorChunk::Reference:
539 case DeclaratorChunk::MemberPointer:
540 case DeclaratorChunk::Pipe:
541 goto error;
544 error:
546 diagnoseBadTypeAttribute(state.getSema(), attr, type);
549 /// Distribute an objc_gc type attribute that was written on the
550 /// declarator.
551 static void distributeObjCPointerTypeAttrFromDeclarator(
552 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
553 Declarator &declarator = state.getDeclarator();
555 // objc_gc goes on the innermost pointer to something that's not a
556 // pointer.
557 unsigned innermost = -1U;
558 bool considerDeclSpec = true;
559 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
560 DeclaratorChunk &chunk = declarator.getTypeObject(i);
561 switch (chunk.Kind) {
562 case DeclaratorChunk::Pointer:
563 case DeclaratorChunk::BlockPointer:
564 innermost = i;
565 continue;
567 case DeclaratorChunk::Reference:
568 case DeclaratorChunk::MemberPointer:
569 case DeclaratorChunk::Paren:
570 case DeclaratorChunk::Array:
571 case DeclaratorChunk::Pipe:
572 continue;
574 case DeclaratorChunk::Function:
575 considerDeclSpec = false;
576 goto done;
579 done:
581 // That might actually be the decl spec if we weren't blocked by
582 // anything in the declarator.
583 if (considerDeclSpec) {
584 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
585 // Splice the attribute into the decl spec. Prevents the
586 // attribute from being applied multiple times and gives
587 // the source-location-filler something to work with.
588 state.saveDeclSpecAttrs();
589 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
590 declarator.getAttributes(), &attr);
591 return;
595 // Otherwise, if we found an appropriate chunk, splice the attribute
596 // into it.
597 if (innermost != -1U) {
598 moveAttrFromListToList(attr, declarator.getAttributes(),
599 declarator.getTypeObject(innermost).getAttrs());
600 return;
603 // Otherwise, diagnose when we're done building the type.
604 declarator.getAttributes().remove(&attr);
605 state.addIgnoredTypeAttr(attr);
608 /// A function type attribute was written somewhere in a declaration
609 /// *other* than on the declarator itself or in the decl spec. Given
610 /// that it didn't apply in whatever position it was written in, try
611 /// to move it to a more appropriate position.
612 static void distributeFunctionTypeAttr(TypeProcessingState &state,
613 ParsedAttr &attr, QualType type) {
614 Declarator &declarator = state.getDeclarator();
616 // Try to push the attribute from the return type of a function to
617 // the function itself.
618 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
619 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
620 switch (chunk.Kind) {
621 case DeclaratorChunk::Function:
622 moveAttrFromListToList(attr, state.getCurrentAttributes(),
623 chunk.getAttrs());
624 return;
626 case DeclaratorChunk::Paren:
627 case DeclaratorChunk::Pointer:
628 case DeclaratorChunk::BlockPointer:
629 case DeclaratorChunk::Array:
630 case DeclaratorChunk::Reference:
631 case DeclaratorChunk::MemberPointer:
632 case DeclaratorChunk::Pipe:
633 continue;
637 diagnoseBadTypeAttribute(state.getSema(), attr, type);
640 /// Try to distribute a function type attribute to the innermost
641 /// function chunk or type. Returns true if the attribute was
642 /// distributed, false if no location was found.
643 static bool distributeFunctionTypeAttrToInnermost(
644 TypeProcessingState &state, ParsedAttr &attr,
645 ParsedAttributesView &attrList, QualType &declSpecType,
646 CUDAFunctionTarget CFT) {
647 Declarator &declarator = state.getDeclarator();
649 // Put it on the innermost function chunk, if there is one.
650 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
651 DeclaratorChunk &chunk = declarator.getTypeObject(i);
652 if (chunk.Kind != DeclaratorChunk::Function) continue;
654 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
655 return true;
658 return handleFunctionTypeAttr(state, attr, declSpecType, CFT);
661 /// A function type attribute was written in the decl spec. Try to
662 /// apply it somewhere.
663 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
664 ParsedAttr &attr,
665 QualType &declSpecType,
666 CUDAFunctionTarget CFT) {
667 state.saveDeclSpecAttrs();
669 // Try to distribute to the innermost.
670 if (distributeFunctionTypeAttrToInnermost(
671 state, attr, state.getCurrentAttributes(), declSpecType, CFT))
672 return;
674 // If that failed, diagnose the bad attribute when the declarator is
675 // fully built.
676 state.addIgnoredTypeAttr(attr);
679 /// A function type attribute was written on the declarator or declaration.
680 /// Try to apply it somewhere.
681 /// `Attrs` is the attribute list containing the declaration (either of the
682 /// declarator or the declaration).
683 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
684 ParsedAttr &attr,
685 QualType &declSpecType,
686 CUDAFunctionTarget CFT) {
687 Declarator &declarator = state.getDeclarator();
689 // Try to distribute to the innermost.
690 if (distributeFunctionTypeAttrToInnermost(
691 state, attr, declarator.getAttributes(), declSpecType, CFT))
692 return;
694 // If that failed, diagnose the bad attribute when the declarator is
695 // fully built.
696 declarator.getAttributes().remove(&attr);
697 state.addIgnoredTypeAttr(attr);
700 /// Given that there are attributes written on the declarator or declaration
701 /// itself, try to distribute any type attributes to the appropriate
702 /// declarator chunk.
704 /// These are attributes like the following:
705 /// int f ATTR;
706 /// int (f ATTR)();
707 /// but not necessarily this:
708 /// int f() ATTR;
710 /// `Attrs` is the attribute list containing the declaration (either of the
711 /// declarator or the declaration).
712 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
713 QualType &declSpecType,
714 CUDAFunctionTarget CFT) {
715 // The called functions in this loop actually remove things from the current
716 // list, so iterating over the existing list isn't possible. Instead, make a
717 // non-owning copy and iterate over that.
718 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
719 for (ParsedAttr &attr : AttrsCopy) {
720 // Do not distribute [[]] attributes. They have strict rules for what
721 // they appertain to.
722 if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
723 continue;
725 switch (attr.getKind()) {
726 OBJC_POINTER_TYPE_ATTRS_CASELIST:
727 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
728 break;
730 FUNCTION_TYPE_ATTRS_CASELIST:
731 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
732 break;
734 MS_TYPE_ATTRS_CASELIST:
735 // Microsoft type attributes cannot go after the declarator-id.
736 continue;
738 NULLABILITY_TYPE_ATTRS_CASELIST:
739 // Nullability specifiers cannot go after the declarator-id.
741 // Objective-C __kindof does not get distributed.
742 case ParsedAttr::AT_ObjCKindOf:
743 continue;
745 default:
746 break;
751 /// Add a synthetic '()' to a block-literal declarator if it is
752 /// required, given the return type.
753 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
754 QualType declSpecType) {
755 Declarator &declarator = state.getDeclarator();
757 // First, check whether the declarator would produce a function,
758 // i.e. whether the innermost semantic chunk is a function.
759 if (declarator.isFunctionDeclarator()) {
760 // If so, make that declarator a prototyped declarator.
761 declarator.getFunctionTypeInfo().hasPrototype = true;
762 return;
765 // If there are any type objects, the type as written won't name a
766 // function, regardless of the decl spec type. This is because a
767 // block signature declarator is always an abstract-declarator, and
768 // abstract-declarators can't just be parentheses chunks. Therefore
769 // we need to build a function chunk unless there are no type
770 // objects and the decl spec type is a function.
771 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
772 return;
774 // Note that there *are* cases with invalid declarators where
775 // declarators consist solely of parentheses. In general, these
776 // occur only in failed efforts to make function declarators, so
777 // faking up the function chunk is still the right thing to do.
779 // Otherwise, we need to fake up a function declarator.
780 SourceLocation loc = declarator.getBeginLoc();
782 // ...and *prepend* it to the declarator.
783 SourceLocation NoLoc;
784 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
785 /*HasProto=*/true,
786 /*IsAmbiguous=*/false,
787 /*LParenLoc=*/NoLoc,
788 /*ArgInfo=*/nullptr,
789 /*NumParams=*/0,
790 /*EllipsisLoc=*/NoLoc,
791 /*RParenLoc=*/NoLoc,
792 /*RefQualifierIsLvalueRef=*/true,
793 /*RefQualifierLoc=*/NoLoc,
794 /*MutableLoc=*/NoLoc, EST_None,
795 /*ESpecRange=*/SourceRange(),
796 /*Exceptions=*/nullptr,
797 /*ExceptionRanges=*/nullptr,
798 /*NumExceptions=*/0,
799 /*NoexceptExpr=*/nullptr,
800 /*ExceptionSpecTokens=*/nullptr,
801 /*DeclsInPrototype=*/{}, loc, loc, declarator));
803 // For consistency, make sure the state still has us as processing
804 // the decl spec.
805 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
806 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
809 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
810 unsigned &TypeQuals,
811 QualType TypeSoFar,
812 unsigned RemoveTQs,
813 unsigned DiagID) {
814 // If this occurs outside a template instantiation, warn the user about
815 // it; they probably didn't mean to specify a redundant qualifier.
816 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
817 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
818 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
819 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
820 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
821 if (!(RemoveTQs & Qual.first))
822 continue;
824 if (!S.inTemplateInstantiation()) {
825 if (TypeQuals & Qual.first)
826 S.Diag(Qual.second, DiagID)
827 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
828 << FixItHint::CreateRemoval(Qual.second);
831 TypeQuals &= ~Qual.first;
835 /// Return true if this is omitted block return type. Also check type
836 /// attributes and type qualifiers when returning true.
837 static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
838 QualType Result) {
839 if (!isOmittedBlockReturnType(declarator))
840 return false;
842 // Warn if we see type attributes for omitted return type on a block literal.
843 SmallVector<ParsedAttr *, 2> ToBeRemoved;
844 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
845 if (AL.isInvalid() || !AL.isTypeAttr())
846 continue;
847 S.Diag(AL.getLoc(),
848 diag::warn_block_literal_attributes_on_omitted_return_type)
849 << AL;
850 ToBeRemoved.push_back(&AL);
852 // Remove bad attributes from the list.
853 for (ParsedAttr *AL : ToBeRemoved)
854 declarator.getMutableDeclSpec().getAttributes().remove(AL);
856 // Warn if we see type qualifiers for omitted return type on a block literal.
857 const DeclSpec &DS = declarator.getDeclSpec();
858 unsigned TypeQuals = DS.getTypeQualifiers();
859 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
860 diag::warn_block_literal_qualifiers_on_omitted_return_type);
861 declarator.getMutableDeclSpec().ClearTypeQualifiers();
863 return true;
866 static OpenCLAccessAttr::Spelling
867 getImageAccess(const ParsedAttributesView &Attrs) {
868 for (const ParsedAttr &AL : Attrs)
869 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
870 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
871 return OpenCLAccessAttr::Keyword_read_only;
874 static UnaryTransformType::UTTKind
875 TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
876 switch (SwitchTST) {
877 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
878 case TST_##Trait: \
879 return UnaryTransformType::Enum;
880 #include "clang/Basic/TransformTypeTraits.def"
881 default:
882 llvm_unreachable("attempted to parse a non-unary transform builtin");
886 /// Convert the specified declspec to the appropriate type
887 /// object.
888 /// \param state Specifies the declarator containing the declaration specifier
889 /// to be converted, along with other associated processing state.
890 /// \returns The type described by the declaration specifiers. This function
891 /// never returns null.
892 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
893 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
894 // checking.
896 Sema &S = state.getSema();
897 Declarator &declarator = state.getDeclarator();
898 DeclSpec &DS = declarator.getMutableDeclSpec();
899 SourceLocation DeclLoc = declarator.getIdentifierLoc();
900 if (DeclLoc.isInvalid())
901 DeclLoc = DS.getBeginLoc();
903 ASTContext &Context = S.Context;
905 QualType Result;
906 switch (DS.getTypeSpecType()) {
907 case DeclSpec::TST_void:
908 Result = Context.VoidTy;
909 break;
910 case DeclSpec::TST_char:
911 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
912 Result = Context.CharTy;
913 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
914 Result = Context.SignedCharTy;
915 else {
916 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
917 "Unknown TSS value");
918 Result = Context.UnsignedCharTy;
920 break;
921 case DeclSpec::TST_wchar:
922 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
923 Result = Context.WCharTy;
924 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
925 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
926 << DS.getSpecifierName(DS.getTypeSpecType(),
927 Context.getPrintingPolicy());
928 Result = Context.getSignedWCharType();
929 } else {
930 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
931 "Unknown TSS value");
932 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
933 << DS.getSpecifierName(DS.getTypeSpecType(),
934 Context.getPrintingPolicy());
935 Result = Context.getUnsignedWCharType();
937 break;
938 case DeclSpec::TST_char8:
939 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
940 "Unknown TSS value");
941 Result = Context.Char8Ty;
942 break;
943 case DeclSpec::TST_char16:
944 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
945 "Unknown TSS value");
946 Result = Context.Char16Ty;
947 break;
948 case DeclSpec::TST_char32:
949 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
950 "Unknown TSS value");
951 Result = Context.Char32Ty;
952 break;
953 case DeclSpec::TST_unspecified:
954 // If this is a missing declspec in a block literal return context, then it
955 // is inferred from the return statements inside the block.
956 // The declspec is always missing in a lambda expr context; it is either
957 // specified with a trailing return type or inferred.
958 if (S.getLangOpts().CPlusPlus14 &&
959 declarator.getContext() == DeclaratorContext::LambdaExpr) {
960 // In C++1y, a lambda's implicit return type is 'auto'.
961 Result = Context.getAutoDeductType();
962 break;
963 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
964 checkOmittedBlockReturnType(S, declarator,
965 Context.DependentTy)) {
966 Result = Context.DependentTy;
967 break;
970 // Unspecified typespec defaults to int in C90. However, the C90 grammar
971 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
972 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
973 // Note that the one exception to this is function definitions, which are
974 // allowed to be completely missing a declspec. This is handled in the
975 // parser already though by it pretending to have seen an 'int' in this
976 // case.
977 if (S.getLangOpts().isImplicitIntRequired()) {
978 S.Diag(DeclLoc, diag::warn_missing_type_specifier)
979 << DS.getSourceRange()
980 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
981 } else if (!DS.hasTypeSpecifier()) {
982 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
983 // "At least one type specifier shall be given in the declaration
984 // specifiers in each declaration, and in the specifier-qualifier list in
985 // each struct declaration and type name."
986 if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
987 S.Diag(DeclLoc, diag::err_missing_type_specifier)
988 << DS.getSourceRange();
990 // When this occurs, often something is very broken with the value
991 // being declared, poison it as invalid so we don't get chains of
992 // errors.
993 declarator.setInvalidType(true);
994 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
995 DS.isTypeSpecPipe()) {
996 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
997 << DS.getSourceRange();
998 declarator.setInvalidType(true);
999 } else {
1000 assert(S.getLangOpts().isImplicitIntAllowed() &&
1001 "implicit int is disabled?");
1002 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1003 << DS.getSourceRange()
1004 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1008 [[fallthrough]];
1009 case DeclSpec::TST_int: {
1010 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1011 switch (DS.getTypeSpecWidth()) {
1012 case TypeSpecifierWidth::Unspecified:
1013 Result = Context.IntTy;
1014 break;
1015 case TypeSpecifierWidth::Short:
1016 Result = Context.ShortTy;
1017 break;
1018 case TypeSpecifierWidth::Long:
1019 Result = Context.LongTy;
1020 break;
1021 case TypeSpecifierWidth::LongLong:
1022 Result = Context.LongLongTy;
1024 // 'long long' is a C99 or C++11 feature.
1025 if (!S.getLangOpts().C99) {
1026 if (S.getLangOpts().CPlusPlus)
1027 S.Diag(DS.getTypeSpecWidthLoc(),
1028 S.getLangOpts().CPlusPlus11 ?
1029 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1030 else
1031 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1033 break;
1035 } else {
1036 switch (DS.getTypeSpecWidth()) {
1037 case TypeSpecifierWidth::Unspecified:
1038 Result = Context.UnsignedIntTy;
1039 break;
1040 case TypeSpecifierWidth::Short:
1041 Result = Context.UnsignedShortTy;
1042 break;
1043 case TypeSpecifierWidth::Long:
1044 Result = Context.UnsignedLongTy;
1045 break;
1046 case TypeSpecifierWidth::LongLong:
1047 Result = Context.UnsignedLongLongTy;
1049 // 'long long' is a C99 or C++11 feature.
1050 if (!S.getLangOpts().C99) {
1051 if (S.getLangOpts().CPlusPlus)
1052 S.Diag(DS.getTypeSpecWidthLoc(),
1053 S.getLangOpts().CPlusPlus11 ?
1054 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1055 else
1056 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1058 break;
1061 break;
1063 case DeclSpec::TST_bitint: {
1064 if (!S.Context.getTargetInfo().hasBitIntType())
1065 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1066 Result =
1067 S.BuildBitIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1068 DS.getRepAsExpr(), DS.getBeginLoc());
1069 if (Result.isNull()) {
1070 Result = Context.IntTy;
1071 declarator.setInvalidType(true);
1073 break;
1075 case DeclSpec::TST_accum: {
1076 switch (DS.getTypeSpecWidth()) {
1077 case TypeSpecifierWidth::Short:
1078 Result = Context.ShortAccumTy;
1079 break;
1080 case TypeSpecifierWidth::Unspecified:
1081 Result = Context.AccumTy;
1082 break;
1083 case TypeSpecifierWidth::Long:
1084 Result = Context.LongAccumTy;
1085 break;
1086 case TypeSpecifierWidth::LongLong:
1087 llvm_unreachable("Unable to specify long long as _Accum width");
1090 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1091 Result = Context.getCorrespondingUnsignedType(Result);
1093 if (DS.isTypeSpecSat())
1094 Result = Context.getCorrespondingSaturatedType(Result);
1096 break;
1098 case DeclSpec::TST_fract: {
1099 switch (DS.getTypeSpecWidth()) {
1100 case TypeSpecifierWidth::Short:
1101 Result = Context.ShortFractTy;
1102 break;
1103 case TypeSpecifierWidth::Unspecified:
1104 Result = Context.FractTy;
1105 break;
1106 case TypeSpecifierWidth::Long:
1107 Result = Context.LongFractTy;
1108 break;
1109 case TypeSpecifierWidth::LongLong:
1110 llvm_unreachable("Unable to specify long long as _Fract width");
1113 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1114 Result = Context.getCorrespondingUnsignedType(Result);
1116 if (DS.isTypeSpecSat())
1117 Result = Context.getCorrespondingSaturatedType(Result);
1119 break;
1121 case DeclSpec::TST_int128:
1122 if (!S.Context.getTargetInfo().hasInt128Type() &&
1123 !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1124 (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1125 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1126 << "__int128";
1127 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1128 Result = Context.UnsignedInt128Ty;
1129 else
1130 Result = Context.Int128Ty;
1131 break;
1132 case DeclSpec::TST_float16:
1133 // CUDA host and device may have different _Float16 support, therefore
1134 // do not diagnose _Float16 usage to avoid false alarm.
1135 // ToDo: more precise diagnostics for CUDA.
1136 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1137 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1138 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1139 << "_Float16";
1140 Result = Context.Float16Ty;
1141 break;
1142 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1143 case DeclSpec::TST_BFloat16:
1144 if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1145 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1146 !S.getLangOpts().SYCLIsDevice)
1147 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1148 Result = Context.BFloat16Ty;
1149 break;
1150 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1151 case DeclSpec::TST_double:
1152 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1153 Result = Context.LongDoubleTy;
1154 else
1155 Result = Context.DoubleTy;
1156 if (S.getLangOpts().OpenCL) {
1157 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1158 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1159 << 0 << Result
1160 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1161 ? "cl_khr_fp64 and __opencl_c_fp64"
1162 : "cl_khr_fp64");
1163 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1164 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1166 break;
1167 case DeclSpec::TST_float128:
1168 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1169 !S.getLangOpts().SYCLIsDevice && !S.getLangOpts().CUDAIsDevice &&
1170 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1171 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1172 << "__float128";
1173 Result = Context.Float128Ty;
1174 break;
1175 case DeclSpec::TST_ibm128:
1176 if (!S.Context.getTargetInfo().hasIbm128Type() &&
1177 !S.getLangOpts().SYCLIsDevice &&
1178 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1179 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1180 Result = Context.Ibm128Ty;
1181 break;
1182 case DeclSpec::TST_bool:
1183 Result = Context.BoolTy; // _Bool or bool
1184 break;
1185 case DeclSpec::TST_decimal32: // _Decimal32
1186 case DeclSpec::TST_decimal64: // _Decimal64
1187 case DeclSpec::TST_decimal128: // _Decimal128
1188 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1189 Result = Context.IntTy;
1190 declarator.setInvalidType(true);
1191 break;
1192 case DeclSpec::TST_class:
1193 case DeclSpec::TST_enum:
1194 case DeclSpec::TST_union:
1195 case DeclSpec::TST_struct:
1196 case DeclSpec::TST_interface: {
1197 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1198 if (!D) {
1199 // This can happen in C++ with ambiguous lookups.
1200 Result = Context.IntTy;
1201 declarator.setInvalidType(true);
1202 break;
1205 // If the type is deprecated or unavailable, diagnose it.
1206 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1208 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1209 DS.getTypeSpecComplex() == 0 &&
1210 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1211 "No qualifiers on tag names!");
1213 // TypeQuals handled by caller.
1214 Result = Context.getTypeDeclType(D);
1216 // In both C and C++, make an ElaboratedType.
1217 ElaboratedTypeKeyword Keyword
1218 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1219 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1220 DS.isTypeSpecOwned() ? D : nullptr);
1221 break;
1223 case DeclSpec::TST_typename: {
1224 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1225 DS.getTypeSpecComplex() == 0 &&
1226 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1227 "Can't handle qualifiers on typedef names yet!");
1228 Result = S.GetTypeFromParser(DS.getRepAsType());
1229 if (Result.isNull()) {
1230 declarator.setInvalidType(true);
1233 // TypeQuals handled by caller.
1234 break;
1236 case DeclSpec::TST_typeof_unqualType:
1237 case DeclSpec::TST_typeofType:
1238 // FIXME: Preserve type source info.
1239 Result = S.GetTypeFromParser(DS.getRepAsType());
1240 assert(!Result.isNull() && "Didn't get a type for typeof?");
1241 if (!Result->isDependentType())
1242 if (const TagType *TT = Result->getAs<TagType>())
1243 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1244 // TypeQuals handled by caller.
1245 Result = Context.getTypeOfType(
1246 Result, DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1247 ? TypeOfKind::Unqualified
1248 : TypeOfKind::Qualified);
1249 break;
1250 case DeclSpec::TST_typeof_unqualExpr:
1251 case DeclSpec::TST_typeofExpr: {
1252 Expr *E = DS.getRepAsExpr();
1253 assert(E && "Didn't get an expression for typeof?");
1254 // TypeQuals handled by caller.
1255 Result = S.BuildTypeofExprType(E, DS.getTypeSpecType() ==
1256 DeclSpec::TST_typeof_unqualExpr
1257 ? TypeOfKind::Unqualified
1258 : TypeOfKind::Qualified);
1259 if (Result.isNull()) {
1260 Result = Context.IntTy;
1261 declarator.setInvalidType(true);
1263 break;
1265 case DeclSpec::TST_decltype: {
1266 Expr *E = DS.getRepAsExpr();
1267 assert(E && "Didn't get an expression for decltype?");
1268 // TypeQuals handled by caller.
1269 Result = S.BuildDecltypeType(E);
1270 if (Result.isNull()) {
1271 Result = Context.IntTy;
1272 declarator.setInvalidType(true);
1274 break;
1276 case DeclSpec::TST_typename_pack_indexing: {
1277 Expr *E = DS.getPackIndexingExpr();
1278 assert(E && "Didn't get an expression for pack indexing");
1279 QualType Pattern = S.GetTypeFromParser(DS.getRepAsType());
1280 Result = S.BuildPackIndexingType(Pattern, E, DS.getBeginLoc(),
1281 DS.getEllipsisLoc());
1282 if (Result.isNull()) {
1283 declarator.setInvalidType(true);
1284 Result = Context.IntTy;
1286 break;
1289 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1290 #include "clang/Basic/TransformTypeTraits.def"
1291 Result = S.GetTypeFromParser(DS.getRepAsType());
1292 assert(!Result.isNull() && "Didn't get a type for the transformation?");
1293 Result = S.BuildUnaryTransformType(
1294 Result, TSTToUnaryTransformType(DS.getTypeSpecType()),
1295 DS.getTypeSpecTypeLoc());
1296 if (Result.isNull()) {
1297 Result = Context.IntTy;
1298 declarator.setInvalidType(true);
1300 break;
1302 case DeclSpec::TST_auto:
1303 case DeclSpec::TST_decltype_auto: {
1304 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1305 ? AutoTypeKeyword::DecltypeAuto
1306 : AutoTypeKeyword::Auto;
1308 ConceptDecl *TypeConstraintConcept = nullptr;
1309 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1310 if (DS.isConstrainedAuto()) {
1311 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1312 TypeConstraintConcept =
1313 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1314 TemplateArgumentListInfo TemplateArgsInfo;
1315 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1316 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1317 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1318 TemplateId->NumArgs);
1319 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1320 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1321 TemplateArgs.push_back(ArgLoc.getArgument());
1322 } else {
1323 declarator.setInvalidType(true);
1326 Result = S.Context.getAutoType(QualType(), AutoKW,
1327 /*IsDependent*/ false, /*IsPack=*/false,
1328 TypeConstraintConcept, TemplateArgs);
1329 break;
1332 case DeclSpec::TST_auto_type:
1333 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1334 break;
1336 case DeclSpec::TST_unknown_anytype:
1337 Result = Context.UnknownAnyTy;
1338 break;
1340 case DeclSpec::TST_atomic:
1341 Result = S.GetTypeFromParser(DS.getRepAsType());
1342 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1343 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1344 if (Result.isNull()) {
1345 Result = Context.IntTy;
1346 declarator.setInvalidType(true);
1348 break;
1350 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1351 case DeclSpec::TST_##ImgType##_t: \
1352 switch (getImageAccess(DS.getAttributes())) { \
1353 case OpenCLAccessAttr::Keyword_write_only: \
1354 Result = Context.Id##WOTy; \
1355 break; \
1356 case OpenCLAccessAttr::Keyword_read_write: \
1357 Result = Context.Id##RWTy; \
1358 break; \
1359 case OpenCLAccessAttr::Keyword_read_only: \
1360 Result = Context.Id##ROTy; \
1361 break; \
1362 case OpenCLAccessAttr::SpellingNotCalculated: \
1363 llvm_unreachable("Spelling not yet calculated"); \
1365 break;
1366 #include "clang/Basic/OpenCLImageTypes.def"
1368 #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \
1369 case DeclSpec::TST_##Name: \
1370 Result = Context.SingletonId; \
1371 break;
1372 #include "clang/Basic/HLSLIntangibleTypes.def"
1374 case DeclSpec::TST_error:
1375 Result = Context.IntTy;
1376 declarator.setInvalidType(true);
1377 break;
1380 // FIXME: we want resulting declarations to be marked invalid, but claiming
1381 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1382 // a null type.
1383 if (Result->containsErrors())
1384 declarator.setInvalidType();
1386 if (S.getLangOpts().OpenCL) {
1387 const auto &OpenCLOptions = S.getOpenCLOptions();
1388 bool IsOpenCLC30Compatible =
1389 S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1390 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1391 // support.
1392 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1393 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1394 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1395 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1396 // only when the optional feature is supported
1397 if ((Result->isImageType() || Result->isSamplerT()) &&
1398 (IsOpenCLC30Compatible &&
1399 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1400 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1401 << 0 << Result << "__opencl_c_images";
1402 declarator.setInvalidType();
1403 } else if (Result->isOCLImage3dWOType() &&
1404 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1405 S.getLangOpts())) {
1406 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1407 << 0 << Result
1408 << (IsOpenCLC30Compatible
1409 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1410 : "cl_khr_3d_image_writes");
1411 declarator.setInvalidType();
1415 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1416 DS.getTypeSpecType() == DeclSpec::TST_fract;
1418 // Only fixed point types can be saturated
1419 if (DS.isTypeSpecSat() && !IsFixedPointType)
1420 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1421 << DS.getSpecifierName(DS.getTypeSpecType(),
1422 Context.getPrintingPolicy());
1424 // Handle complex types.
1425 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1426 if (S.getLangOpts().Freestanding)
1427 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1428 Result = Context.getComplexType(Result);
1429 } else if (DS.isTypeAltiVecVector()) {
1430 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1431 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1432 VectorKind VecKind = VectorKind::AltiVecVector;
1433 if (DS.isTypeAltiVecPixel())
1434 VecKind = VectorKind::AltiVecPixel;
1435 else if (DS.isTypeAltiVecBool())
1436 VecKind = VectorKind::AltiVecBool;
1437 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1440 // _Imaginary was a feature of C99 through C23 but was never supported in
1441 // Clang. The feature was removed in C2y, but we retain the unsupported
1442 // diagnostic for an improved user experience.
1443 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1444 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1446 // Before we process any type attributes, synthesize a block literal
1447 // function declarator if necessary.
1448 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1449 maybeSynthesizeBlockSignature(state, Result);
1451 // Apply any type attributes from the decl spec. This may cause the
1452 // list of type attributes to be temporarily saved while the type
1453 // attributes are pushed around.
1454 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1455 if (!DS.isTypeSpecPipe()) {
1456 // We also apply declaration attributes that "slide" to the decl spec.
1457 // Ordering can be important for attributes. The decalaration attributes
1458 // come syntactically before the decl spec attributes, so we process them
1459 // in that order.
1460 ParsedAttributesView SlidingAttrs;
1461 for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1462 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1463 SlidingAttrs.addAtEnd(&AL);
1465 // For standard syntax attributes, which would normally appertain to the
1466 // declaration here, suggest moving them to the type instead. But only
1467 // do this for our own vendor attributes; moving other vendors'
1468 // attributes might hurt portability.
1469 // There's one special case that we need to deal with here: The
1470 // `MatrixType` attribute may only be used in a typedef declaration. If
1471 // it's being used anywhere else, don't output the warning as
1472 // ProcessDeclAttributes() will output an error anyway.
1473 if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1474 !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1475 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1476 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1477 << AL;
1481 // During this call to processTypeAttrs(),
1482 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1483 // reference to the DeclSpec attributes, rather than the declaration
1484 // attributes. However, this doesn't matter, as getCurrentAttributes()
1485 // is only called when distributing attributes from one attribute list
1486 // to another. Declaration attributes are always C++11 attributes, and these
1487 // are never distributed.
1488 processTypeAttrs(state, Result, TAL_DeclSpec, SlidingAttrs);
1489 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1492 // Apply const/volatile/restrict qualifiers to T.
1493 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1494 // Warn about CV qualifiers on function types.
1495 // C99 6.7.3p8:
1496 // If the specification of a function type includes any type qualifiers,
1497 // the behavior is undefined.
1498 // C2y changed this behavior to be implementation-defined. Clang defines
1499 // the behavior in all cases to ignore the qualifier, as in C++.
1500 // C++11 [dcl.fct]p7:
1501 // The effect of a cv-qualifier-seq in a function declarator is not the
1502 // same as adding cv-qualification on top of the function type. In the
1503 // latter case, the cv-qualifiers are ignored.
1504 if (Result->isFunctionType()) {
1505 unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored;
1506 if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y)
1507 DiagId = diag::ext_typecheck_function_qualifiers_unspecified;
1508 diagnoseAndRemoveTypeQualifiers(
1509 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1510 DiagId);
1511 // No diagnostic for 'restrict' or '_Atomic' applied to a
1512 // function type; we'll diagnose those later, in BuildQualifiedType.
1515 // C++11 [dcl.ref]p1:
1516 // Cv-qualified references are ill-formed except when the
1517 // cv-qualifiers are introduced through the use of a typedef-name
1518 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1520 // There don't appear to be any other contexts in which a cv-qualified
1521 // reference type could be formed, so the 'ill-formed' clause here appears
1522 // to never happen.
1523 if (TypeQuals && Result->isReferenceType()) {
1524 diagnoseAndRemoveTypeQualifiers(
1525 S, DS, TypeQuals, Result,
1526 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1527 diag::warn_typecheck_reference_qualifiers);
1530 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1531 // than once in the same specifier-list or qualifier-list, either directly
1532 // or via one or more typedefs."
1533 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1534 && TypeQuals & Result.getCVRQualifiers()) {
1535 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1536 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1537 << "const";
1540 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1541 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1542 << "volatile";
1545 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1546 // produce a warning in this case.
1549 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1551 // If adding qualifiers fails, just use the unqualified type.
1552 if (Qualified.isNull())
1553 declarator.setInvalidType(true);
1554 else
1555 Result = Qualified;
1558 if (S.getLangOpts().HLSL)
1559 Result = S.HLSL().ProcessResourceTypeAttributes(Result);
1561 assert(!Result.isNull() && "This function should not return a null type");
1562 return Result;
1565 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1566 if (Entity)
1567 return Entity.getAsString();
1569 return "type name";
1572 static bool isDependentOrGNUAutoType(QualType T) {
1573 if (T->isDependentType())
1574 return true;
1576 const auto *AT = dyn_cast<AutoType>(T);
1577 return AT && AT->isGNUAutoType();
1580 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1581 Qualifiers Qs, const DeclSpec *DS) {
1582 if (T.isNull())
1583 return QualType();
1585 // Ignore any attempt to form a cv-qualified reference.
1586 if (T->isReferenceType()) {
1587 Qs.removeConst();
1588 Qs.removeVolatile();
1591 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1592 // object or incomplete types shall not be restrict-qualified."
1593 if (Qs.hasRestrict()) {
1594 unsigned DiagID = 0;
1595 QualType ProblemTy;
1597 if (T->isAnyPointerType() || T->isReferenceType() ||
1598 T->isMemberPointerType()) {
1599 QualType EltTy;
1600 if (T->isObjCObjectPointerType())
1601 EltTy = T;
1602 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1603 EltTy = PTy->getPointeeType();
1604 else
1605 EltTy = T->getPointeeType();
1607 // If we have a pointer or reference, the pointee must have an object
1608 // incomplete type.
1609 if (!EltTy->isIncompleteOrObjectType()) {
1610 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1611 ProblemTy = EltTy;
1613 } else if (!isDependentOrGNUAutoType(T)) {
1614 // For an __auto_type variable, we may not have seen the initializer yet
1615 // and so have no idea whether the underlying type is a pointer type or
1616 // not.
1617 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1618 ProblemTy = T;
1621 if (DiagID) {
1622 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1623 Qs.removeRestrict();
1627 return Context.getQualifiedType(T, Qs);
1630 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1631 unsigned CVRAU, const DeclSpec *DS) {
1632 if (T.isNull())
1633 return QualType();
1635 // Ignore any attempt to form a cv-qualified reference.
1636 if (T->isReferenceType())
1637 CVRAU &=
1638 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1640 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1641 // TQ_unaligned;
1642 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1644 // C11 6.7.3/5:
1645 // If the same qualifier appears more than once in the same
1646 // specifier-qualifier-list, either directly or via one or more typedefs,
1647 // the behavior is the same as if it appeared only once.
1649 // It's not specified what happens when the _Atomic qualifier is applied to
1650 // a type specified with the _Atomic specifier, but we assume that this
1651 // should be treated as if the _Atomic qualifier appeared multiple times.
1652 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1653 // C11 6.7.3/5:
1654 // If other qualifiers appear along with the _Atomic qualifier in a
1655 // specifier-qualifier-list, the resulting type is the so-qualified
1656 // atomic type.
1658 // Don't need to worry about array types here, since _Atomic can't be
1659 // applied to such types.
1660 SplitQualType Split = T.getSplitUnqualifiedType();
1661 T = BuildAtomicType(QualType(Split.Ty, 0),
1662 DS ? DS->getAtomicSpecLoc() : Loc);
1663 if (T.isNull())
1664 return T;
1665 Split.Quals.addCVRQualifiers(CVR);
1666 return BuildQualifiedType(T, Loc, Split.Quals);
1669 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1670 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1671 return BuildQualifiedType(T, Loc, Q, DS);
1674 QualType Sema::BuildParenType(QualType T) {
1675 return Context.getParenType(T);
1678 /// Given that we're building a pointer or reference to the given
1679 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1680 SourceLocation loc,
1681 bool isReference) {
1682 // Bail out if retention is unrequired or already specified.
1683 if (!type->isObjCLifetimeType() ||
1684 type.getObjCLifetime() != Qualifiers::OCL_None)
1685 return type;
1687 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1689 // If the object type is const-qualified, we can safely use
1690 // __unsafe_unretained. This is safe (because there are no read
1691 // barriers), and it'll be safe to coerce anything but __weak* to
1692 // the resulting type.
1693 if (type.isConstQualified()) {
1694 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1696 // Otherwise, check whether the static type does not require
1697 // retaining. This currently only triggers for Class (possibly
1698 // protocol-qualifed, and arrays thereof).
1699 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1700 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1702 // If we are in an unevaluated context, like sizeof, skip adding a
1703 // qualification.
1704 } else if (S.isUnevaluatedContext()) {
1705 return type;
1707 // If that failed, give an error and recover using __strong. __strong
1708 // is the option most likely to prevent spurious second-order diagnostics,
1709 // like when binding a reference to a field.
1710 } else {
1711 // These types can show up in private ivars in system headers, so
1712 // we need this to not be an error in those cases. Instead we
1713 // want to delay.
1714 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1715 S.DelayedDiagnostics.add(
1716 sema::DelayedDiagnostic::makeForbiddenType(loc,
1717 diag::err_arc_indirect_no_ownership, type, isReference));
1718 } else {
1719 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1721 implicitLifetime = Qualifiers::OCL_Strong;
1723 assert(implicitLifetime && "didn't infer any lifetime!");
1725 Qualifiers qs;
1726 qs.addObjCLifetime(implicitLifetime);
1727 return S.Context.getQualifiedType(type, qs);
1730 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1731 std::string Quals = FnTy->getMethodQuals().getAsString();
1733 switch (FnTy->getRefQualifier()) {
1734 case RQ_None:
1735 break;
1737 case RQ_LValue:
1738 if (!Quals.empty())
1739 Quals += ' ';
1740 Quals += '&';
1741 break;
1743 case RQ_RValue:
1744 if (!Quals.empty())
1745 Quals += ' ';
1746 Quals += "&&";
1747 break;
1750 return Quals;
1753 namespace {
1754 /// Kinds of declarator that cannot contain a qualified function type.
1756 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1757 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1758 /// at the topmost level of a type.
1760 /// Parens and member pointers are permitted. We don't diagnose array and
1761 /// function declarators, because they don't allow function types at all.
1763 /// The values of this enum are used in diagnostics.
1764 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1765 } // end anonymous namespace
1767 /// Check whether the type T is a qualified function type, and if it is,
1768 /// diagnose that it cannot be contained within the given kind of declarator.
1769 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1770 QualifiedFunctionKind QFK) {
1771 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1772 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1773 if (!FPT ||
1774 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1775 return false;
1777 S.Diag(Loc, diag::err_compound_qualified_function_type)
1778 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1779 << getFunctionQualifiersAsString(FPT);
1780 return true;
1783 bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
1784 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1785 if (!FPT ||
1786 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
1787 return false;
1789 Diag(Loc, diag::err_qualified_function_typeid)
1790 << T << getFunctionQualifiersAsString(FPT);
1791 return true;
1794 // Helper to deduce addr space of a pointee type in OpenCL mode.
1795 static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
1796 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
1797 !PointeeType->isSamplerT() &&
1798 !PointeeType.hasAddressSpace())
1799 PointeeType = S.getASTContext().getAddrSpaceQualType(
1800 PointeeType, S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
1801 return PointeeType;
1804 QualType Sema::BuildPointerType(QualType T,
1805 SourceLocation Loc, DeclarationName Entity) {
1806 if (T->isReferenceType()) {
1807 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1808 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1809 << getPrintableNameForEntity(Entity) << T;
1810 return QualType();
1813 if (T->isFunctionType() && getLangOpts().OpenCL &&
1814 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1815 getLangOpts())) {
1816 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
1817 return QualType();
1820 if (getLangOpts().HLSL && Loc.isValid()) {
1821 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
1822 return QualType();
1825 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1826 return QualType();
1828 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1830 // In ARC, it is forbidden to build pointers to unqualified pointers.
1831 if (getLangOpts().ObjCAutoRefCount)
1832 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1834 if (getLangOpts().OpenCL)
1835 T = deduceOpenCLPointeeAddrSpace(*this, T);
1837 // In WebAssembly, pointers to reference types and pointers to tables are
1838 // illegal.
1839 if (getASTContext().getTargetInfo().getTriple().isWasm()) {
1840 if (T.isWebAssemblyReferenceType()) {
1841 Diag(Loc, diag::err_wasm_reference_pr) << 0;
1842 return QualType();
1845 // We need to desugar the type here in case T is a ParenType.
1846 if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
1847 Diag(Loc, diag::err_wasm_table_pr) << 0;
1848 return QualType();
1852 // Build the pointer type.
1853 return Context.getPointerType(T);
1856 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1857 SourceLocation Loc,
1858 DeclarationName Entity) {
1859 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1860 "Unresolved overloaded function type");
1862 // C++0x [dcl.ref]p6:
1863 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1864 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1865 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1866 // the type "lvalue reference to T", while an attempt to create the type
1867 // "rvalue reference to cv TR" creates the type TR.
1868 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1870 // C++ [dcl.ref]p4: There shall be no references to references.
1872 // According to C++ DR 106, references to references are only
1873 // diagnosed when they are written directly (e.g., "int & &"),
1874 // but not when they happen via a typedef:
1876 // typedef int& intref;
1877 // typedef intref& intref2;
1879 // Parser::ParseDeclaratorInternal diagnoses the case where
1880 // references are written directly; here, we handle the
1881 // collapsing of references-to-references as described in C++0x.
1882 // DR 106 and 540 introduce reference-collapsing into C++98/03.
1884 // C++ [dcl.ref]p1:
1885 // A declarator that specifies the type "reference to cv void"
1886 // is ill-formed.
1887 if (T->isVoidType()) {
1888 Diag(Loc, diag::err_reference_to_void);
1889 return QualType();
1892 if (getLangOpts().HLSL && Loc.isValid()) {
1893 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
1894 return QualType();
1897 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1898 return QualType();
1900 if (T->isFunctionType() && getLangOpts().OpenCL &&
1901 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
1902 getLangOpts())) {
1903 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
1904 return QualType();
1907 // In ARC, it is forbidden to build references to unqualified pointers.
1908 if (getLangOpts().ObjCAutoRefCount)
1909 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1911 if (getLangOpts().OpenCL)
1912 T = deduceOpenCLPointeeAddrSpace(*this, T);
1914 // In WebAssembly, references to reference types and tables are illegal.
1915 if (getASTContext().getTargetInfo().getTriple().isWasm() &&
1916 T.isWebAssemblyReferenceType()) {
1917 Diag(Loc, diag::err_wasm_reference_pr) << 1;
1918 return QualType();
1920 if (T->isWebAssemblyTableType()) {
1921 Diag(Loc, diag::err_wasm_table_pr) << 1;
1922 return QualType();
1925 // Handle restrict on references.
1926 if (LValueRef)
1927 return Context.getLValueReferenceType(T, SpelledAsLValue);
1928 return Context.getRValueReferenceType(T);
1931 QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
1932 return Context.getReadPipeType(T);
1935 QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
1936 return Context.getWritePipeType(T);
1939 QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
1940 SourceLocation Loc) {
1941 if (BitWidth->isInstantiationDependent())
1942 return Context.getDependentBitIntType(IsUnsigned, BitWidth);
1944 llvm::APSInt Bits(32);
1945 ExprResult ICE =
1946 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
1948 if (ICE.isInvalid())
1949 return QualType();
1951 size_t NumBits = Bits.getZExtValue();
1952 if (!IsUnsigned && NumBits < 2) {
1953 Diag(Loc, diag::err_bit_int_bad_size) << 0;
1954 return QualType();
1957 if (IsUnsigned && NumBits < 1) {
1958 Diag(Loc, diag::err_bit_int_bad_size) << 1;
1959 return QualType();
1962 const TargetInfo &TI = getASTContext().getTargetInfo();
1963 if (NumBits > TI.getMaxBitIntWidth()) {
1964 Diag(Loc, diag::err_bit_int_max_size)
1965 << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
1966 return QualType();
1969 return Context.getBitIntType(IsUnsigned, NumBits);
1972 /// Check whether the specified array bound can be evaluated using the relevant
1973 /// language rules. If so, returns the possibly-converted expression and sets
1974 /// SizeVal to the size. If not, but the expression might be a VLA bound,
1975 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
1976 /// ExprError().
1977 static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
1978 llvm::APSInt &SizeVal, unsigned VLADiag,
1979 bool VLAIsError) {
1980 if (S.getLangOpts().CPlusPlus14 &&
1981 (VLAIsError ||
1982 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
1983 // C++14 [dcl.array]p1:
1984 // The constant-expression shall be a converted constant expression of
1985 // type std::size_t.
1987 // Don't apply this rule if we might be forming a VLA: in that case, we
1988 // allow non-constant expressions and constant-folding. We only need to use
1989 // the converted constant expression rules (to properly convert the source)
1990 // when the source expression is of class type.
1991 return S.CheckConvertedConstantExpression(
1992 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
1995 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1996 // (like gnu99, but not c99) accept any evaluatable value as an extension.
1997 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1998 public:
1999 unsigned VLADiag;
2000 bool VLAIsError;
2001 bool IsVLA = false;
2003 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2004 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2006 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2007 QualType T) override {
2008 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2011 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2012 SourceLocation Loc) override {
2013 IsVLA = !VLAIsError;
2014 return S.Diag(Loc, VLADiag);
2017 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2018 SourceLocation Loc) override {
2019 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2021 } Diagnoser(VLADiag, VLAIsError);
2023 ExprResult R =
2024 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2025 if (Diagnoser.IsVLA)
2026 return ExprResult();
2027 return R;
2030 bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2031 EltTy = Context.getBaseElementType(EltTy);
2032 if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2033 EltTy->isUndeducedType())
2034 return true;
2036 CharUnits Size = Context.getTypeSizeInChars(EltTy);
2037 CharUnits Alignment = Context.getTypeAlignInChars(EltTy);
2039 if (Size.isMultipleOf(Alignment))
2040 return true;
2042 Diag(Loc, diag::err_array_element_alignment)
2043 << EltTy << Size.getQuantity() << Alignment.getQuantity();
2044 return false;
2047 QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2048 Expr *ArraySize, unsigned Quals,
2049 SourceRange Brackets, DeclarationName Entity) {
2051 SourceLocation Loc = Brackets.getBegin();
2052 if (getLangOpts().CPlusPlus) {
2053 // C++ [dcl.array]p1:
2054 // T is called the array element type; this type shall not be a reference
2055 // type, the (possibly cv-qualified) type void, a function type or an
2056 // abstract class type.
2058 // C++ [dcl.array]p3:
2059 // When several "array of" specifications are adjacent, [...] only the
2060 // first of the constant expressions that specify the bounds of the arrays
2061 // may be omitted.
2063 // Note: function types are handled in the common path with C.
2064 if (T->isReferenceType()) {
2065 Diag(Loc, diag::err_illegal_decl_array_of_references)
2066 << getPrintableNameForEntity(Entity) << T;
2067 return QualType();
2070 if (T->isVoidType() || T->isIncompleteArrayType()) {
2071 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2072 return QualType();
2075 if (RequireNonAbstractType(Brackets.getBegin(), T,
2076 diag::err_array_of_abstract_type))
2077 return QualType();
2079 // Mentioning a member pointer type for an array type causes us to lock in
2080 // an inheritance model, even if it's inside an unused typedef.
2081 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2082 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2083 if (!MPTy->getClass()->isDependentType())
2084 (void)isCompleteType(Loc, T);
2086 } else {
2087 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2088 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2089 if (!T.isWebAssemblyReferenceType() &&
2090 RequireCompleteSizedType(Loc, T,
2091 diag::err_array_incomplete_or_sizeless_type))
2092 return QualType();
2095 // Multi-dimensional arrays of WebAssembly references are not allowed.
2096 if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2097 const auto *ATy = dyn_cast<ArrayType>(T);
2098 if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2099 Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2100 return QualType();
2104 if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2105 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2106 return QualType();
2109 if (T->isFunctionType()) {
2110 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2111 << getPrintableNameForEntity(Entity) << T;
2112 return QualType();
2115 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2116 // If the element type is a struct or union that contains a variadic
2117 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2118 if (EltTy->getDecl()->hasFlexibleArrayMember())
2119 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2120 } else if (T->isObjCObjectType()) {
2121 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2122 return QualType();
2125 if (!checkArrayElementAlignment(T, Loc))
2126 return QualType();
2128 // Do placeholder conversions on the array size expression.
2129 if (ArraySize && ArraySize->hasPlaceholderType()) {
2130 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2131 if (Result.isInvalid()) return QualType();
2132 ArraySize = Result.get();
2135 // Do lvalue-to-rvalue conversions on the array size expression.
2136 if (ArraySize && !ArraySize->isPRValue()) {
2137 ExprResult Result = DefaultLvalueConversion(ArraySize);
2138 if (Result.isInvalid())
2139 return QualType();
2141 ArraySize = Result.get();
2144 // C99 6.7.5.2p1: The size expression shall have integer type.
2145 // C++11 allows contextual conversions to such types.
2146 if (!getLangOpts().CPlusPlus11 &&
2147 ArraySize && !ArraySize->isTypeDependent() &&
2148 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2149 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2150 << ArraySize->getType() << ArraySize->getSourceRange();
2151 return QualType();
2154 auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2155 if (!ArraySize)
2156 return false;
2158 // If the array size expression is a conditional expression whose branches
2159 // are both integer constant expressions, one negative and one positive,
2160 // then it's assumed to be like an old-style static assertion. e.g.,
2161 // int old_style_assert[expr ? 1 : -1];
2162 // We will accept any integer constant expressions instead of assuming the
2163 // values 1 and -1 are always used.
2164 if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2165 ArraySize->IgnoreParenImpCasts())) {
2166 std::optional<llvm::APSInt> LHS =
2167 CondExpr->getLHS()->getIntegerConstantExpr(Context);
2168 std::optional<llvm::APSInt> RHS =
2169 CondExpr->getRHS()->getIntegerConstantExpr(Context);
2170 return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2172 return false;
2175 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2176 unsigned VLADiag;
2177 bool VLAIsError;
2178 if (getLangOpts().OpenCL) {
2179 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2180 VLADiag = diag::err_opencl_vla;
2181 VLAIsError = true;
2182 } else if (getLangOpts().C99) {
2183 VLADiag = diag::warn_vla_used;
2184 VLAIsError = false;
2185 } else if (isSFINAEContext()) {
2186 VLADiag = diag::err_vla_in_sfinae;
2187 VLAIsError = true;
2188 } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) {
2189 VLADiag = diag::err_openmp_vla_in_task_untied;
2190 VLAIsError = true;
2191 } else if (getLangOpts().CPlusPlus) {
2192 if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2193 VLADiag = getLangOpts().GNUMode
2194 ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2195 : diag::ext_vla_cxx_static_assert;
2196 else
2197 VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2198 : diag::ext_vla_cxx;
2199 VLAIsError = false;
2200 } else {
2201 VLADiag = diag::ext_vla;
2202 VLAIsError = false;
2205 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2206 if (!ArraySize) {
2207 if (ASM == ArraySizeModifier::Star) {
2208 Diag(Loc, VLADiag);
2209 if (VLAIsError)
2210 return QualType();
2212 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2213 } else {
2214 T = Context.getIncompleteArrayType(T, ASM, Quals);
2216 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2217 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2218 } else {
2219 ExprResult R =
2220 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2221 if (R.isInvalid())
2222 return QualType();
2224 if (!R.isUsable()) {
2225 // C99: an array with a non-ICE size is a VLA. We accept any expression
2226 // that we can fold to a non-zero positive value as a non-VLA as an
2227 // extension.
2228 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2229 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2230 !T->isConstantSizeType()) {
2231 // C99: an array with an element type that has a non-constant-size is a
2232 // VLA.
2233 // FIXME: Add a note to explain why this isn't a VLA.
2234 Diag(Loc, VLADiag);
2235 if (VLAIsError)
2236 return QualType();
2237 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2238 } else {
2239 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2240 // have a value greater than zero.
2241 // In C++, this follows from narrowing conversions being disallowed.
2242 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2243 if (Entity)
2244 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2245 << getPrintableNameForEntity(Entity)
2246 << ArraySize->getSourceRange();
2247 else
2248 Diag(ArraySize->getBeginLoc(),
2249 diag::err_typecheck_negative_array_size)
2250 << ArraySize->getSourceRange();
2251 return QualType();
2253 if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2254 // GCC accepts zero sized static arrays. We allow them when
2255 // we're not in a SFINAE context.
2256 Diag(ArraySize->getBeginLoc(),
2257 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2258 : diag::ext_typecheck_zero_array_size)
2259 << 0 << ArraySize->getSourceRange();
2262 // Is the array too large?
2263 unsigned ActiveSizeBits =
2264 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2265 !T->isIncompleteType() && !T->isUndeducedType())
2266 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2267 : ConstVal.getActiveBits();
2268 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2269 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2270 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2271 return QualType();
2274 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2278 if (T->isVariableArrayType()) {
2279 if (!Context.getTargetInfo().isVLASupported()) {
2280 // CUDA device code and some other targets don't support VLAs.
2281 bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2282 targetDiag(Loc,
2283 IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2284 << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0);
2285 } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2286 // VLAs are supported on this target, but we may need to do delayed
2287 // checking that the VLA is not being used within a coroutine.
2288 FSI->setHasVLA(Loc);
2292 // If this is not C99, diagnose array size modifiers on non-VLAs.
2293 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2294 (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2295 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2296 : diag::ext_c99_array_usage)
2297 << llvm::to_underlying(ASM);
2300 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2301 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2302 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2303 if (getLangOpts().OpenCL) {
2304 const QualType ArrType = Context.getBaseElementType(T);
2305 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2306 ArrType->isSamplerT() || ArrType->isImageType()) {
2307 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2308 return QualType();
2312 return T;
2315 QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2316 SourceLocation AttrLoc) {
2317 // The base type must be integer (not Boolean or enumeration) or float, and
2318 // can't already be a vector.
2319 if ((!CurType->isDependentType() &&
2320 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2321 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2322 !CurType->isBitIntType()) ||
2323 CurType->isArrayType()) {
2324 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2325 return QualType();
2327 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2328 if (const auto *BIT = CurType->getAs<BitIntType>()) {
2329 unsigned NumBits = BIT->getNumBits();
2330 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2331 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2332 << (NumBits < 8);
2333 return QualType();
2337 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2338 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2339 VectorKind::Generic);
2341 std::optional<llvm::APSInt> VecSize =
2342 SizeExpr->getIntegerConstantExpr(Context);
2343 if (!VecSize) {
2344 Diag(AttrLoc, diag::err_attribute_argument_type)
2345 << "vector_size" << AANT_ArgumentIntegerConstant
2346 << SizeExpr->getSourceRange();
2347 return QualType();
2350 if (CurType->isDependentType())
2351 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2352 VectorKind::Generic);
2354 // vecSize is specified in bytes - convert to bits.
2355 if (!VecSize->isIntN(61)) {
2356 // Bit size will overflow uint64.
2357 Diag(AttrLoc, diag::err_attribute_size_too_large)
2358 << SizeExpr->getSourceRange() << "vector";
2359 return QualType();
2361 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2362 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2364 if (VectorSizeBits == 0) {
2365 Diag(AttrLoc, diag::err_attribute_zero_size)
2366 << SizeExpr->getSourceRange() << "vector";
2367 return QualType();
2370 if (!TypeSize || VectorSizeBits % TypeSize) {
2371 Diag(AttrLoc, diag::err_attribute_invalid_size)
2372 << SizeExpr->getSourceRange();
2373 return QualType();
2376 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2377 Diag(AttrLoc, diag::err_attribute_size_too_large)
2378 << SizeExpr->getSourceRange() << "vector";
2379 return QualType();
2382 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2383 VectorKind::Generic);
2386 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2387 SourceLocation AttrLoc) {
2388 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2389 // in conjunction with complex types (pointers, arrays, functions, etc.).
2391 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2392 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2393 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2394 // of bool aren't allowed.
2396 // We explicitly allow bool elements in ext_vector_type for C/C++.
2397 bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2398 if ((!T->isDependentType() && !T->isIntegerType() &&
2399 !T->isRealFloatingType()) ||
2400 (IsNoBoolVecLang && T->isBooleanType())) {
2401 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2402 return QualType();
2405 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2406 if (T->isBitIntType()) {
2407 unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2408 if (!llvm::isPowerOf2_32(NumBits) || NumBits < 8) {
2409 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2410 << (NumBits < 8);
2411 return QualType();
2415 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2416 std::optional<llvm::APSInt> vecSize =
2417 ArraySize->getIntegerConstantExpr(Context);
2418 if (!vecSize) {
2419 Diag(AttrLoc, diag::err_attribute_argument_type)
2420 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2421 << ArraySize->getSourceRange();
2422 return QualType();
2425 if (!vecSize->isIntN(32)) {
2426 Diag(AttrLoc, diag::err_attribute_size_too_large)
2427 << ArraySize->getSourceRange() << "vector";
2428 return QualType();
2430 // Unlike gcc's vector_size attribute, the size is specified as the
2431 // number of elements, not the number of bytes.
2432 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2434 if (vectorSize == 0) {
2435 Diag(AttrLoc, diag::err_attribute_zero_size)
2436 << ArraySize->getSourceRange() << "vector";
2437 return QualType();
2440 return Context.getExtVectorType(T, vectorSize);
2443 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2446 QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2447 SourceLocation AttrLoc) {
2448 assert(Context.getLangOpts().MatrixTypes &&
2449 "Should never build a matrix type when it is disabled");
2451 // Check element type, if it is not dependent.
2452 if (!ElementTy->isDependentType() &&
2453 !MatrixType::isValidElementType(ElementTy)) {
2454 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2455 return QualType();
2458 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2459 NumRows->isValueDependent() || NumCols->isValueDependent())
2460 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2461 AttrLoc);
2463 std::optional<llvm::APSInt> ValueRows =
2464 NumRows->getIntegerConstantExpr(Context);
2465 std::optional<llvm::APSInt> ValueColumns =
2466 NumCols->getIntegerConstantExpr(Context);
2468 auto const RowRange = NumRows->getSourceRange();
2469 auto const ColRange = NumCols->getSourceRange();
2471 // Both are row and column expressions are invalid.
2472 if (!ValueRows && !ValueColumns) {
2473 Diag(AttrLoc, diag::err_attribute_argument_type)
2474 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2475 << ColRange;
2476 return QualType();
2479 // Only the row expression is invalid.
2480 if (!ValueRows) {
2481 Diag(AttrLoc, diag::err_attribute_argument_type)
2482 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2483 return QualType();
2486 // Only the column expression is invalid.
2487 if (!ValueColumns) {
2488 Diag(AttrLoc, diag::err_attribute_argument_type)
2489 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2490 return QualType();
2493 // Check the matrix dimensions.
2494 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2495 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2496 if (MatrixRows == 0 && MatrixColumns == 0) {
2497 Diag(AttrLoc, diag::err_attribute_zero_size)
2498 << "matrix" << RowRange << ColRange;
2499 return QualType();
2501 if (MatrixRows == 0) {
2502 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2503 return QualType();
2505 if (MatrixColumns == 0) {
2506 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2507 return QualType();
2509 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2510 Diag(AttrLoc, diag::err_attribute_size_too_large)
2511 << RowRange << "matrix row";
2512 return QualType();
2514 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2515 Diag(AttrLoc, diag::err_attribute_size_too_large)
2516 << ColRange << "matrix column";
2517 return QualType();
2519 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2522 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2523 if (T->isArrayType() || T->isFunctionType()) {
2524 Diag(Loc, diag::err_func_returning_array_function)
2525 << T->isFunctionType() << T;
2526 return true;
2529 // Functions cannot return half FP.
2530 if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2531 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2532 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2533 FixItHint::CreateInsertion(Loc, "*");
2534 return true;
2537 // Methods cannot return interface types. All ObjC objects are
2538 // passed by reference.
2539 if (T->isObjCObjectType()) {
2540 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2541 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2542 return true;
2545 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2546 T.hasNonTrivialToPrimitiveCopyCUnion())
2547 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2548 NTCUK_Destruct|NTCUK_Copy);
2550 // C++2a [dcl.fct]p12:
2551 // A volatile-qualified return type is deprecated
2552 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2553 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2555 if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
2556 return true;
2557 return false;
2560 /// Check the extended parameter information. Most of the necessary
2561 /// checking should occur when applying the parameter attribute; the
2562 /// only other checks required are positional restrictions.
2563 static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2564 const FunctionProtoType::ExtProtoInfo &EPI,
2565 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2566 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
2568 bool emittedError = false;
2569 auto actualCC = EPI.ExtInfo.getCC();
2570 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2571 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2572 bool isCompatible =
2573 (required == RequiredCC::OnlySwift)
2574 ? (actualCC == CC_Swift)
2575 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2576 if (isCompatible || emittedError)
2577 return;
2578 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2579 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2580 << (required == RequiredCC::OnlySwift);
2581 emittedError = true;
2583 for (size_t paramIndex = 0, numParams = paramTypes.size();
2584 paramIndex != numParams; ++paramIndex) {
2585 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2586 // Nothing interesting to check for orindary-ABI parameters.
2587 case ParameterABI::Ordinary:
2588 case ParameterABI::HLSLOut:
2589 case ParameterABI::HLSLInOut:
2590 continue;
2592 // swift_indirect_result parameters must be a prefix of the function
2593 // arguments.
2594 case ParameterABI::SwiftIndirectResult:
2595 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2596 if (paramIndex != 0 &&
2597 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2598 != ParameterABI::SwiftIndirectResult) {
2599 S.Diag(getParamLoc(paramIndex),
2600 diag::err_swift_indirect_result_not_first);
2602 continue;
2604 case ParameterABI::SwiftContext:
2605 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2606 continue;
2608 // SwiftAsyncContext is not limited to swiftasynccall functions.
2609 case ParameterABI::SwiftAsyncContext:
2610 continue;
2612 // swift_error parameters must be preceded by a swift_context parameter.
2613 case ParameterABI::SwiftErrorResult:
2614 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2615 if (paramIndex == 0 ||
2616 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2617 ParameterABI::SwiftContext) {
2618 S.Diag(getParamLoc(paramIndex),
2619 diag::err_swift_error_result_not_after_swift_context);
2621 continue;
2623 llvm_unreachable("bad ABI kind");
2627 QualType Sema::BuildFunctionType(QualType T,
2628 MutableArrayRef<QualType> ParamTypes,
2629 SourceLocation Loc, DeclarationName Entity,
2630 const FunctionProtoType::ExtProtoInfo &EPI) {
2631 bool Invalid = false;
2633 Invalid |= CheckFunctionReturnType(T, Loc);
2635 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2636 // FIXME: Loc is too inprecise here, should use proper locations for args.
2637 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2638 if (ParamType->isVoidType()) {
2639 Diag(Loc, diag::err_param_with_void_type);
2640 Invalid = true;
2641 } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2642 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2643 // Disallow half FP arguments.
2644 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2645 FixItHint::CreateInsertion(Loc, "*");
2646 Invalid = true;
2647 } else if (ParamType->isWebAssemblyTableType()) {
2648 Diag(Loc, diag::err_wasm_table_as_function_parameter);
2649 Invalid = true;
2652 // C++2a [dcl.fct]p4:
2653 // A parameter with volatile-qualified type is deprecated
2654 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2655 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2657 ParamTypes[Idx] = ParamType;
2660 if (EPI.ExtParameterInfos) {
2661 checkExtParameterInfos(*this, ParamTypes, EPI,
2662 [=](unsigned i) { return Loc; });
2665 if (EPI.ExtInfo.getProducesResult()) {
2666 // This is just a warning, so we can't fail to build if we see it.
2667 ObjC().checkNSReturnsRetainedReturnType(Loc, T);
2670 if (Invalid)
2671 return QualType();
2673 return Context.getFunctionType(T, ParamTypes, EPI);
2676 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2677 SourceLocation Loc,
2678 DeclarationName Entity) {
2679 // Verify that we're not building a pointer to pointer to function with
2680 // exception specification.
2681 if (CheckDistantExceptionSpec(T)) {
2682 Diag(Loc, diag::err_distant_exception_spec);
2683 return QualType();
2686 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2687 // with reference type, or "cv void."
2688 if (T->isReferenceType()) {
2689 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2690 << getPrintableNameForEntity(Entity) << T;
2691 return QualType();
2694 if (T->isVoidType()) {
2695 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2696 << getPrintableNameForEntity(Entity);
2697 return QualType();
2700 if (!Class->isDependentType() && !Class->isRecordType()) {
2701 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2702 return QualType();
2705 if (T->isFunctionType() && getLangOpts().OpenCL &&
2706 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2707 getLangOpts())) {
2708 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2709 return QualType();
2712 if (getLangOpts().HLSL && Loc.isValid()) {
2713 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2714 return QualType();
2717 // Adjust the default free function calling convention to the default method
2718 // calling convention.
2719 bool IsCtorOrDtor =
2720 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2721 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2722 if (T->isFunctionType())
2723 adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
2725 return Context.getMemberPointerType(T, Class.getTypePtr());
2728 QualType Sema::BuildBlockPointerType(QualType T,
2729 SourceLocation Loc,
2730 DeclarationName Entity) {
2731 if (!T->isFunctionType()) {
2732 Diag(Loc, diag::err_nonfunction_block_type);
2733 return QualType();
2736 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2737 return QualType();
2739 if (getLangOpts().OpenCL)
2740 T = deduceOpenCLPointeeAddrSpace(*this, T);
2742 return Context.getBlockPointerType(T);
2745 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2746 QualType QT = Ty.get();
2747 if (QT.isNull()) {
2748 if (TInfo) *TInfo = nullptr;
2749 return QualType();
2752 TypeSourceInfo *DI = nullptr;
2753 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2754 QT = LIT->getType();
2755 DI = LIT->getTypeSourceInfo();
2758 if (TInfo) *TInfo = DI;
2759 return QT;
2762 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2763 Qualifiers::ObjCLifetime ownership,
2764 unsigned chunkIndex);
2766 /// Given that this is the declaration of a parameter under ARC,
2767 /// attempt to infer attributes and such for pointer-to-whatever
2768 /// types.
2769 static void inferARCWriteback(TypeProcessingState &state,
2770 QualType &declSpecType) {
2771 Sema &S = state.getSema();
2772 Declarator &declarator = state.getDeclarator();
2774 // TODO: should we care about decl qualifiers?
2776 // Check whether the declarator has the expected form. We walk
2777 // from the inside out in order to make the block logic work.
2778 unsigned outermostPointerIndex = 0;
2779 bool isBlockPointer = false;
2780 unsigned numPointers = 0;
2781 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2782 unsigned chunkIndex = i;
2783 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2784 switch (chunk.Kind) {
2785 case DeclaratorChunk::Paren:
2786 // Ignore parens.
2787 break;
2789 case DeclaratorChunk::Reference:
2790 case DeclaratorChunk::Pointer:
2791 // Count the number of pointers. Treat references
2792 // interchangeably as pointers; if they're mis-ordered, normal
2793 // type building will discover that.
2794 outermostPointerIndex = chunkIndex;
2795 numPointers++;
2796 break;
2798 case DeclaratorChunk::BlockPointer:
2799 // If we have a pointer to block pointer, that's an acceptable
2800 // indirect reference; anything else is not an application of
2801 // the rules.
2802 if (numPointers != 1) return;
2803 numPointers++;
2804 outermostPointerIndex = chunkIndex;
2805 isBlockPointer = true;
2807 // We don't care about pointer structure in return values here.
2808 goto done;
2810 case DeclaratorChunk::Array: // suppress if written (id[])?
2811 case DeclaratorChunk::Function:
2812 case DeclaratorChunk::MemberPointer:
2813 case DeclaratorChunk::Pipe:
2814 return;
2817 done:
2819 // If we have *one* pointer, then we want to throw the qualifier on
2820 // the declaration-specifiers, which means that it needs to be a
2821 // retainable object type.
2822 if (numPointers == 1) {
2823 // If it's not a retainable object type, the rule doesn't apply.
2824 if (!declSpecType->isObjCRetainableType()) return;
2826 // If it already has lifetime, don't do anything.
2827 if (declSpecType.getObjCLifetime()) return;
2829 // Otherwise, modify the type in-place.
2830 Qualifiers qs;
2832 if (declSpecType->isObjCARCImplicitlyUnretainedType())
2833 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2834 else
2835 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2836 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2838 // If we have *two* pointers, then we want to throw the qualifier on
2839 // the outermost pointer.
2840 } else if (numPointers == 2) {
2841 // If we don't have a block pointer, we need to check whether the
2842 // declaration-specifiers gave us something that will turn into a
2843 // retainable object pointer after we slap the first pointer on it.
2844 if (!isBlockPointer && !declSpecType->isObjCObjectType())
2845 return;
2847 // Look for an explicit lifetime attribute there.
2848 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2849 if (chunk.Kind != DeclaratorChunk::Pointer &&
2850 chunk.Kind != DeclaratorChunk::BlockPointer)
2851 return;
2852 for (const ParsedAttr &AL : chunk.getAttrs())
2853 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
2854 return;
2856 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2857 outermostPointerIndex);
2859 // Any other number of pointers/references does not trigger the rule.
2860 } else return;
2862 // TODO: mark whether we did this inference?
2865 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2866 SourceLocation FallbackLoc,
2867 SourceLocation ConstQualLoc,
2868 SourceLocation VolatileQualLoc,
2869 SourceLocation RestrictQualLoc,
2870 SourceLocation AtomicQualLoc,
2871 SourceLocation UnalignedQualLoc) {
2872 if (!Quals)
2873 return;
2875 struct Qual {
2876 const char *Name;
2877 unsigned Mask;
2878 SourceLocation Loc;
2879 } const QualKinds[5] = {
2880 { "const", DeclSpec::TQ_const, ConstQualLoc },
2881 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2882 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2883 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
2884 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2887 SmallString<32> QualStr;
2888 unsigned NumQuals = 0;
2889 SourceLocation Loc;
2890 FixItHint FixIts[5];
2892 // Build a string naming the redundant qualifiers.
2893 for (auto &E : QualKinds) {
2894 if (Quals & E.Mask) {
2895 if (!QualStr.empty()) QualStr += ' ';
2896 QualStr += E.Name;
2898 // If we have a location for the qualifier, offer a fixit.
2899 SourceLocation QualLoc = E.Loc;
2900 if (QualLoc.isValid()) {
2901 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2902 if (Loc.isInvalid() ||
2903 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2904 Loc = QualLoc;
2907 ++NumQuals;
2911 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2912 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2915 // Diagnose pointless type qualifiers on the return type of a function.
2916 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2917 Declarator &D,
2918 unsigned FunctionChunkIndex) {
2919 const DeclaratorChunk::FunctionTypeInfo &FTI =
2920 D.getTypeObject(FunctionChunkIndex).Fun;
2921 if (FTI.hasTrailingReturnType()) {
2922 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2923 RetTy.getLocalCVRQualifiers(),
2924 FTI.getTrailingReturnTypeLoc());
2925 return;
2928 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2929 End = D.getNumTypeObjects();
2930 OuterChunkIndex != End; ++OuterChunkIndex) {
2931 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2932 switch (OuterChunk.Kind) {
2933 case DeclaratorChunk::Paren:
2934 continue;
2936 case DeclaratorChunk::Pointer: {
2937 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2938 S.diagnoseIgnoredQualifiers(
2939 diag::warn_qual_return_type,
2940 PTI.TypeQuals,
2941 SourceLocation(),
2942 PTI.ConstQualLoc,
2943 PTI.VolatileQualLoc,
2944 PTI.RestrictQualLoc,
2945 PTI.AtomicQualLoc,
2946 PTI.UnalignedQualLoc);
2947 return;
2950 case DeclaratorChunk::Function:
2951 case DeclaratorChunk::BlockPointer:
2952 case DeclaratorChunk::Reference:
2953 case DeclaratorChunk::Array:
2954 case DeclaratorChunk::MemberPointer:
2955 case DeclaratorChunk::Pipe:
2956 // FIXME: We can't currently provide an accurate source location and a
2957 // fix-it hint for these.
2958 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2959 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2960 RetTy.getCVRQualifiers() | AtomicQual,
2961 D.getIdentifierLoc());
2962 return;
2965 llvm_unreachable("unknown declarator chunk kind");
2968 // If the qualifiers come from a conversion function type, don't diagnose
2969 // them -- they're not necessarily redundant, since such a conversion
2970 // operator can be explicitly called as "x.operator const int()".
2971 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
2972 return;
2974 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2975 // which are present there.
2976 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2977 D.getDeclSpec().getTypeQualifiers(),
2978 D.getIdentifierLoc(),
2979 D.getDeclSpec().getConstSpecLoc(),
2980 D.getDeclSpec().getVolatileSpecLoc(),
2981 D.getDeclSpec().getRestrictSpecLoc(),
2982 D.getDeclSpec().getAtomicSpecLoc(),
2983 D.getDeclSpec().getUnalignedSpecLoc());
2986 static std::pair<QualType, TypeSourceInfo *>
2987 InventTemplateParameter(TypeProcessingState &state, QualType T,
2988 TypeSourceInfo *TrailingTSI, AutoType *Auto,
2989 InventedTemplateParameterInfo &Info) {
2990 Sema &S = state.getSema();
2991 Declarator &D = state.getDeclarator();
2993 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
2994 const unsigned AutoParameterPosition = Info.TemplateParams.size();
2995 const bool IsParameterPack = D.hasEllipsis();
2997 // If auto is mentioned in a lambda parameter or abbreviated function
2998 // template context, convert it to a template parameter type.
3000 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3001 // template parameter type. Template parameters are temporarily added
3002 // to the TU until the associated TemplateDecl is created.
3003 TemplateTypeParmDecl *InventedTemplateParam =
3004 TemplateTypeParmDecl::Create(
3005 S.Context, S.Context.getTranslationUnitDecl(),
3006 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3007 /*NameLoc=*/D.getIdentifierLoc(),
3008 TemplateParameterDepth, AutoParameterPosition,
3009 S.InventAbbreviatedTemplateParameterTypeName(
3010 D.getIdentifier(), AutoParameterPosition), false,
3011 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3012 InventedTemplateParam->setImplicit();
3013 Info.TemplateParams.push_back(InventedTemplateParam);
3015 // Attach type constraints to the new parameter.
3016 if (Auto->isConstrained()) {
3017 if (TrailingTSI) {
3018 // The 'auto' appears in a trailing return type we've already built;
3019 // extract its type constraints to attach to the template parameter.
3020 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3021 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3022 bool Invalid = false;
3023 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3024 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3025 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3026 Sema::UPPC_TypeConstraint))
3027 Invalid = true;
3028 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3031 if (!Invalid) {
3032 S.AttachTypeConstraint(
3033 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3034 AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(),
3035 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3036 InventedTemplateParam,
3037 S.Context.getTypeDeclType(InventedTemplateParam),
3038 D.getEllipsisLoc());
3040 } else {
3041 // The 'auto' appears in the decl-specifiers; we've not finished forming
3042 // TypeSourceInfo for it yet.
3043 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3044 TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
3045 TemplateId->RAngleLoc);
3046 bool Invalid = false;
3047 if (TemplateId->LAngleLoc.isValid()) {
3048 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3049 TemplateId->NumArgs);
3050 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3052 if (D.getEllipsisLoc().isInvalid()) {
3053 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3054 if (S.DiagnoseUnexpandedParameterPack(Arg,
3055 Sema::UPPC_TypeConstraint)) {
3056 Invalid = true;
3057 break;
3062 if (!Invalid) {
3063 UsingShadowDecl *USD =
3064 TemplateId->Template.get().getAsUsingShadowDecl();
3065 auto *CD =
3066 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
3067 S.AttachTypeConstraint(
3068 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3069 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3070 TemplateId->TemplateNameLoc),
3072 /*FoundDecl=*/
3073 USD ? cast<NamedDecl>(USD) : CD,
3074 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3075 InventedTemplateParam,
3076 S.Context.getTypeDeclType(InventedTemplateParam),
3077 D.getEllipsisLoc());
3082 // Replace the 'auto' in the function parameter with this invented
3083 // template type parameter.
3084 // FIXME: Retain some type sugar to indicate that this was written
3085 // as 'auto'?
3086 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3087 QualType NewT = state.ReplaceAutoType(T, Replacement);
3088 TypeSourceInfo *NewTSI =
3089 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3090 : nullptr;
3091 return {NewT, NewTSI};
3094 static TypeSourceInfo *
3095 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3096 QualType T, TypeSourceInfo *ReturnTypeInfo);
3098 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3099 TypeSourceInfo *&ReturnTypeInfo) {
3100 Sema &SemaRef = state.getSema();
3101 Declarator &D = state.getDeclarator();
3102 QualType T;
3103 ReturnTypeInfo = nullptr;
3105 // The TagDecl owned by the DeclSpec.
3106 TagDecl *OwnedTagDecl = nullptr;
3108 switch (D.getName().getKind()) {
3109 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3110 case UnqualifiedIdKind::IK_OperatorFunctionId:
3111 case UnqualifiedIdKind::IK_Identifier:
3112 case UnqualifiedIdKind::IK_LiteralOperatorId:
3113 case UnqualifiedIdKind::IK_TemplateId:
3114 T = ConvertDeclSpecToType(state);
3116 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3117 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3118 // Owned declaration is embedded in declarator.
3119 OwnedTagDecl->setEmbeddedInDeclarator(true);
3121 break;
3123 case UnqualifiedIdKind::IK_ConstructorName:
3124 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3125 case UnqualifiedIdKind::IK_DestructorName:
3126 // Constructors and destructors don't have return types. Use
3127 // "void" instead.
3128 T = SemaRef.Context.VoidTy;
3129 processTypeAttrs(state, T, TAL_DeclSpec,
3130 D.getMutableDeclSpec().getAttributes());
3131 break;
3133 case UnqualifiedIdKind::IK_DeductionGuideName:
3134 // Deduction guides have a trailing return type and no type in their
3135 // decl-specifier sequence. Use a placeholder return type for now.
3136 T = SemaRef.Context.DependentTy;
3137 break;
3139 case UnqualifiedIdKind::IK_ConversionFunctionId:
3140 // The result type of a conversion function is the type that it
3141 // converts to.
3142 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3143 &ReturnTypeInfo);
3144 break;
3147 // Note: We don't need to distribute declaration attributes (i.e.
3148 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3149 // and those don't get distributed.
3150 distributeTypeAttrsFromDeclarator(
3151 state, T, SemaRef.CUDA().IdentifyTarget(D.getAttributes()));
3153 // Find the deduced type in this type. Look in the trailing return type if we
3154 // have one, otherwise in the DeclSpec type.
3155 // FIXME: The standard wording doesn't currently describe this.
3156 DeducedType *Deduced = T->getContainedDeducedType();
3157 bool DeducedIsTrailingReturnType = false;
3158 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3159 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3160 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3161 DeducedIsTrailingReturnType = true;
3164 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3165 if (Deduced) {
3166 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3167 int Error = -1;
3169 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3170 // class template argument deduction)?
3171 bool IsCXXAutoType =
3172 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3173 bool IsDeducedReturnType = false;
3175 switch (D.getContext()) {
3176 case DeclaratorContext::LambdaExpr:
3177 // Declared return type of a lambda-declarator is implicit and is always
3178 // 'auto'.
3179 break;
3180 case DeclaratorContext::ObjCParameter:
3181 case DeclaratorContext::ObjCResult:
3182 Error = 0;
3183 break;
3184 case DeclaratorContext::RequiresExpr:
3185 Error = 22;
3186 break;
3187 case DeclaratorContext::Prototype:
3188 case DeclaratorContext::LambdaExprParameter: {
3189 InventedTemplateParameterInfo *Info = nullptr;
3190 if (D.getContext() == DeclaratorContext::Prototype) {
3191 // With concepts we allow 'auto' in function parameters.
3192 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3193 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3194 Error = 0;
3195 break;
3196 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3197 Error = 21;
3198 break;
3201 Info = &SemaRef.InventedParameterInfos.back();
3202 } else {
3203 // In C++14, generic lambdas allow 'auto' in their parameters.
3204 if (!SemaRef.getLangOpts().CPlusPlus14 && Auto &&
3205 Auto->getKeyword() == AutoTypeKeyword::Auto) {
3206 Error = 25; // auto not allowed in lambda parameter (before C++14)
3207 break;
3208 } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) {
3209 Error = 16; // __auto_type or decltype(auto) not allowed in lambda
3210 // parameter
3211 break;
3213 Info = SemaRef.getCurLambda();
3214 assert(Info && "No LambdaScopeInfo on the stack!");
3217 // We'll deal with inventing template parameters for 'auto' in trailing
3218 // return types when we pick up the trailing return type when processing
3219 // the function chunk.
3220 if (!DeducedIsTrailingReturnType)
3221 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3222 break;
3224 case DeclaratorContext::Member: {
3225 if (D.isStaticMember() || D.isFunctionDeclarator())
3226 break;
3227 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3228 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3229 Error = 6; // Interface member.
3230 } else {
3231 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3232 case TagTypeKind::Enum:
3233 llvm_unreachable("unhandled tag kind");
3234 case TagTypeKind::Struct:
3235 Error = Cxx ? 1 : 2; /* Struct member */
3236 break;
3237 case TagTypeKind::Union:
3238 Error = Cxx ? 3 : 4; /* Union member */
3239 break;
3240 case TagTypeKind::Class:
3241 Error = 5; /* Class member */
3242 break;
3243 case TagTypeKind::Interface:
3244 Error = 6; /* Interface member */
3245 break;
3248 if (D.getDeclSpec().isFriendSpecified())
3249 Error = 20; // Friend type
3250 break;
3252 case DeclaratorContext::CXXCatch:
3253 case DeclaratorContext::ObjCCatch:
3254 Error = 7; // Exception declaration
3255 break;
3256 case DeclaratorContext::TemplateParam:
3257 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3258 !SemaRef.getLangOpts().CPlusPlus20)
3259 Error = 19; // Template parameter (until C++20)
3260 else if (!SemaRef.getLangOpts().CPlusPlus17)
3261 Error = 8; // Template parameter (until C++17)
3262 break;
3263 case DeclaratorContext::BlockLiteral:
3264 Error = 9; // Block literal
3265 break;
3266 case DeclaratorContext::TemplateArg:
3267 // Within a template argument list, a deduced template specialization
3268 // type will be reinterpreted as a template template argument.
3269 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3270 !D.getNumTypeObjects() &&
3271 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3272 break;
3273 [[fallthrough]];
3274 case DeclaratorContext::TemplateTypeArg:
3275 Error = 10; // Template type argument
3276 break;
3277 case DeclaratorContext::AliasDecl:
3278 case DeclaratorContext::AliasTemplate:
3279 Error = 12; // Type alias
3280 break;
3281 case DeclaratorContext::TrailingReturn:
3282 case DeclaratorContext::TrailingReturnVar:
3283 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3284 Error = 13; // Function return type
3285 IsDeducedReturnType = true;
3286 break;
3287 case DeclaratorContext::ConversionId:
3288 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3289 Error = 14; // conversion-type-id
3290 IsDeducedReturnType = true;
3291 break;
3292 case DeclaratorContext::FunctionalCast:
3293 if (isa<DeducedTemplateSpecializationType>(Deduced))
3294 break;
3295 if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3296 !Auto->isDecltypeAuto())
3297 break; // auto(x)
3298 [[fallthrough]];
3299 case DeclaratorContext::TypeName:
3300 case DeclaratorContext::Association:
3301 Error = 15; // Generic
3302 break;
3303 case DeclaratorContext::File:
3304 case DeclaratorContext::Block:
3305 case DeclaratorContext::ForInit:
3306 case DeclaratorContext::SelectionInit:
3307 case DeclaratorContext::Condition:
3308 // FIXME: P0091R3 (erroneously) does not permit class template argument
3309 // deduction in conditions, for-init-statements, and other declarations
3310 // that are not simple-declarations.
3311 break;
3312 case DeclaratorContext::CXXNew:
3313 // FIXME: P0091R3 does not permit class template argument deduction here,
3314 // but we follow GCC and allow it anyway.
3315 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3316 Error = 17; // 'new' type
3317 break;
3318 case DeclaratorContext::KNRTypeList:
3319 Error = 18; // K&R function parameter
3320 break;
3323 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3324 Error = 11;
3326 // In Objective-C it is an error to use 'auto' on a function declarator
3327 // (and everywhere for '__auto_type').
3328 if (D.isFunctionDeclarator() &&
3329 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3330 Error = 13;
3332 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3333 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3334 AutoRange = D.getName().getSourceRange();
3336 if (Error != -1) {
3337 unsigned Kind;
3338 if (Auto) {
3339 switch (Auto->getKeyword()) {
3340 case AutoTypeKeyword::Auto: Kind = 0; break;
3341 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3342 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3344 } else {
3345 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3346 "unknown auto type");
3347 Kind = 3;
3350 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3351 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3353 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3354 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3355 << QualType(Deduced, 0) << AutoRange;
3356 if (auto *TD = TN.getAsTemplateDecl())
3357 SemaRef.NoteTemplateLocation(*TD);
3359 T = SemaRef.Context.IntTy;
3360 D.setInvalidType(true);
3361 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3362 // If there was a trailing return type, we already got
3363 // warn_cxx98_compat_trailing_return_type in the parser.
3364 SemaRef.Diag(AutoRange.getBegin(),
3365 D.getContext() == DeclaratorContext::LambdaExprParameter
3366 ? diag::warn_cxx11_compat_generic_lambda
3367 : IsDeducedReturnType
3368 ? diag::warn_cxx11_compat_deduced_return_type
3369 : diag::warn_cxx98_compat_auto_type_specifier)
3370 << AutoRange;
3374 if (SemaRef.getLangOpts().CPlusPlus &&
3375 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3376 // Check the contexts where C++ forbids the declaration of a new class
3377 // or enumeration in a type-specifier-seq.
3378 unsigned DiagID = 0;
3379 switch (D.getContext()) {
3380 case DeclaratorContext::TrailingReturn:
3381 case DeclaratorContext::TrailingReturnVar:
3382 // Class and enumeration definitions are syntactically not allowed in
3383 // trailing return types.
3384 llvm_unreachable("parser should not have allowed this");
3385 break;
3386 case DeclaratorContext::File:
3387 case DeclaratorContext::Member:
3388 case DeclaratorContext::Block:
3389 case DeclaratorContext::ForInit:
3390 case DeclaratorContext::SelectionInit:
3391 case DeclaratorContext::BlockLiteral:
3392 case DeclaratorContext::LambdaExpr:
3393 // C++11 [dcl.type]p3:
3394 // A type-specifier-seq shall not define a class or enumeration unless
3395 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3396 // the declaration of a template-declaration.
3397 case DeclaratorContext::AliasDecl:
3398 break;
3399 case DeclaratorContext::AliasTemplate:
3400 DiagID = diag::err_type_defined_in_alias_template;
3401 break;
3402 case DeclaratorContext::TypeName:
3403 case DeclaratorContext::FunctionalCast:
3404 case DeclaratorContext::ConversionId:
3405 case DeclaratorContext::TemplateParam:
3406 case DeclaratorContext::CXXNew:
3407 case DeclaratorContext::CXXCatch:
3408 case DeclaratorContext::ObjCCatch:
3409 case DeclaratorContext::TemplateArg:
3410 case DeclaratorContext::TemplateTypeArg:
3411 case DeclaratorContext::Association:
3412 DiagID = diag::err_type_defined_in_type_specifier;
3413 break;
3414 case DeclaratorContext::Prototype:
3415 case DeclaratorContext::LambdaExprParameter:
3416 case DeclaratorContext::ObjCParameter:
3417 case DeclaratorContext::ObjCResult:
3418 case DeclaratorContext::KNRTypeList:
3419 case DeclaratorContext::RequiresExpr:
3420 // C++ [dcl.fct]p6:
3421 // Types shall not be defined in return or parameter types.
3422 DiagID = diag::err_type_defined_in_param_type;
3423 break;
3424 case DeclaratorContext::Condition:
3425 // C++ 6.4p2:
3426 // The type-specifier-seq shall not contain typedef and shall not declare
3427 // a new class or enumeration.
3428 DiagID = diag::err_type_defined_in_condition;
3429 break;
3432 if (DiagID != 0) {
3433 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3434 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3435 D.setInvalidType(true);
3439 assert(!T.isNull() && "This function should not return a null type");
3440 return T;
3443 /// Produce an appropriate diagnostic for an ambiguity between a function
3444 /// declarator and a C++ direct-initializer.
3445 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3446 DeclaratorChunk &DeclType, QualType RT) {
3447 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3448 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3450 // If the return type is void there is no ambiguity.
3451 if (RT->isVoidType())
3452 return;
3454 // An initializer for a non-class type can have at most one argument.
3455 if (!RT->isRecordType() && FTI.NumParams > 1)
3456 return;
3458 // An initializer for a reference must have exactly one argument.
3459 if (RT->isReferenceType() && FTI.NumParams != 1)
3460 return;
3462 // Only warn if this declarator is declaring a function at block scope, and
3463 // doesn't have a storage class (such as 'extern') specified.
3464 if (!D.isFunctionDeclarator() ||
3465 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3466 !S.CurContext->isFunctionOrMethod() ||
3467 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3468 return;
3470 // Inside a condition, a direct initializer is not permitted. We allow one to
3471 // be parsed in order to give better diagnostics in condition parsing.
3472 if (D.getContext() == DeclaratorContext::Condition)
3473 return;
3475 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3477 S.Diag(DeclType.Loc,
3478 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3479 : diag::warn_empty_parens_are_function_decl)
3480 << ParenRange;
3482 // If the declaration looks like:
3483 // T var1,
3484 // f();
3485 // and name lookup finds a function named 'f', then the ',' was
3486 // probably intended to be a ';'.
3487 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3488 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3489 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3490 if (Comma.getFileID() != Name.getFileID() ||
3491 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3492 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3493 Sema::LookupOrdinaryName);
3494 if (S.LookupName(Result, S.getCurScope()))
3495 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3496 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3497 << D.getIdentifier();
3498 Result.suppressDiagnostics();
3502 if (FTI.NumParams > 0) {
3503 // For a declaration with parameters, eg. "T var(T());", suggest adding
3504 // parens around the first parameter to turn the declaration into a
3505 // variable declaration.
3506 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3507 SourceLocation B = Range.getBegin();
3508 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3509 // FIXME: Maybe we should suggest adding braces instead of parens
3510 // in C++11 for classes that don't have an initializer_list constructor.
3511 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3512 << FixItHint::CreateInsertion(B, "(")
3513 << FixItHint::CreateInsertion(E, ")");
3514 } else {
3515 // For a declaration without parameters, eg. "T var();", suggest replacing
3516 // the parens with an initializer to turn the declaration into a variable
3517 // declaration.
3518 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3520 // Empty parens mean value-initialization, and no parens mean
3521 // default initialization. These are equivalent if the default
3522 // constructor is user-provided or if zero-initialization is a
3523 // no-op.
3524 if (RD && RD->hasDefinition() &&
3525 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3526 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3527 << FixItHint::CreateRemoval(ParenRange);
3528 else {
3529 std::string Init =
3530 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3531 if (Init.empty() && S.LangOpts.CPlusPlus11)
3532 Init = "{}";
3533 if (!Init.empty())
3534 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3535 << FixItHint::CreateReplacement(ParenRange, Init);
3540 /// Produce an appropriate diagnostic for a declarator with top-level
3541 /// parentheses.
3542 static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3543 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3544 assert(Paren.Kind == DeclaratorChunk::Paren &&
3545 "do not have redundant top-level parentheses");
3547 // This is a syntactic check; we're not interested in cases that arise
3548 // during template instantiation.
3549 if (S.inTemplateInstantiation())
3550 return;
3552 // Check whether this could be intended to be a construction of a temporary
3553 // object in C++ via a function-style cast.
3554 bool CouldBeTemporaryObject =
3555 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3556 !D.isInvalidType() && D.getIdentifier() &&
3557 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3558 (T->isRecordType() || T->isDependentType()) &&
3559 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3561 bool StartsWithDeclaratorId = true;
3562 for (auto &C : D.type_objects()) {
3563 switch (C.Kind) {
3564 case DeclaratorChunk::Paren:
3565 if (&C == &Paren)
3566 continue;
3567 [[fallthrough]];
3568 case DeclaratorChunk::Pointer:
3569 StartsWithDeclaratorId = false;
3570 continue;
3572 case DeclaratorChunk::Array:
3573 if (!C.Arr.NumElts)
3574 CouldBeTemporaryObject = false;
3575 continue;
3577 case DeclaratorChunk::Reference:
3578 // FIXME: Suppress the warning here if there is no initializer; we're
3579 // going to give an error anyway.
3580 // We assume that something like 'T (&x) = y;' is highly likely to not
3581 // be intended to be a temporary object.
3582 CouldBeTemporaryObject = false;
3583 StartsWithDeclaratorId = false;
3584 continue;
3586 case DeclaratorChunk::Function:
3587 // In a new-type-id, function chunks require parentheses.
3588 if (D.getContext() == DeclaratorContext::CXXNew)
3589 return;
3590 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3591 // redundant-parens warning, but we don't know whether the function
3592 // chunk was syntactically valid as an expression here.
3593 CouldBeTemporaryObject = false;
3594 continue;
3596 case DeclaratorChunk::BlockPointer:
3597 case DeclaratorChunk::MemberPointer:
3598 case DeclaratorChunk::Pipe:
3599 // These cannot appear in expressions.
3600 CouldBeTemporaryObject = false;
3601 StartsWithDeclaratorId = false;
3602 continue;
3606 // FIXME: If there is an initializer, assume that this is not intended to be
3607 // a construction of a temporary object.
3609 // Check whether the name has already been declared; if not, this is not a
3610 // function-style cast.
3611 if (CouldBeTemporaryObject) {
3612 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3613 Sema::LookupOrdinaryName);
3614 if (!S.LookupName(Result, S.getCurScope()))
3615 CouldBeTemporaryObject = false;
3616 Result.suppressDiagnostics();
3619 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3621 if (!CouldBeTemporaryObject) {
3622 // If we have A (::B), the parentheses affect the meaning of the program.
3623 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3624 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3625 // formally unambiguous.
3626 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3627 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3628 NNS = NNS->getPrefix()) {
3629 if (NNS->getKind() == NestedNameSpecifier::Global)
3630 return;
3634 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3635 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3636 << FixItHint::CreateRemoval(Paren.EndLoc);
3637 return;
3640 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3641 << ParenRange << D.getIdentifier();
3642 auto *RD = T->getAsCXXRecordDecl();
3643 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3644 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3645 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3646 << D.getIdentifier();
3647 // FIXME: A cast to void is probably a better suggestion in cases where it's
3648 // valid (when there is no initializer and we're not in a condition).
3649 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3650 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3651 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3652 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3653 << FixItHint::CreateRemoval(Paren.Loc)
3654 << FixItHint::CreateRemoval(Paren.EndLoc);
3657 /// Helper for figuring out the default CC for a function declarator type. If
3658 /// this is the outermost chunk, then we can determine the CC from the
3659 /// declarator context. If not, then this could be either a member function
3660 /// type or normal function type.
3661 static CallingConv getCCForDeclaratorChunk(
3662 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3663 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3664 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
3666 // Check for an explicit CC attribute.
3667 for (const ParsedAttr &AL : AttrList) {
3668 switch (AL.getKind()) {
3669 CALLING_CONV_ATTRS_CASELIST : {
3670 // Ignore attributes that don't validate or can't apply to the
3671 // function type. We'll diagnose the failure to apply them in
3672 // handleFunctionTypeAttr.
3673 CallingConv CC;
3674 if (!S.CheckCallingConvAttr(AL, CC, /*FunctionDecl=*/nullptr,
3675 S.CUDA().IdentifyTarget(D.getAttributes())) &&
3676 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3677 return CC;
3679 break;
3682 default:
3683 break;
3687 bool IsCXXInstanceMethod = false;
3689 if (S.getLangOpts().CPlusPlus) {
3690 // Look inwards through parentheses to see if this chunk will form a
3691 // member pointer type or if we're the declarator. Any type attributes
3692 // between here and there will override the CC we choose here.
3693 unsigned I = ChunkIndex;
3694 bool FoundNonParen = false;
3695 while (I && !FoundNonParen) {
3696 --I;
3697 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3698 FoundNonParen = true;
3701 if (FoundNonParen) {
3702 // If we're not the declarator, we're a regular function type unless we're
3703 // in a member pointer.
3704 IsCXXInstanceMethod =
3705 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3706 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3707 // This can only be a call operator for a lambda, which is an instance
3708 // method, unless explicitly specified as 'static'.
3709 IsCXXInstanceMethod =
3710 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
3711 } else {
3712 // We're the innermost decl chunk, so must be a function declarator.
3713 assert(D.isFunctionDeclarator());
3715 // If we're inside a record, we're declaring a method, but it could be
3716 // explicitly or implicitly static.
3717 IsCXXInstanceMethod =
3718 D.isFirstDeclarationOfMember() &&
3719 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3720 !D.isStaticMember();
3724 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3725 IsCXXInstanceMethod);
3727 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3728 // and AMDGPU targets, hence it cannot be treated as a calling
3729 // convention attribute. This is the simplest place to infer
3730 // calling convention for OpenCL kernels.
3731 if (S.getLangOpts().OpenCL) {
3732 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3733 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3734 CC = CC_OpenCLKernel;
3735 break;
3738 } else if (S.getLangOpts().CUDA) {
3739 // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make
3740 // sure the kernels will be marked with the right calling convention so that
3741 // they will be visible by the APIs that ingest SPIR-V. We do not do this
3742 // when targeting AMDGCNSPIRV, as it does not rely on OpenCL.
3743 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
3744 if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) {
3745 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3746 if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
3747 CC = CC_OpenCLKernel;
3748 break;
3754 return CC;
3757 namespace {
3758 /// A simple notion of pointer kinds, which matches up with the various
3759 /// pointer declarators.
3760 enum class SimplePointerKind {
3761 Pointer,
3762 BlockPointer,
3763 MemberPointer,
3764 Array,
3766 } // end anonymous namespace
3768 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3769 switch (nullability) {
3770 case NullabilityKind::NonNull:
3771 if (!Ident__Nonnull)
3772 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3773 return Ident__Nonnull;
3775 case NullabilityKind::Nullable:
3776 if (!Ident__Nullable)
3777 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3778 return Ident__Nullable;
3780 case NullabilityKind::NullableResult:
3781 if (!Ident__Nullable_result)
3782 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3783 return Ident__Nullable_result;
3785 case NullabilityKind::Unspecified:
3786 if (!Ident__Null_unspecified)
3787 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3788 return Ident__Null_unspecified;
3790 llvm_unreachable("Unknown nullability kind.");
3793 /// Check whether there is a nullability attribute of any kind in the given
3794 /// attribute list.
3795 static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3796 for (const ParsedAttr &AL : attrs) {
3797 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3798 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3799 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3800 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3801 return true;
3804 return false;
3807 namespace {
3808 /// Describes the kind of a pointer a declarator describes.
3809 enum class PointerDeclaratorKind {
3810 // Not a pointer.
3811 NonPointer,
3812 // Single-level pointer.
3813 SingleLevelPointer,
3814 // Multi-level pointer (of any pointer kind).
3815 MultiLevelPointer,
3816 // CFFooRef*
3817 MaybePointerToCFRef,
3818 // CFErrorRef*
3819 CFErrorRefPointer,
3820 // NSError**
3821 NSErrorPointerPointer,
3824 /// Describes a declarator chunk wrapping a pointer that marks inference as
3825 /// unexpected.
3826 // These values must be kept in sync with diagnostics.
3827 enum class PointerWrappingDeclaratorKind {
3828 /// Pointer is top-level.
3829 None = -1,
3830 /// Pointer is an array element.
3831 Array = 0,
3832 /// Pointer is the referent type of a C++ reference.
3833 Reference = 1
3835 } // end anonymous namespace
3837 /// Classify the given declarator, whose type-specified is \c type, based on
3838 /// what kind of pointer it refers to.
3840 /// This is used to determine the default nullability.
3841 static PointerDeclaratorKind
3842 classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
3843 PointerWrappingDeclaratorKind &wrappingKind) {
3844 unsigned numNormalPointers = 0;
3846 // For any dependent type, we consider it a non-pointer.
3847 if (type->isDependentType())
3848 return PointerDeclaratorKind::NonPointer;
3850 // Look through the declarator chunks to identify pointers.
3851 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3852 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3853 switch (chunk.Kind) {
3854 case DeclaratorChunk::Array:
3855 if (numNormalPointers == 0)
3856 wrappingKind = PointerWrappingDeclaratorKind::Array;
3857 break;
3859 case DeclaratorChunk::Function:
3860 case DeclaratorChunk::Pipe:
3861 break;
3863 case DeclaratorChunk::BlockPointer:
3864 case DeclaratorChunk::MemberPointer:
3865 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3866 : PointerDeclaratorKind::SingleLevelPointer;
3868 case DeclaratorChunk::Paren:
3869 break;
3871 case DeclaratorChunk::Reference:
3872 if (numNormalPointers == 0)
3873 wrappingKind = PointerWrappingDeclaratorKind::Reference;
3874 break;
3876 case DeclaratorChunk::Pointer:
3877 ++numNormalPointers;
3878 if (numNormalPointers > 2)
3879 return PointerDeclaratorKind::MultiLevelPointer;
3880 break;
3884 // Then, dig into the type specifier itself.
3885 unsigned numTypeSpecifierPointers = 0;
3886 do {
3887 // Decompose normal pointers.
3888 if (auto ptrType = type->getAs<PointerType>()) {
3889 ++numNormalPointers;
3891 if (numNormalPointers > 2)
3892 return PointerDeclaratorKind::MultiLevelPointer;
3894 type = ptrType->getPointeeType();
3895 ++numTypeSpecifierPointers;
3896 continue;
3899 // Decompose block pointers.
3900 if (type->getAs<BlockPointerType>()) {
3901 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3902 : PointerDeclaratorKind::SingleLevelPointer;
3905 // Decompose member pointers.
3906 if (type->getAs<MemberPointerType>()) {
3907 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3908 : PointerDeclaratorKind::SingleLevelPointer;
3911 // Look at Objective-C object pointers.
3912 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3913 ++numNormalPointers;
3914 ++numTypeSpecifierPointers;
3916 // If this is NSError**, report that.
3917 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3918 if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() &&
3919 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3920 return PointerDeclaratorKind::NSErrorPointerPointer;
3924 break;
3927 // Look at Objective-C class types.
3928 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3929 if (objcClass->getInterface()->getIdentifier() ==
3930 S.ObjC().getNSErrorIdent()) {
3931 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3932 return PointerDeclaratorKind::NSErrorPointerPointer;
3935 break;
3938 // If at this point we haven't seen a pointer, we won't see one.
3939 if (numNormalPointers == 0)
3940 return PointerDeclaratorKind::NonPointer;
3942 if (auto recordType = type->getAs<RecordType>()) {
3943 RecordDecl *recordDecl = recordType->getDecl();
3945 // If this is CFErrorRef*, report it as such.
3946 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
3947 S.ObjC().isCFError(recordDecl)) {
3948 return PointerDeclaratorKind::CFErrorRefPointer;
3950 break;
3953 break;
3954 } while (true);
3956 switch (numNormalPointers) {
3957 case 0:
3958 return PointerDeclaratorKind::NonPointer;
3960 case 1:
3961 return PointerDeclaratorKind::SingleLevelPointer;
3963 case 2:
3964 return PointerDeclaratorKind::MaybePointerToCFRef;
3966 default:
3967 return PointerDeclaratorKind::MultiLevelPointer;
3971 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3972 SourceLocation loc) {
3973 // If we're anywhere in a function, method, or closure context, don't perform
3974 // completeness checks.
3975 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3976 if (ctx->isFunctionOrMethod())
3977 return FileID();
3979 if (ctx->isFileContext())
3980 break;
3983 // We only care about the expansion location.
3984 loc = S.SourceMgr.getExpansionLoc(loc);
3985 FileID file = S.SourceMgr.getFileID(loc);
3986 if (file.isInvalid())
3987 return FileID();
3989 // Retrieve file information.
3990 bool invalid = false;
3991 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3992 if (invalid || !sloc.isFile())
3993 return FileID();
3995 // We don't want to perform completeness checks on the main file or in
3996 // system headers.
3997 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3998 if (fileInfo.getIncludeLoc().isInvalid())
3999 return FileID();
4000 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4001 S.Diags.getSuppressSystemWarnings()) {
4002 return FileID();
4005 return file;
4008 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4009 /// taking into account whitespace before and after.
4010 template <typename DiagBuilderT>
4011 static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4012 SourceLocation PointerLoc,
4013 NullabilityKind Nullability) {
4014 assert(PointerLoc.isValid());
4015 if (PointerLoc.isMacroID())
4016 return;
4018 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4019 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4020 return;
4022 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4023 if (!NextChar)
4024 return;
4026 SmallString<32> InsertionTextBuf{" "};
4027 InsertionTextBuf += getNullabilitySpelling(Nullability);
4028 InsertionTextBuf += " ";
4029 StringRef InsertionText = InsertionTextBuf.str();
4031 if (isWhitespace(*NextChar)) {
4032 InsertionText = InsertionText.drop_back();
4033 } else if (NextChar[-1] == '[') {
4034 if (NextChar[0] == ']')
4035 InsertionText = InsertionText.drop_back().drop_front();
4036 else
4037 InsertionText = InsertionText.drop_front();
4038 } else if (!isAsciiIdentifierContinue(NextChar[0], /*allow dollar*/ true) &&
4039 !isAsciiIdentifierContinue(NextChar[-1], /*allow dollar*/ true)) {
4040 InsertionText = InsertionText.drop_back().drop_front();
4043 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4046 static void emitNullabilityConsistencyWarning(Sema &S,
4047 SimplePointerKind PointerKind,
4048 SourceLocation PointerLoc,
4049 SourceLocation PointerEndLoc) {
4050 assert(PointerLoc.isValid());
4052 if (PointerKind == SimplePointerKind::Array) {
4053 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4054 } else {
4055 S.Diag(PointerLoc, diag::warn_nullability_missing)
4056 << static_cast<unsigned>(PointerKind);
4059 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4060 if (FixItLoc.isMacroID())
4061 return;
4063 auto addFixIt = [&](NullabilityKind Nullability) {
4064 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4065 Diag << static_cast<unsigned>(Nullability);
4066 Diag << static_cast<unsigned>(PointerKind);
4067 fixItNullability(S, Diag, FixItLoc, Nullability);
4069 addFixIt(NullabilityKind::Nullable);
4070 addFixIt(NullabilityKind::NonNull);
4073 /// Complains about missing nullability if the file containing \p pointerLoc
4074 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4075 /// pragma).
4077 /// If the file has \e not seen other uses of nullability, this particular
4078 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4079 static void
4080 checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4081 SourceLocation pointerLoc,
4082 SourceLocation pointerEndLoc = SourceLocation()) {
4083 // Determine which file we're performing consistency checking for.
4084 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4085 if (file.isInvalid())
4086 return;
4088 // If we haven't seen any type nullability in this file, we won't warn now
4089 // about anything.
4090 FileNullability &fileNullability = S.NullabilityMap[file];
4091 if (!fileNullability.SawTypeNullability) {
4092 // If this is the first pointer declarator in the file, and the appropriate
4093 // warning is on, record it in case we need to diagnose it retroactively.
4094 diag::kind diagKind;
4095 if (pointerKind == SimplePointerKind::Array)
4096 diagKind = diag::warn_nullability_missing_array;
4097 else
4098 diagKind = diag::warn_nullability_missing;
4100 if (fileNullability.PointerLoc.isInvalid() &&
4101 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4102 fileNullability.PointerLoc = pointerLoc;
4103 fileNullability.PointerEndLoc = pointerEndLoc;
4104 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4107 return;
4110 // Complain about missing nullability.
4111 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4114 /// Marks that a nullability feature has been used in the file containing
4115 /// \p loc.
4117 /// If this file already had pointer types in it that were missing nullability,
4118 /// the first such instance is retroactively diagnosed.
4120 /// \sa checkNullabilityConsistency
4121 static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4122 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4123 if (file.isInvalid())
4124 return;
4126 FileNullability &fileNullability = S.NullabilityMap[file];
4127 if (fileNullability.SawTypeNullability)
4128 return;
4129 fileNullability.SawTypeNullability = true;
4131 // If we haven't seen any type nullability before, now we have. Retroactively
4132 // diagnose the first unannotated pointer, if there was one.
4133 if (fileNullability.PointerLoc.isInvalid())
4134 return;
4136 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4137 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4138 fileNullability.PointerEndLoc);
4141 /// Returns true if any of the declarator chunks before \p endIndex include a
4142 /// level of indirection: array, pointer, reference, or pointer-to-member.
4144 /// Because declarator chunks are stored in outer-to-inner order, testing
4145 /// every chunk before \p endIndex is testing all chunks that embed the current
4146 /// chunk as part of their type.
4148 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4149 /// end index, in which case all chunks are tested.
4150 static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4151 unsigned i = endIndex;
4152 while (i != 0) {
4153 // Walk outwards along the declarator chunks.
4154 --i;
4155 const DeclaratorChunk &DC = D.getTypeObject(i);
4156 switch (DC.Kind) {
4157 case DeclaratorChunk::Paren:
4158 break;
4159 case DeclaratorChunk::Array:
4160 case DeclaratorChunk::Pointer:
4161 case DeclaratorChunk::Reference:
4162 case DeclaratorChunk::MemberPointer:
4163 return true;
4164 case DeclaratorChunk::Function:
4165 case DeclaratorChunk::BlockPointer:
4166 case DeclaratorChunk::Pipe:
4167 // These are invalid anyway, so just ignore.
4168 break;
4171 return false;
4174 static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4175 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4176 Chunk.Kind == DeclaratorChunk::Array);
4179 template<typename AttrT>
4180 static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4181 AL.setUsedAsTypeAttr();
4182 return ::new (Ctx) AttrT(Ctx, AL);
4185 static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4186 NullabilityKind NK) {
4187 switch (NK) {
4188 case NullabilityKind::NonNull:
4189 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4191 case NullabilityKind::Nullable:
4192 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4194 case NullabilityKind::NullableResult:
4195 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4197 case NullabilityKind::Unspecified:
4198 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4200 llvm_unreachable("unknown NullabilityKind");
4203 // Diagnose whether this is a case with the multiple addr spaces.
4204 // Returns true if this is an invalid case.
4205 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4206 // by qualifiers for two or more different address spaces."
4207 static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4208 LangAS ASNew,
4209 SourceLocation AttrLoc) {
4210 if (ASOld != LangAS::Default) {
4211 if (ASOld != ASNew) {
4212 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4213 return true;
4215 // Emit a warning if they are identical; it's likely unintended.
4216 S.Diag(AttrLoc,
4217 diag::warn_attribute_address_multiple_identical_qualifiers);
4219 return false;
4222 // Whether this is a type broadly expected to have nullability attached.
4223 // These types are affected by `#pragma assume_nonnull`, and missing nullability
4224 // will be diagnosed with -Wnullability-completeness.
4225 static bool shouldHaveNullability(QualType T) {
4226 return T->canHaveNullability(/*ResultIfUnknown=*/false) &&
4227 // For now, do not infer/require nullability on C++ smart pointers.
4228 // It's unclear whether the pragma's behavior is useful for C++.
4229 // e.g. treating type-aliases and template-type-parameters differently
4230 // from types of declarations can be surprising.
4231 !isa<RecordType, TemplateSpecializationType>(
4232 T->getCanonicalTypeInternal());
4235 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4236 QualType declSpecType,
4237 TypeSourceInfo *TInfo) {
4238 // The TypeSourceInfo that this function returns will not be a null type.
4239 // If there is an error, this function will fill in a dummy type as fallback.
4240 QualType T = declSpecType;
4241 Declarator &D = state.getDeclarator();
4242 Sema &S = state.getSema();
4243 ASTContext &Context = S.Context;
4244 const LangOptions &LangOpts = S.getLangOpts();
4246 // The name we're declaring, if any.
4247 DeclarationName Name;
4248 if (D.getIdentifier())
4249 Name = D.getIdentifier();
4251 // Does this declaration declare a typedef-name?
4252 bool IsTypedefName =
4253 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4254 D.getContext() == DeclaratorContext::AliasDecl ||
4255 D.getContext() == DeclaratorContext::AliasTemplate;
4257 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4258 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4259 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4260 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4262 // If T is 'decltype(auto)', the only declarators we can have are parens
4263 // and at most one function declarator if this is a function declaration.
4264 // If T is a deduced class template specialization type, we can have no
4265 // declarator chunks at all.
4266 if (auto *DT = T->getAs<DeducedType>()) {
4267 const AutoType *AT = T->getAs<AutoType>();
4268 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4269 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4270 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4271 unsigned Index = E - I - 1;
4272 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4273 unsigned DiagId = IsClassTemplateDeduction
4274 ? diag::err_deduced_class_template_compound_type
4275 : diag::err_decltype_auto_compound_type;
4276 unsigned DiagKind = 0;
4277 switch (DeclChunk.Kind) {
4278 case DeclaratorChunk::Paren:
4279 // FIXME: Rejecting this is a little silly.
4280 if (IsClassTemplateDeduction) {
4281 DiagKind = 4;
4282 break;
4284 continue;
4285 case DeclaratorChunk::Function: {
4286 if (IsClassTemplateDeduction) {
4287 DiagKind = 3;
4288 break;
4290 unsigned FnIndex;
4291 if (D.isFunctionDeclarationContext() &&
4292 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4293 continue;
4294 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4295 break;
4297 case DeclaratorChunk::Pointer:
4298 case DeclaratorChunk::BlockPointer:
4299 case DeclaratorChunk::MemberPointer:
4300 DiagKind = 0;
4301 break;
4302 case DeclaratorChunk::Reference:
4303 DiagKind = 1;
4304 break;
4305 case DeclaratorChunk::Array:
4306 DiagKind = 2;
4307 break;
4308 case DeclaratorChunk::Pipe:
4309 break;
4312 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4313 D.setInvalidType(true);
4314 break;
4319 // Determine whether we should infer _Nonnull on pointer types.
4320 std::optional<NullabilityKind> inferNullability;
4321 bool inferNullabilityCS = false;
4322 bool inferNullabilityInnerOnly = false;
4323 bool inferNullabilityInnerOnlyComplete = false;
4325 // Are we in an assume-nonnull region?
4326 bool inAssumeNonNullRegion = false;
4327 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4328 if (assumeNonNullLoc.isValid()) {
4329 inAssumeNonNullRegion = true;
4330 recordNullabilitySeen(S, assumeNonNullLoc);
4333 // Whether to complain about missing nullability specifiers or not.
4334 enum {
4335 /// Never complain.
4336 CAMN_No,
4337 /// Complain on the inner pointers (but not the outermost
4338 /// pointer).
4339 CAMN_InnerPointers,
4340 /// Complain about any pointers that don't have nullability
4341 /// specified or inferred.
4342 CAMN_Yes
4343 } complainAboutMissingNullability = CAMN_No;
4344 unsigned NumPointersRemaining = 0;
4345 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4347 if (IsTypedefName) {
4348 // For typedefs, we do not infer any nullability (the default),
4349 // and we only complain about missing nullability specifiers on
4350 // inner pointers.
4351 complainAboutMissingNullability = CAMN_InnerPointers;
4353 if (shouldHaveNullability(T) && !T->getNullability()) {
4354 // Note that we allow but don't require nullability on dependent types.
4355 ++NumPointersRemaining;
4358 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4359 DeclaratorChunk &chunk = D.getTypeObject(i);
4360 switch (chunk.Kind) {
4361 case DeclaratorChunk::Array:
4362 case DeclaratorChunk::Function:
4363 case DeclaratorChunk::Pipe:
4364 break;
4366 case DeclaratorChunk::BlockPointer:
4367 case DeclaratorChunk::MemberPointer:
4368 ++NumPointersRemaining;
4369 break;
4371 case DeclaratorChunk::Paren:
4372 case DeclaratorChunk::Reference:
4373 continue;
4375 case DeclaratorChunk::Pointer:
4376 ++NumPointersRemaining;
4377 continue;
4380 } else {
4381 bool isFunctionOrMethod = false;
4382 switch (auto context = state.getDeclarator().getContext()) {
4383 case DeclaratorContext::ObjCParameter:
4384 case DeclaratorContext::ObjCResult:
4385 case DeclaratorContext::Prototype:
4386 case DeclaratorContext::TrailingReturn:
4387 case DeclaratorContext::TrailingReturnVar:
4388 isFunctionOrMethod = true;
4389 [[fallthrough]];
4391 case DeclaratorContext::Member:
4392 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4393 complainAboutMissingNullability = CAMN_No;
4394 break;
4397 // Weak properties are inferred to be nullable.
4398 if (state.getDeclarator().isObjCWeakProperty()) {
4399 // Weak properties cannot be nonnull, and should not complain about
4400 // missing nullable attributes during completeness checks.
4401 complainAboutMissingNullability = CAMN_No;
4402 if (inAssumeNonNullRegion) {
4403 inferNullability = NullabilityKind::Nullable;
4405 break;
4408 [[fallthrough]];
4410 case DeclaratorContext::File:
4411 case DeclaratorContext::KNRTypeList: {
4412 complainAboutMissingNullability = CAMN_Yes;
4414 // Nullability inference depends on the type and declarator.
4415 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4416 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4417 case PointerDeclaratorKind::NonPointer:
4418 case PointerDeclaratorKind::MultiLevelPointer:
4419 // Cannot infer nullability.
4420 break;
4422 case PointerDeclaratorKind::SingleLevelPointer:
4423 // Infer _Nonnull if we are in an assumes-nonnull region.
4424 if (inAssumeNonNullRegion) {
4425 complainAboutInferringWithinChunk = wrappingKind;
4426 inferNullability = NullabilityKind::NonNull;
4427 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4428 context == DeclaratorContext::ObjCResult);
4430 break;
4432 case PointerDeclaratorKind::CFErrorRefPointer:
4433 case PointerDeclaratorKind::NSErrorPointerPointer:
4434 // Within a function or method signature, infer _Nullable at both
4435 // levels.
4436 if (isFunctionOrMethod && inAssumeNonNullRegion)
4437 inferNullability = NullabilityKind::Nullable;
4438 break;
4440 case PointerDeclaratorKind::MaybePointerToCFRef:
4441 if (isFunctionOrMethod) {
4442 // On pointer-to-pointer parameters marked cf_returns_retained or
4443 // cf_returns_not_retained, if the outer pointer is explicit then
4444 // infer the inner pointer as _Nullable.
4445 auto hasCFReturnsAttr =
4446 [](const ParsedAttributesView &AttrList) -> bool {
4447 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4448 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4450 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4451 if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4452 hasCFReturnsAttr(D.getAttributes()) ||
4453 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4454 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4455 inferNullability = NullabilityKind::Nullable;
4456 inferNullabilityInnerOnly = true;
4460 break;
4462 break;
4465 case DeclaratorContext::ConversionId:
4466 complainAboutMissingNullability = CAMN_Yes;
4467 break;
4469 case DeclaratorContext::AliasDecl:
4470 case DeclaratorContext::AliasTemplate:
4471 case DeclaratorContext::Block:
4472 case DeclaratorContext::BlockLiteral:
4473 case DeclaratorContext::Condition:
4474 case DeclaratorContext::CXXCatch:
4475 case DeclaratorContext::CXXNew:
4476 case DeclaratorContext::ForInit:
4477 case DeclaratorContext::SelectionInit:
4478 case DeclaratorContext::LambdaExpr:
4479 case DeclaratorContext::LambdaExprParameter:
4480 case DeclaratorContext::ObjCCatch:
4481 case DeclaratorContext::TemplateParam:
4482 case DeclaratorContext::TemplateArg:
4483 case DeclaratorContext::TemplateTypeArg:
4484 case DeclaratorContext::TypeName:
4485 case DeclaratorContext::FunctionalCast:
4486 case DeclaratorContext::RequiresExpr:
4487 case DeclaratorContext::Association:
4488 // Don't infer in these contexts.
4489 break;
4493 // Local function that returns true if its argument looks like a va_list.
4494 auto isVaList = [&S](QualType T) -> bool {
4495 auto *typedefTy = T->getAs<TypedefType>();
4496 if (!typedefTy)
4497 return false;
4498 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4499 do {
4500 if (typedefTy->getDecl() == vaListTypedef)
4501 return true;
4502 if (auto *name = typedefTy->getDecl()->getIdentifier())
4503 if (name->isStr("va_list"))
4504 return true;
4505 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4506 } while (typedefTy);
4507 return false;
4510 // Local function that checks the nullability for a given pointer declarator.
4511 // Returns true if _Nonnull was inferred.
4512 auto inferPointerNullability =
4513 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4514 SourceLocation pointerEndLoc,
4515 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4516 // We've seen a pointer.
4517 if (NumPointersRemaining > 0)
4518 --NumPointersRemaining;
4520 // If a nullability attribute is present, there's nothing to do.
4521 if (hasNullabilityAttr(attrs))
4522 return nullptr;
4524 // If we're supposed to infer nullability, do so now.
4525 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4526 ParsedAttr::Form form =
4527 inferNullabilityCS
4528 ? ParsedAttr::Form::ContextSensitiveKeyword()
4529 : ParsedAttr::Form::Keyword(false /*IsAlignAs*/,
4530 false /*IsRegularKeywordAttribute*/);
4531 ParsedAttr *nullabilityAttr = Pool.create(
4532 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4533 nullptr, SourceLocation(), nullptr, 0, form);
4535 attrs.addAtEnd(nullabilityAttr);
4537 if (inferNullabilityCS) {
4538 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4539 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4542 if (pointerLoc.isValid() &&
4543 complainAboutInferringWithinChunk !=
4544 PointerWrappingDeclaratorKind::None) {
4545 auto Diag =
4546 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4547 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4548 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4551 if (inferNullabilityInnerOnly)
4552 inferNullabilityInnerOnlyComplete = true;
4553 return nullabilityAttr;
4556 // If we're supposed to complain about missing nullability, do so
4557 // now if it's truly missing.
4558 switch (complainAboutMissingNullability) {
4559 case CAMN_No:
4560 break;
4562 case CAMN_InnerPointers:
4563 if (NumPointersRemaining == 0)
4564 break;
4565 [[fallthrough]];
4567 case CAMN_Yes:
4568 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4570 return nullptr;
4573 // If the type itself could have nullability but does not, infer pointer
4574 // nullability and perform consistency checking.
4575 if (S.CodeSynthesisContexts.empty()) {
4576 if (shouldHaveNullability(T) && !T->getNullability()) {
4577 if (isVaList(T)) {
4578 // Record that we've seen a pointer, but do nothing else.
4579 if (NumPointersRemaining > 0)
4580 --NumPointersRemaining;
4581 } else {
4582 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4583 if (T->isBlockPointerType())
4584 pointerKind = SimplePointerKind::BlockPointer;
4585 else if (T->isMemberPointerType())
4586 pointerKind = SimplePointerKind::MemberPointer;
4588 if (auto *attr = inferPointerNullability(
4589 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4590 D.getDeclSpec().getEndLoc(),
4591 D.getMutableDeclSpec().getAttributes(),
4592 D.getMutableDeclSpec().getAttributePool())) {
4593 T = state.getAttributedType(
4594 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4599 if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
4600 !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
4601 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4602 checkNullabilityConsistency(S, SimplePointerKind::Array,
4603 D.getDeclSpec().getTypeSpecTypeLoc());
4607 bool ExpectNoDerefChunk =
4608 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4610 // Walk the DeclTypeInfo, building the recursive type as we go.
4611 // DeclTypeInfos are ordered from the identifier out, which is
4612 // opposite of what we want :).
4614 // Track if the produced type matches the structure of the declarator.
4615 // This is used later to decide if we can fill `TypeLoc` from
4616 // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
4617 // an error by replacing the type with `int`.
4618 bool AreDeclaratorChunksValid = true;
4619 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4620 unsigned chunkIndex = e - i - 1;
4621 state.setCurrentChunkIndex(chunkIndex);
4622 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4623 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4624 switch (DeclType.Kind) {
4625 case DeclaratorChunk::Paren:
4626 if (i == 0)
4627 warnAboutRedundantParens(S, D, T);
4628 T = S.BuildParenType(T);
4629 break;
4630 case DeclaratorChunk::BlockPointer:
4631 // If blocks are disabled, emit an error.
4632 if (!LangOpts.Blocks)
4633 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4635 // Handle pointer nullability.
4636 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4637 DeclType.EndLoc, DeclType.getAttrs(),
4638 state.getDeclarator().getAttributePool());
4640 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4641 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4642 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4643 // qualified with const.
4644 if (LangOpts.OpenCL)
4645 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4646 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4648 break;
4649 case DeclaratorChunk::Pointer:
4650 // Verify that we're not building a pointer to pointer to function with
4651 // exception specification.
4652 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4653 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4654 D.setInvalidType(true);
4655 // Build the type anyway.
4658 // Handle pointer nullability
4659 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4660 DeclType.EndLoc, DeclType.getAttrs(),
4661 state.getDeclarator().getAttributePool());
4663 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4664 T = Context.getObjCObjectPointerType(T);
4665 if (DeclType.Ptr.TypeQuals)
4666 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4667 break;
4670 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4671 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4672 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4673 if (LangOpts.OpenCL) {
4674 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4675 T->isBlockPointerType()) {
4676 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4677 D.setInvalidType(true);
4681 T = S.BuildPointerType(T, DeclType.Loc, Name);
4682 if (DeclType.Ptr.TypeQuals)
4683 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4684 break;
4685 case DeclaratorChunk::Reference: {
4686 // Verify that we're not building a reference to pointer to function with
4687 // exception specification.
4688 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4689 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4690 D.setInvalidType(true);
4691 // Build the type anyway.
4693 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4695 if (DeclType.Ref.HasRestrict)
4696 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4697 break;
4699 case DeclaratorChunk::Array: {
4700 // Verify that we're not building an array of pointers to function with
4701 // exception specification.
4702 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4703 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4704 D.setInvalidType(true);
4705 // Build the type anyway.
4707 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4708 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4709 ArraySizeModifier ASM;
4711 // Microsoft property fields can have multiple sizeless array chunks
4712 // (i.e. int x[][][]). Skip all of these except one to avoid creating
4713 // bad incomplete array types.
4714 if (chunkIndex != 0 && !ArraySize &&
4715 D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
4716 // This is a sizeless chunk. If the next is also, skip this one.
4717 DeclaratorChunk &NextDeclType = D.getTypeObject(chunkIndex - 1);
4718 if (NextDeclType.Kind == DeclaratorChunk::Array &&
4719 !NextDeclType.Arr.NumElts)
4720 break;
4723 if (ATI.isStar)
4724 ASM = ArraySizeModifier::Star;
4725 else if (ATI.hasStatic)
4726 ASM = ArraySizeModifier::Static;
4727 else
4728 ASM = ArraySizeModifier::Normal;
4729 if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
4730 // FIXME: This check isn't quite right: it allows star in prototypes
4731 // for function definitions, and disallows some edge cases detailed
4732 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4733 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4734 ASM = ArraySizeModifier::Normal;
4735 D.setInvalidType(true);
4738 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4739 // shall appear only in a declaration of a function parameter with an
4740 // array type, ...
4741 if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
4742 if (!(D.isPrototypeContext() ||
4743 D.getContext() == DeclaratorContext::KNRTypeList)) {
4744 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
4745 << (ASM == ArraySizeModifier::Static ? "'static'"
4746 : "type qualifier");
4747 // Remove the 'static' and the type qualifiers.
4748 if (ASM == ArraySizeModifier::Static)
4749 ASM = ArraySizeModifier::Normal;
4750 ATI.TypeQuals = 0;
4751 D.setInvalidType(true);
4754 // C99 6.7.5.2p1: ... and then only in the outermost array type
4755 // derivation.
4756 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4757 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
4758 << (ASM == ArraySizeModifier::Static ? "'static'"
4759 : "type qualifier");
4760 if (ASM == ArraySizeModifier::Static)
4761 ASM = ArraySizeModifier::Normal;
4762 ATI.TypeQuals = 0;
4763 D.setInvalidType(true);
4767 // Array parameters can be marked nullable as well, although it's not
4768 // necessary if they're marked 'static'.
4769 if (complainAboutMissingNullability == CAMN_Yes &&
4770 !hasNullabilityAttr(DeclType.getAttrs()) &&
4771 ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
4772 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4773 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4776 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4777 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4778 break;
4780 case DeclaratorChunk::Function: {
4781 // If the function declarator has a prototype (i.e. it is not () and
4782 // does not have a K&R-style identifier list), then the arguments are part
4783 // of the type, otherwise the argument list is ().
4784 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4785 IsQualifiedFunction =
4786 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4788 // Check for auto functions and trailing return type and adjust the
4789 // return type accordingly.
4790 if (!D.isInvalidType()) {
4791 auto IsClassType = [&](CXXScopeSpec &SS) {
4792 // If there already was an problem with the scope, don’t issue another
4793 // error about the explicit object parameter.
4794 return SS.isInvalid() ||
4795 isa_and_present<CXXRecordDecl>(S.computeDeclContext(SS));
4798 // C++23 [dcl.fct]p6:
4800 // An explicit-object-parameter-declaration is a parameter-declaration
4801 // with a this specifier. An explicit-object-parameter-declaration shall
4802 // appear only as the first parameter-declaration of a
4803 // parameter-declaration-list of one of:
4805 // - a declaration of a member function or member function template
4806 // ([class.mem]), or
4808 // - an explicit instantiation ([temp.explicit]) or explicit
4809 // specialization ([temp.expl.spec]) of a templated member function,
4810 // or
4812 // - a lambda-declarator [expr.prim.lambda].
4813 DeclaratorContext C = D.getContext();
4814 ParmVarDecl *First =
4815 FTI.NumParams
4816 ? dyn_cast_if_present<ParmVarDecl>(FTI.Params[0].Param)
4817 : nullptr;
4819 bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType;
4820 if (First && First->isExplicitObjectParameter() &&
4821 C != DeclaratorContext::LambdaExpr &&
4823 // Either not a member or nested declarator in a member.
4825 // Note that e.g. 'static' or 'friend' declarations are accepted
4826 // here; we diagnose them later when we build the member function
4827 // because it's easier that way.
4828 (C != DeclaratorContext::Member || !IsFunctionDecl) &&
4830 // Allow out-of-line definitions of member functions.
4831 !IsClassType(D.getCXXScopeSpec())) {
4832 if (IsFunctionDecl)
4833 S.Diag(First->getBeginLoc(),
4834 diag::err_explicit_object_parameter_nonmember)
4835 << /*non-member*/ 2 << /*function*/ 0
4836 << First->getSourceRange();
4837 else
4838 S.Diag(First->getBeginLoc(),
4839 diag::err_explicit_object_parameter_invalid)
4840 << First->getSourceRange();
4842 D.setInvalidType();
4843 AreDeclaratorChunksValid = false;
4846 // trailing-return-type is only required if we're declaring a function,
4847 // and not, for instance, a pointer to a function.
4848 if (D.getDeclSpec().hasAutoTypeSpec() &&
4849 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4850 if (!S.getLangOpts().CPlusPlus14) {
4851 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4852 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4853 ? diag::err_auto_missing_trailing_return
4854 : diag::err_deduced_return_type);
4855 T = Context.IntTy;
4856 D.setInvalidType(true);
4857 AreDeclaratorChunksValid = false;
4858 } else {
4859 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4860 diag::warn_cxx11_compat_deduced_return_type);
4862 } else if (FTI.hasTrailingReturnType()) {
4863 // T must be exactly 'auto' at this point. See CWG issue 681.
4864 if (isa<ParenType>(T)) {
4865 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
4866 << T << D.getSourceRange();
4867 D.setInvalidType(true);
4868 // FIXME: recover and fill decls in `TypeLoc`s.
4869 AreDeclaratorChunksValid = false;
4870 } else if (D.getName().getKind() ==
4871 UnqualifiedIdKind::IK_DeductionGuideName) {
4872 if (T != Context.DependentTy) {
4873 S.Diag(D.getDeclSpec().getBeginLoc(),
4874 diag::err_deduction_guide_with_complex_decl)
4875 << D.getSourceRange();
4876 D.setInvalidType(true);
4877 // FIXME: recover and fill decls in `TypeLoc`s.
4878 AreDeclaratorChunksValid = false;
4880 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
4881 (T.hasQualifiers() || !isa<AutoType>(T) ||
4882 cast<AutoType>(T)->getKeyword() !=
4883 AutoTypeKeyword::Auto ||
4884 cast<AutoType>(T)->isConstrained())) {
4885 // Attach a valid source location for diagnostics on functions with
4886 // trailing return types missing 'auto'. Attempt to get the location
4887 // from the declared type; if invalid, fall back to the trailing
4888 // return type's location.
4889 SourceLocation Loc = D.getDeclSpec().getTypeSpecTypeLoc();
4890 SourceRange SR = D.getDeclSpec().getSourceRange();
4891 if (Loc.isInvalid()) {
4892 Loc = FTI.getTrailingReturnTypeLoc();
4893 SR = D.getSourceRange();
4895 S.Diag(Loc, diag::err_trailing_return_without_auto) << T << SR;
4896 D.setInvalidType(true);
4897 // FIXME: recover and fill decls in `TypeLoc`s.
4898 AreDeclaratorChunksValid = false;
4900 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
4901 if (T.isNull()) {
4902 // An error occurred parsing the trailing return type.
4903 T = Context.IntTy;
4904 D.setInvalidType(true);
4905 } else if (AutoType *Auto = T->getContainedAutoType()) {
4906 // If the trailing return type contains an `auto`, we may need to
4907 // invent a template parameter for it, for cases like
4908 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
4909 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
4910 if (D.getContext() == DeclaratorContext::Prototype)
4911 InventedParamInfo = &S.InventedParameterInfos.back();
4912 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
4913 InventedParamInfo = S.getCurLambda();
4914 if (InventedParamInfo) {
4915 std::tie(T, TInfo) = InventTemplateParameter(
4916 state, T, TInfo, Auto, *InventedParamInfo);
4919 } else {
4920 // This function type is not the type of the entity being declared,
4921 // so checking the 'auto' is not the responsibility of this chunk.
4925 // C99 6.7.5.3p1: The return type may not be a function or array type.
4926 // For conversion functions, we'll diagnose this particular error later.
4927 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
4928 (D.getName().getKind() !=
4929 UnqualifiedIdKind::IK_ConversionFunctionId)) {
4930 unsigned diagID = diag::err_func_returning_array_function;
4931 // Last processing chunk in block context means this function chunk
4932 // represents the block.
4933 if (chunkIndex == 0 &&
4934 D.getContext() == DeclaratorContext::BlockLiteral)
4935 diagID = diag::err_block_returning_array_function;
4936 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
4937 T = Context.IntTy;
4938 D.setInvalidType(true);
4939 AreDeclaratorChunksValid = false;
4942 // Do not allow returning half FP value.
4943 // FIXME: This really should be in BuildFunctionType.
4944 if (T->isHalfType()) {
4945 if (S.getLangOpts().OpenCL) {
4946 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
4947 S.getLangOpts())) {
4948 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4949 << T << 0 /*pointer hint*/;
4950 D.setInvalidType(true);
4952 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
4953 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
4954 S.Diag(D.getIdentifierLoc(),
4955 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
4956 D.setInvalidType(true);
4960 if (LangOpts.OpenCL) {
4961 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
4962 // function.
4963 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
4964 T->isPipeType()) {
4965 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
4966 << T << 1 /*hint off*/;
4967 D.setInvalidType(true);
4969 // OpenCL doesn't support variadic functions and blocks
4970 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
4971 // We also allow here any toolchain reserved identifiers.
4972 if (FTI.isVariadic &&
4973 !S.getOpenCLOptions().isAvailableOption(
4974 "__cl_clang_variadic_functions", S.getLangOpts()) &&
4975 !(D.getIdentifier() &&
4976 ((D.getIdentifier()->getName() == "printf" &&
4977 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
4978 D.getIdentifier()->getName().starts_with("__")))) {
4979 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
4980 D.setInvalidType(true);
4984 // Methods cannot return interface types. All ObjC objects are
4985 // passed by reference.
4986 if (T->isObjCObjectType()) {
4987 SourceLocation DiagLoc, FixitLoc;
4988 if (TInfo) {
4989 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
4990 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
4991 } else {
4992 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
4993 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
4995 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
4996 << 0 << T
4997 << FixItHint::CreateInsertion(FixitLoc, "*");
4999 T = Context.getObjCObjectPointerType(T);
5000 if (TInfo) {
5001 TypeLocBuilder TLB;
5002 TLB.pushFullCopy(TInfo->getTypeLoc());
5003 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5004 TLoc.setStarLoc(FixitLoc);
5005 TInfo = TLB.getTypeSourceInfo(Context, T);
5006 } else {
5007 AreDeclaratorChunksValid = false;
5010 D.setInvalidType(true);
5013 // cv-qualifiers on return types are pointless except when the type is a
5014 // class type in C++.
5015 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5016 !(S.getLangOpts().CPlusPlus &&
5017 (T->isDependentType() || T->isRecordType()))) {
5018 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5019 D.getFunctionDefinitionKind() ==
5020 FunctionDefinitionKind::Definition) {
5021 // [6.9.1/3] qualified void return is invalid on a C
5022 // function definition. Apparently ok on declarations and
5023 // in C++ though (!)
5024 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5025 } else
5026 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5028 // C++2a [dcl.fct]p12:
5029 // A volatile-qualified return type is deprecated
5030 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5031 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5034 // Objective-C ARC ownership qualifiers are ignored on the function
5035 // return type (by type canonicalization). Complain if this attribute
5036 // was written here.
5037 if (T.getQualifiers().hasObjCLifetime()) {
5038 SourceLocation AttrLoc;
5039 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5040 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5041 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5042 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5043 AttrLoc = AL.getLoc();
5044 break;
5048 if (AttrLoc.isInvalid()) {
5049 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5050 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5051 AttrLoc = AL.getLoc();
5052 break;
5057 if (AttrLoc.isValid()) {
5058 // The ownership attributes are almost always written via
5059 // the predefined
5060 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5061 if (AttrLoc.isMacroID())
5062 AttrLoc =
5063 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5065 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5066 << T.getQualifiers().getObjCLifetime();
5070 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5071 // C++ [dcl.fct]p6:
5072 // Types shall not be defined in return or parameter types.
5073 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5074 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5075 << Context.getTypeDeclType(Tag);
5078 // Exception specs are not allowed in typedefs. Complain, but add it
5079 // anyway.
5080 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5081 S.Diag(FTI.getExceptionSpecLocBeg(),
5082 diag::err_exception_spec_in_typedef)
5083 << (D.getContext() == DeclaratorContext::AliasDecl ||
5084 D.getContext() == DeclaratorContext::AliasTemplate);
5086 // If we see "T var();" or "T var(T());" at block scope, it is probably
5087 // an attempt to initialize a variable, not a function declaration.
5088 if (FTI.isAmbiguous)
5089 warnAboutAmbiguousFunction(S, D, DeclType, T);
5091 FunctionType::ExtInfo EI(
5092 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5094 // OpenCL disallows functions without a prototype, but it doesn't enforce
5095 // strict prototypes as in C23 because it allows a function definition to
5096 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5097 if (!FTI.NumParams && !FTI.isVariadic &&
5098 !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5099 // Simple void foo(), where the incoming T is the result type.
5100 T = Context.getFunctionNoProtoType(T, EI);
5101 } else {
5102 // We allow a zero-parameter variadic function in C if the
5103 // function is marked with the "overloadable" attribute. Scan
5104 // for this attribute now. We also allow it in C23 per WG14 N2975.
5105 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5106 if (LangOpts.C23)
5107 S.Diag(FTI.getEllipsisLoc(),
5108 diag::warn_c17_compat_ellipsis_only_parameter);
5109 else if (!D.getDeclarationAttributes().hasAttribute(
5110 ParsedAttr::AT_Overloadable) &&
5111 !D.getAttributes().hasAttribute(
5112 ParsedAttr::AT_Overloadable) &&
5113 !D.getDeclSpec().getAttributes().hasAttribute(
5114 ParsedAttr::AT_Overloadable))
5115 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5118 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5119 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5120 // definition.
5121 S.Diag(FTI.Params[0].IdentLoc,
5122 diag::err_ident_list_in_fn_declaration);
5123 D.setInvalidType(true);
5124 // Recover by creating a K&R-style function type, if possible.
5125 T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5126 ? Context.getFunctionNoProtoType(T, EI)
5127 : Context.IntTy;
5128 AreDeclaratorChunksValid = false;
5129 break;
5132 FunctionProtoType::ExtProtoInfo EPI;
5133 EPI.ExtInfo = EI;
5134 EPI.Variadic = FTI.isVariadic;
5135 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5136 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5137 EPI.TypeQuals.addCVRUQualifiers(
5138 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5139 : 0);
5140 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5141 : FTI.RefQualifierIsLValueRef? RQ_LValue
5142 : RQ_RValue;
5144 // Otherwise, we have a function with a parameter list that is
5145 // potentially variadic.
5146 SmallVector<QualType, 16> ParamTys;
5147 ParamTys.reserve(FTI.NumParams);
5149 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5150 ExtParameterInfos(FTI.NumParams);
5151 bool HasAnyInterestingExtParameterInfos = false;
5153 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5154 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5155 QualType ParamTy = Param->getType();
5156 assert(!ParamTy.isNull() && "Couldn't parse type?");
5158 // Look for 'void'. void is allowed only as a single parameter to a
5159 // function with no other parameters (C99 6.7.5.3p10). We record
5160 // int(void) as a FunctionProtoType with an empty parameter list.
5161 if (ParamTy->isVoidType()) {
5162 // If this is something like 'float(int, void)', reject it. 'void'
5163 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5164 // have parameters of incomplete type.
5165 if (FTI.NumParams != 1 || FTI.isVariadic) {
5166 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5167 ParamTy = Context.IntTy;
5168 Param->setType(ParamTy);
5169 } else if (FTI.Params[i].Ident) {
5170 // Reject, but continue to parse 'int(void abc)'.
5171 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5172 ParamTy = Context.IntTy;
5173 Param->setType(ParamTy);
5174 } else {
5175 // Reject, but continue to parse 'float(const void)'.
5176 if (ParamTy.hasQualifiers())
5177 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5179 // Reject, but continue to parse 'float(this void)' as
5180 // 'float(void)'.
5181 if (Param->isExplicitObjectParameter()) {
5182 S.Diag(Param->getLocation(),
5183 diag::err_void_explicit_object_param);
5184 Param->setExplicitObjectParameterLoc(SourceLocation());
5187 // Do not add 'void' to the list.
5188 break;
5190 } else if (ParamTy->isHalfType()) {
5191 // Disallow half FP parameters.
5192 // FIXME: This really should be in BuildFunctionType.
5193 if (S.getLangOpts().OpenCL) {
5194 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5195 S.getLangOpts())) {
5196 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5197 << ParamTy << 0;
5198 D.setInvalidType();
5199 Param->setInvalidDecl();
5201 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5202 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5203 S.Diag(Param->getLocation(),
5204 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5205 D.setInvalidType();
5207 } else if (!FTI.hasPrototype) {
5208 if (Context.isPromotableIntegerType(ParamTy)) {
5209 ParamTy = Context.getPromotedIntegerType(ParamTy);
5210 Param->setKNRPromoted(true);
5211 } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5212 if (BTy->getKind() == BuiltinType::Float) {
5213 ParamTy = Context.DoubleTy;
5214 Param->setKNRPromoted(true);
5217 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5218 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5219 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5220 << ParamTy << 1 /*hint off*/;
5221 D.setInvalidType();
5224 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5225 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5226 HasAnyInterestingExtParameterInfos = true;
5229 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5230 ExtParameterInfos[i] =
5231 ExtParameterInfos[i].withABI(attr->getABI());
5232 HasAnyInterestingExtParameterInfos = true;
5235 if (Param->hasAttr<PassObjectSizeAttr>()) {
5236 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5237 HasAnyInterestingExtParameterInfos = true;
5240 if (Param->hasAttr<NoEscapeAttr>()) {
5241 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5242 HasAnyInterestingExtParameterInfos = true;
5245 ParamTys.push_back(ParamTy);
5248 if (HasAnyInterestingExtParameterInfos) {
5249 EPI.ExtParameterInfos = ExtParameterInfos.data();
5250 checkExtParameterInfos(S, ParamTys, EPI,
5251 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5254 SmallVector<QualType, 4> Exceptions;
5255 SmallVector<ParsedType, 2> DynamicExceptions;
5256 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5257 Expr *NoexceptExpr = nullptr;
5259 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5260 // FIXME: It's rather inefficient to have to split into two vectors
5261 // here.
5262 unsigned N = FTI.getNumExceptions();
5263 DynamicExceptions.reserve(N);
5264 DynamicExceptionRanges.reserve(N);
5265 for (unsigned I = 0; I != N; ++I) {
5266 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5267 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5269 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5270 NoexceptExpr = FTI.NoexceptExpr;
5273 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5274 FTI.getExceptionSpecType(),
5275 DynamicExceptions,
5276 DynamicExceptionRanges,
5277 NoexceptExpr,
5278 Exceptions,
5279 EPI.ExceptionSpec);
5281 // FIXME: Set address space from attrs for C++ mode here.
5282 // OpenCLCPlusPlus: A class member function has an address space.
5283 auto IsClassMember = [&]() {
5284 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5285 state.getDeclarator()
5286 .getCXXScopeSpec()
5287 .getScopeRep()
5288 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5289 state.getDeclarator().getContext() ==
5290 DeclaratorContext::Member ||
5291 state.getDeclarator().getContext() ==
5292 DeclaratorContext::LambdaExpr;
5295 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5296 LangAS ASIdx = LangAS::Default;
5297 // Take address space attr if any and mark as invalid to avoid adding
5298 // them later while creating QualType.
5299 if (FTI.MethodQualifiers)
5300 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5301 LangAS ASIdxNew = attr.asOpenCLLangAS();
5302 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5303 attr.getLoc()))
5304 D.setInvalidType(true);
5305 else
5306 ASIdx = ASIdxNew;
5308 // If a class member function's address space is not set, set it to
5309 // __generic.
5310 LangAS AS =
5311 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5312 : ASIdx);
5313 EPI.TypeQuals.addAddressSpace(AS);
5315 T = Context.getFunctionType(T, ParamTys, EPI);
5317 break;
5319 case DeclaratorChunk::MemberPointer: {
5320 // The scope spec must refer to a class, or be dependent.
5321 CXXScopeSpec &SS = DeclType.Mem.Scope();
5322 QualType ClsType;
5324 // Handle pointer nullability.
5325 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5326 DeclType.EndLoc, DeclType.getAttrs(),
5327 state.getDeclarator().getAttributePool());
5329 if (SS.isInvalid()) {
5330 // Avoid emitting extra errors if we already errored on the scope.
5331 D.setInvalidType(true);
5332 } else if (S.isDependentScopeSpecifier(SS) ||
5333 isa_and_nonnull<CXXRecordDecl>(S.computeDeclContext(SS))) {
5334 NestedNameSpecifier *NNS = SS.getScopeRep();
5335 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5336 switch (NNS->getKind()) {
5337 case NestedNameSpecifier::Identifier:
5338 ClsType = Context.getDependentNameType(
5339 ElaboratedTypeKeyword::None, NNSPrefix, NNS->getAsIdentifier());
5340 break;
5342 case NestedNameSpecifier::Namespace:
5343 case NestedNameSpecifier::NamespaceAlias:
5344 case NestedNameSpecifier::Global:
5345 case NestedNameSpecifier::Super:
5346 llvm_unreachable("Nested-name-specifier must name a type");
5348 case NestedNameSpecifier::TypeSpec:
5349 case NestedNameSpecifier::TypeSpecWithTemplate:
5350 ClsType = QualType(NNS->getAsType(), 0);
5351 // Note: if the NNS has a prefix and ClsType is a nondependent
5352 // TemplateSpecializationType, then the NNS prefix is NOT included
5353 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5354 // NOTE: in particular, no wrap occurs if ClsType already is an
5355 // Elaborated, DependentName, or DependentTemplateSpecialization.
5356 if (isa<TemplateSpecializationType>(NNS->getAsType()))
5357 ClsType = Context.getElaboratedType(ElaboratedTypeKeyword::None,
5358 NNSPrefix, ClsType);
5359 break;
5361 } else {
5362 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5363 diag::err_illegal_decl_mempointer_in_nonclass)
5364 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5365 << DeclType.Mem.Scope().getRange();
5366 D.setInvalidType(true);
5369 if (!ClsType.isNull())
5370 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5371 D.getIdentifier());
5372 else
5373 AreDeclaratorChunksValid = false;
5375 if (T.isNull()) {
5376 T = Context.IntTy;
5377 D.setInvalidType(true);
5378 AreDeclaratorChunksValid = false;
5379 } else if (DeclType.Mem.TypeQuals) {
5380 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5382 break;
5385 case DeclaratorChunk::Pipe: {
5386 T = S.BuildReadPipeType(T, DeclType.Loc);
5387 processTypeAttrs(state, T, TAL_DeclSpec,
5388 D.getMutableDeclSpec().getAttributes());
5389 break;
5393 if (T.isNull()) {
5394 D.setInvalidType(true);
5395 T = Context.IntTy;
5396 AreDeclaratorChunksValid = false;
5399 // See if there are any attributes on this declarator chunk.
5400 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs(),
5401 S.CUDA().IdentifyTarget(D.getAttributes()));
5403 if (DeclType.Kind != DeclaratorChunk::Paren) {
5404 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5405 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5407 ExpectNoDerefChunk = state.didParseNoDeref();
5411 if (ExpectNoDerefChunk)
5412 S.Diag(state.getDeclarator().getBeginLoc(),
5413 diag::warn_noderef_on_non_pointer_or_array);
5415 // GNU warning -Wstrict-prototypes
5416 // Warn if a function declaration or definition is without a prototype.
5417 // This warning is issued for all kinds of unprototyped function
5418 // declarations (i.e. function type typedef, function pointer etc.)
5419 // C99 6.7.5.3p14:
5420 // The empty list in a function declarator that is not part of a definition
5421 // of that function specifies that no information about the number or types
5422 // of the parameters is supplied.
5423 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5424 // function declarations whose behavior changes in C23.
5425 if (!LangOpts.requiresStrictPrototypes()) {
5426 bool IsBlock = false;
5427 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5428 switch (DeclType.Kind) {
5429 case DeclaratorChunk::BlockPointer:
5430 IsBlock = true;
5431 break;
5432 case DeclaratorChunk::Function: {
5433 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5434 // We suppress the warning when there's no LParen location, as this
5435 // indicates the declaration was an implicit declaration, which gets
5436 // warned about separately via -Wimplicit-function-declaration. We also
5437 // suppress the warning when we know the function has a prototype.
5438 if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5439 FTI.getLParenLoc().isValid())
5440 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5441 << IsBlock
5442 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5443 IsBlock = false;
5444 break;
5446 default:
5447 break;
5452 assert(!T.isNull() && "T must not be null after this point");
5454 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5455 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5456 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5458 // C++ 8.3.5p4:
5459 // A cv-qualifier-seq shall only be part of the function type
5460 // for a nonstatic member function, the function type to which a pointer
5461 // to member refers, or the top-level function type of a function typedef
5462 // declaration.
5464 // Core issue 547 also allows cv-qualifiers on function types that are
5465 // top-level template type arguments.
5466 enum {
5467 NonMember,
5468 Member,
5469 ExplicitObjectMember,
5470 DeductionGuide
5471 } Kind = NonMember;
5472 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5473 Kind = DeductionGuide;
5474 else if (!D.getCXXScopeSpec().isSet()) {
5475 if ((D.getContext() == DeclaratorContext::Member ||
5476 D.getContext() == DeclaratorContext::LambdaExpr) &&
5477 !D.getDeclSpec().isFriendSpecified())
5478 Kind = Member;
5479 } else {
5480 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5481 if (!DC || DC->isRecord())
5482 Kind = Member;
5485 if (Kind == Member) {
5486 unsigned I;
5487 if (D.isFunctionDeclarator(I)) {
5488 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5489 if (Chunk.Fun.NumParams) {
5490 auto *P = dyn_cast_or_null<ParmVarDecl>(Chunk.Fun.Params->Param);
5491 if (P && P->isExplicitObjectParameter())
5492 Kind = ExplicitObjectMember;
5497 // C++11 [dcl.fct]p6 (w/DR1417):
5498 // An attempt to specify a function type with a cv-qualifier-seq or a
5499 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5500 // - the function type for a non-static member function,
5501 // - the function type to which a pointer to member refers,
5502 // - the top-level function type of a function typedef declaration or
5503 // alias-declaration,
5504 // - the type-id in the default argument of a type-parameter, or
5505 // - the type-id of a template-argument for a type-parameter
5507 // C++23 [dcl.fct]p6 (P0847R7)
5508 // ... A member-declarator with an explicit-object-parameter-declaration
5509 // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5510 // declared static or virtual ...
5512 // FIXME: Checking this here is insufficient. We accept-invalid on:
5514 // template<typename T> struct S { void f(T); };
5515 // S<int() const> s;
5517 // ... for instance.
5518 if (IsQualifiedFunction &&
5519 // Check for non-static member function and not and
5520 // explicit-object-parameter-declaration
5521 (Kind != Member || D.isExplicitObjectMemberFunction() ||
5522 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5523 (D.getContext() == clang::DeclaratorContext::Member &&
5524 D.isStaticMember())) &&
5525 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5526 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5527 SourceLocation Loc = D.getBeginLoc();
5528 SourceRange RemovalRange;
5529 unsigned I;
5530 if (D.isFunctionDeclarator(I)) {
5531 SmallVector<SourceLocation, 4> RemovalLocs;
5532 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5533 assert(Chunk.Kind == DeclaratorChunk::Function);
5535 if (Chunk.Fun.hasRefQualifier())
5536 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5538 if (Chunk.Fun.hasMethodTypeQualifiers())
5539 Chunk.Fun.MethodQualifiers->forEachQualifier(
5540 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5541 SourceLocation SL) { RemovalLocs.push_back(SL); });
5543 if (!RemovalLocs.empty()) {
5544 llvm::sort(RemovalLocs,
5545 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5546 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5547 Loc = RemovalLocs.front();
5551 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5552 << Kind << D.isFunctionDeclarator() << T
5553 << getFunctionQualifiersAsString(FnTy)
5554 << FixItHint::CreateRemoval(RemovalRange);
5556 // Strip the cv-qualifiers and ref-qualifiers from the type.
5557 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5558 EPI.TypeQuals.removeCVRQualifiers();
5559 EPI.RefQualifier = RQ_None;
5561 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5562 EPI);
5563 // Rebuild any parens around the identifier in the function type.
5564 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5565 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5566 break;
5567 T = S.BuildParenType(T);
5572 // Apply any undistributed attributes from the declaration or declarator.
5573 ParsedAttributesView NonSlidingAttrs;
5574 for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5575 if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5576 NonSlidingAttrs.addAtEnd(&AL);
5579 processTypeAttrs(state, T, TAL_DeclName, NonSlidingAttrs);
5580 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5582 // Diagnose any ignored type attributes.
5583 state.diagnoseIgnoredTypeAttrs(T);
5585 // C++0x [dcl.constexpr]p9:
5586 // A constexpr specifier used in an object declaration declares the object
5587 // as const.
5588 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5589 T->isObjectType())
5590 T.addConst();
5592 // C++2a [dcl.fct]p4:
5593 // A parameter with volatile-qualified type is deprecated
5594 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5595 (D.getContext() == DeclaratorContext::Prototype ||
5596 D.getContext() == DeclaratorContext::LambdaExprParameter))
5597 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5599 // If there was an ellipsis in the declarator, the declaration declares a
5600 // parameter pack whose type may be a pack expansion type.
5601 if (D.hasEllipsis()) {
5602 // C++0x [dcl.fct]p13:
5603 // A declarator-id or abstract-declarator containing an ellipsis shall
5604 // only be used in a parameter-declaration. Such a parameter-declaration
5605 // is a parameter pack (14.5.3). [...]
5606 switch (D.getContext()) {
5607 case DeclaratorContext::Prototype:
5608 case DeclaratorContext::LambdaExprParameter:
5609 case DeclaratorContext::RequiresExpr:
5610 // C++0x [dcl.fct]p13:
5611 // [...] When it is part of a parameter-declaration-clause, the
5612 // parameter pack is a function parameter pack (14.5.3). The type T
5613 // of the declarator-id of the function parameter pack shall contain
5614 // a template parameter pack; each template parameter pack in T is
5615 // expanded by the function parameter pack.
5617 // We represent function parameter packs as function parameters whose
5618 // type is a pack expansion.
5619 if (!T->containsUnexpandedParameterPack() &&
5620 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5621 S.Diag(D.getEllipsisLoc(),
5622 diag::err_function_parameter_pack_without_parameter_packs)
5623 << T << D.getSourceRange();
5624 D.setEllipsisLoc(SourceLocation());
5625 } else {
5626 T = Context.getPackExpansionType(T, std::nullopt,
5627 /*ExpectPackInType=*/false);
5629 break;
5630 case DeclaratorContext::TemplateParam:
5631 // C++0x [temp.param]p15:
5632 // If a template-parameter is a [...] is a parameter-declaration that
5633 // declares a parameter pack (8.3.5), then the template-parameter is a
5634 // template parameter pack (14.5.3).
5636 // Note: core issue 778 clarifies that, if there are any unexpanded
5637 // parameter packs in the type of the non-type template parameter, then
5638 // it expands those parameter packs.
5639 if (T->containsUnexpandedParameterPack())
5640 T = Context.getPackExpansionType(T, std::nullopt);
5641 else
5642 S.Diag(D.getEllipsisLoc(),
5643 LangOpts.CPlusPlus11
5644 ? diag::warn_cxx98_compat_variadic_templates
5645 : diag::ext_variadic_templates);
5646 break;
5648 case DeclaratorContext::File:
5649 case DeclaratorContext::KNRTypeList:
5650 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5651 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5652 case DeclaratorContext::TypeName:
5653 case DeclaratorContext::FunctionalCast:
5654 case DeclaratorContext::CXXNew:
5655 case DeclaratorContext::AliasDecl:
5656 case DeclaratorContext::AliasTemplate:
5657 case DeclaratorContext::Member:
5658 case DeclaratorContext::Block:
5659 case DeclaratorContext::ForInit:
5660 case DeclaratorContext::SelectionInit:
5661 case DeclaratorContext::Condition:
5662 case DeclaratorContext::CXXCatch:
5663 case DeclaratorContext::ObjCCatch:
5664 case DeclaratorContext::BlockLiteral:
5665 case DeclaratorContext::LambdaExpr:
5666 case DeclaratorContext::ConversionId:
5667 case DeclaratorContext::TrailingReturn:
5668 case DeclaratorContext::TrailingReturnVar:
5669 case DeclaratorContext::TemplateArg:
5670 case DeclaratorContext::TemplateTypeArg:
5671 case DeclaratorContext::Association:
5672 // FIXME: We may want to allow parameter packs in block-literal contexts
5673 // in the future.
5674 S.Diag(D.getEllipsisLoc(),
5675 diag::err_ellipsis_in_declarator_not_parameter);
5676 D.setEllipsisLoc(SourceLocation());
5677 break;
5681 assert(!T.isNull() && "T must not be null at the end of this function");
5682 if (!AreDeclaratorChunksValid)
5683 return Context.getTrivialTypeSourceInfo(T);
5684 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
5687 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
5688 // Determine the type of the declarator. Not all forms of declarator
5689 // have a type.
5691 TypeProcessingState state(*this, D);
5693 TypeSourceInfo *ReturnTypeInfo = nullptr;
5694 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5695 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5696 inferARCWriteback(state, T);
5698 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5701 static void transferARCOwnershipToDeclSpec(Sema &S,
5702 QualType &declSpecTy,
5703 Qualifiers::ObjCLifetime ownership) {
5704 if (declSpecTy->isObjCRetainableType() &&
5705 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5706 Qualifiers qs;
5707 qs.addObjCLifetime(ownership);
5708 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5712 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5713 Qualifiers::ObjCLifetime ownership,
5714 unsigned chunkIndex) {
5715 Sema &S = state.getSema();
5716 Declarator &D = state.getDeclarator();
5718 // Look for an explicit lifetime attribute.
5719 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5720 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5721 return;
5723 const char *attrStr = nullptr;
5724 switch (ownership) {
5725 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
5726 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5727 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5728 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5729 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5732 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5733 Arg->Ident = &S.Context.Idents.get(attrStr);
5734 Arg->Loc = SourceLocation();
5736 ArgsUnion Args(Arg);
5738 // If there wasn't one, add one (with an invalid source location
5739 // so that we don't make an AttributedType for it).
5740 ParsedAttr *attr = D.getAttributePool().create(
5741 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5742 /*scope*/ nullptr, SourceLocation(),
5743 /*args*/ &Args, 1, ParsedAttr::Form::GNU());
5744 chunk.getAttrs().addAtEnd(attr);
5745 // TODO: mark whether we did this inference?
5748 /// Used for transferring ownership in casts resulting in l-values.
5749 static void transferARCOwnership(TypeProcessingState &state,
5750 QualType &declSpecTy,
5751 Qualifiers::ObjCLifetime ownership) {
5752 Sema &S = state.getSema();
5753 Declarator &D = state.getDeclarator();
5755 int inner = -1;
5756 bool hasIndirection = false;
5757 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5758 DeclaratorChunk &chunk = D.getTypeObject(i);
5759 switch (chunk.Kind) {
5760 case DeclaratorChunk::Paren:
5761 // Ignore parens.
5762 break;
5764 case DeclaratorChunk::Array:
5765 case DeclaratorChunk::Reference:
5766 case DeclaratorChunk::Pointer:
5767 if (inner != -1)
5768 hasIndirection = true;
5769 inner = i;
5770 break;
5772 case DeclaratorChunk::BlockPointer:
5773 if (inner != -1)
5774 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5775 return;
5777 case DeclaratorChunk::Function:
5778 case DeclaratorChunk::MemberPointer:
5779 case DeclaratorChunk::Pipe:
5780 return;
5784 if (inner == -1)
5785 return;
5787 DeclaratorChunk &chunk = D.getTypeObject(inner);
5788 if (chunk.Kind == DeclaratorChunk::Pointer) {
5789 if (declSpecTy->isObjCRetainableType())
5790 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5791 if (declSpecTy->isObjCObjectType() && hasIndirection)
5792 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5793 } else {
5794 assert(chunk.Kind == DeclaratorChunk::Array ||
5795 chunk.Kind == DeclaratorChunk::Reference);
5796 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5800 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5801 TypeProcessingState state(*this, D);
5803 TypeSourceInfo *ReturnTypeInfo = nullptr;
5804 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5806 if (getLangOpts().ObjC) {
5807 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5808 if (ownership != Qualifiers::OCL_None)
5809 transferARCOwnership(state, declSpecTy, ownership);
5812 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5815 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5816 TypeProcessingState &State) {
5817 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5820 static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL,
5821 TypeProcessingState &State) {
5822 HLSLAttributedResourceLocInfo LocInfo =
5823 State.getSema().HLSL().TakeLocForHLSLAttribute(TL.getTypePtr());
5824 TL.setSourceRange(LocInfo.Range);
5825 TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo);
5828 static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
5829 const ParsedAttributesView &Attrs) {
5830 for (const ParsedAttr &AL : Attrs) {
5831 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
5832 MTL.setAttrNameLoc(AL.getLoc());
5833 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
5834 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
5835 MTL.setAttrOperandParensRange(SourceRange());
5836 return;
5840 llvm_unreachable("no matrix_type attribute found at the expected location!");
5843 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
5844 SourceLocation Loc;
5845 switch (Chunk.Kind) {
5846 case DeclaratorChunk::Function:
5847 case DeclaratorChunk::Array:
5848 case DeclaratorChunk::Paren:
5849 case DeclaratorChunk::Pipe:
5850 llvm_unreachable("cannot be _Atomic qualified");
5852 case DeclaratorChunk::Pointer:
5853 Loc = Chunk.Ptr.AtomicQualLoc;
5854 break;
5856 case DeclaratorChunk::BlockPointer:
5857 case DeclaratorChunk::Reference:
5858 case DeclaratorChunk::MemberPointer:
5859 // FIXME: Provide a source location for the _Atomic keyword.
5860 break;
5863 ATL.setKWLoc(Loc);
5864 ATL.setParensRange(SourceRange());
5867 namespace {
5868 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5869 Sema &SemaRef;
5870 ASTContext &Context;
5871 TypeProcessingState &State;
5872 const DeclSpec &DS;
5874 public:
5875 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5876 const DeclSpec &DS)
5877 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5879 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5880 Visit(TL.getModifiedLoc());
5881 fillAttributedTypeLoc(TL, State);
5883 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
5884 Visit(TL.getWrappedLoc());
5886 void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) {
5887 Visit(TL.getWrappedLoc());
5888 fillHLSLAttributedResourceTypeLoc(TL, State);
5890 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5891 Visit(TL.getInnerLoc());
5892 TL.setExpansionLoc(
5893 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5895 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5896 Visit(TL.getUnqualifiedLoc());
5898 // Allow to fill pointee's type locations, e.g.,
5899 // int __attr * __attr * __attr *p;
5900 void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
5901 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5902 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5904 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5905 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5906 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5907 // addition field. What we have is good enough for display of location
5908 // of 'fixit' on interface name.
5909 TL.setNameEndLoc(DS.getEndLoc());
5911 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5912 TypeSourceInfo *RepTInfo = nullptr;
5913 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5914 TL.copy(RepTInfo->getTypeLoc());
5916 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5917 TypeSourceInfo *RepTInfo = nullptr;
5918 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5919 TL.copy(RepTInfo->getTypeLoc());
5921 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5922 TypeSourceInfo *TInfo = nullptr;
5923 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5925 // If we got no declarator info from previous Sema routines,
5926 // just fill with the typespec loc.
5927 if (!TInfo) {
5928 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5929 return;
5932 TypeLoc OldTL = TInfo->getTypeLoc();
5933 if (TInfo->getType()->getAs<ElaboratedType>()) {
5934 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5935 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5936 .castAs<TemplateSpecializationTypeLoc>();
5937 TL.copy(NamedTL);
5938 } else {
5939 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5940 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
5944 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5945 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
5946 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
5947 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5948 TL.setParensRange(DS.getTypeofParensRange());
5950 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5951 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
5952 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
5953 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5954 TL.setParensRange(DS.getTypeofParensRange());
5955 assert(DS.getRepAsType());
5956 TypeSourceInfo *TInfo = nullptr;
5957 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5958 TL.setUnmodifiedTInfo(TInfo);
5960 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
5961 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
5962 TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
5963 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
5965 void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
5966 assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
5967 TL.setEllipsisLoc(DS.getEllipsisLoc());
5969 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5970 assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
5971 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5972 TL.setParensRange(DS.getTypeofParensRange());
5973 assert(DS.getRepAsType());
5974 TypeSourceInfo *TInfo = nullptr;
5975 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5976 TL.setUnderlyingTInfo(TInfo);
5978 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5979 // By default, use the source location of the type specifier.
5980 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5981 if (TL.needsExtraLocalData()) {
5982 // Set info for the written builtin specifiers.
5983 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5984 // Try to have a meaningful source location.
5985 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5986 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5987 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5988 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5991 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5992 if (DS.getTypeSpecType() == TST_typename) {
5993 TypeSourceInfo *TInfo = nullptr;
5994 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5995 if (TInfo)
5996 if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
5997 TL.copy(ETL);
5998 return;
6001 const ElaboratedType *T = TL.getTypePtr();
6002 TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
6003 ? DS.getTypeSpecTypeLoc()
6004 : SourceLocation());
6005 const CXXScopeSpec& SS = DS.getTypeSpecScope();
6006 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6007 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6009 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6010 assert(DS.getTypeSpecType() == TST_typename);
6011 TypeSourceInfo *TInfo = nullptr;
6012 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6013 assert(TInfo);
6014 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6016 void VisitDependentTemplateSpecializationTypeLoc(
6017 DependentTemplateSpecializationTypeLoc TL) {
6018 assert(DS.getTypeSpecType() == TST_typename);
6019 TypeSourceInfo *TInfo = nullptr;
6020 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6021 assert(TInfo);
6022 TL.copy(
6023 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6025 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6026 assert(DS.getTypeSpecType() == TST_auto ||
6027 DS.getTypeSpecType() == TST_decltype_auto ||
6028 DS.getTypeSpecType() == TST_auto_type ||
6029 DS.getTypeSpecType() == TST_unspecified);
6030 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6031 if (DS.getTypeSpecType() == TST_decltype_auto)
6032 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6033 if (!DS.isConstrainedAuto())
6034 return;
6035 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6036 if (!TemplateId)
6037 return;
6039 NestedNameSpecifierLoc NNS =
6040 (DS.getTypeSpecScope().isNotEmpty()
6041 ? DS.getTypeSpecScope().getWithLocInContext(Context)
6042 : NestedNameSpecifierLoc());
6043 TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6044 TemplateId->RAngleLoc);
6045 if (TemplateId->NumArgs > 0) {
6046 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6047 TemplateId->NumArgs);
6048 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6050 DeclarationNameInfo DNI = DeclarationNameInfo(
6051 TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6052 TemplateId->TemplateNameLoc);
6054 NamedDecl *FoundDecl;
6055 if (auto TN = TemplateId->Template.get();
6056 UsingShadowDecl *USD = TN.getAsUsingShadowDecl())
6057 FoundDecl = cast<NamedDecl>(USD);
6058 else
6059 FoundDecl = cast_if_present<NamedDecl>(TN.getAsTemplateDecl());
6061 auto *CR = ConceptReference::Create(
6062 Context, NNS, TemplateId->TemplateKWLoc, DNI, FoundDecl,
6063 /*NamedDecl=*/TL.getTypePtr()->getTypeConstraintConcept(),
6064 ASTTemplateArgumentListInfo::Create(Context, TemplateArgsInfo));
6065 TL.setConceptReference(CR);
6067 void VisitTagTypeLoc(TagTypeLoc TL) {
6068 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6070 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6071 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6072 // or an _Atomic qualifier.
6073 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6074 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6075 TL.setParensRange(DS.getTypeofParensRange());
6077 TypeSourceInfo *TInfo = nullptr;
6078 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6079 assert(TInfo);
6080 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6081 } else {
6082 TL.setKWLoc(DS.getAtomicSpecLoc());
6083 // No parens, to indicate this was spelled as an _Atomic qualifier.
6084 TL.setParensRange(SourceRange());
6085 Visit(TL.getValueLoc());
6089 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6090 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6092 TypeSourceInfo *TInfo = nullptr;
6093 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6094 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6097 void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6098 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6101 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6102 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6105 void VisitTypeLoc(TypeLoc TL) {
6106 // FIXME: add other typespec types and change this to an assert.
6107 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6111 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6112 ASTContext &Context;
6113 TypeProcessingState &State;
6114 const DeclaratorChunk &Chunk;
6116 public:
6117 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6118 const DeclaratorChunk &Chunk)
6119 : Context(Context), State(State), Chunk(Chunk) {}
6121 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6122 llvm_unreachable("qualified type locs not expected here!");
6124 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6125 llvm_unreachable("decayed type locs not expected here!");
6127 void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) {
6128 llvm_unreachable("array parameter type locs not expected here!");
6131 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6132 fillAttributedTypeLoc(TL, State);
6134 void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) {
6135 // nothing
6137 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6138 // nothing
6140 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6141 // nothing
6143 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6144 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6145 TL.setCaretLoc(Chunk.Loc);
6147 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6148 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6149 TL.setStarLoc(Chunk.Loc);
6151 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6152 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6153 TL.setStarLoc(Chunk.Loc);
6155 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6156 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6157 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6158 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6160 const Type* ClsTy = TL.getClass();
6161 QualType ClsQT = QualType(ClsTy, 0);
6162 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6163 // Now copy source location info into the type loc component.
6164 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6165 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6166 case NestedNameSpecifier::Identifier:
6167 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6169 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6170 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6171 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6172 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6174 break;
6176 case NestedNameSpecifier::TypeSpec:
6177 case NestedNameSpecifier::TypeSpecWithTemplate:
6178 if (isa<ElaboratedType>(ClsTy)) {
6179 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6180 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6181 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6182 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6183 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6184 } else {
6185 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6187 break;
6189 case NestedNameSpecifier::Namespace:
6190 case NestedNameSpecifier::NamespaceAlias:
6191 case NestedNameSpecifier::Global:
6192 case NestedNameSpecifier::Super:
6193 llvm_unreachable("Nested-name-specifier must name a type");
6196 // Finally fill in MemberPointerLocInfo fields.
6197 TL.setStarLoc(Chunk.Mem.StarLoc);
6198 TL.setClassTInfo(ClsTInfo);
6200 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6201 assert(Chunk.Kind == DeclaratorChunk::Reference);
6202 // 'Amp' is misleading: this might have been originally
6203 /// spelled with AmpAmp.
6204 TL.setAmpLoc(Chunk.Loc);
6206 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6207 assert(Chunk.Kind == DeclaratorChunk::Reference);
6208 assert(!Chunk.Ref.LValueRef);
6209 TL.setAmpAmpLoc(Chunk.Loc);
6211 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6212 assert(Chunk.Kind == DeclaratorChunk::Array);
6213 TL.setLBracketLoc(Chunk.Loc);
6214 TL.setRBracketLoc(Chunk.EndLoc);
6215 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6217 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6218 assert(Chunk.Kind == DeclaratorChunk::Function);
6219 TL.setLocalRangeBegin(Chunk.Loc);
6220 TL.setLocalRangeEnd(Chunk.EndLoc);
6222 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6223 TL.setLParenLoc(FTI.getLParenLoc());
6224 TL.setRParenLoc(FTI.getRParenLoc());
6225 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6226 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6227 TL.setParam(tpi++, Param);
6229 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6231 void VisitParenTypeLoc(ParenTypeLoc TL) {
6232 assert(Chunk.Kind == DeclaratorChunk::Paren);
6233 TL.setLParenLoc(Chunk.Loc);
6234 TL.setRParenLoc(Chunk.EndLoc);
6236 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6237 assert(Chunk.Kind == DeclaratorChunk::Pipe);
6238 TL.setKWLoc(Chunk.Loc);
6240 void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6241 TL.setNameLoc(Chunk.Loc);
6243 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6244 TL.setExpansionLoc(Chunk.Loc);
6246 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6247 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6248 TL.setNameLoc(Chunk.Loc);
6250 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6251 TL.setNameLoc(Chunk.Loc);
6253 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6254 fillAtomicQualLoc(TL, Chunk);
6256 void
6257 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6258 TL.setNameLoc(Chunk.Loc);
6260 void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6261 fillMatrixTypeLoc(TL, Chunk.getAttrs());
6264 void VisitTypeLoc(TypeLoc TL) {
6265 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6268 } // end anonymous namespace
6270 static void
6271 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6272 const ParsedAttributesView &Attrs) {
6273 for (const ParsedAttr &AL : Attrs) {
6274 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6275 DASTL.setAttrNameLoc(AL.getLoc());
6276 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6277 DASTL.setAttrOperandParensRange(SourceRange());
6278 return;
6282 llvm_unreachable(
6283 "no address_space attribute found at the expected location!");
6286 /// Create and instantiate a TypeSourceInfo with type source information.
6288 /// \param T QualType referring to the type as written in source code.
6290 /// \param ReturnTypeInfo For declarators whose return type does not show
6291 /// up in the normal place in the declaration specifiers (such as a C++
6292 /// conversion function), this pointer will refer to a type source information
6293 /// for that return type.
6294 static TypeSourceInfo *
6295 GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6296 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6297 Sema &S = State.getSema();
6298 Declarator &D = State.getDeclarator();
6300 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6301 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6303 // Handle parameter packs whose type is a pack expansion.
6304 if (isa<PackExpansionType>(T)) {
6305 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6306 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6309 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6310 // Microsoft property fields can have multiple sizeless array chunks
6311 // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6312 if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6313 D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6314 continue;
6316 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6317 // declarator chunk.
6318 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6319 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6320 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6323 bool HasDesugaredTypeLoc = true;
6324 while (HasDesugaredTypeLoc) {
6325 switch (CurrTL.getTypeLocClass()) {
6326 case TypeLoc::MacroQualified: {
6327 auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6328 TL.setExpansionLoc(
6329 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6330 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6331 break;
6334 case TypeLoc::Attributed: {
6335 auto TL = CurrTL.castAs<AttributedTypeLoc>();
6336 fillAttributedTypeLoc(TL, State);
6337 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6338 break;
6341 case TypeLoc::Adjusted:
6342 case TypeLoc::BTFTagAttributed: {
6343 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6344 break;
6347 case TypeLoc::DependentAddressSpace: {
6348 auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6349 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6350 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6351 break;
6354 default:
6355 HasDesugaredTypeLoc = false;
6356 break;
6360 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6361 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6364 // If we have different source information for the return type, use
6365 // that. This really only applies to C++ conversion functions.
6366 if (ReturnTypeInfo) {
6367 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6368 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6369 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6370 } else {
6371 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
6374 return TInfo;
6377 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6378 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6379 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6380 // and Sema during declaration parsing. Try deallocating/caching them when
6381 // it's appropriate, instead of allocating them and keeping them around.
6382 LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(sizeof(LocInfoType),
6383 alignof(LocInfoType));
6384 new (LocT) LocInfoType(T, TInfo);
6385 assert(LocT->getTypeClass() != T->getTypeClass() &&
6386 "LocInfoType's TypeClass conflicts with an existing Type class");
6387 return ParsedType::make(QualType(LocT, 0));
6390 void LocInfoType::getAsStringInternal(std::string &Str,
6391 const PrintingPolicy &Policy) const {
6392 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6393 " was used directly instead of getting the QualType through"
6394 " GetTypeFromParser");
6397 TypeResult Sema::ActOnTypeName(Declarator &D) {
6398 // C99 6.7.6: Type names have no identifier. This is already validated by
6399 // the parser.
6400 assert(D.getIdentifier() == nullptr &&
6401 "Type name should have no identifier!");
6403 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6404 QualType T = TInfo->getType();
6405 if (D.isInvalidType())
6406 return true;
6408 // Make sure there are no unused decl attributes on the declarator.
6409 // We don't want to do this for ObjC parameters because we're going
6410 // to apply them to the actual parameter declaration.
6411 // Likewise, we don't want to do this for alias declarations, because
6412 // we are actually going to build a declaration from this eventually.
6413 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6414 D.getContext() != DeclaratorContext::AliasDecl &&
6415 D.getContext() != DeclaratorContext::AliasTemplate)
6416 checkUnusedDeclAttributes(D);
6418 if (getLangOpts().CPlusPlus) {
6419 // Check that there are no default arguments (C++ only).
6420 CheckExtraCXXDefaultArguments(D);
6423 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) {
6424 const AutoType *AT = TL.getTypePtr();
6425 CheckConstrainedAuto(AT, TL.getConceptNameLoc());
6427 return CreateParsedType(T, TInfo);
6430 //===----------------------------------------------------------------------===//
6431 // Type Attribute Processing
6432 //===----------------------------------------------------------------------===//
6434 /// Build an AddressSpace index from a constant expression and diagnose any
6435 /// errors related to invalid address_spaces. Returns true on successfully
6436 /// building an AddressSpace index.
6437 static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6438 const Expr *AddrSpace,
6439 SourceLocation AttrLoc) {
6440 if (!AddrSpace->isValueDependent()) {
6441 std::optional<llvm::APSInt> OptAddrSpace =
6442 AddrSpace->getIntegerConstantExpr(S.Context);
6443 if (!OptAddrSpace) {
6444 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6445 << "'address_space'" << AANT_ArgumentIntegerConstant
6446 << AddrSpace->getSourceRange();
6447 return false;
6449 llvm::APSInt &addrSpace = *OptAddrSpace;
6451 // Bounds checking.
6452 if (addrSpace.isSigned()) {
6453 if (addrSpace.isNegative()) {
6454 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6455 << AddrSpace->getSourceRange();
6456 return false;
6458 addrSpace.setIsSigned(false);
6461 llvm::APSInt max(addrSpace.getBitWidth());
6462 max =
6463 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6465 if (addrSpace > max) {
6466 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6467 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6468 return false;
6471 ASIdx =
6472 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6473 return true;
6476 // Default value for DependentAddressSpaceTypes
6477 ASIdx = LangAS::Default;
6478 return true;
6481 QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6482 SourceLocation AttrLoc) {
6483 if (!AddrSpace->isValueDependent()) {
6484 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6485 AttrLoc))
6486 return QualType();
6488 return Context.getAddrSpaceQualType(T, ASIdx);
6491 // A check with similar intentions as checking if a type already has an
6492 // address space except for on a dependent types, basically if the
6493 // current type is already a DependentAddressSpaceType then its already
6494 // lined up to have another address space on it and we can't have
6495 // multiple address spaces on the one pointer indirection
6496 if (T->getAs<DependentAddressSpaceType>()) {
6497 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6498 return QualType();
6501 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6504 QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6505 SourceLocation AttrLoc) {
6506 LangAS ASIdx;
6507 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6508 return QualType();
6509 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6512 static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6513 TypeProcessingState &State) {
6514 Sema &S = State.getSema();
6516 // This attribute is only supported in C.
6517 // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp
6518 // such that it handles type attributes, and then call that from
6519 // processTypeAttrs() instead of one-off checks like this.
6520 if (!Attr.diagnoseLangOpts(S)) {
6521 Attr.setInvalid();
6522 return;
6525 // Check the number of attribute arguments.
6526 if (Attr.getNumArgs() != 1) {
6527 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6528 << Attr << 1;
6529 Attr.setInvalid();
6530 return;
6533 // Ensure the argument is a string.
6534 auto *StrLiteral = dyn_cast<StringLiteral>(Attr.getArgAsExpr(0));
6535 if (!StrLiteral) {
6536 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6537 << Attr << AANT_ArgumentString;
6538 Attr.setInvalid();
6539 return;
6542 ASTContext &Ctx = S.Context;
6543 StringRef BTFTypeTag = StrLiteral->getString();
6544 Type = State.getBTFTagAttributedType(
6545 ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6548 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6549 /// specified type. The attribute contains 1 argument, the id of the address
6550 /// space for the type.
6551 static void HandleAddressSpaceTypeAttribute(QualType &Type,
6552 const ParsedAttr &Attr,
6553 TypeProcessingState &State) {
6554 Sema &S = State.getSema();
6556 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6557 // qualified by an address-space qualifier."
6558 if (Type->isFunctionType()) {
6559 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6560 Attr.setInvalid();
6561 return;
6564 LangAS ASIdx;
6565 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6567 // Check the attribute arguments.
6568 if (Attr.getNumArgs() != 1) {
6569 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6570 << 1;
6571 Attr.setInvalid();
6572 return;
6575 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6576 LangAS ASIdx;
6577 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6578 Attr.setInvalid();
6579 return;
6582 ASTContext &Ctx = S.Context;
6583 auto *ASAttr =
6584 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6586 // If the expression is not value dependent (not templated), then we can
6587 // apply the address space qualifiers just to the equivalent type.
6588 // Otherwise, we make an AttributedType with the modified and equivalent
6589 // type the same, and wrap it in a DependentAddressSpaceType. When this
6590 // dependent type is resolved, the qualifier is added to the equivalent type
6591 // later.
6592 QualType T;
6593 if (!ASArgExpr->isValueDependent()) {
6594 QualType EquivType =
6595 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6596 if (EquivType.isNull()) {
6597 Attr.setInvalid();
6598 return;
6600 T = State.getAttributedType(ASAttr, Type, EquivType);
6601 } else {
6602 T = State.getAttributedType(ASAttr, Type, Type);
6603 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6606 if (!T.isNull())
6607 Type = T;
6608 else
6609 Attr.setInvalid();
6610 } else {
6611 // The keyword-based type attributes imply which address space to use.
6612 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6613 : Attr.asOpenCLLangAS();
6614 if (S.getLangOpts().HLSL)
6615 ASIdx = Attr.asHLSLLangAS();
6617 if (ASIdx == LangAS::Default)
6618 llvm_unreachable("Invalid address space");
6620 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6621 Attr.getLoc())) {
6622 Attr.setInvalid();
6623 return;
6626 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6630 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6631 /// attribute on the specified type.
6633 /// Returns 'true' if the attribute was handled.
6634 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6635 ParsedAttr &attr, QualType &type) {
6636 bool NonObjCPointer = false;
6638 if (!type->isDependentType() && !type->isUndeducedType()) {
6639 if (const PointerType *ptr = type->getAs<PointerType>()) {
6640 QualType pointee = ptr->getPointeeType();
6641 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6642 return false;
6643 // It is important not to lose the source info that there was an attribute
6644 // applied to non-objc pointer. We will create an attributed type but
6645 // its type will be the same as the original type.
6646 NonObjCPointer = true;
6647 } else if (!type->isObjCRetainableType()) {
6648 return false;
6651 // Don't accept an ownership attribute in the declspec if it would
6652 // just be the return type of a block pointer.
6653 if (state.isProcessingDeclSpec()) {
6654 Declarator &D = state.getDeclarator();
6655 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6656 /*onlyBlockPointers=*/true))
6657 return false;
6661 Sema &S = state.getSema();
6662 SourceLocation AttrLoc = attr.getLoc();
6663 if (AttrLoc.isMacroID())
6664 AttrLoc =
6665 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6667 if (!attr.isArgIdent(0)) {
6668 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6669 << AANT_ArgumentString;
6670 attr.setInvalid();
6671 return true;
6674 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6675 Qualifiers::ObjCLifetime lifetime;
6676 if (II->isStr("none"))
6677 lifetime = Qualifiers::OCL_ExplicitNone;
6678 else if (II->isStr("strong"))
6679 lifetime = Qualifiers::OCL_Strong;
6680 else if (II->isStr("weak"))
6681 lifetime = Qualifiers::OCL_Weak;
6682 else if (II->isStr("autoreleasing"))
6683 lifetime = Qualifiers::OCL_Autoreleasing;
6684 else {
6685 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6686 attr.setInvalid();
6687 return true;
6690 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6691 // outside of ARC mode.
6692 if (!S.getLangOpts().ObjCAutoRefCount &&
6693 lifetime != Qualifiers::OCL_Weak &&
6694 lifetime != Qualifiers::OCL_ExplicitNone) {
6695 return true;
6698 SplitQualType underlyingType = type.split();
6700 // Check for redundant/conflicting ownership qualifiers.
6701 if (Qualifiers::ObjCLifetime previousLifetime
6702 = type.getQualifiers().getObjCLifetime()) {
6703 // If it's written directly, that's an error.
6704 if (S.Context.hasDirectOwnershipQualifier(type)) {
6705 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6706 << type;
6707 return true;
6710 // Otherwise, if the qualifiers actually conflict, pull sugar off
6711 // and remove the ObjCLifetime qualifiers.
6712 if (previousLifetime != lifetime) {
6713 // It's possible to have multiple local ObjCLifetime qualifiers. We
6714 // can't stop after we reach a type that is directly qualified.
6715 const Type *prevTy = nullptr;
6716 while (!prevTy || prevTy != underlyingType.Ty) {
6717 prevTy = underlyingType.Ty;
6718 underlyingType = underlyingType.getSingleStepDesugaredType();
6720 underlyingType.Quals.removeObjCLifetime();
6724 underlyingType.Quals.addObjCLifetime(lifetime);
6726 if (NonObjCPointer) {
6727 StringRef name = attr.getAttrName()->getName();
6728 switch (lifetime) {
6729 case Qualifiers::OCL_None:
6730 case Qualifiers::OCL_ExplicitNone:
6731 break;
6732 case Qualifiers::OCL_Strong: name = "__strong"; break;
6733 case Qualifiers::OCL_Weak: name = "__weak"; break;
6734 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6736 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6737 << TDS_ObjCObjOrBlock << type;
6740 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6741 // because having both 'T' and '__unsafe_unretained T' exist in the type
6742 // system causes unfortunate widespread consistency problems. (For example,
6743 // they're not considered compatible types, and we mangle them identicially
6744 // as template arguments.) These problems are all individually fixable,
6745 // but it's easier to just not add the qualifier and instead sniff it out
6746 // in specific places using isObjCInertUnsafeUnretainedType().
6748 // Doing this does means we miss some trivial consistency checks that
6749 // would've triggered in ARC, but that's better than trying to solve all
6750 // the coexistence problems with __unsafe_unretained.
6751 if (!S.getLangOpts().ObjCAutoRefCount &&
6752 lifetime == Qualifiers::OCL_ExplicitNone) {
6753 type = state.getAttributedType(
6754 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6755 type, type);
6756 return true;
6759 QualType origType = type;
6760 if (!NonObjCPointer)
6761 type = S.Context.getQualifiedType(underlyingType);
6763 // If we have a valid source location for the attribute, use an
6764 // AttributedType instead.
6765 if (AttrLoc.isValid()) {
6766 type = state.getAttributedType(::new (S.Context)
6767 ObjCOwnershipAttr(S.Context, attr, II),
6768 origType, type);
6771 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6772 unsigned diagnostic, QualType type) {
6773 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6774 S.DelayedDiagnostics.add(
6775 sema::DelayedDiagnostic::makeForbiddenType(
6776 S.getSourceManager().getExpansionLoc(loc),
6777 diagnostic, type, /*ignored*/ 0));
6778 } else {
6779 S.Diag(loc, diagnostic);
6783 // Sometimes, __weak isn't allowed.
6784 if (lifetime == Qualifiers::OCL_Weak &&
6785 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6787 // Use a specialized diagnostic if the runtime just doesn't support them.
6788 unsigned diagnostic =
6789 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6790 : diag::err_arc_weak_no_runtime);
6792 // In any case, delay the diagnostic until we know what we're parsing.
6793 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6795 attr.setInvalid();
6796 return true;
6799 // Forbid __weak for class objects marked as
6800 // objc_arc_weak_reference_unavailable
6801 if (lifetime == Qualifiers::OCL_Weak) {
6802 if (const ObjCObjectPointerType *ObjT =
6803 type->getAs<ObjCObjectPointerType>()) {
6804 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6805 if (Class->isArcWeakrefUnavailable()) {
6806 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6807 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6808 diag::note_class_declared);
6814 return true;
6817 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6818 /// attribute on the specified type. Returns true to indicate that
6819 /// the attribute was handled, false to indicate that the type does
6820 /// not permit the attribute.
6821 static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6822 QualType &type) {
6823 Sema &S = state.getSema();
6825 // Delay if this isn't some kind of pointer.
6826 if (!type->isPointerType() &&
6827 !type->isObjCObjectPointerType() &&
6828 !type->isBlockPointerType())
6829 return false;
6831 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6832 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6833 attr.setInvalid();
6834 return true;
6837 // Check the attribute arguments.
6838 if (!attr.isArgIdent(0)) {
6839 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6840 << attr << AANT_ArgumentString;
6841 attr.setInvalid();
6842 return true;
6844 Qualifiers::GC GCAttr;
6845 if (attr.getNumArgs() > 1) {
6846 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6847 << 1;
6848 attr.setInvalid();
6849 return true;
6852 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6853 if (II->isStr("weak"))
6854 GCAttr = Qualifiers::Weak;
6855 else if (II->isStr("strong"))
6856 GCAttr = Qualifiers::Strong;
6857 else {
6858 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6859 << attr << II;
6860 attr.setInvalid();
6861 return true;
6864 QualType origType = type;
6865 type = S.Context.getObjCGCQualType(origType, GCAttr);
6867 // Make an attributed type to preserve the source information.
6868 if (attr.getLoc().isValid())
6869 type = state.getAttributedType(
6870 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6872 return true;
6875 namespace {
6876 /// A helper class to unwrap a type down to a function for the
6877 /// purposes of applying attributes there.
6879 /// Use:
6880 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6881 /// if (unwrapped.isFunctionType()) {
6882 /// const FunctionType *fn = unwrapped.get();
6883 /// // change fn somehow
6884 /// T = unwrapped.wrap(fn);
6885 /// }
6886 struct FunctionTypeUnwrapper {
6887 enum WrapKind {
6888 Desugar,
6889 Attributed,
6890 Parens,
6891 Array,
6892 Pointer,
6893 BlockPointer,
6894 Reference,
6895 MemberPointer,
6896 MacroQualified,
6899 QualType Original;
6900 const FunctionType *Fn;
6901 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6903 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6904 while (true) {
6905 const Type *Ty = T.getTypePtr();
6906 if (isa<FunctionType>(Ty)) {
6907 Fn = cast<FunctionType>(Ty);
6908 return;
6909 } else if (isa<ParenType>(Ty)) {
6910 T = cast<ParenType>(Ty)->getInnerType();
6911 Stack.push_back(Parens);
6912 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6913 isa<IncompleteArrayType>(Ty)) {
6914 T = cast<ArrayType>(Ty)->getElementType();
6915 Stack.push_back(Array);
6916 } else if (isa<PointerType>(Ty)) {
6917 T = cast<PointerType>(Ty)->getPointeeType();
6918 Stack.push_back(Pointer);
6919 } else if (isa<BlockPointerType>(Ty)) {
6920 T = cast<BlockPointerType>(Ty)->getPointeeType();
6921 Stack.push_back(BlockPointer);
6922 } else if (isa<MemberPointerType>(Ty)) {
6923 T = cast<MemberPointerType>(Ty)->getPointeeType();
6924 Stack.push_back(MemberPointer);
6925 } else if (isa<ReferenceType>(Ty)) {
6926 T = cast<ReferenceType>(Ty)->getPointeeType();
6927 Stack.push_back(Reference);
6928 } else if (isa<AttributedType>(Ty)) {
6929 T = cast<AttributedType>(Ty)->getEquivalentType();
6930 Stack.push_back(Attributed);
6931 } else if (isa<MacroQualifiedType>(Ty)) {
6932 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6933 Stack.push_back(MacroQualified);
6934 } else {
6935 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6936 if (Ty == DTy) {
6937 Fn = nullptr;
6938 return;
6941 T = QualType(DTy, 0);
6942 Stack.push_back(Desugar);
6947 bool isFunctionType() const { return (Fn != nullptr); }
6948 const FunctionType *get() const { return Fn; }
6950 QualType wrap(Sema &S, const FunctionType *New) {
6951 // If T wasn't modified from the unwrapped type, do nothing.
6952 if (New == get()) return Original;
6954 Fn = New;
6955 return wrap(S.Context, Original, 0);
6958 private:
6959 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6960 if (I == Stack.size())
6961 return C.getQualifiedType(Fn, Old.getQualifiers());
6963 // Build up the inner type, applying the qualifiers from the old
6964 // type to the new type.
6965 SplitQualType SplitOld = Old.split();
6967 // As a special case, tail-recurse if there are no qualifiers.
6968 if (SplitOld.Quals.empty())
6969 return wrap(C, SplitOld.Ty, I);
6970 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6973 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6974 if (I == Stack.size()) return QualType(Fn, 0);
6976 switch (static_cast<WrapKind>(Stack[I++])) {
6977 case Desugar:
6978 // This is the point at which we potentially lose source
6979 // information.
6980 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6982 case Attributed:
6983 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6985 case Parens: {
6986 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6987 return C.getParenType(New);
6990 case MacroQualified:
6991 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6993 case Array: {
6994 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6995 QualType New = wrap(C, CAT->getElementType(), I);
6996 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6997 CAT->getSizeModifier(),
6998 CAT->getIndexTypeCVRQualifiers());
7001 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
7002 QualType New = wrap(C, VAT->getElementType(), I);
7003 return C.getVariableArrayType(
7004 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
7005 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
7008 const auto *IAT = cast<IncompleteArrayType>(Old);
7009 QualType New = wrap(C, IAT->getElementType(), I);
7010 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
7011 IAT->getIndexTypeCVRQualifiers());
7014 case Pointer: {
7015 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
7016 return C.getPointerType(New);
7019 case BlockPointer: {
7020 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
7021 return C.getBlockPointerType(New);
7024 case MemberPointer: {
7025 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
7026 QualType New = wrap(C, OldMPT->getPointeeType(), I);
7027 return C.getMemberPointerType(New, OldMPT->getClass());
7030 case Reference: {
7031 const ReferenceType *OldRef = cast<ReferenceType>(Old);
7032 QualType New = wrap(C, OldRef->getPointeeType(), I);
7033 if (isa<LValueReferenceType>(OldRef))
7034 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
7035 else
7036 return C.getRValueReferenceType(New);
7040 llvm_unreachable("unknown wrapping kind");
7043 } // end anonymous namespace
7045 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7046 ParsedAttr &PAttr, QualType &Type) {
7047 Sema &S = State.getSema();
7049 Attr *A;
7050 switch (PAttr.getKind()) {
7051 default: llvm_unreachable("Unknown attribute kind");
7052 case ParsedAttr::AT_Ptr32:
7053 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7054 break;
7055 case ParsedAttr::AT_Ptr64:
7056 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7057 break;
7058 case ParsedAttr::AT_SPtr:
7059 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7060 break;
7061 case ParsedAttr::AT_UPtr:
7062 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7063 break;
7066 std::bitset<attr::LastAttr> Attrs;
7067 QualType Desugared = Type;
7068 for (;;) {
7069 if (const TypedefType *TT = dyn_cast<TypedefType>(Desugared)) {
7070 Desugared = TT->desugar();
7071 continue;
7072 } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Desugared)) {
7073 Desugared = ET->desugar();
7074 continue;
7076 const AttributedType *AT = dyn_cast<AttributedType>(Desugared);
7077 if (!AT)
7078 break;
7079 Attrs[AT->getAttrKind()] = true;
7080 Desugared = AT->getModifiedType();
7083 // You cannot specify duplicate type attributes, so if the attribute has
7084 // already been applied, flag it.
7085 attr::Kind NewAttrKind = A->getKind();
7086 if (Attrs[NewAttrKind]) {
7087 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7088 return true;
7090 Attrs[NewAttrKind] = true;
7092 // You cannot have both __sptr and __uptr on the same type, nor can you
7093 // have __ptr32 and __ptr64.
7094 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7095 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7096 << "'__ptr32'"
7097 << "'__ptr64'" << /*isRegularKeyword=*/0;
7098 return true;
7099 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7100 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7101 << "'__sptr'"
7102 << "'__uptr'" << /*isRegularKeyword=*/0;
7103 return true;
7106 // Check the raw (i.e., desugared) Canonical type to see if it
7107 // is a pointer type.
7108 if (!isa<PointerType>(Desugared)) {
7109 // Pointer type qualifiers can only operate on pointer types, but not
7110 // pointer-to-member types.
7111 if (Type->isMemberPointerType())
7112 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7113 else
7114 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7115 return true;
7118 // Add address space to type based on its attributes.
7119 LangAS ASIdx = LangAS::Default;
7120 uint64_t PtrWidth =
7121 S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
7122 if (PtrWidth == 32) {
7123 if (Attrs[attr::Ptr64])
7124 ASIdx = LangAS::ptr64;
7125 else if (Attrs[attr::UPtr])
7126 ASIdx = LangAS::ptr32_uptr;
7127 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7128 if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr])
7129 ASIdx = LangAS::ptr32_uptr;
7130 else
7131 ASIdx = LangAS::ptr32_sptr;
7134 QualType Pointee = Type->getPointeeType();
7135 if (ASIdx != LangAS::Default)
7136 Pointee = S.Context.getAddrSpaceQualType(
7137 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7138 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7139 return false;
7142 static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7143 QualType &QT, ParsedAttr &PAttr) {
7144 assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7146 Sema &S = State.getSema();
7147 Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7149 std::bitset<attr::LastAttr> Attrs;
7150 attr::Kind NewAttrKind = A->getKind();
7151 const auto *AT = dyn_cast<AttributedType>(QT);
7152 while (AT) {
7153 Attrs[AT->getAttrKind()] = true;
7154 AT = dyn_cast<AttributedType>(AT->getModifiedType());
7157 // You cannot specify duplicate type attributes, so if the attribute has
7158 // already been applied, flag it.
7159 if (Attrs[NewAttrKind]) {
7160 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7161 return true;
7164 // Add address space to type based on its attributes.
7165 LangAS ASIdx = LangAS::wasm_funcref;
7166 QualType Pointee = QT->getPointeeType();
7167 Pointee = S.Context.getAddrSpaceQualType(
7168 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7169 QT = State.getAttributedType(A, QT, S.Context.getPointerType(Pointee));
7170 return false;
7173 static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL,
7174 QualType &QT, ParsedAttr &PAttr) {
7175 if (TAL == TAL_DeclName)
7176 return;
7178 Sema &S = State.getSema();
7179 auto &D = State.getDeclarator();
7181 // If the attribute appears in declaration specifiers
7182 // it should be handled as a declaration attribute,
7183 // unless it's associated with a type or a function
7184 // prototype (i.e. appears on a parameter or result type).
7185 if (State.isProcessingDeclSpec()) {
7186 if (!(D.isPrototypeContext() ||
7187 D.getContext() == DeclaratorContext::TypeName))
7188 return;
7190 if (auto *chunk = D.getInnermostNonParenChunk()) {
7191 moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7192 const_cast<DeclaratorChunk *>(chunk)->getAttrs());
7193 return;
7197 StringRef Str;
7198 if (!S.checkStringLiteralArgumentAttr(PAttr, 0, Str)) {
7199 PAttr.setInvalid();
7200 return;
7203 // If the attribute as attached to a paren move it closer to
7204 // the declarator. This can happen in block declarations when
7205 // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`.
7207 // Note that it's actually invalid to use GNU style attributes
7208 // in a block but such cases are currently handled gracefully
7209 // but the parser and behavior should be consistent between
7210 // cases when attribute appears before/after block's result
7211 // type and inside (^).
7212 if (TAL == TAL_DeclChunk) {
7213 auto chunkIdx = State.getCurrentChunkIndex();
7214 if (chunkIdx >= 1 &&
7215 D.getTypeObject(chunkIdx).Kind == DeclaratorChunk::Paren) {
7216 moveAttrFromListToList(PAttr, State.getCurrentAttributes(),
7217 D.getTypeObject(chunkIdx - 1).getAttrs());
7218 return;
7222 auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str);
7223 QT = State.getAttributedType(A, QT, QT);
7224 PAttr.setUsedAsTypeAttr();
7227 /// Rebuild an attributed type without the nullability attribute on it.
7228 static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7229 QualType Type) {
7230 auto Attributed = dyn_cast<AttributedType>(Type.getTypePtr());
7231 if (!Attributed)
7232 return Type;
7234 // Skip the nullability attribute; we're done.
7235 if (Attributed->getImmediateNullability())
7236 return Attributed->getModifiedType();
7238 // Build the modified type.
7239 QualType Modified = rebuildAttributedTypeWithoutNullability(
7240 Ctx, Attributed->getModifiedType());
7241 assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7242 return Ctx.getAttributedType(Attributed->getAttrKind(), Modified,
7243 Attributed->getEquivalentType(),
7244 Attributed->getAttr());
7247 /// Map a nullability attribute kind to a nullability kind.
7248 static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7249 switch (kind) {
7250 case ParsedAttr::AT_TypeNonNull:
7251 return NullabilityKind::NonNull;
7253 case ParsedAttr::AT_TypeNullable:
7254 return NullabilityKind::Nullable;
7256 case ParsedAttr::AT_TypeNullableResult:
7257 return NullabilityKind::NullableResult;
7259 case ParsedAttr::AT_TypeNullUnspecified:
7260 return NullabilityKind::Unspecified;
7262 default:
7263 llvm_unreachable("not a nullability attribute kind");
7267 static bool CheckNullabilityTypeSpecifier(
7268 Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7269 NullabilityKind Nullability, SourceLocation NullabilityLoc,
7270 bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7271 bool Implicit = (State == nullptr);
7272 if (!Implicit)
7273 recordNullabilitySeen(S, NullabilityLoc);
7275 // Check for existing nullability attributes on the type.
7276 QualType Desugared = QT;
7277 while (auto *Attributed = dyn_cast<AttributedType>(Desugared.getTypePtr())) {
7278 // Check whether there is already a null
7279 if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7280 // Duplicated nullability.
7281 if (Nullability == *ExistingNullability) {
7282 if (Implicit)
7283 break;
7285 S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7286 << DiagNullabilityKind(Nullability, IsContextSensitive)
7287 << FixItHint::CreateRemoval(NullabilityLoc);
7289 break;
7292 if (!OverrideExisting) {
7293 // Conflicting nullability.
7294 S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7295 << DiagNullabilityKind(Nullability, IsContextSensitive)
7296 << DiagNullabilityKind(*ExistingNullability, false);
7297 return true;
7300 // Rebuild the attributed type, dropping the existing nullability.
7301 QT = rebuildAttributedTypeWithoutNullability(S.Context, QT);
7304 Desugared = Attributed->getModifiedType();
7307 // If there is already a different nullability specifier, complain.
7308 // This (unlike the code above) looks through typedefs that might
7309 // have nullability specifiers on them, which means we cannot
7310 // provide a useful Fix-It.
7311 if (auto ExistingNullability = Desugared->getNullability()) {
7312 if (Nullability != *ExistingNullability && !Implicit) {
7313 S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7314 << DiagNullabilityKind(Nullability, IsContextSensitive)
7315 << DiagNullabilityKind(*ExistingNullability, false);
7317 // Try to find the typedef with the existing nullability specifier.
7318 if (auto TT = Desugared->getAs<TypedefType>()) {
7319 TypedefNameDecl *typedefDecl = TT->getDecl();
7320 QualType underlyingType = typedefDecl->getUnderlyingType();
7321 if (auto typedefNullability =
7322 AttributedType::stripOuterNullability(underlyingType)) {
7323 if (*typedefNullability == *ExistingNullability) {
7324 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7325 << DiagNullabilityKind(*ExistingNullability, false);
7330 return true;
7334 // If this definitely isn't a pointer type, reject the specifier.
7335 if (!Desugared->canHaveNullability() &&
7336 !(AllowOnArrayType && Desugared->isArrayType())) {
7337 if (!Implicit)
7338 S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7339 << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7341 return true;
7344 // For the context-sensitive keywords/Objective-C property
7345 // attributes, require that the type be a single-level pointer.
7346 if (IsContextSensitive) {
7347 // Make sure that the pointee isn't itself a pointer type.
7348 const Type *pointeeType = nullptr;
7349 if (Desugared->isArrayType())
7350 pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7351 else if (Desugared->isAnyPointerType())
7352 pointeeType = Desugared->getPointeeType().getTypePtr();
7354 if (pointeeType && (pointeeType->isAnyPointerType() ||
7355 pointeeType->isObjCObjectPointerType() ||
7356 pointeeType->isMemberPointerType())) {
7357 S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7358 << DiagNullabilityKind(Nullability, true) << QT;
7359 S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7360 << DiagNullabilityKind(Nullability, false) << QT
7361 << FixItHint::CreateReplacement(NullabilityLoc,
7362 getNullabilitySpelling(Nullability));
7363 return true;
7367 // Form the attributed type.
7368 if (State) {
7369 assert(PAttr);
7370 Attr *A = createNullabilityAttr(S.Context, *PAttr, Nullability);
7371 QT = State->getAttributedType(A, QT, QT);
7372 } else {
7373 QT = S.Context.getAttributedType(Nullability, QT, QT);
7375 return false;
7378 static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7379 QualType &Type, ParsedAttr &Attr,
7380 bool AllowOnArrayType) {
7381 NullabilityKind Nullability = mapNullabilityAttrKind(Attr.getKind());
7382 SourceLocation NullabilityLoc = Attr.getLoc();
7383 bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7385 return CheckNullabilityTypeSpecifier(State.getSema(), &State, &Attr, Type,
7386 Nullability, NullabilityLoc,
7387 IsContextSensitive, AllowOnArrayType,
7388 /*overrideExisting*/ false);
7391 bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7392 NullabilityKind Nullability,
7393 SourceLocation DiagLoc,
7394 bool AllowArrayTypes,
7395 bool OverrideExisting) {
7396 return CheckNullabilityTypeSpecifier(
7397 *this, nullptr, nullptr, Type, Nullability, DiagLoc,
7398 /*isContextSensitive*/ false, AllowArrayTypes, OverrideExisting);
7401 /// Check the application of the Objective-C '__kindof' qualifier to
7402 /// the given type.
7403 static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7404 ParsedAttr &attr) {
7405 Sema &S = state.getSema();
7407 if (isa<ObjCTypeParamType>(type)) {
7408 // Build the attributed type to record where __kindof occurred.
7409 type = state.getAttributedType(
7410 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7411 return false;
7414 // Find out if it's an Objective-C object or object pointer type;
7415 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7416 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7417 : type->getAs<ObjCObjectType>();
7419 // If not, we can't apply __kindof.
7420 if (!objType) {
7421 // FIXME: Handle dependent types that aren't yet object types.
7422 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7423 << type;
7424 return true;
7427 // Rebuild the "equivalent" type, which pushes __kindof down into
7428 // the object type.
7429 // There is no need to apply kindof on an unqualified id type.
7430 QualType equivType = S.Context.getObjCObjectType(
7431 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7432 objType->getProtocols(),
7433 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7435 // If we started with an object pointer type, rebuild it.
7436 if (ptrType) {
7437 equivType = S.Context.getObjCObjectPointerType(equivType);
7438 if (auto nullability = type->getNullability()) {
7439 // We create a nullability attribute from the __kindof attribute.
7440 // Make sure that will make sense.
7441 assert(attr.getAttributeSpellingListIndex() == 0 &&
7442 "multiple spellings for __kindof?");
7443 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7444 A->setImplicit(true);
7445 equivType = state.getAttributedType(A, equivType, equivType);
7449 // Build the attributed type to record where __kindof occurred.
7450 type = state.getAttributedType(
7451 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7452 return false;
7455 /// Distribute a nullability type attribute that cannot be applied to
7456 /// the type specifier to a pointer, block pointer, or member pointer
7457 /// declarator, complaining if necessary.
7459 /// \returns true if the nullability annotation was distributed, false
7460 /// otherwise.
7461 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7462 QualType type, ParsedAttr &attr) {
7463 Declarator &declarator = state.getDeclarator();
7465 /// Attempt to move the attribute to the specified chunk.
7466 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7467 // If there is already a nullability attribute there, don't add
7468 // one.
7469 if (hasNullabilityAttr(chunk.getAttrs()))
7470 return false;
7472 // Complain about the nullability qualifier being in the wrong
7473 // place.
7474 enum {
7475 PK_Pointer,
7476 PK_BlockPointer,
7477 PK_MemberPointer,
7478 PK_FunctionPointer,
7479 PK_MemberFunctionPointer,
7480 } pointerKind
7481 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7482 : PK_Pointer)
7483 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7484 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7486 auto diag = state.getSema().Diag(attr.getLoc(),
7487 diag::warn_nullability_declspec)
7488 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7489 attr.isContextSensitiveKeywordAttribute())
7490 << type
7491 << static_cast<unsigned>(pointerKind);
7493 // FIXME: MemberPointer chunks don't carry the location of the *.
7494 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7495 diag << FixItHint::CreateRemoval(attr.getLoc())
7496 << FixItHint::CreateInsertion(
7497 state.getSema().getPreprocessor().getLocForEndOfToken(
7498 chunk.Loc),
7499 " " + attr.getAttrName()->getName().str() + " ");
7502 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7503 chunk.getAttrs());
7504 return true;
7507 // Move it to the outermost pointer, member pointer, or block
7508 // pointer declarator.
7509 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7510 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7511 switch (chunk.Kind) {
7512 case DeclaratorChunk::Pointer:
7513 case DeclaratorChunk::BlockPointer:
7514 case DeclaratorChunk::MemberPointer:
7515 return moveToChunk(chunk, false);
7517 case DeclaratorChunk::Paren:
7518 case DeclaratorChunk::Array:
7519 continue;
7521 case DeclaratorChunk::Function:
7522 // Try to move past the return type to a function/block/member
7523 // function pointer.
7524 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7525 declarator, i,
7526 /*onlyBlockPointers=*/false)) {
7527 return moveToChunk(*dest, true);
7530 return false;
7532 // Don't walk through these.
7533 case DeclaratorChunk::Reference:
7534 case DeclaratorChunk::Pipe:
7535 return false;
7539 return false;
7542 static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7543 assert(!Attr.isInvalid());
7544 switch (Attr.getKind()) {
7545 default:
7546 llvm_unreachable("not a calling convention attribute");
7547 case ParsedAttr::AT_CDecl:
7548 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7549 case ParsedAttr::AT_FastCall:
7550 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7551 case ParsedAttr::AT_StdCall:
7552 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7553 case ParsedAttr::AT_ThisCall:
7554 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7555 case ParsedAttr::AT_RegCall:
7556 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7557 case ParsedAttr::AT_Pascal:
7558 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7559 case ParsedAttr::AT_SwiftCall:
7560 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7561 case ParsedAttr::AT_SwiftAsyncCall:
7562 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7563 case ParsedAttr::AT_VectorCall:
7564 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7565 case ParsedAttr::AT_AArch64VectorPcs:
7566 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7567 case ParsedAttr::AT_AArch64SVEPcs:
7568 return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7569 case ParsedAttr::AT_ArmStreaming:
7570 return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7571 case ParsedAttr::AT_AMDGPUKernelCall:
7572 return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7573 case ParsedAttr::AT_Pcs: {
7574 // The attribute may have had a fixit applied where we treated an
7575 // identifier as a string literal. The contents of the string are valid,
7576 // but the form may not be.
7577 StringRef Str;
7578 if (Attr.isArgExpr(0))
7579 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7580 else
7581 Str = Attr.getArgAsIdent(0)->Ident->getName();
7582 PcsAttr::PCSType Type;
7583 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7584 llvm_unreachable("already validated the attribute");
7585 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7587 case ParsedAttr::AT_IntelOclBicc:
7588 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7589 case ParsedAttr::AT_MSABI:
7590 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7591 case ParsedAttr::AT_SysVABI:
7592 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7593 case ParsedAttr::AT_PreserveMost:
7594 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7595 case ParsedAttr::AT_PreserveAll:
7596 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7597 case ParsedAttr::AT_M68kRTD:
7598 return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7599 case ParsedAttr::AT_PreserveNone:
7600 return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7601 case ParsedAttr::AT_RISCVVectorCC:
7602 return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr);
7604 llvm_unreachable("unexpected attribute kind!");
7607 std::optional<FunctionEffectMode>
7608 Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) {
7609 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent())
7610 return FunctionEffectMode::Dependent;
7612 std::optional<llvm::APSInt> ConditionValue =
7613 CondExpr->getIntegerConstantExpr(Context);
7614 if (!ConditionValue) {
7615 // FIXME: err_attribute_argument_type doesn't quote the attribute
7616 // name but needs to; users are inconsistent.
7617 Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type)
7618 << AttributeName << AANT_ArgumentIntegerConstant
7619 << CondExpr->getSourceRange();
7620 return std::nullopt;
7622 return !ConditionValue->isZero() ? FunctionEffectMode::True
7623 : FunctionEffectMode::False;
7626 static bool
7627 handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState,
7628 ParsedAttr &PAttr, QualType &QT,
7629 FunctionTypeUnwrapper &Unwrapped) {
7630 // Delay if this is not a function type.
7631 if (!Unwrapped.isFunctionType())
7632 return false;
7634 Sema &S = TPState.getSema();
7636 // Require FunctionProtoType.
7637 auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>();
7638 if (FPT == nullptr) {
7639 S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype)
7640 << PAttr.getAttrName()->getName();
7641 return true;
7644 // Parse the new attribute.
7645 // non/blocking or non/allocating? Or conditional (computed)?
7646 bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7647 PAttr.getKind() == ParsedAttr::AT_Blocking;
7649 FunctionEffectMode NewMode = FunctionEffectMode::None;
7650 Expr *CondExpr = nullptr; // only valid if dependent
7652 if (PAttr.getKind() == ParsedAttr::AT_NonBlocking ||
7653 PAttr.getKind() == ParsedAttr::AT_NonAllocating) {
7654 if (!PAttr.checkAtMostNumArgs(S, 1)) {
7655 PAttr.setInvalid();
7656 return true;
7659 // Parse the condition, if any.
7660 if (PAttr.getNumArgs() == 1) {
7661 CondExpr = PAttr.getArgAsExpr(0);
7662 std::optional<FunctionEffectMode> MaybeMode =
7663 S.ActOnEffectExpression(CondExpr, PAttr.getAttrName()->getName());
7664 if (!MaybeMode) {
7665 PAttr.setInvalid();
7666 return true;
7668 NewMode = *MaybeMode;
7669 if (NewMode != FunctionEffectMode::Dependent)
7670 CondExpr = nullptr;
7671 } else {
7672 NewMode = FunctionEffectMode::True;
7674 } else {
7675 // This is the `blocking` or `allocating` attribute.
7676 if (S.CheckAttrNoArgs(PAttr)) {
7677 // The attribute has been marked invalid.
7678 return true;
7680 NewMode = FunctionEffectMode::False;
7683 const FunctionEffect::Kind FEKind =
7684 (NewMode == FunctionEffectMode::False)
7685 ? (IsNonBlocking ? FunctionEffect::Kind::Blocking
7686 : FunctionEffect::Kind::Allocating)
7687 : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking
7688 : FunctionEffect::Kind::NonAllocating);
7689 const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind),
7690 EffectConditionExpr(CondExpr)};
7692 if (S.diagnoseConflictingFunctionEffect(FPT->getFunctionEffects(), NewEC,
7693 PAttr.getLoc())) {
7694 PAttr.setInvalid();
7695 return true;
7698 // Add the effect to the FunctionProtoType.
7699 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7700 FunctionEffectSet FX(EPI.FunctionEffects);
7701 FunctionEffectSet::Conflicts Errs;
7702 [[maybe_unused]] bool Success = FX.insert(NewEC, Errs);
7703 assert(Success && "effect conflicts should have been diagnosed above");
7704 EPI.FunctionEffects = FunctionEffectsRef(FX);
7706 QualType NewType = S.Context.getFunctionType(FPT->getReturnType(),
7707 FPT->getParamTypes(), EPI);
7708 QT = Unwrapped.wrap(S, NewType->getAs<FunctionType>());
7709 return true;
7712 static bool checkMutualExclusion(TypeProcessingState &state,
7713 const FunctionProtoType::ExtProtoInfo &EPI,
7714 ParsedAttr &Attr,
7715 AttributeCommonInfo::Kind OtherKind) {
7716 auto OtherAttr = std::find_if(
7717 state.getCurrentAttributes().begin(), state.getCurrentAttributes().end(),
7718 [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7719 if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7720 return false;
7722 Sema &S = state.getSema();
7723 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7724 << *OtherAttr << Attr
7725 << (OtherAttr->isRegularKeywordAttribute() ||
7726 Attr.isRegularKeywordAttribute());
7727 S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7728 Attr.setInvalid();
7729 return true;
7732 static bool handleArmStateAttribute(Sema &S,
7733 FunctionProtoType::ExtProtoInfo &EPI,
7734 ParsedAttr &Attr,
7735 FunctionType::ArmStateValue State) {
7736 if (!Attr.getNumArgs()) {
7737 S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7738 Attr.setInvalid();
7739 return true;
7742 for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7743 StringRef StateName;
7744 SourceLocation LiteralLoc;
7745 if (!S.checkStringLiteralArgumentAttr(Attr, I, StateName, &LiteralLoc))
7746 return true;
7748 unsigned Shift;
7749 FunctionType::ArmStateValue ExistingState;
7750 if (StateName == "za") {
7751 Shift = FunctionType::SME_ZAShift;
7752 ExistingState = FunctionType::getArmZAState(EPI.AArch64SMEAttributes);
7753 } else if (StateName == "zt0") {
7754 Shift = FunctionType::SME_ZT0Shift;
7755 ExistingState = FunctionType::getArmZT0State(EPI.AArch64SMEAttributes);
7756 } else {
7757 S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7758 Attr.setInvalid();
7759 return true;
7762 // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7763 // are all mutually exclusive for the same S, so check if there are
7764 // conflicting attributes.
7765 if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7766 S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7767 << StateName;
7768 Attr.setInvalid();
7769 return true;
7772 EPI.setArmSMEAttribute(
7773 (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7775 return false;
7778 /// Process an individual function attribute. Returns true to
7779 /// indicate that the attribute was handled, false if it wasn't.
7780 static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7781 QualType &type, CUDAFunctionTarget CFT) {
7782 Sema &S = state.getSema();
7784 FunctionTypeUnwrapper unwrapped(S, type);
7786 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7787 if (S.CheckAttrNoArgs(attr))
7788 return true;
7790 // Delay if this is not a function type.
7791 if (!unwrapped.isFunctionType())
7792 return false;
7794 // Otherwise we can process right away.
7795 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7796 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7797 return true;
7800 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7801 // Delay if this is not a function type.
7802 if (!unwrapped.isFunctionType())
7803 return false;
7805 // Ignore if we don't have CMSE enabled.
7806 if (!S.getLangOpts().Cmse) {
7807 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7808 attr.setInvalid();
7809 return true;
7812 // Otherwise we can process right away.
7813 FunctionType::ExtInfo EI =
7814 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7815 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7816 return true;
7819 // ns_returns_retained is not always a type attribute, but if we got
7820 // here, we're treating it as one right now.
7821 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7822 if (attr.getNumArgs()) return true;
7824 // Delay if this is not a function type.
7825 if (!unwrapped.isFunctionType())
7826 return false;
7828 // Check whether the return type is reasonable.
7829 if (S.ObjC().checkNSReturnsRetainedReturnType(
7830 attr.getLoc(), unwrapped.get()->getReturnType()))
7831 return true;
7833 // Only actually change the underlying type in ARC builds.
7834 QualType origType = type;
7835 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7836 FunctionType::ExtInfo EI
7837 = unwrapped.get()->getExtInfo().withProducesResult(true);
7838 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7840 type = state.getAttributedType(
7841 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7842 origType, type);
7843 return true;
7846 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7847 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7848 return true;
7850 // Delay if this is not a function type.
7851 if (!unwrapped.isFunctionType())
7852 return false;
7854 FunctionType::ExtInfo EI =
7855 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7856 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7857 return true;
7860 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7861 if (!S.getLangOpts().CFProtectionBranch) {
7862 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7863 attr.setInvalid();
7864 return true;
7867 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7868 return true;
7870 // If this is not a function type, warning will be asserted by subject
7871 // check.
7872 if (!unwrapped.isFunctionType())
7873 return true;
7875 FunctionType::ExtInfo EI =
7876 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7877 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7878 return true;
7881 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7882 unsigned value;
7883 if (S.CheckRegparmAttr(attr, value))
7884 return true;
7886 // Delay if this is not a function type.
7887 if (!unwrapped.isFunctionType())
7888 return false;
7890 // Diagnose regparm with fastcall.
7891 const FunctionType *fn = unwrapped.get();
7892 CallingConv CC = fn->getCallConv();
7893 if (CC == CC_X86FastCall) {
7894 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7895 << FunctionType::getNameForCallConv(CC) << "regparm"
7896 << attr.isRegularKeywordAttribute();
7897 attr.setInvalid();
7898 return true;
7901 FunctionType::ExtInfo EI =
7902 unwrapped.get()->getExtInfo().withRegParm(value);
7903 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7904 return true;
7907 if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7908 attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
7909 attr.getKind() == ParsedAttr::AT_ArmPreserves ||
7910 attr.getKind() == ParsedAttr::AT_ArmIn ||
7911 attr.getKind() == ParsedAttr::AT_ArmOut ||
7912 attr.getKind() == ParsedAttr::AT_ArmInOut) {
7913 if (S.CheckAttrTarget(attr))
7914 return true;
7916 if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
7917 attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
7918 if (S.CheckAttrNoArgs(attr))
7919 return true;
7921 if (!unwrapped.isFunctionType())
7922 return false;
7924 const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
7925 if (!FnTy) {
7926 // SME ACLE attributes are not supported on K&R-style unprototyped C
7927 // functions.
7928 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
7929 attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
7930 attr.setInvalid();
7931 return false;
7934 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
7935 switch (attr.getKind()) {
7936 case ParsedAttr::AT_ArmStreaming:
7937 if (checkMutualExclusion(state, EPI, attr,
7938 ParsedAttr::AT_ArmStreamingCompatible))
7939 return true;
7940 EPI.setArmSMEAttribute(FunctionType::SME_PStateSMEnabledMask);
7941 break;
7942 case ParsedAttr::AT_ArmStreamingCompatible:
7943 if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
7944 return true;
7945 EPI.setArmSMEAttribute(FunctionType::SME_PStateSMCompatibleMask);
7946 break;
7947 case ParsedAttr::AT_ArmPreserves:
7948 if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Preserves))
7949 return true;
7950 break;
7951 case ParsedAttr::AT_ArmIn:
7952 if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_In))
7953 return true;
7954 break;
7955 case ParsedAttr::AT_ArmOut:
7956 if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_Out))
7957 return true;
7958 break;
7959 case ParsedAttr::AT_ArmInOut:
7960 if (handleArmStateAttribute(S, EPI, attr, FunctionType::ARM_InOut))
7961 return true;
7962 break;
7963 default:
7964 llvm_unreachable("Unsupported attribute");
7967 QualType newtype = S.Context.getFunctionType(FnTy->getReturnType(),
7968 FnTy->getParamTypes(), EPI);
7969 type = unwrapped.wrap(S, newtype->getAs<FunctionType>());
7970 return true;
7973 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7974 // Delay if this is not a function type.
7975 if (!unwrapped.isFunctionType())
7976 return false;
7978 if (S.CheckAttrNoArgs(attr)) {
7979 attr.setInvalid();
7980 return true;
7983 // Otherwise we can process right away.
7984 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7986 // MSVC ignores nothrow if it is in conflict with an explicit exception
7987 // specification.
7988 if (Proto->hasExceptionSpec()) {
7989 switch (Proto->getExceptionSpecType()) {
7990 case EST_None:
7991 llvm_unreachable("This doesn't have an exception spec!");
7993 case EST_DynamicNone:
7994 case EST_BasicNoexcept:
7995 case EST_NoexceptTrue:
7996 case EST_NoThrow:
7997 // Exception spec doesn't conflict with nothrow, so don't warn.
7998 [[fallthrough]];
7999 case EST_Unparsed:
8000 case EST_Uninstantiated:
8001 case EST_DependentNoexcept:
8002 case EST_Unevaluated:
8003 // We don't have enough information to properly determine if there is a
8004 // conflict, so suppress the warning.
8005 break;
8006 case EST_Dynamic:
8007 case EST_MSAny:
8008 case EST_NoexceptFalse:
8009 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8010 break;
8012 return true;
8015 type = unwrapped.wrap(
8016 S, S.Context
8017 .getFunctionTypeWithExceptionSpec(
8018 QualType{Proto, 0},
8019 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8020 ->getAs<FunctionType>());
8021 return true;
8024 if (attr.getKind() == ParsedAttr::AT_NonBlocking ||
8025 attr.getKind() == ParsedAttr::AT_NonAllocating ||
8026 attr.getKind() == ParsedAttr::AT_Blocking ||
8027 attr.getKind() == ParsedAttr::AT_Allocating) {
8028 return handleNonBlockingNonAllocatingTypeAttr(state, attr, type, unwrapped);
8031 // Delay if the type didn't work out to a function.
8032 if (!unwrapped.isFunctionType()) return false;
8034 // Otherwise, a calling convention.
8035 CallingConv CC;
8036 if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/nullptr, CFT))
8037 return true;
8039 const FunctionType *fn = unwrapped.get();
8040 CallingConv CCOld = fn->getCallConv();
8041 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
8043 if (CCOld != CC) {
8044 // Error out on when there's already an attribute on the type
8045 // and the CCs don't match.
8046 if (S.getCallingConvAttributedType(type)) {
8047 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8048 << FunctionType::getNameForCallConv(CC)
8049 << FunctionType::getNameForCallConv(CCOld)
8050 << attr.isRegularKeywordAttribute();
8051 attr.setInvalid();
8052 return true;
8056 // Diagnose use of variadic functions with calling conventions that
8057 // don't support them (e.g. because they're callee-cleanup).
8058 // We delay warning about this on unprototyped function declarations
8059 // until after redeclaration checking, just in case we pick up a
8060 // prototype that way. And apparently we also "delay" warning about
8061 // unprototyped function types in general, despite not necessarily having
8062 // much ability to diagnose it later.
8063 if (!supportsVariadicCall(CC)) {
8064 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
8065 if (FnP && FnP->isVariadic()) {
8066 // stdcall and fastcall are ignored with a warning for GCC and MS
8067 // compatibility.
8068 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8069 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8070 << FunctionType::getNameForCallConv(CC)
8071 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8073 attr.setInvalid();
8074 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8075 << FunctionType::getNameForCallConv(CC);
8079 // Also diagnose fastcall with regparm.
8080 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8081 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8082 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8083 << attr.isRegularKeywordAttribute();
8084 attr.setInvalid();
8085 return true;
8088 // Modify the CC from the wrapped function type, wrap it all back, and then
8089 // wrap the whole thing in an AttributedType as written. The modified type
8090 // might have a different CC if we ignored the attribute.
8091 QualType Equivalent;
8092 if (CCOld == CC) {
8093 Equivalent = type;
8094 } else {
8095 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
8096 Equivalent =
8097 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
8099 type = state.getAttributedType(CCAttr, type, Equivalent);
8100 return true;
8103 bool Sema::hasExplicitCallingConv(QualType T) {
8104 const AttributedType *AT;
8106 // Stop if we'd be stripping off a typedef sugar node to reach the
8107 // AttributedType.
8108 while ((AT = T->getAs<AttributedType>()) &&
8109 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8110 if (AT->isCallingConv())
8111 return true;
8112 T = AT->getModifiedType();
8114 return false;
8117 void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8118 bool IsCtorOrDtor, SourceLocation Loc) {
8119 FunctionTypeUnwrapper Unwrapped(*this, T);
8120 const FunctionType *FT = Unwrapped.get();
8121 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
8122 cast<FunctionProtoType>(FT)->isVariadic());
8123 CallingConv CurCC = FT->getCallConv();
8124 CallingConv ToCC =
8125 Context.getDefaultCallingConvention(IsVariadic, HasThisPointer);
8127 if (CurCC == ToCC)
8128 return;
8130 // MS compiler ignores explicit calling convention attributes on structors. We
8131 // should do the same.
8132 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8133 // Issue a warning on ignored calling convention -- except of __stdcall.
8134 // Again, this is what MS compiler does.
8135 if (CurCC != CC_X86StdCall)
8136 Diag(Loc, diag::warn_cconv_unsupported)
8137 << FunctionType::getNameForCallConv(CurCC)
8138 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8139 // Default adjustment.
8140 } else {
8141 // Only adjust types with the default convention. For example, on Windows
8142 // we should adjust a __cdecl type to __thiscall for instance methods, and a
8143 // __thiscall type to __cdecl for static methods.
8144 CallingConv DefaultCC =
8145 Context.getDefaultCallingConvention(IsVariadic, !HasThisPointer);
8147 if (CurCC != DefaultCC)
8148 return;
8150 if (hasExplicitCallingConv(T))
8151 return;
8154 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
8155 QualType Wrapped = Unwrapped.wrap(*this, FT);
8156 T = Context.getAdjustedType(T, Wrapped);
8159 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
8160 /// and float scalars, although arrays, pointers, and function return values are
8161 /// allowed in conjunction with this construct. Aggregates with this attribute
8162 /// are invalid, even if they are of the same size as a corresponding scalar.
8163 /// The raw attribute should contain precisely 1 argument, the vector size for
8164 /// the variable, measured in bytes. If curType and rawAttr are well formed,
8165 /// this routine will return a new vector type.
8166 static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8167 Sema &S) {
8168 // Check the attribute arguments.
8169 if (Attr.getNumArgs() != 1) {
8170 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8171 << 1;
8172 Attr.setInvalid();
8173 return;
8176 Expr *SizeExpr = Attr.getArgAsExpr(0);
8177 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
8178 if (!T.isNull())
8179 CurType = T;
8180 else
8181 Attr.setInvalid();
8184 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
8185 /// a type.
8186 static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8187 Sema &S) {
8188 // check the attribute arguments.
8189 if (Attr.getNumArgs() != 1) {
8190 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8191 << 1;
8192 return;
8195 Expr *SizeExpr = Attr.getArgAsExpr(0);
8196 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
8197 if (!T.isNull())
8198 CurType = T;
8201 static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8202 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8203 if (!BTy)
8204 return false;
8206 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8208 // Signed poly is mathematically wrong, but has been baked into some ABIs by
8209 // now.
8210 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8211 Triple.getArch() == llvm::Triple::aarch64_32 ||
8212 Triple.getArch() == llvm::Triple::aarch64_be;
8213 if (VecKind == VectorKind::NeonPoly) {
8214 if (IsPolyUnsigned) {
8215 // AArch64 polynomial vectors are unsigned.
8216 return BTy->getKind() == BuiltinType::UChar ||
8217 BTy->getKind() == BuiltinType::UShort ||
8218 BTy->getKind() == BuiltinType::ULong ||
8219 BTy->getKind() == BuiltinType::ULongLong;
8220 } else {
8221 // AArch32 polynomial vectors are signed.
8222 return BTy->getKind() == BuiltinType::SChar ||
8223 BTy->getKind() == BuiltinType::Short ||
8224 BTy->getKind() == BuiltinType::LongLong;
8228 // Non-polynomial vector types: the usual suspects are allowed, as well as
8229 // float64_t on AArch64.
8230 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8231 BTy->getKind() == BuiltinType::Double)
8232 return true;
8234 return BTy->getKind() == BuiltinType::SChar ||
8235 BTy->getKind() == BuiltinType::UChar ||
8236 BTy->getKind() == BuiltinType::Short ||
8237 BTy->getKind() == BuiltinType::UShort ||
8238 BTy->getKind() == BuiltinType::Int ||
8239 BTy->getKind() == BuiltinType::UInt ||
8240 BTy->getKind() == BuiltinType::Long ||
8241 BTy->getKind() == BuiltinType::ULong ||
8242 BTy->getKind() == BuiltinType::LongLong ||
8243 BTy->getKind() == BuiltinType::ULongLong ||
8244 BTy->getKind() == BuiltinType::Float ||
8245 BTy->getKind() == BuiltinType::Half ||
8246 BTy->getKind() == BuiltinType::BFloat16;
8249 static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8250 llvm::APSInt &Result) {
8251 const auto *AttrExpr = Attr.getArgAsExpr(0);
8252 if (!AttrExpr->isTypeDependent()) {
8253 if (std::optional<llvm::APSInt> Res =
8254 AttrExpr->getIntegerConstantExpr(S.Context)) {
8255 Result = *Res;
8256 return true;
8259 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8260 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8261 Attr.setInvalid();
8262 return false;
8265 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8266 /// "neon_polyvector_type" attributes are used to create vector types that
8267 /// are mangled according to ARM's ABI. Otherwise, these types are identical
8268 /// to those created with the "vector_size" attribute. Unlike "vector_size"
8269 /// the argument to these Neon attributes is the number of vector elements,
8270 /// not the vector size in bytes. The vector width and element type must
8271 /// match one of the standard Neon vector types.
8272 static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8273 Sema &S, VectorKind VecKind) {
8274 bool IsTargetCUDAAndHostARM = false;
8275 if (S.getLangOpts().CUDAIsDevice) {
8276 const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8277 IsTargetCUDAAndHostARM =
8278 AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8281 // Target must have NEON (or MVE, whose vectors are similar enough
8282 // not to need a separate attribute)
8283 if (!S.Context.getTargetInfo().hasFeature("mve") &&
8284 VecKind == VectorKind::Neon &&
8285 S.Context.getTargetInfo().getTriple().isArmMClass()) {
8286 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8287 << Attr << "'mve'";
8288 Attr.setInvalid();
8289 return;
8291 if (!S.Context.getTargetInfo().hasFeature("mve") &&
8292 VecKind == VectorKind::NeonPoly &&
8293 S.Context.getTargetInfo().getTriple().isArmMClass()) {
8294 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile)
8295 << Attr << "'mve'";
8296 Attr.setInvalid();
8297 return;
8300 // Check the attribute arguments.
8301 if (Attr.getNumArgs() != 1) {
8302 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8303 << Attr << 1;
8304 Attr.setInvalid();
8305 return;
8307 // The number of elements must be an ICE.
8308 llvm::APSInt numEltsInt(32);
8309 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
8310 return;
8312 // Only certain element types are supported for Neon vectors.
8313 if (!isPermittedNeonBaseType(CurType, VecKind, S) &&
8314 !IsTargetCUDAAndHostARM) {
8315 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8316 Attr.setInvalid();
8317 return;
8320 // The total size of the vector must be 64 or 128 bits.
8321 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
8322 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8323 unsigned vecSize = typeSize * numElts;
8324 if (vecSize != 64 && vecSize != 128) {
8325 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8326 Attr.setInvalid();
8327 return;
8330 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
8333 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8334 /// used to create fixed-length versions of sizeless SVE types defined by
8335 /// the ACLE, such as svint32_t and svbool_t.
8336 static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8337 Sema &S) {
8338 // Target must have SVE.
8339 if (!S.Context.getTargetInfo().hasFeature("sve")) {
8340 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8341 Attr.setInvalid();
8342 return;
8345 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8346 // if <bits>+ syntax is used.
8347 if (!S.getLangOpts().VScaleMin ||
8348 S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8349 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8350 << Attr;
8351 Attr.setInvalid();
8352 return;
8355 // Check the attribute arguments.
8356 if (Attr.getNumArgs() != 1) {
8357 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8358 << Attr << 1;
8359 Attr.setInvalid();
8360 return;
8363 // The vector size must be an integer constant expression.
8364 llvm::APSInt SveVectorSizeInBits(32);
8365 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
8366 return;
8368 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8370 // The attribute vector size must match -msve-vector-bits.
8371 if (VecSize != S.getLangOpts().VScaleMin * 128) {
8372 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8373 << VecSize << S.getLangOpts().VScaleMin * 128;
8374 Attr.setInvalid();
8375 return;
8378 // Attribute can only be attached to a single SVE vector or predicate type.
8379 if (!CurType->isSveVLSBuiltinType()) {
8380 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8381 << Attr << CurType;
8382 Attr.setInvalid();
8383 return;
8386 const auto *BT = CurType->castAs<BuiltinType>();
8388 QualType EltType = CurType->getSveEltType(S.Context);
8389 unsigned TypeSize = S.Context.getTypeSize(EltType);
8390 VectorKind VecKind = VectorKind::SveFixedLengthData;
8391 if (BT->getKind() == BuiltinType::SveBool) {
8392 // Predicates are represented as i8.
8393 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8394 VecKind = VectorKind::SveFixedLengthPredicate;
8395 } else
8396 VecSize /= TypeSize;
8397 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
8400 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8401 QualType &CurType,
8402 ParsedAttr &Attr) {
8403 const VectorType *VT = dyn_cast<VectorType>(CurType);
8404 if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8405 State.getSema().Diag(Attr.getLoc(),
8406 diag::err_attribute_arm_mve_polymorphism);
8407 Attr.setInvalid();
8408 return;
8411 CurType =
8412 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8413 State.getSema().Context, Attr),
8414 CurType, CurType);
8417 /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8418 /// used to create fixed-length versions of sizeless RVV types such as
8419 /// vint8m1_t_t.
8420 static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8421 ParsedAttr &Attr, Sema &S) {
8422 // Target must have vector extension.
8423 if (!S.Context.getTargetInfo().hasFeature("zve32x")) {
8424 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8425 << Attr << "'zve32x'";
8426 Attr.setInvalid();
8427 return;
8430 auto VScale = S.Context.getTargetInfo().getVScaleRange(S.getLangOpts());
8431 if (!VScale || !VScale->first || VScale->first != VScale->second) {
8432 S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8433 << Attr;
8434 Attr.setInvalid();
8435 return;
8438 // Check the attribute arguments.
8439 if (Attr.getNumArgs() != 1) {
8440 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8441 << Attr << 1;
8442 Attr.setInvalid();
8443 return;
8446 // The vector size must be an integer constant expression.
8447 llvm::APSInt RVVVectorSizeInBits(32);
8448 if (!verifyValidIntegerConstantExpr(S, Attr, RVVVectorSizeInBits))
8449 return;
8451 // Attribute can only be attached to a single RVV vector type.
8452 if (!CurType->isRVVVLSBuiltinType()) {
8453 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8454 << Attr << CurType;
8455 Attr.setInvalid();
8456 return;
8459 unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8461 ASTContext::BuiltinVectorTypeInfo Info =
8462 S.Context.getBuiltinVectorTypeInfo(CurType->castAs<BuiltinType>());
8463 unsigned MinElts = Info.EC.getKnownMinValue();
8465 VectorKind VecKind = VectorKind::RVVFixedLengthData;
8466 unsigned ExpectedSize = VScale->first * MinElts;
8467 QualType EltType = CurType->getRVVEltType(S.Context);
8468 unsigned EltSize = S.Context.getTypeSize(EltType);
8469 unsigned NumElts;
8470 if (Info.ElementType == S.Context.BoolTy) {
8471 NumElts = VecSize / S.Context.getCharWidth();
8472 if (!NumElts) {
8473 NumElts = 1;
8474 switch (VecSize) {
8475 case 1:
8476 VecKind = VectorKind::RVVFixedLengthMask_1;
8477 break;
8478 case 2:
8479 VecKind = VectorKind::RVVFixedLengthMask_2;
8480 break;
8481 case 4:
8482 VecKind = VectorKind::RVVFixedLengthMask_4;
8483 break;
8485 } else
8486 VecKind = VectorKind::RVVFixedLengthMask;
8487 } else {
8488 ExpectedSize *= EltSize;
8489 NumElts = VecSize / EltSize;
8492 // The attribute vector size must match -mrvv-vector-bits.
8493 if (VecSize != ExpectedSize) {
8494 S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8495 << VecSize << ExpectedSize;
8496 Attr.setInvalid();
8497 return;
8500 CurType = S.Context.getVectorType(EltType, NumElts, VecKind);
8503 /// Handle OpenCL Access Qualifier Attribute.
8504 static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8505 Sema &S) {
8506 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8507 if (!(CurType->isImageType() || CurType->isPipeType())) {
8508 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8509 Attr.setInvalid();
8510 return;
8513 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8514 QualType BaseTy = TypedefTy->desugar();
8516 std::string PrevAccessQual;
8517 if (BaseTy->isPipeType()) {
8518 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8519 OpenCLAccessAttr *Attr =
8520 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8521 PrevAccessQual = Attr->getSpelling();
8522 } else {
8523 PrevAccessQual = "read_only";
8525 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8527 switch (ImgType->getKind()) {
8528 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8529 case BuiltinType::Id: \
8530 PrevAccessQual = #Access; \
8531 break;
8532 #include "clang/Basic/OpenCLImageTypes.def"
8533 default:
8534 llvm_unreachable("Unable to find corresponding image type.");
8536 } else {
8537 llvm_unreachable("unexpected type");
8539 StringRef AttrName = Attr.getAttrName()->getName();
8540 if (PrevAccessQual == AttrName.ltrim("_")) {
8541 // Duplicated qualifiers
8542 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8543 << AttrName << Attr.getRange();
8544 } else {
8545 // Contradicting qualifiers
8546 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8549 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8550 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8551 } else if (CurType->isPipeType()) {
8552 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8553 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8554 CurType = S.Context.getWritePipeType(ElemType);
8559 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8560 static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8561 Sema &S) {
8562 if (!S.getLangOpts().MatrixTypes) {
8563 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8564 return;
8567 if (Attr.getNumArgs() != 2) {
8568 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8569 << Attr << 2;
8570 return;
8573 Expr *RowsExpr = Attr.getArgAsExpr(0);
8574 Expr *ColsExpr = Attr.getArgAsExpr(1);
8575 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8576 if (!T.isNull())
8577 CurType = T;
8580 static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8581 QualType &CurType, const ParsedAttr &PA) {
8582 Sema &S = State.getSema();
8584 if (PA.getNumArgs() < 1) {
8585 S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8586 return;
8589 // Make sure that there is a string literal as the annotation's first
8590 // argument.
8591 StringRef Str;
8592 if (!S.checkStringLiteralArgumentAttr(PA, 0, Str))
8593 return;
8595 llvm::SmallVector<Expr *, 4> Args;
8596 Args.reserve(PA.getNumArgs() - 1);
8597 for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8598 assert(!PA.isArgIdent(Idx));
8599 Args.push_back(PA.getArgAsExpr(Idx));
8601 if (!S.ConstantFoldAttrArgs(PA, Args))
8602 return;
8603 auto *AnnotateTypeAttr =
8604 AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8605 CurType = State.getAttributedType(AnnotateTypeAttr, CurType, CurType);
8608 static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8609 QualType &CurType,
8610 ParsedAttr &Attr) {
8611 if (State.getDeclarator().isDeclarationOfFunction()) {
8612 CurType = State.getAttributedType(
8613 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8614 CurType, CurType);
8618 static void HandleLifetimeCaptureByAttr(TypeProcessingState &State,
8619 QualType &CurType, ParsedAttr &PA) {
8620 if (State.getDeclarator().isDeclarationOfFunction()) {
8621 auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(PA, "this");
8622 if (Attr)
8623 CurType = State.getAttributedType(Attr, CurType, CurType);
8627 static void HandleHLSLParamModifierAttr(TypeProcessingState &State,
8628 QualType &CurType,
8629 const ParsedAttr &Attr, Sema &S) {
8630 // Don't apply this attribute to template dependent types. It is applied on
8631 // substitution during template instantiation. Also skip parsing this if we've
8632 // already modified the type based on an earlier attribute.
8633 if (CurType->isDependentType() || State.didParseHLSLParamMod())
8634 return;
8635 if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8636 Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) {
8637 CurType = S.HLSL().getInoutParameterType(CurType);
8638 State.setParsedHLSLParamMod(true);
8642 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8643 TypeAttrLocation TAL,
8644 const ParsedAttributesView &attrs,
8645 CUDAFunctionTarget CFT) {
8647 state.setParsedNoDeref(false);
8648 if (attrs.empty())
8649 return;
8651 // Scan through and apply attributes to this type where it makes sense. Some
8652 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8653 // type, but others can be present in the type specifiers even though they
8654 // apply to the decl. Here we apply type attributes and ignore the rest.
8656 // This loop modifies the list pretty frequently, but we still need to make
8657 // sure we visit every element once. Copy the attributes list, and iterate
8658 // over that.
8659 ParsedAttributesView AttrsCopy{attrs};
8660 for (ParsedAttr &attr : AttrsCopy) {
8662 // Skip attributes that were marked to be invalid.
8663 if (attr.isInvalid())
8664 continue;
8666 if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8667 // [[gnu::...]] attributes are treated as declaration attributes, so may
8668 // not appertain to a DeclaratorChunk. If we handle them as type
8669 // attributes, accept them in that position and diagnose the GCC
8670 // incompatibility.
8671 if (attr.isGNUScope()) {
8672 assert(attr.isStandardAttributeSyntax());
8673 bool IsTypeAttr = attr.isTypeAttr();
8674 if (TAL == TAL_DeclChunk) {
8675 state.getSema().Diag(attr.getLoc(),
8676 IsTypeAttr
8677 ? diag::warn_gcc_ignores_type_attr
8678 : diag::warn_cxx11_gnu_attribute_on_type)
8679 << attr;
8680 if (!IsTypeAttr)
8681 continue;
8683 } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8684 !attr.isTypeAttr()) {
8685 // Otherwise, only consider type processing for a C++11 attribute if
8686 // - it has actually been applied to a type (decl-specifier-seq or
8687 // declarator chunk), or
8688 // - it is a type attribute, irrespective of where it was applied (so
8689 // that we can support the legacy behavior of some type attributes
8690 // that can be applied to the declaration name).
8691 continue;
8695 // If this is an attribute we can handle, do so now,
8696 // otherwise, add it to the FnAttrs list for rechaining.
8697 switch (attr.getKind()) {
8698 default:
8699 // A [[]] attribute on a declarator chunk must appertain to a type.
8700 if ((attr.isStandardAttributeSyntax() ||
8701 attr.isRegularKeywordAttribute()) &&
8702 TAL == TAL_DeclChunk) {
8703 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8704 << attr << attr.isRegularKeywordAttribute();
8705 attr.setUsedAsTypeAttr();
8707 break;
8709 case ParsedAttr::UnknownAttribute:
8710 if (attr.isStandardAttributeSyntax()) {
8711 state.getSema().Diag(attr.getLoc(),
8712 diag::warn_unknown_attribute_ignored)
8713 << attr << attr.getRange();
8714 // Mark the attribute as invalid so we don't emit the same diagnostic
8715 // multiple times.
8716 attr.setInvalid();
8718 break;
8720 case ParsedAttr::IgnoredAttribute:
8721 break;
8723 case ParsedAttr::AT_BTFTypeTag:
8724 HandleBTFTypeTagAttribute(type, attr, state);
8725 attr.setUsedAsTypeAttr();
8726 break;
8728 case ParsedAttr::AT_MayAlias:
8729 // FIXME: This attribute needs to actually be handled, but if we ignore
8730 // it it breaks large amounts of Linux software.
8731 attr.setUsedAsTypeAttr();
8732 break;
8733 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8734 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8735 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8736 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8737 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8738 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8739 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8740 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8741 case ParsedAttr::AT_AddressSpace:
8742 HandleAddressSpaceTypeAttribute(type, attr, state);
8743 attr.setUsedAsTypeAttr();
8744 break;
8745 OBJC_POINTER_TYPE_ATTRS_CASELIST:
8746 if (!handleObjCPointerTypeAttr(state, attr, type))
8747 distributeObjCPointerTypeAttr(state, attr, type);
8748 attr.setUsedAsTypeAttr();
8749 break;
8750 case ParsedAttr::AT_VectorSize:
8751 HandleVectorSizeAttr(type, attr, state.getSema());
8752 attr.setUsedAsTypeAttr();
8753 break;
8754 case ParsedAttr::AT_ExtVectorType:
8755 HandleExtVectorTypeAttr(type, attr, state.getSema());
8756 attr.setUsedAsTypeAttr();
8757 break;
8758 case ParsedAttr::AT_NeonVectorType:
8759 HandleNeonVectorTypeAttr(type, attr, state.getSema(), VectorKind::Neon);
8760 attr.setUsedAsTypeAttr();
8761 break;
8762 case ParsedAttr::AT_NeonPolyVectorType:
8763 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8764 VectorKind::NeonPoly);
8765 attr.setUsedAsTypeAttr();
8766 break;
8767 case ParsedAttr::AT_ArmSveVectorBits:
8768 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8769 attr.setUsedAsTypeAttr();
8770 break;
8771 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8772 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8773 attr.setUsedAsTypeAttr();
8774 break;
8776 case ParsedAttr::AT_RISCVRVVVectorBits:
8777 HandleRISCVRVVVectorBitsTypeAttr(type, attr, state.getSema());
8778 attr.setUsedAsTypeAttr();
8779 break;
8780 case ParsedAttr::AT_OpenCLAccess:
8781 HandleOpenCLAccessAttr(type, attr, state.getSema());
8782 attr.setUsedAsTypeAttr();
8783 break;
8784 case ParsedAttr::AT_LifetimeBound:
8785 if (TAL == TAL_DeclChunk)
8786 HandleLifetimeBoundAttr(state, type, attr);
8787 break;
8788 case ParsedAttr::AT_LifetimeCaptureBy:
8789 if (TAL == TAL_DeclChunk)
8790 HandleLifetimeCaptureByAttr(state, type, attr);
8791 break;
8793 case ParsedAttr::AT_NoDeref: {
8794 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8795 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8796 // For the time being, we simply emit a warning that the attribute is
8797 // ignored.
8798 if (attr.isStandardAttributeSyntax()) {
8799 state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8800 << attr;
8801 break;
8803 ASTContext &Ctx = state.getSema().Context;
8804 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8805 type, type);
8806 attr.setUsedAsTypeAttr();
8807 state.setParsedNoDeref(true);
8808 break;
8811 case ParsedAttr::AT_MatrixType:
8812 HandleMatrixTypeAttr(type, attr, state.getSema());
8813 attr.setUsedAsTypeAttr();
8814 break;
8816 case ParsedAttr::AT_WebAssemblyFuncref: {
8817 if (!HandleWebAssemblyFuncrefAttr(state, type, attr))
8818 attr.setUsedAsTypeAttr();
8819 break;
8822 case ParsedAttr::AT_HLSLParamModifier: {
8823 HandleHLSLParamModifierAttr(state, type, attr, state.getSema());
8824 attr.setUsedAsTypeAttr();
8825 break;
8828 case ParsedAttr::AT_SwiftAttr: {
8829 HandleSwiftAttr(state, TAL, type, attr);
8830 break;
8833 MS_TYPE_ATTRS_CASELIST:
8834 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8835 attr.setUsedAsTypeAttr();
8836 break;
8839 NULLABILITY_TYPE_ATTRS_CASELIST:
8840 // Either add nullability here or try to distribute it. We
8841 // don't want to distribute the nullability specifier past any
8842 // dependent type, because that complicates the user model.
8843 if (type->canHaveNullability() || type->isDependentType() ||
8844 type->isArrayType() ||
8845 !distributeNullabilityTypeAttr(state, type, attr)) {
8846 unsigned endIndex;
8847 if (TAL == TAL_DeclChunk)
8848 endIndex = state.getCurrentChunkIndex();
8849 else
8850 endIndex = state.getDeclarator().getNumTypeObjects();
8851 bool allowOnArrayType =
8852 state.getDeclarator().isPrototypeContext() &&
8853 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8854 if (CheckNullabilityTypeSpecifier(state, type, attr,
8855 allowOnArrayType)) {
8856 attr.setInvalid();
8859 attr.setUsedAsTypeAttr();
8861 break;
8863 case ParsedAttr::AT_ObjCKindOf:
8864 // '__kindof' must be part of the decl-specifiers.
8865 switch (TAL) {
8866 case TAL_DeclSpec:
8867 break;
8869 case TAL_DeclChunk:
8870 case TAL_DeclName:
8871 state.getSema().Diag(attr.getLoc(),
8872 diag::err_objc_kindof_wrong_position)
8873 << FixItHint::CreateRemoval(attr.getLoc())
8874 << FixItHint::CreateInsertion(
8875 state.getDeclarator().getDeclSpec().getBeginLoc(),
8876 "__kindof ");
8877 break;
8880 // Apply it regardless.
8881 if (checkObjCKindOfType(state, type, attr))
8882 attr.setInvalid();
8883 break;
8885 case ParsedAttr::AT_NoThrow:
8886 // Exception Specifications aren't generally supported in C mode throughout
8887 // clang, so revert to attribute-based handling for C.
8888 if (!state.getSema().getLangOpts().CPlusPlus)
8889 break;
8890 [[fallthrough]];
8891 FUNCTION_TYPE_ATTRS_CASELIST:
8892 attr.setUsedAsTypeAttr();
8894 // Attributes with standard syntax have strict rules for what they
8895 // appertain to and hence should not use the "distribution" logic below.
8896 if (attr.isStandardAttributeSyntax() ||
8897 attr.isRegularKeywordAttribute()) {
8898 if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
8899 diagnoseBadTypeAttribute(state.getSema(), attr, type);
8900 attr.setInvalid();
8902 break;
8905 // Never process function type attributes as part of the
8906 // declaration-specifiers.
8907 if (TAL == TAL_DeclSpec)
8908 distributeFunctionTypeAttrFromDeclSpec(state, attr, type, CFT);
8910 // Otherwise, handle the possible delays.
8911 else if (!handleFunctionTypeAttr(state, attr, type, CFT))
8912 distributeFunctionTypeAttr(state, attr, type);
8913 break;
8914 case ParsedAttr::AT_AcquireHandle: {
8915 if (!type->isFunctionType())
8916 return;
8918 if (attr.getNumArgs() != 1) {
8919 state.getSema().Diag(attr.getLoc(),
8920 diag::err_attribute_wrong_number_arguments)
8921 << attr << 1;
8922 attr.setInvalid();
8923 return;
8926 StringRef HandleType;
8927 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8928 return;
8929 type = state.getAttributedType(
8930 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8931 type, type);
8932 attr.setUsedAsTypeAttr();
8933 break;
8935 case ParsedAttr::AT_AnnotateType: {
8936 HandleAnnotateTypeAttr(state, type, attr);
8937 attr.setUsedAsTypeAttr();
8938 break;
8940 case ParsedAttr::AT_HLSLResourceClass:
8941 case ParsedAttr::AT_HLSLROV:
8942 case ParsedAttr::AT_HLSLRawBuffer:
8943 case ParsedAttr::AT_HLSLContainedType: {
8944 // Only collect HLSL resource type attributes that are in
8945 // decl-specifier-seq; do not collect attributes on declarations or those
8946 // that get to slide after declaration name.
8947 if (TAL == TAL_DeclSpec &&
8948 state.getSema().HLSL().handleResourceTypeAttr(type, attr))
8949 attr.setUsedAsTypeAttr();
8950 break;
8954 // Handle attributes that are defined in a macro. We do not want this to be
8955 // applied to ObjC builtin attributes.
8956 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8957 !type.getQualifiers().hasObjCLifetime() &&
8958 !type.getQualifiers().hasObjCGCAttr() &&
8959 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8960 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8961 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8962 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8963 state.setExpansionLocForMacroQualifiedType(
8964 cast<MacroQualifiedType>(type.getTypePtr()),
8965 attr.getMacroExpansionLoc());
8970 void Sema::completeExprArrayBound(Expr *E) {
8971 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8972 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8973 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8974 auto *Def = Var->getDefinition();
8975 if (!Def) {
8976 SourceLocation PointOfInstantiation = E->getExprLoc();
8977 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8978 InstantiateVariableDefinition(PointOfInstantiation, Var);
8980 Def = Var->getDefinition();
8982 // If we don't already have a point of instantiation, and we managed
8983 // to instantiate a definition, this is the point of instantiation.
8984 // Otherwise, we don't request an end-of-TU instantiation, so this is
8985 // not a point of instantiation.
8986 // FIXME: Is this really the right behavior?
8987 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8988 assert(Var->getTemplateSpecializationKind() ==
8989 TSK_ImplicitInstantiation &&
8990 "explicit instantiation with no point of instantiation");
8991 Var->setTemplateSpecializationKind(
8992 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8996 // Update the type to the definition's type both here and within the
8997 // expression.
8998 if (Def) {
8999 DRE->setDecl(Def);
9000 QualType T = Def->getType();
9001 DRE->setType(T);
9002 // FIXME: Update the type on all intervening expressions.
9003 E->setType(T);
9006 // We still go on to try to complete the type independently, as it
9007 // may also require instantiations or diagnostics if it remains
9008 // incomplete.
9012 if (const auto CastE = dyn_cast<ExplicitCastExpr>(E)) {
9013 QualType DestType = CastE->getTypeAsWritten();
9014 if (const auto *IAT = Context.getAsIncompleteArrayType(DestType)) {
9015 // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound,
9016 // this direct-initialization defines the type of the expression
9017 // as U[1]
9018 QualType ResultType = Context.getConstantArrayType(
9019 IAT->getElementType(),
9020 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 1),
9021 /*SizeExpr=*/nullptr, ArraySizeModifier::Normal,
9022 /*IndexTypeQuals=*/0);
9023 E->setType(ResultType);
9028 QualType Sema::getCompletedType(Expr *E) {
9029 // Incomplete array types may be completed by the initializer attached to
9030 // their definitions. For static data members of class templates and for
9031 // variable templates, we need to instantiate the definition to get this
9032 // initializer and complete the type.
9033 if (E->getType()->isIncompleteArrayType())
9034 completeExprArrayBound(E);
9036 // FIXME: Are there other cases which require instantiating something other
9037 // than the type to complete the type of an expression?
9039 return E->getType();
9042 bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9043 TypeDiagnoser &Diagnoser) {
9044 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
9045 Diagnoser);
9048 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9049 BoundTypeDiagnoser<> Diagnoser(DiagID);
9050 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
9053 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9054 CompleteTypeKind Kind,
9055 TypeDiagnoser &Diagnoser) {
9056 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
9057 return true;
9058 if (const TagType *Tag = T->getAs<TagType>()) {
9059 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9060 Tag->getDecl()->setCompleteDefinitionRequired();
9061 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
9064 return false;
9067 bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9068 StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls;
9069 if (!Suggested)
9070 return false;
9072 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9073 // and isolate from other C++ specific checks.
9074 StructuralEquivalenceContext Ctx(
9075 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9076 StructuralEquivalenceKind::Default,
9077 false /*StrictTypeSpelling*/, true /*Complain*/,
9078 true /*ErrorOnTagTypeMismatch*/);
9079 return Ctx.IsEquivalent(D, Suggested);
9082 bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9083 AcceptableKind Kind, bool OnlyNeedComplete) {
9084 // Easy case: if we don't have modules, all declarations are visible.
9085 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9086 return true;
9088 // If this definition was instantiated from a template, map back to the
9089 // pattern from which it was instantiated.
9090 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
9091 // We're in the middle of defining it; this definition should be treated
9092 // as visible.
9093 return true;
9094 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9095 if (auto *Pattern = RD->getTemplateInstantiationPattern())
9096 RD = Pattern;
9097 D = RD->getDefinition();
9098 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
9099 if (auto *Pattern = ED->getTemplateInstantiationPattern())
9100 ED = Pattern;
9101 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9102 // If the enum has a fixed underlying type, it may have been forward
9103 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9104 // the enum and assign it the underlying type of `int`. Since we're only
9105 // looking for a complete type (not a definition), any visible declaration
9106 // of it will do.
9107 *Suggested = nullptr;
9108 for (auto *Redecl : ED->redecls()) {
9109 if (isAcceptable(Redecl, Kind))
9110 return true;
9111 if (Redecl->isThisDeclarationADefinition() ||
9112 (Redecl->isCanonicalDecl() && !*Suggested))
9113 *Suggested = Redecl;
9116 return false;
9118 D = ED->getDefinition();
9119 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
9120 if (auto *Pattern = FD->getTemplateInstantiationPattern())
9121 FD = Pattern;
9122 D = FD->getDefinition();
9123 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
9124 if (auto *Pattern = VD->getTemplateInstantiationPattern())
9125 VD = Pattern;
9126 D = VD->getDefinition();
9129 assert(D && "missing definition for pattern of instantiated definition");
9131 *Suggested = D;
9133 auto DefinitionIsAcceptable = [&] {
9134 // The (primary) definition might be in a visible module.
9135 if (isAcceptable(D, Kind))
9136 return true;
9138 // A visible module might have a merged definition instead.
9139 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
9140 : hasVisibleMergedDefinition(D)) {
9141 if (CodeSynthesisContexts.empty() &&
9142 !getLangOpts().ModulesLocalVisibility) {
9143 // Cache the fact that this definition is implicitly visible because
9144 // there is a visible merged definition.
9145 D->setVisibleDespiteOwningModule();
9147 return true;
9150 return false;
9153 if (DefinitionIsAcceptable())
9154 return true;
9156 // The external source may have additional definitions of this entity that are
9157 // visible, so complete the redeclaration chain now and ask again.
9158 if (auto *Source = Context.getExternalSource()) {
9159 Source->CompleteRedeclChain(D);
9160 return DefinitionIsAcceptable();
9163 return false;
9166 /// Determine whether there is any declaration of \p D that was ever a
9167 /// definition (perhaps before module merging) and is currently visible.
9168 /// \param D The definition of the entity.
9169 /// \param Suggested Filled in with the declaration that should be made visible
9170 /// in order to provide a definition of this entity.
9171 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9172 /// not defined. This only matters for enums with a fixed underlying
9173 /// type, since in all other cases, a type is complete if and only if it
9174 /// is defined.
9175 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9176 bool OnlyNeedComplete) {
9177 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Visible,
9178 OnlyNeedComplete);
9181 /// Determine whether there is any declaration of \p D that was ever a
9182 /// definition (perhaps before module merging) and is currently
9183 /// reachable.
9184 /// \param D The definition of the entity.
9185 /// \param Suggested Filled in with the declaration that should be made
9186 /// reachable
9187 /// in order to provide a definition of this entity.
9188 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9189 /// not defined. This only matters for enums with a fixed underlying
9190 /// type, since in all other cases, a type is complete if and only if it
9191 /// is defined.
9192 bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9193 bool OnlyNeedComplete) {
9194 return hasAcceptableDefinition(D, Suggested, Sema::AcceptableKind::Reachable,
9195 OnlyNeedComplete);
9198 /// Locks in the inheritance model for the given class and all of its bases.
9199 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9200 RD = RD->getMostRecentNonInjectedDecl();
9201 if (!RD->hasAttr<MSInheritanceAttr>()) {
9202 MSInheritanceModel IM;
9203 bool BestCase = false;
9204 switch (S.MSPointerToMemberRepresentationMethod) {
9205 case LangOptions::PPTMK_BestCase:
9206 BestCase = true;
9207 IM = RD->calculateInheritanceModel();
9208 break;
9209 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9210 IM = MSInheritanceModel::Single;
9211 break;
9212 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9213 IM = MSInheritanceModel::Multiple;
9214 break;
9215 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9216 IM = MSInheritanceModel::Unspecified;
9217 break;
9220 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9221 ? S.ImplicitMSInheritanceAttrLoc
9222 : RD->getSourceRange();
9223 RD->addAttr(MSInheritanceAttr::CreateImplicit(
9224 S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9225 S.Consumer.AssignInheritanceModel(RD);
9229 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9230 CompleteTypeKind Kind,
9231 TypeDiagnoser *Diagnoser) {
9232 // FIXME: Add this assertion to make sure we always get instantiation points.
9233 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9234 // FIXME: Add this assertion to help us flush out problems with
9235 // checking for dependent types and type-dependent expressions.
9237 // assert(!T->isDependentType() &&
9238 // "Can't ask whether a dependent type is complete");
9240 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9241 if (!MPTy->getClass()->isDependentType()) {
9242 if (getLangOpts().CompleteMemberPointers &&
9243 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9244 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9245 diag::err_memptr_incomplete))
9246 return true;
9248 // We lock in the inheritance model once somebody has asked us to ensure
9249 // that a pointer-to-member type is complete.
9250 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9251 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
9252 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
9257 NamedDecl *Def = nullptr;
9258 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9259 bool Incomplete = (T->isIncompleteType(&Def) ||
9260 (!AcceptSizeless && T->isSizelessBuiltinType()));
9262 // Check that any necessary explicit specializations are visible. For an
9263 // enum, we just need the declaration, so don't check this.
9264 if (Def && !isa<EnumDecl>(Def))
9265 checkSpecializationReachability(Loc, Def);
9267 // If we have a complete type, we're done.
9268 if (!Incomplete) {
9269 NamedDecl *Suggested = nullptr;
9270 if (Def &&
9271 !hasReachableDefinition(Def, &Suggested, /*OnlyNeedComplete=*/true)) {
9272 // If the user is going to see an error here, recover by making the
9273 // definition visible.
9274 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9275 if (Diagnoser && Suggested)
9276 diagnoseMissingImport(Loc, Suggested, MissingImportKind::Definition,
9277 /*Recover*/ TreatAsComplete);
9278 return !TreatAsComplete;
9279 } else if (Def && !TemplateInstCallbacks.empty()) {
9280 CodeSynthesisContext TempInst;
9281 TempInst.Kind = CodeSynthesisContext::Memoization;
9282 TempInst.Template = Def;
9283 TempInst.Entity = Def;
9284 TempInst.PointOfInstantiation = Loc;
9285 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
9286 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
9289 return false;
9292 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
9293 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
9295 // Give the external source a chance to provide a definition of the type.
9296 // This is kept separate from completing the redeclaration chain so that
9297 // external sources such as LLDB can avoid synthesizing a type definition
9298 // unless it's actually needed.
9299 if (Tag || IFace) {
9300 // Avoid diagnosing invalid decls as incomplete.
9301 if (Def->isInvalidDecl())
9302 return true;
9304 // Give the external AST source a chance to complete the type.
9305 if (auto *Source = Context.getExternalSource()) {
9306 if (Tag && Tag->hasExternalLexicalStorage())
9307 Source->CompleteType(Tag);
9308 if (IFace && IFace->hasExternalLexicalStorage())
9309 Source->CompleteType(IFace);
9310 // If the external source completed the type, go through the motions
9311 // again to ensure we're allowed to use the completed type.
9312 if (!T->isIncompleteType())
9313 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9317 // If we have a class template specialization or a class member of a
9318 // class template specialization, or an array with known size of such,
9319 // try to instantiate it.
9320 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
9321 bool Instantiated = false;
9322 bool Diagnosed = false;
9323 if (RD->isDependentContext()) {
9324 // Don't try to instantiate a dependent class (eg, a member template of
9325 // an instantiated class template specialization).
9326 // FIXME: Can this ever happen?
9327 } else if (auto *ClassTemplateSpec =
9328 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
9329 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9330 runWithSufficientStackSpace(Loc, [&] {
9331 Diagnosed = InstantiateClassTemplateSpecialization(
9332 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
9333 /*Complain=*/Diagnoser);
9335 Instantiated = true;
9337 } else {
9338 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9339 if (!RD->isBeingDefined() && Pattern) {
9340 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9341 assert(MSI && "Missing member specialization information?");
9342 // This record was instantiated from a class within a template.
9343 if (MSI->getTemplateSpecializationKind() !=
9344 TSK_ExplicitSpecialization) {
9345 runWithSufficientStackSpace(Loc, [&] {
9346 Diagnosed = InstantiateClass(Loc, RD, Pattern,
9347 getTemplateInstantiationArgs(RD),
9348 TSK_ImplicitInstantiation,
9349 /*Complain=*/Diagnoser);
9351 Instantiated = true;
9356 if (Instantiated) {
9357 // Instantiate* might have already complained that the template is not
9358 // defined, if we asked it to.
9359 if (Diagnoser && Diagnosed)
9360 return true;
9361 // If we instantiated a definition, check that it's usable, even if
9362 // instantiation produced an error, so that repeated calls to this
9363 // function give consistent answers.
9364 if (!T->isIncompleteType())
9365 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9369 // FIXME: If we didn't instantiate a definition because of an explicit
9370 // specialization declaration, check that it's visible.
9372 if (!Diagnoser)
9373 return true;
9375 Diagnoser->diagnose(*this, Loc, T);
9377 // If the type was a forward declaration of a class/struct/union
9378 // type, produce a note.
9379 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9380 Diag(Tag->getLocation(),
9381 Tag->isBeingDefined() ? diag::note_type_being_defined
9382 : diag::note_forward_declaration)
9383 << Context.getTagDeclType(Tag);
9385 // If the Objective-C class was a forward declaration, produce a note.
9386 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9387 Diag(IFace->getLocation(), diag::note_forward_class);
9389 // If we have external information that we can use to suggest a fix,
9390 // produce a note.
9391 if (ExternalSource)
9392 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9394 return true;
9397 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9398 CompleteTypeKind Kind, unsigned DiagID) {
9399 BoundTypeDiagnoser<> Diagnoser(DiagID);
9400 return RequireCompleteType(Loc, T, Kind, Diagnoser);
9403 /// Get diagnostic %select index for tag kind for
9404 /// literal type diagnostic message.
9405 /// WARNING: Indexes apply to particular diagnostics only!
9407 /// \returns diagnostic %select index.
9408 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9409 switch (Tag) {
9410 case TagTypeKind::Struct:
9411 return 0;
9412 case TagTypeKind::Interface:
9413 return 1;
9414 case TagTypeKind::Class:
9415 return 2;
9416 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9420 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9421 TypeDiagnoser &Diagnoser) {
9422 assert(!T->isDependentType() && "type should not be dependent");
9424 QualType ElemType = Context.getBaseElementType(T);
9425 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
9426 T->isLiteralType(Context))
9427 return false;
9429 Diagnoser.diagnose(*this, Loc, T);
9431 if (T->isVariableArrayType())
9432 return true;
9434 const RecordType *RT = ElemType->getAs<RecordType>();
9435 if (!RT)
9436 return true;
9438 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
9440 // A partially-defined class type can't be a literal type, because a literal
9441 // class type must have a trivial destructor (which can't be checked until
9442 // the class definition is complete).
9443 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9444 return true;
9446 // [expr.prim.lambda]p3:
9447 // This class type is [not] a literal type.
9448 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9449 Diag(RD->getLocation(), diag::note_non_literal_lambda);
9450 return true;
9453 // If the class has virtual base classes, then it's not an aggregate, and
9454 // cannot have any constexpr constructors or a trivial default constructor,
9455 // so is non-literal. This is better to diagnose than the resulting absence
9456 // of constexpr constructors.
9457 if (RD->getNumVBases()) {
9458 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9459 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9460 for (const auto &I : RD->vbases())
9461 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9462 << I.getSourceRange();
9463 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9464 !RD->hasTrivialDefaultConstructor()) {
9465 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9466 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9467 for (const auto &I : RD->bases()) {
9468 if (!I.getType()->isLiteralType(Context)) {
9469 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9470 << RD << I.getType() << I.getSourceRange();
9471 return true;
9474 for (const auto *I : RD->fields()) {
9475 if (!I->getType()->isLiteralType(Context) ||
9476 I->getType().isVolatileQualified()) {
9477 Diag(I->getLocation(), diag::note_non_literal_field)
9478 << RD << I << I->getType()
9479 << I->getType().isVolatileQualified();
9480 return true;
9483 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9484 : !RD->hasTrivialDestructor()) {
9485 // All fields and bases are of literal types, so have trivial or constexpr
9486 // destructors. If this class's destructor is non-trivial / non-constexpr,
9487 // it must be user-declared.
9488 CXXDestructorDecl *Dtor = RD->getDestructor();
9489 assert(Dtor && "class has literal fields and bases but no dtor?");
9490 if (!Dtor)
9491 return true;
9493 if (getLangOpts().CPlusPlus20) {
9494 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9495 << RD;
9496 } else {
9497 Diag(Dtor->getLocation(), Dtor->isUserProvided()
9498 ? diag::note_non_literal_user_provided_dtor
9499 : diag::note_non_literal_nontrivial_dtor)
9500 << RD;
9501 if (!Dtor->isUserProvided())
9502 SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor,
9503 TAH_IgnoreTrivialABI,
9504 /*Diagnose*/ true);
9508 return true;
9511 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9512 BoundTypeDiagnoser<> Diagnoser(DiagID);
9513 return RequireLiteralType(Loc, T, Diagnoser);
9516 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9517 const CXXScopeSpec &SS, QualType T,
9518 TagDecl *OwnedTagDecl) {
9519 if (T.isNull())
9520 return T;
9521 return Context.getElaboratedType(
9522 Keyword, SS.isValid() ? SS.getScopeRep() : nullptr, T, OwnedTagDecl);
9525 QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9526 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9528 if (!getLangOpts().CPlusPlus && E->refersToBitField())
9529 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9530 << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9532 if (!E->isTypeDependent()) {
9533 QualType T = E->getType();
9534 if (const TagType *TT = T->getAs<TagType>())
9535 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9537 return Context.getTypeOfExprType(E, Kind);
9540 static void
9541 BuildTypeCoupledDecls(Expr *E,
9542 llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) {
9543 // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl.
9544 auto *CountDecl = cast<DeclRefExpr>(E)->getDecl();
9545 Decls.push_back(TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false));
9548 QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy,
9549 Expr *CountExpr,
9550 bool CountInBytes,
9551 bool OrNull) {
9552 assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType());
9554 llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls;
9555 BuildTypeCoupledDecls(CountExpr, Decls);
9556 /// When the resulting expression is invalid, we still create the AST using
9557 /// the original count expression for the sake of AST dump.
9558 return Context.getCountAttributedType(WrappedTy, CountExpr, CountInBytes,
9559 OrNull, Decls);
9562 /// getDecltypeForExpr - Given an expr, will return the decltype for
9563 /// that expression, according to the rules in C++11
9564 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9565 QualType Sema::getDecltypeForExpr(Expr *E) {
9567 Expr *IDExpr = E;
9568 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
9569 IDExpr = ImplCastExpr->getSubExpr();
9571 if (auto *PackExpr = dyn_cast<PackIndexingExpr>(E)) {
9572 if (E->isInstantiationDependent())
9573 IDExpr = PackExpr->getPackIdExpression();
9574 else
9575 IDExpr = PackExpr->getSelectedExpr();
9578 if (E->isTypeDependent())
9579 return Context.DependentTy;
9581 // C++11 [dcl.type.simple]p4:
9582 // The type denoted by decltype(e) is defined as follows:
9584 // C++20:
9585 // - if E is an unparenthesized id-expression naming a non-type
9586 // template-parameter (13.2), decltype(E) is the type of the
9587 // template-parameter after performing any necessary type deduction
9588 // Note that this does not pick up the implicit 'const' for a template
9589 // parameter object. This rule makes no difference before C++20 so we apply
9590 // it unconditionally.
9591 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
9592 return SNTTPE->getParameterType(Context);
9594 // - if e is an unparenthesized id-expression or an unparenthesized class
9595 // member access (5.2.5), decltype(e) is the type of the entity named
9596 // by e. If there is no such entity, or if e names a set of overloaded
9597 // functions, the program is ill-formed;
9599 // We apply the same rules for Objective-C ivar and property references.
9600 if (const auto *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
9601 const ValueDecl *VD = DRE->getDecl();
9602 QualType T = VD->getType();
9603 return isa<TemplateParamObjectDecl>(VD) ? T.getUnqualifiedType() : T;
9605 if (const auto *ME = dyn_cast<MemberExpr>(IDExpr)) {
9606 if (const auto *VD = ME->getMemberDecl())
9607 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
9608 return VD->getType();
9609 } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
9610 return IR->getDecl()->getType();
9611 } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
9612 if (PR->isExplicitProperty())
9613 return PR->getExplicitProperty()->getType();
9614 } else if (const auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
9615 return PE->getType();
9618 // C++11 [expr.lambda.prim]p18:
9619 // Every occurrence of decltype((x)) where x is a possibly
9620 // parenthesized id-expression that names an entity of automatic
9621 // storage duration is treated as if x were transformed into an
9622 // access to a corresponding data member of the closure type that
9623 // would have been declared if x were an odr-use of the denoted
9624 // entity.
9625 if (getCurLambda() && isa<ParenExpr>(IDExpr)) {
9626 if (auto *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
9627 if (auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
9628 QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9629 if (!T.isNull())
9630 return Context.getLValueReferenceType(T);
9635 return Context.getReferenceQualifiedType(E);
9638 QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9639 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9641 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9642 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9643 // The expression operand for decltype is in an unevaluated expression
9644 // context, so side effects could result in unintended consequences.
9645 // Exclude instantiation-dependent expressions, because 'decltype' is often
9646 // used to build SFINAE gadgets.
9647 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9649 return Context.getDecltypeType(E, getDecltypeForExpr(E));
9652 QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9653 SourceLocation Loc,
9654 SourceLocation EllipsisLoc) {
9655 if (!IndexExpr)
9656 return QualType();
9658 // Diagnose unexpanded packs but continue to improve recovery.
9659 if (!Pattern->containsUnexpandedParameterPack())
9660 Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9662 QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9664 if (!Type.isNull())
9665 Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9666 : diag::ext_pack_indexing);
9667 return Type;
9670 QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9671 SourceLocation Loc,
9672 SourceLocation EllipsisLoc,
9673 bool FullySubstituted,
9674 ArrayRef<QualType> Expansions) {
9676 std::optional<int64_t> Index;
9677 if (FullySubstituted && !IndexExpr->isValueDependent() &&
9678 !IndexExpr->isTypeDependent()) {
9679 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
9680 ExprResult Res = CheckConvertedConstantExpression(
9681 IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
9682 if (!Res.isUsable())
9683 return QualType();
9684 Index = Value.getExtValue();
9685 IndexExpr = Res.get();
9688 if (FullySubstituted && Index) {
9689 if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9690 Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9691 << *Index << Pattern << Expansions.size();
9692 return QualType();
9696 return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9697 Expansions, Index.value_or(-1));
9700 static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9701 SourceLocation Loc) {
9702 assert(BaseType->isEnumeralType());
9703 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9704 assert(ED && "EnumType has no EnumDecl");
9706 S.DiagnoseUseOfDecl(ED, Loc);
9708 QualType Underlying = ED->getIntegerType();
9709 assert(!Underlying.isNull());
9711 return Underlying;
9714 QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9715 SourceLocation Loc) {
9716 if (!BaseType->isEnumeralType()) {
9717 Diag(Loc, diag::err_only_enums_have_underlying_types);
9718 return QualType();
9721 // The enum could be incomplete if we're parsing its definition or
9722 // recovering from an error.
9723 NamedDecl *FwdDecl = nullptr;
9724 if (BaseType->isIncompleteType(&FwdDecl)) {
9725 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9726 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9727 return QualType();
9730 return GetEnumUnderlyingType(*this, BaseType, Loc);
9733 QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9734 QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9735 ? BuildPointerType(BaseType.getNonReferenceType(), Loc,
9736 DeclarationName())
9737 : BaseType;
9739 return Pointer.isNull() ? QualType() : Pointer;
9742 QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9743 // We don't want block pointers or ObjectiveC's id type.
9744 if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9745 return BaseType;
9747 return BaseType->getPointeeType();
9750 QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9751 QualType Underlying = BaseType.getNonReferenceType();
9752 if (Underlying->isArrayType())
9753 return Context.getDecayedType(Underlying);
9755 if (Underlying->isFunctionType())
9756 return BuiltinAddPointer(BaseType, Loc);
9758 SplitQualType Split = Underlying.getSplitUnqualifiedType();
9759 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9760 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9761 // '__decay(T)' so that it removes all qualifiers.
9762 Split.Quals.removeCVRQualifiers();
9763 return Context.getQualifiedType(Split);
9766 QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9767 SourceLocation Loc) {
9768 assert(LangOpts.CPlusPlus);
9769 QualType Reference =
9770 BaseType.isReferenceable()
9771 ? BuildReferenceType(BaseType,
9772 UKind == UnaryTransformType::AddLvalueReference,
9773 Loc, DeclarationName())
9774 : BaseType;
9775 return Reference.isNull() ? QualType() : Reference;
9778 QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9779 SourceLocation Loc) {
9780 if (UKind == UnaryTransformType::RemoveAllExtents)
9781 return Context.getBaseElementType(BaseType);
9783 if (const auto *AT = Context.getAsArrayType(BaseType))
9784 return AT->getElementType();
9786 return BaseType;
9789 QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9790 SourceLocation Loc) {
9791 assert(LangOpts.CPlusPlus);
9792 QualType T = BaseType.getNonReferenceType();
9793 if (UKind == UTTKind::RemoveCVRef &&
9794 (T.isConstQualified() || T.isVolatileQualified())) {
9795 Qualifiers Quals;
9796 QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9797 Quals.removeConst();
9798 Quals.removeVolatile();
9799 T = Context.getQualifiedType(Unqual, Quals);
9801 return T;
9804 QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9805 SourceLocation Loc) {
9806 if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9807 BaseType->isFunctionType())
9808 return BaseType;
9810 Qualifiers Quals;
9811 QualType Unqual = Context.getUnqualifiedArrayType(BaseType, Quals);
9813 if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9814 Quals.removeConst();
9815 if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9816 Quals.removeVolatile();
9817 if (UKind == UTTKind::RemoveRestrict)
9818 Quals.removeRestrict();
9820 return Context.getQualifiedType(Unqual, Quals);
9823 static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
9824 bool IsMakeSigned,
9825 SourceLocation Loc) {
9826 if (BaseType->isEnumeralType()) {
9827 QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
9828 if (auto *BitInt = dyn_cast<BitIntType>(Underlying)) {
9829 unsigned int Bits = BitInt->getNumBits();
9830 if (Bits > 1)
9831 return S.Context.getBitIntType(!IsMakeSigned, Bits);
9833 S.Diag(Loc, diag::err_make_signed_integral_only)
9834 << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
9835 return QualType();
9837 if (Underlying->isBooleanType()) {
9838 S.Diag(Loc, diag::err_make_signed_integral_only)
9839 << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
9840 << Underlying;
9841 return QualType();
9845 bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
9846 std::array<CanQualType *, 6> AllSignedIntegers = {
9847 &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy,
9848 &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty};
9849 ArrayRef<CanQualType *> AvailableSignedIntegers(
9850 AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
9851 std::array<CanQualType *, 6> AllUnsignedIntegers = {
9852 &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy,
9853 &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy,
9854 &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
9855 ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
9856 AllUnsignedIntegers.size() -
9857 Int128Unsupported);
9858 ArrayRef<CanQualType *> *Consider =
9859 IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
9861 uint64_t BaseSize = S.Context.getTypeSize(BaseType);
9862 auto *Result =
9863 llvm::find_if(*Consider, [&S, BaseSize](const CanQual<Type> *T) {
9864 return BaseSize == S.Context.getTypeSize(T->getTypePtr());
9867 assert(Result != Consider->end());
9868 return QualType((*Result)->getTypePtr(), 0);
9871 QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
9872 SourceLocation Loc) {
9873 bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
9874 if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
9875 BaseType->isBooleanType() ||
9876 (BaseType->isBitIntType() &&
9877 BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
9878 Diag(Loc, diag::err_make_signed_integral_only)
9879 << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
9880 return QualType();
9883 bool IsNonIntIntegral =
9884 BaseType->isChar16Type() || BaseType->isChar32Type() ||
9885 BaseType->isWideCharType() || BaseType->isEnumeralType();
9887 QualType Underlying =
9888 IsNonIntIntegral
9889 ? ChangeIntegralSignedness(*this, BaseType, IsMakeSigned, Loc)
9890 : IsMakeSigned ? Context.getCorrespondingSignedType(BaseType)
9891 : Context.getCorrespondingUnsignedType(BaseType);
9892 if (Underlying.isNull())
9893 return Underlying;
9894 return Context.getQualifiedType(Underlying, BaseType.getQualifiers());
9897 QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
9898 SourceLocation Loc) {
9899 if (BaseType->isDependentType())
9900 return Context.getUnaryTransformType(BaseType, BaseType, UKind);
9901 QualType Result;
9902 switch (UKind) {
9903 case UnaryTransformType::EnumUnderlyingType: {
9904 Result = BuiltinEnumUnderlyingType(BaseType, Loc);
9905 break;
9907 case UnaryTransformType::AddPointer: {
9908 Result = BuiltinAddPointer(BaseType, Loc);
9909 break;
9911 case UnaryTransformType::RemovePointer: {
9912 Result = BuiltinRemovePointer(BaseType, Loc);
9913 break;
9915 case UnaryTransformType::Decay: {
9916 Result = BuiltinDecay(BaseType, Loc);
9917 break;
9919 case UnaryTransformType::AddLvalueReference:
9920 case UnaryTransformType::AddRvalueReference: {
9921 Result = BuiltinAddReference(BaseType, UKind, Loc);
9922 break;
9924 case UnaryTransformType::RemoveAllExtents:
9925 case UnaryTransformType::RemoveExtent: {
9926 Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
9927 break;
9929 case UnaryTransformType::RemoveCVRef:
9930 case UnaryTransformType::RemoveReference: {
9931 Result = BuiltinRemoveReference(BaseType, UKind, Loc);
9932 break;
9934 case UnaryTransformType::RemoveConst:
9935 case UnaryTransformType::RemoveCV:
9936 case UnaryTransformType::RemoveRestrict:
9937 case UnaryTransformType::RemoveVolatile: {
9938 Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
9939 break;
9941 case UnaryTransformType::MakeSigned:
9942 case UnaryTransformType::MakeUnsigned: {
9943 Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
9944 break;
9948 return !Result.isNull()
9949 ? Context.getUnaryTransformType(BaseType, Result, UKind)
9950 : Result;
9953 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9954 if (!isDependentOrGNUAutoType(T)) {
9955 // FIXME: It isn't entirely clear whether incomplete atomic types
9956 // are allowed or not; for simplicity, ban them for the moment.
9957 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9958 return QualType();
9960 int DisallowedKind = -1;
9961 if (T->isArrayType())
9962 DisallowedKind = 1;
9963 else if (T->isFunctionType())
9964 DisallowedKind = 2;
9965 else if (T->isReferenceType())
9966 DisallowedKind = 3;
9967 else if (T->isAtomicType())
9968 DisallowedKind = 4;
9969 else if (T.hasQualifiers())
9970 DisallowedKind = 5;
9971 else if (T->isSizelessType())
9972 DisallowedKind = 6;
9973 else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
9974 // Some other non-trivially-copyable type (probably a C++ class)
9975 DisallowedKind = 7;
9976 else if (T->isBitIntType())
9977 DisallowedKind = 8;
9978 else if (getLangOpts().C23 && T->isUndeducedAutoType())
9979 // _Atomic auto is prohibited in C23
9980 DisallowedKind = 9;
9982 if (DisallowedKind != -1) {
9983 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9984 return QualType();
9987 // FIXME: Do we need any handling for ARC here?
9990 // Build the pointer type.
9991 return Context.getAtomicType(T);