[memprof] Update YAML traits for writer purposes (#118720)
[llvm-project.git] / clang / lib / StaticAnalyzer / Checkers / CStringChecker.cpp
blob21a2d8828249d1d26ddbd4f08530bf02f43fa963
1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This defines CStringChecker, which is an assortment of checks on calls
10 // to functions in <string.h>.
12 //===----------------------------------------------------------------------===//
14 #include "InterCheckerAPI.h"
15 #include "clang/AST/OperationKinds.h"
16 #include "clang/Basic/Builtins.h"
17 #include "clang/Basic/CharInfo.h"
18 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
19 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
20 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
21 #include "clang/StaticAnalyzer/Core/Checker.h"
22 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
30 #include "llvm/ADT/APSInt.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <functional>
36 #include <optional>
38 using namespace clang;
39 using namespace ento;
40 using namespace std::placeholders;
42 namespace {
43 struct AnyArgExpr {
44 const Expr *Expression;
45 unsigned ArgumentIndex;
47 struct SourceArgExpr : AnyArgExpr {};
48 struct DestinationArgExpr : AnyArgExpr {};
49 struct SizeArgExpr : AnyArgExpr {};
51 using ErrorMessage = SmallString<128>;
52 enum class AccessKind { write, read };
54 static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
55 AccessKind Access) {
56 ErrorMessage Message;
57 llvm::raw_svector_ostream Os(Message);
59 // Function classification like: Memory copy function
60 Os << toUppercase(FunctionDescription.front())
61 << &FunctionDescription.data()[1];
63 if (Access == AccessKind::write) {
64 Os << " overflows the destination buffer";
65 } else { // read access
66 Os << " accesses out-of-bound array element";
69 return Message;
72 enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
74 enum class CharKind { Regular = 0, Wide };
75 constexpr CharKind CK_Regular = CharKind::Regular;
76 constexpr CharKind CK_Wide = CharKind::Wide;
78 static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) {
79 return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy
80 : Ctx.WideCharTy);
83 class CStringChecker : public Checker< eval::Call,
84 check::PreStmt<DeclStmt>,
85 check::LiveSymbols,
86 check::DeadSymbols,
87 check::RegionChanges
88 > {
89 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
90 BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
92 mutable const char *CurrentFunctionDescription = nullptr;
94 public:
95 /// The filter is used to filter out the diagnostics which are not enabled by
96 /// the user.
97 struct CStringChecksFilter {
98 bool CheckCStringNullArg = false;
99 bool CheckCStringOutOfBounds = false;
100 bool CheckCStringBufferOverlap = false;
101 bool CheckCStringNotNullTerm = false;
102 bool CheckCStringUninitializedRead = false;
104 CheckerNameRef CheckNameCStringNullArg;
105 CheckerNameRef CheckNameCStringOutOfBounds;
106 CheckerNameRef CheckNameCStringBufferOverlap;
107 CheckerNameRef CheckNameCStringNotNullTerm;
108 CheckerNameRef CheckNameCStringUninitializedRead;
111 CStringChecksFilter Filter;
113 static void *getTag() { static int tag; return &tag; }
115 bool evalCall(const CallEvent &Call, CheckerContext &C) const;
116 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
117 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
118 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
120 ProgramStateRef
121 checkRegionChanges(ProgramStateRef state,
122 const InvalidatedSymbols *,
123 ArrayRef<const MemRegion *> ExplicitRegions,
124 ArrayRef<const MemRegion *> Regions,
125 const LocationContext *LCtx,
126 const CallEvent *Call) const;
128 using FnCheck = std::function<void(const CStringChecker *, CheckerContext &,
129 const CallEvent &)>;
131 CallDescriptionMap<FnCheck> Callbacks = {
132 {{CDM::CLibraryMaybeHardened, {"memcpy"}, 3},
133 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)},
134 {{CDM::CLibraryMaybeHardened, {"wmemcpy"}, 3},
135 std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)},
136 {{CDM::CLibraryMaybeHardened, {"mempcpy"}, 3},
137 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)},
138 {{CDM::CLibraryMaybeHardened, {"wmempcpy"}, 3},
139 std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)},
140 {{CDM::CLibrary, {"memcmp"}, 3},
141 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
142 {{CDM::CLibrary, {"wmemcmp"}, 3},
143 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)},
144 {{CDM::CLibraryMaybeHardened, {"memmove"}, 3},
145 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)},
146 {{CDM::CLibraryMaybeHardened, {"wmemmove"}, 3},
147 std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)},
148 {{CDM::CLibraryMaybeHardened, {"memset"}, 3},
149 &CStringChecker::evalMemset},
150 {{CDM::CLibrary, {"explicit_memset"}, 3}, &CStringChecker::evalMemset},
151 // FIXME: C23 introduces 'memset_explicit', maybe also model that
152 {{CDM::CLibraryMaybeHardened, {"strcpy"}, 2},
153 &CStringChecker::evalStrcpy},
154 {{CDM::CLibraryMaybeHardened, {"strncpy"}, 3},
155 &CStringChecker::evalStrncpy},
156 {{CDM::CLibraryMaybeHardened, {"stpcpy"}, 2},
157 &CStringChecker::evalStpcpy},
158 {{CDM::CLibraryMaybeHardened, {"strlcpy"}, 3},
159 &CStringChecker::evalStrlcpy},
160 {{CDM::CLibraryMaybeHardened, {"strcat"}, 2},
161 &CStringChecker::evalStrcat},
162 {{CDM::CLibraryMaybeHardened, {"strncat"}, 3},
163 &CStringChecker::evalStrncat},
164 {{CDM::CLibraryMaybeHardened, {"strlcat"}, 3},
165 &CStringChecker::evalStrlcat},
166 {{CDM::CLibraryMaybeHardened, {"strlen"}, 1},
167 &CStringChecker::evalstrLength},
168 {{CDM::CLibrary, {"wcslen"}, 1}, &CStringChecker::evalstrLength},
169 {{CDM::CLibraryMaybeHardened, {"strnlen"}, 2},
170 &CStringChecker::evalstrnLength},
171 {{CDM::CLibrary, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength},
172 {{CDM::CLibrary, {"strcmp"}, 2}, &CStringChecker::evalStrcmp},
173 {{CDM::CLibrary, {"strncmp"}, 3}, &CStringChecker::evalStrncmp},
174 {{CDM::CLibrary, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp},
175 {{CDM::CLibrary, {"strncasecmp"}, 3}, &CStringChecker::evalStrncasecmp},
176 {{CDM::CLibrary, {"strsep"}, 2}, &CStringChecker::evalStrsep},
177 {{CDM::CLibrary, {"bcopy"}, 3}, &CStringChecker::evalBcopy},
178 {{CDM::CLibrary, {"bcmp"}, 3},
179 std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
180 {{CDM::CLibrary, {"bzero"}, 2}, &CStringChecker::evalBzero},
181 {{CDM::CLibraryMaybeHardened, {"explicit_bzero"}, 2},
182 &CStringChecker::evalBzero},
184 // When recognizing calls to the following variadic functions, we accept
185 // any number of arguments in the call (std::nullopt = accept any
186 // number), but check that in the declaration there are 2 and 3
187 // parameters respectively. (Note that the parameter count does not
188 // include the "...". Calls where the number of arguments is too small
189 // will be discarded by the callback.)
190 {{CDM::CLibraryMaybeHardened, {"sprintf"}, std::nullopt, 2},
191 &CStringChecker::evalSprintf},
192 {{CDM::CLibraryMaybeHardened, {"snprintf"}, std::nullopt, 3},
193 &CStringChecker::evalSnprintf},
196 // These require a bit of special handling.
197 CallDescription StdCopy{CDM::SimpleFunc, {"std", "copy"}, 3},
198 StdCopyBackward{CDM::SimpleFunc, {"std", "copy_backward"}, 3};
200 FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
201 void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
202 void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
203 void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
204 void evalBcopy(CheckerContext &C, const CallEvent &Call) const;
205 void evalCopyCommon(CheckerContext &C, const CallEvent &Call,
206 ProgramStateRef state, SizeArgExpr Size,
207 DestinationArgExpr Dest, SourceArgExpr Source,
208 bool Restricted, bool IsMempcpy, CharKind CK) const;
210 void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
212 void evalstrLength(CheckerContext &C, const CallEvent &Call) const;
213 void evalstrnLength(CheckerContext &C, const CallEvent &Call) const;
214 void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call,
215 bool IsStrnlen = false) const;
217 void evalStrcpy(CheckerContext &C, const CallEvent &Call) const;
218 void evalStrncpy(CheckerContext &C, const CallEvent &Call) const;
219 void evalStpcpy(CheckerContext &C, const CallEvent &Call) const;
220 void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const;
221 void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
222 bool ReturnEnd, bool IsBounded, ConcatFnKind appendK,
223 bool returnPtr = true) const;
225 void evalStrcat(CheckerContext &C, const CallEvent &Call) const;
226 void evalStrncat(CheckerContext &C, const CallEvent &Call) const;
227 void evalStrlcat(CheckerContext &C, const CallEvent &Call) const;
229 void evalStrcmp(CheckerContext &C, const CallEvent &Call) const;
230 void evalStrncmp(CheckerContext &C, const CallEvent &Call) const;
231 void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const;
232 void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const;
233 void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
234 bool IsBounded = false, bool IgnoreCase = false) const;
236 void evalStrsep(CheckerContext &C, const CallEvent &Call) const;
238 void evalStdCopy(CheckerContext &C, const CallEvent &Call) const;
239 void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const;
240 void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const;
241 void evalMemset(CheckerContext &C, const CallEvent &Call) const;
242 void evalBzero(CheckerContext &C, const CallEvent &Call) const;
244 void evalSprintf(CheckerContext &C, const CallEvent &Call) const;
245 void evalSnprintf(CheckerContext &C, const CallEvent &Call) const;
246 void evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
247 bool IsBounded) const;
249 // Utility methods
250 std::pair<ProgramStateRef , ProgramStateRef >
251 static assumeZero(CheckerContext &C,
252 ProgramStateRef state, SVal V, QualType Ty);
254 static ProgramStateRef setCStringLength(ProgramStateRef state,
255 const MemRegion *MR,
256 SVal strLength);
257 static SVal getCStringLengthForRegion(CheckerContext &C,
258 ProgramStateRef &state,
259 const Expr *Ex,
260 const MemRegion *MR,
261 bool hypothetical);
262 SVal getCStringLength(CheckerContext &C,
263 ProgramStateRef &state,
264 const Expr *Ex,
265 SVal Buf,
266 bool hypothetical = false) const;
268 const StringLiteral *getCStringLiteral(CheckerContext &C,
269 ProgramStateRef &state,
270 const Expr *expr,
271 SVal val) const;
273 /// Invalidate the destination buffer determined by characters copied.
274 static ProgramStateRef
275 invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S,
276 const Expr *BufE, SVal BufV, SVal SizeV,
277 QualType SizeTy);
279 /// Operation never overflows, do not invalidate the super region.
280 static ProgramStateRef invalidateDestinationBufferNeverOverflows(
281 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
283 /// We do not know whether the operation can overflow (e.g. size is unknown),
284 /// invalidate the super region and escape related pointers.
285 static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion(
286 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
288 /// Invalidate the source buffer for escaping pointers.
289 static ProgramStateRef invalidateSourceBuffer(CheckerContext &C,
290 ProgramStateRef S,
291 const Expr *BufE, SVal BufV);
293 /// @param InvalidationTraitOperations Determine how to invlidate the
294 /// MemRegion by setting the invalidation traits. Return true to cause pointer
295 /// escape, or false otherwise.
296 static ProgramStateRef invalidateBufferAux(
297 CheckerContext &C, ProgramStateRef State, const Expr *Ex, SVal V,
298 llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
299 const MemRegion *)>
300 InvalidationTraitOperations);
302 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
303 const MemRegion *MR);
305 static bool memsetAux(const Expr *DstBuffer, SVal CharE,
306 const Expr *Size, CheckerContext &C,
307 ProgramStateRef &State);
309 // Re-usable checks
310 ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
311 AnyArgExpr Arg, SVal l) const;
312 // Check whether the origin region behind \p Element (like the actual array
313 // region \p Element is from) is initialized.
314 ProgramStateRef checkInit(CheckerContext &C, ProgramStateRef state,
315 AnyArgExpr Buffer, SVal Element, SVal Size) const;
316 ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
317 AnyArgExpr Buffer, SVal Element,
318 AccessKind Access,
319 CharKind CK = CharKind::Regular) const;
320 ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
321 AnyArgExpr Buffer, SizeArgExpr Size,
322 AccessKind Access,
323 CharKind CK = CharKind::Regular) const;
324 ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
325 SizeArgExpr Size, AnyArgExpr First,
326 AnyArgExpr Second,
327 CharKind CK = CharKind::Regular) const;
328 void emitOverlapBug(CheckerContext &C,
329 ProgramStateRef state,
330 const Stmt *First,
331 const Stmt *Second) const;
333 void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
334 StringRef WarningMsg) const;
335 void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
336 const Stmt *S, StringRef WarningMsg) const;
337 void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
338 const Stmt *S, StringRef WarningMsg) const;
339 void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
340 void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
341 const Expr *E, const MemRegion *R,
342 StringRef Msg) const;
343 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
344 ProgramStateRef state,
345 NonLoc left,
346 NonLoc right) const;
348 // Return true if the destination buffer of the copy function may be in bound.
349 // Expects SVal of Size to be positive and unsigned.
350 // Expects SVal of FirstBuf to be a FieldRegion.
351 static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
352 SVal BufVal, QualType BufTy, SVal LengthVal,
353 QualType LengthTy);
356 } //end anonymous namespace
358 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
360 //===----------------------------------------------------------------------===//
361 // Individual checks and utility methods.
362 //===----------------------------------------------------------------------===//
364 std::pair<ProgramStateRef, ProgramStateRef>
365 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef State, SVal V,
366 QualType Ty) {
367 std::optional<DefinedSVal> val = V.getAs<DefinedSVal>();
368 if (!val)
369 return std::pair<ProgramStateRef, ProgramStateRef>(State, State);
371 SValBuilder &svalBuilder = C.getSValBuilder();
372 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
373 return State->assume(svalBuilder.evalEQ(State, *val, zero));
376 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
377 ProgramStateRef State,
378 AnyArgExpr Arg, SVal l) const {
379 // If a previous check has failed, propagate the failure.
380 if (!State)
381 return nullptr;
383 ProgramStateRef stateNull, stateNonNull;
384 std::tie(stateNull, stateNonNull) =
385 assumeZero(C, State, l, Arg.Expression->getType());
387 if (stateNull && !stateNonNull) {
388 if (Filter.CheckCStringNullArg) {
389 SmallString<80> buf;
390 llvm::raw_svector_ostream OS(buf);
391 assert(CurrentFunctionDescription);
392 OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
393 << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
394 << CurrentFunctionDescription;
396 emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
398 return nullptr;
401 // From here on, assume that the value is non-null.
402 assert(stateNonNull);
403 return stateNonNull;
406 static std::optional<NonLoc> getIndex(ProgramStateRef State,
407 const ElementRegion *ER, CharKind CK) {
408 SValBuilder &SVB = State->getStateManager().getSValBuilder();
409 ASTContext &Ctx = SVB.getContext();
411 if (CK == CharKind::Regular) {
412 if (ER->getValueType() != Ctx.CharTy)
413 return {};
414 return ER->getIndex();
417 if (ER->getValueType() != Ctx.WideCharTy)
418 return {};
420 QualType SizeTy = Ctx.getSizeType();
421 NonLoc WideSize =
422 SVB.makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(),
423 SizeTy)
424 .castAs<NonLoc>();
425 SVal Offset =
426 SVB.evalBinOpNN(State, BO_Mul, ER->getIndex(), WideSize, SizeTy);
427 if (Offset.isUnknown())
428 return {};
429 return Offset.castAs<NonLoc>();
432 // Basically 1 -> 1st, 12 -> 12th, etc.
433 static void printIdxWithOrdinalSuffix(llvm::raw_ostream &Os, unsigned Idx) {
434 Os << Idx << llvm::getOrdinalSuffix(Idx);
437 ProgramStateRef CStringChecker::checkInit(CheckerContext &C,
438 ProgramStateRef State,
439 AnyArgExpr Buffer, SVal Element,
440 SVal Size) const {
442 // If a previous check has failed, propagate the failure.
443 if (!State)
444 return nullptr;
446 const MemRegion *R = Element.getAsRegion();
447 const auto *ER = dyn_cast_or_null<ElementRegion>(R);
448 if (!ER)
449 return State;
451 const auto *SuperR = ER->getSuperRegion()->getAs<TypedValueRegion>();
452 if (!SuperR)
453 return State;
455 // FIXME: We ought to able to check objects as well. Maybe
456 // UninitializedObjectChecker could help?
457 if (!SuperR->getValueType()->isArrayType())
458 return State;
460 SValBuilder &SVB = C.getSValBuilder();
461 ASTContext &Ctx = SVB.getContext();
463 const QualType ElemTy = Ctx.getBaseElementType(SuperR->getValueType());
464 const NonLoc Zero = SVB.makeZeroArrayIndex();
466 std::optional<Loc> FirstElementVal =
467 State->getLValue(ElemTy, Zero, loc::MemRegionVal(SuperR)).getAs<Loc>();
468 if (!FirstElementVal)
469 return State;
471 // Ensure that we wouldn't read uninitialized value.
472 if (Filter.CheckCStringUninitializedRead &&
473 State->getSVal(*FirstElementVal).isUndef()) {
474 llvm::SmallString<258> Buf;
475 llvm::raw_svector_ostream OS(Buf);
476 OS << "The first element of the ";
477 printIdxWithOrdinalSuffix(OS, Buffer.ArgumentIndex + 1);
478 OS << " argument is undefined";
479 emitUninitializedReadBug(C, State, Buffer.Expression,
480 FirstElementVal->getAsRegion(), OS.str());
481 return nullptr;
484 // We won't check whether the entire region is fully initialized -- lets just
485 // check that the first and the last element is. So, onto checking the last
486 // element:
487 const QualType IdxTy = SVB.getArrayIndexType();
489 NonLoc ElemSize =
490 SVB.makeIntVal(Ctx.getTypeSizeInChars(ElemTy).getQuantity(), IdxTy)
491 .castAs<NonLoc>();
493 // FIXME: Check that the size arg to the cstring function is divisible by
494 // size of the actual element type?
496 // The type of the argument to the cstring function is either char or wchar,
497 // but thats not the type of the original array (or memory region).
498 // Suppose the following:
499 // int t[5];
500 // memcpy(dst, t, sizeof(t) / sizeof(t[0]));
501 // When checking whether t is fully initialized, we see it as char array of
502 // size sizeof(int)*5. If we check the last element as a character, we read
503 // the last byte of an integer, which will be undefined. But just because
504 // that value is undefined, it doesn't mean that the element is uninitialized!
505 // For this reason, we need to retrieve the actual last element with the
506 // correct type.
508 // Divide the size argument to the cstring function by the actual element
509 // type. This value will be size of the array, or the index to the
510 // past-the-end element.
511 std::optional<NonLoc> Offset =
512 SVB.evalBinOpNN(State, clang::BO_Div, Size.castAs<NonLoc>(), ElemSize,
513 IdxTy)
514 .getAs<NonLoc>();
516 // Retrieve the index of the last element.
517 const NonLoc One = SVB.makeIntVal(1, IdxTy).castAs<NonLoc>();
518 SVal LastIdx = SVB.evalBinOpNN(State, BO_Sub, *Offset, One, IdxTy);
520 if (!Offset)
521 return State;
523 SVal LastElementVal =
524 State->getLValue(ElemTy, LastIdx, loc::MemRegionVal(SuperR));
525 if (!isa<Loc>(LastElementVal))
526 return State;
528 if (Filter.CheckCStringUninitializedRead &&
529 State->getSVal(LastElementVal.castAs<Loc>()).isUndef()) {
530 const llvm::APSInt *IdxInt = LastIdx.getAsInteger();
531 // If we can't get emit a sensible last element index, just bail out --
532 // prefer to emit nothing in favour of emitting garbage quality reports.
533 if (!IdxInt) {
534 C.addSink();
535 return nullptr;
537 llvm::SmallString<258> Buf;
538 llvm::raw_svector_ostream OS(Buf);
539 OS << "The last accessed element (at index ";
540 OS << IdxInt->getExtValue();
541 OS << ") in the ";
542 printIdxWithOrdinalSuffix(OS, Buffer.ArgumentIndex + 1);
543 OS << " argument is undefined";
544 emitUninitializedReadBug(C, State, Buffer.Expression,
545 LastElementVal.getAsRegion(), OS.str());
546 return nullptr;
548 return State;
551 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
552 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
553 ProgramStateRef state,
554 AnyArgExpr Buffer, SVal Element,
555 AccessKind Access,
556 CharKind CK) const {
558 // If a previous check has failed, propagate the failure.
559 if (!state)
560 return nullptr;
562 // Check for out of bound array element access.
563 const MemRegion *R = Element.getAsRegion();
564 if (!R)
565 return state;
567 const auto *ER = dyn_cast<ElementRegion>(R);
568 if (!ER)
569 return state;
571 // Get the index of the accessed element.
572 std::optional<NonLoc> Idx = getIndex(state, ER, CK);
573 if (!Idx)
574 return state;
576 // Get the size of the array.
577 const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
578 DefinedOrUnknownSVal Size =
579 getDynamicExtent(state, superReg, C.getSValBuilder());
581 auto [StInBound, StOutBound] = state->assumeInBoundDual(*Idx, Size);
582 if (StOutBound && !StInBound) {
583 // These checks are either enabled by the CString out-of-bounds checker
584 // explicitly or implicitly by the Malloc checker.
585 // In the latter case we only do modeling but do not emit warning.
586 if (!Filter.CheckCStringOutOfBounds)
587 return nullptr;
589 // Emit a bug report.
590 ErrorMessage Message =
591 createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
592 emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
593 return nullptr;
596 // Array bound check succeeded. From this point forward the array bound
597 // should always succeed.
598 return StInBound;
601 ProgramStateRef
602 CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
603 AnyArgExpr Buffer, SizeArgExpr Size,
604 AccessKind Access, CharKind CK) const {
605 // If a previous check has failed, propagate the failure.
606 if (!State)
607 return nullptr;
609 SValBuilder &svalBuilder = C.getSValBuilder();
610 ASTContext &Ctx = svalBuilder.getContext();
612 QualType SizeTy = Size.Expression->getType();
613 QualType PtrTy = getCharPtrType(Ctx, CK);
615 // Check that the first buffer is non-null.
616 SVal BufVal = C.getSVal(Buffer.Expression);
617 State = checkNonNull(C, State, Buffer, BufVal);
618 if (!State)
619 return nullptr;
621 // If out-of-bounds checking is turned off, skip the rest.
622 if (!Filter.CheckCStringOutOfBounds)
623 return State;
625 SVal BufStart =
626 svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
628 // Check if the first byte of the buffer is accessible.
629 State = CheckLocation(C, State, Buffer, BufStart, Access, CK);
631 if (!State)
632 return nullptr;
634 // Get the access length and make sure it is known.
635 // FIXME: This assumes the caller has already checked that the access length
636 // is positive. And that it's unsigned.
637 SVal LengthVal = C.getSVal(Size.Expression);
638 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
639 if (!Length)
640 return State;
642 // Compute the offset of the last element to be accessed: size-1.
643 NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
644 SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
645 if (Offset.isUnknown())
646 return nullptr;
647 NonLoc LastOffset = Offset.castAs<NonLoc>();
649 // Check that the first buffer is sufficiently long.
650 if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
652 SVal BufEnd =
653 svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
654 State = CheckLocation(C, State, Buffer, BufEnd, Access, CK);
655 if (Access == AccessKind::read)
656 State = checkInit(C, State, Buffer, BufEnd, *Length);
658 // If the buffer isn't large enough, abort.
659 if (!State)
660 return nullptr;
663 // Large enough or not, return this state!
664 return State;
667 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
668 ProgramStateRef state,
669 SizeArgExpr Size, AnyArgExpr First,
670 AnyArgExpr Second,
671 CharKind CK) const {
672 if (!Filter.CheckCStringBufferOverlap)
673 return state;
675 // Do a simple check for overlap: if the two arguments are from the same
676 // buffer, see if the end of the first is greater than the start of the second
677 // or vice versa.
679 // If a previous check has failed, propagate the failure.
680 if (!state)
681 return nullptr;
683 ProgramStateRef stateTrue, stateFalse;
685 // Assume different address spaces cannot overlap.
686 if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
687 Second.Expression->getType()->getPointeeType().getAddressSpace())
688 return state;
690 // Get the buffer values and make sure they're known locations.
691 const LocationContext *LCtx = C.getLocationContext();
692 SVal firstVal = state->getSVal(First.Expression, LCtx);
693 SVal secondVal = state->getSVal(Second.Expression, LCtx);
695 std::optional<Loc> firstLoc = firstVal.getAs<Loc>();
696 if (!firstLoc)
697 return state;
699 std::optional<Loc> secondLoc = secondVal.getAs<Loc>();
700 if (!secondLoc)
701 return state;
703 // Are the two values the same?
704 SValBuilder &svalBuilder = C.getSValBuilder();
705 std::tie(stateTrue, stateFalse) =
706 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
708 if (stateTrue && !stateFalse) {
709 // If the values are known to be equal, that's automatically an overlap.
710 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
711 return nullptr;
714 // assume the two expressions are not equal.
715 assert(stateFalse);
716 state = stateFalse;
718 // Which value comes first?
719 QualType cmpTy = svalBuilder.getConditionType();
720 SVal reverse =
721 svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
722 std::optional<DefinedOrUnknownSVal> reverseTest =
723 reverse.getAs<DefinedOrUnknownSVal>();
724 if (!reverseTest)
725 return state;
727 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
728 if (stateTrue) {
729 if (stateFalse) {
730 // If we don't know which one comes first, we can't perform this test.
731 return state;
732 } else {
733 // Switch the values so that firstVal is before secondVal.
734 std::swap(firstLoc, secondLoc);
736 // Switch the Exprs as well, so that they still correspond.
737 std::swap(First, Second);
741 // Get the length, and make sure it too is known.
742 SVal LengthVal = state->getSVal(Size.Expression, LCtx);
743 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
744 if (!Length)
745 return state;
747 // Convert the first buffer's start address to char*.
748 // Bail out if the cast fails.
749 ASTContext &Ctx = svalBuilder.getContext();
750 QualType CharPtrTy = getCharPtrType(Ctx, CK);
751 SVal FirstStart =
752 svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
753 std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
754 if (!FirstStartLoc)
755 return state;
757 // Compute the end of the first buffer. Bail out if THAT fails.
758 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
759 *Length, CharPtrTy);
760 std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
761 if (!FirstEndLoc)
762 return state;
764 // Is the end of the first buffer past the start of the second buffer?
765 SVal Overlap =
766 svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
767 std::optional<DefinedOrUnknownSVal> OverlapTest =
768 Overlap.getAs<DefinedOrUnknownSVal>();
769 if (!OverlapTest)
770 return state;
772 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
774 if (stateTrue && !stateFalse) {
775 // Overlap!
776 emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
777 return nullptr;
780 // assume the two expressions don't overlap.
781 assert(stateFalse);
782 return stateFalse;
785 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
786 const Stmt *First, const Stmt *Second) const {
787 ExplodedNode *N = C.generateErrorNode(state);
788 if (!N)
789 return;
791 if (!BT_Overlap)
792 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
793 categories::UnixAPI, "Improper arguments"));
795 // Generate a report for this bug.
796 auto report = std::make_unique<PathSensitiveBugReport>(
797 *BT_Overlap, "Arguments must not be overlapping buffers", N);
798 report->addRange(First->getSourceRange());
799 report->addRange(Second->getSourceRange());
801 C.emitReport(std::move(report));
804 void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
805 const Stmt *S, StringRef WarningMsg) const {
806 if (ExplodedNode *N = C.generateErrorNode(State)) {
807 if (!BT_Null) {
808 // FIXME: This call uses the string constant 'categories::UnixAPI' as the
809 // description of the bug; it should be replaced by a real description.
810 BT_Null.reset(
811 new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI));
814 auto Report =
815 std::make_unique<PathSensitiveBugReport>(*BT_Null, WarningMsg, N);
816 Report->addRange(S->getSourceRange());
817 if (const auto *Ex = dyn_cast<Expr>(S))
818 bugreporter::trackExpressionValue(N, Ex, *Report);
819 C.emitReport(std::move(Report));
823 void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
824 ProgramStateRef State,
825 const Expr *E, const MemRegion *R,
826 StringRef Msg) const {
827 if (ExplodedNode *N = C.generateErrorNode(State)) {
828 if (!BT_UninitRead)
829 BT_UninitRead.reset(new BugType(Filter.CheckNameCStringUninitializedRead,
830 "Accessing unitialized/garbage values"));
832 auto Report =
833 std::make_unique<PathSensitiveBugReport>(*BT_UninitRead, Msg, N);
834 Report->addNote("Other elements might also be undefined",
835 Report->getLocation());
836 Report->addRange(E->getSourceRange());
837 bugreporter::trackExpressionValue(N, E, *Report);
838 Report->addVisitor<NoStoreFuncVisitor>(R->castAs<SubRegion>());
839 C.emitReport(std::move(Report));
843 void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
844 ProgramStateRef State, const Stmt *S,
845 StringRef WarningMsg) const {
846 if (ExplodedNode *N = C.generateErrorNode(State)) {
847 if (!BT_Bounds)
848 BT_Bounds.reset(new BugType(Filter.CheckCStringOutOfBounds
849 ? Filter.CheckNameCStringOutOfBounds
850 : Filter.CheckNameCStringNullArg,
851 "Out-of-bound array access"));
853 // FIXME: It would be nice to eventually make this diagnostic more clear,
854 // e.g., by referencing the original declaration or by saying *why* this
855 // reference is outside the range.
856 auto Report =
857 std::make_unique<PathSensitiveBugReport>(*BT_Bounds, WarningMsg, N);
858 Report->addRange(S->getSourceRange());
859 C.emitReport(std::move(Report));
863 void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
864 const Stmt *S,
865 StringRef WarningMsg) const {
866 if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
867 if (!BT_NotCString) {
868 // FIXME: This call uses the string constant 'categories::UnixAPI' as the
869 // description of the bug; it should be replaced by a real description.
870 BT_NotCString.reset(
871 new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI));
874 auto Report =
875 std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
877 Report->addRange(S->getSourceRange());
878 C.emitReport(std::move(Report));
882 void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
883 ProgramStateRef State) const {
884 if (ExplodedNode *N = C.generateErrorNode(State)) {
885 if (!BT_AdditionOverflow) {
886 // FIXME: This call uses the word "API" as the description of the bug;
887 // it should be replaced by a better error message (if this unlikely
888 // situation continues to exist as a separate bug type).
889 BT_AdditionOverflow.reset(
890 new BugType(Filter.CheckNameCStringOutOfBounds, "API"));
893 // This isn't a great error message, but this should never occur in real
894 // code anyway -- you'd have to create a buffer longer than a size_t can
895 // represent, which is sort of a contradiction.
896 const char *WarningMsg =
897 "This expression will create a string whose length is too big to "
898 "be represented as a size_t";
900 auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
901 WarningMsg, N);
902 C.emitReport(std::move(Report));
906 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
907 ProgramStateRef state,
908 NonLoc left,
909 NonLoc right) const {
910 // If out-of-bounds checking is turned off, skip the rest.
911 if (!Filter.CheckCStringOutOfBounds)
912 return state;
914 // If a previous check has failed, propagate the failure.
915 if (!state)
916 return nullptr;
918 SValBuilder &svalBuilder = C.getSValBuilder();
919 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
921 QualType sizeTy = svalBuilder.getContext().getSizeType();
922 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
923 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
925 SVal maxMinusRight;
926 if (isa<nonloc::ConcreteInt>(right)) {
927 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
928 sizeTy);
929 } else {
930 // Try switching the operands. (The order of these two assignments is
931 // important!)
932 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
933 sizeTy);
934 left = right;
937 if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
938 QualType cmpTy = svalBuilder.getConditionType();
939 // If left > max - right, we have an overflow.
940 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
941 *maxMinusRightNL, cmpTy);
943 ProgramStateRef stateOverflow, stateOkay;
944 std::tie(stateOverflow, stateOkay) =
945 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
947 if (stateOverflow && !stateOkay) {
948 // We have an overflow. Emit a bug report.
949 emitAdditionOverflowBug(C, stateOverflow);
950 return nullptr;
953 // From now on, assume an overflow didn't occur.
954 assert(stateOkay);
955 state = stateOkay;
958 return state;
961 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
962 const MemRegion *MR,
963 SVal strLength) {
964 assert(!strLength.isUndef() && "Attempt to set an undefined string length");
966 MR = MR->StripCasts();
968 switch (MR->getKind()) {
969 case MemRegion::StringRegionKind:
970 // FIXME: This can happen if we strcpy() into a string region. This is
971 // undefined [C99 6.4.5p6], but we should still warn about it.
972 return state;
974 case MemRegion::SymbolicRegionKind:
975 case MemRegion::AllocaRegionKind:
976 case MemRegion::NonParamVarRegionKind:
977 case MemRegion::ParamVarRegionKind:
978 case MemRegion::FieldRegionKind:
979 case MemRegion::ObjCIvarRegionKind:
980 // These are the types we can currently track string lengths for.
981 break;
983 case MemRegion::ElementRegionKind:
984 // FIXME: Handle element regions by upper-bounding the parent region's
985 // string length.
986 return state;
988 default:
989 // Other regions (mostly non-data) can't have a reliable C string length.
990 // For now, just ignore the change.
991 // FIXME: These are rare but not impossible. We should output some kind of
992 // warning for things like strcpy((char[]){'a', 0}, "b");
993 return state;
996 if (strLength.isUnknown())
997 return state->remove<CStringLength>(MR);
999 return state->set<CStringLength>(MR, strLength);
1002 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
1003 ProgramStateRef &state,
1004 const Expr *Ex,
1005 const MemRegion *MR,
1006 bool hypothetical) {
1007 if (!hypothetical) {
1008 // If there's a recorded length, go ahead and return it.
1009 const SVal *Recorded = state->get<CStringLength>(MR);
1010 if (Recorded)
1011 return *Recorded;
1014 // Otherwise, get a new symbol and update the state.
1015 SValBuilder &svalBuilder = C.getSValBuilder();
1016 QualType sizeTy = svalBuilder.getContext().getSizeType();
1017 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
1018 MR, Ex, sizeTy,
1019 C.getLocationContext(),
1020 C.blockCount());
1022 if (!hypothetical) {
1023 if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
1024 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
1025 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
1026 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
1027 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
1028 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
1029 fourInt);
1030 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
1031 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, maxLength,
1032 svalBuilder.getConditionType());
1033 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
1035 state = state->set<CStringLength>(MR, strLength);
1038 return strLength;
1041 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
1042 const Expr *Ex, SVal Buf,
1043 bool hypothetical) const {
1044 const MemRegion *MR = Buf.getAsRegion();
1045 if (!MR) {
1046 // If we can't get a region, see if it's something we /know/ isn't a
1047 // C string. In the context of locations, the only time we can issue such
1048 // a warning is for labels.
1049 if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
1050 if (Filter.CheckCStringNotNullTerm) {
1051 SmallString<120> buf;
1052 llvm::raw_svector_ostream os(buf);
1053 assert(CurrentFunctionDescription);
1054 os << "Argument to " << CurrentFunctionDescription
1055 << " is the address of the label '" << Label->getLabel()->getName()
1056 << "', which is not a null-terminated string";
1058 emitNotCStringBug(C, state, Ex, os.str());
1060 return UndefinedVal();
1063 // If it's not a region and not a label, give up.
1064 return UnknownVal();
1067 // If we have a region, strip casts from it and see if we can figure out
1068 // its length. For anything we can't figure out, just return UnknownVal.
1069 MR = MR->StripCasts();
1071 switch (MR->getKind()) {
1072 case MemRegion::StringRegionKind: {
1073 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
1074 // so we can assume that the byte length is the correct C string length.
1075 SValBuilder &svalBuilder = C.getSValBuilder();
1076 QualType sizeTy = svalBuilder.getContext().getSizeType();
1077 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
1078 return svalBuilder.makeIntVal(strLit->getLength(), sizeTy);
1080 case MemRegion::NonParamVarRegionKind: {
1081 // If we have a global constant with a string literal initializer,
1082 // compute the initializer's length.
1083 const VarDecl *Decl = cast<NonParamVarRegion>(MR)->getDecl();
1084 if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) {
1085 if (const Expr *Init = Decl->getInit()) {
1086 if (auto *StrLit = dyn_cast<StringLiteral>(Init)) {
1087 SValBuilder &SvalBuilder = C.getSValBuilder();
1088 QualType SizeTy = SvalBuilder.getContext().getSizeType();
1089 return SvalBuilder.makeIntVal(StrLit->getLength(), SizeTy);
1093 [[fallthrough]];
1095 case MemRegion::SymbolicRegionKind:
1096 case MemRegion::AllocaRegionKind:
1097 case MemRegion::ParamVarRegionKind:
1098 case MemRegion::FieldRegionKind:
1099 case MemRegion::ObjCIvarRegionKind:
1100 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
1101 case MemRegion::CompoundLiteralRegionKind:
1102 // FIXME: Can we track this? Is it necessary?
1103 return UnknownVal();
1104 case MemRegion::ElementRegionKind:
1105 // FIXME: How can we handle this? It's not good enough to subtract the
1106 // offset from the base string length; consider "123\x00567" and &a[5].
1107 return UnknownVal();
1108 default:
1109 // Other regions (mostly non-data) can't have a reliable C string length.
1110 // In this case, an error is emitted and UndefinedVal is returned.
1111 // The caller should always be prepared to handle this case.
1112 if (Filter.CheckCStringNotNullTerm) {
1113 SmallString<120> buf;
1114 llvm::raw_svector_ostream os(buf);
1116 assert(CurrentFunctionDescription);
1117 os << "Argument to " << CurrentFunctionDescription << " is ";
1119 if (SummarizeRegion(os, C.getASTContext(), MR))
1120 os << ", which is not a null-terminated string";
1121 else
1122 os << "not a null-terminated string";
1124 emitNotCStringBug(C, state, Ex, os.str());
1126 return UndefinedVal();
1130 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
1131 ProgramStateRef &state, const Expr *expr, SVal val) const {
1133 // Get the memory region pointed to by the val.
1134 const MemRegion *bufRegion = val.getAsRegion();
1135 if (!bufRegion)
1136 return nullptr;
1138 // Strip casts off the memory region.
1139 bufRegion = bufRegion->StripCasts();
1141 // Cast the memory region to a string region.
1142 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
1143 if (!strRegion)
1144 return nullptr;
1146 // Return the actual string in the string region.
1147 return strRegion->getStringLiteral();
1150 bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
1151 SVal BufVal, QualType BufTy,
1152 SVal LengthVal, QualType LengthTy) {
1153 // If we do not know that the buffer is long enough we return 'true'.
1154 // Otherwise the parent region of this field region would also get
1155 // invalidated, which would lead to warnings based on an unknown state.
1157 if (LengthVal.isUnknown())
1158 return false;
1160 // Originally copied from CheckBufferAccess and CheckLocation.
1161 SValBuilder &SB = C.getSValBuilder();
1162 ASTContext &Ctx = C.getASTContext();
1164 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
1166 std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
1167 if (!Length)
1168 return true; // cf top comment.
1170 // Compute the offset of the last element to be accessed: size-1.
1171 NonLoc One = SB.makeIntVal(1, LengthTy).castAs<NonLoc>();
1172 SVal Offset = SB.evalBinOpNN(State, BO_Sub, *Length, One, LengthTy);
1173 if (Offset.isUnknown())
1174 return true; // cf top comment
1175 NonLoc LastOffset = Offset.castAs<NonLoc>();
1177 // Check that the first buffer is sufficiently long.
1178 SVal BufStart = SB.evalCast(BufVal, PtrTy, BufTy);
1179 std::optional<Loc> BufLoc = BufStart.getAs<Loc>();
1180 if (!BufLoc)
1181 return true; // cf top comment.
1183 SVal BufEnd = SB.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
1185 // Check for out of bound array element access.
1186 const MemRegion *R = BufEnd.getAsRegion();
1187 if (!R)
1188 return true; // cf top comment.
1190 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
1191 if (!ER)
1192 return true; // cf top comment.
1194 // FIXME: Does this crash when a non-standard definition
1195 // of a library function is encountered?
1196 assert(ER->getValueType() == C.getASTContext().CharTy &&
1197 "isFirstBufInBound should only be called with char* ElementRegions");
1199 // Get the size of the array.
1200 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
1201 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, superReg, SB);
1203 // Get the index of the accessed element.
1204 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
1206 ProgramStateRef StInBound = State->assumeInBound(Idx, SizeDV, true);
1208 return static_cast<bool>(StInBound);
1211 ProgramStateRef CStringChecker::invalidateDestinationBufferBySize(
1212 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV,
1213 SVal SizeV, QualType SizeTy) {
1214 auto InvalidationTraitOperations =
1215 [&C, S, BufTy = BufE->getType(), BufV, SizeV,
1216 SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1217 // If destination buffer is a field region and access is in bound, do
1218 // not invalidate its super region.
1219 if (MemRegion::FieldRegionKind == R->getKind() &&
1220 isFirstBufInBound(C, S, BufV, BufTy, SizeV, SizeTy)) {
1221 ITraits.setTrait(
1223 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1225 return false;
1228 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1231 ProgramStateRef
1232 CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion(
1233 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
1234 auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &,
1235 const MemRegion *R) {
1236 return isa<FieldRegion>(R);
1239 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1242 ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows(
1243 CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
1244 auto InvalidationTraitOperations =
1245 [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1246 if (MemRegion::FieldRegionKind == R->getKind())
1247 ITraits.setTrait(
1249 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
1250 return false;
1253 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1256 ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C,
1257 ProgramStateRef S,
1258 const Expr *BufE,
1259 SVal BufV) {
1260 auto InvalidationTraitOperations =
1261 [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
1262 ITraits.setTrait(
1263 R->getBaseRegion(),
1264 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
1265 ITraits.setTrait(R,
1266 RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
1267 return true;
1270 return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
1273 ProgramStateRef CStringChecker::invalidateBufferAux(
1274 CheckerContext &C, ProgramStateRef State, const Expr *E, SVal V,
1275 llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
1276 const MemRegion *)>
1277 InvalidationTraitOperations) {
1278 std::optional<Loc> L = V.getAs<Loc>();
1279 if (!L)
1280 return State;
1282 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
1283 // some assumptions about the value that CFRefCount can't. Even so, it should
1284 // probably be refactored.
1285 if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
1286 const MemRegion *R = MR->getRegion()->StripCasts();
1288 // Are we dealing with an ElementRegion? If so, we should be invalidating
1289 // the super-region.
1290 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1291 R = ER->getSuperRegion();
1292 // FIXME: What about layers of ElementRegions?
1295 // Invalidate this region.
1296 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1297 RegionAndSymbolInvalidationTraits ITraits;
1298 bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R);
1300 return State->invalidateRegions(R, E, C.blockCount(), LCtx,
1301 CausesPointerEscape, nullptr, nullptr,
1302 &ITraits);
1305 // If we have a non-region value by chance, just remove the binding.
1306 // FIXME: is this necessary or correct? This handles the non-Region
1307 // cases. Is it ever valid to store to these?
1308 return State->killBinding(*L);
1311 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
1312 const MemRegion *MR) {
1313 switch (MR->getKind()) {
1314 case MemRegion::FunctionCodeRegionKind: {
1315 if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
1316 os << "the address of the function '" << *FD << '\'';
1317 else
1318 os << "the address of a function";
1319 return true;
1321 case MemRegion::BlockCodeRegionKind:
1322 os << "block text";
1323 return true;
1324 case MemRegion::BlockDataRegionKind:
1325 os << "a block";
1326 return true;
1327 case MemRegion::CXXThisRegionKind:
1328 case MemRegion::CXXTempObjectRegionKind:
1329 os << "a C++ temp object of type "
1330 << cast<TypedValueRegion>(MR)->getValueType();
1331 return true;
1332 case MemRegion::NonParamVarRegionKind:
1333 os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType();
1334 return true;
1335 case MemRegion::ParamVarRegionKind:
1336 os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType();
1337 return true;
1338 case MemRegion::FieldRegionKind:
1339 os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType();
1340 return true;
1341 case MemRegion::ObjCIvarRegionKind:
1342 os << "an instance variable of type "
1343 << cast<TypedValueRegion>(MR)->getValueType();
1344 return true;
1345 default:
1346 return false;
1350 bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
1351 const Expr *Size, CheckerContext &C,
1352 ProgramStateRef &State) {
1353 SVal MemVal = C.getSVal(DstBuffer);
1354 SVal SizeVal = C.getSVal(Size);
1355 const MemRegion *MR = MemVal.getAsRegion();
1356 if (!MR)
1357 return false;
1359 // We're about to model memset by producing a "default binding" in the Store.
1360 // Our current implementation - RegionStore - doesn't support default bindings
1361 // that don't cover the whole base region. So we should first get the offset
1362 // and the base region to figure out whether the offset of buffer is 0.
1363 RegionOffset Offset = MR->getAsOffset();
1364 const MemRegion *BR = Offset.getRegion();
1366 std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
1367 if (!SizeNL)
1368 return false;
1370 SValBuilder &svalBuilder = C.getSValBuilder();
1371 ASTContext &Ctx = C.getASTContext();
1373 // void *memset(void *dest, int ch, size_t count);
1374 // For now we can only handle the case of offset is 0 and concrete char value.
1375 if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
1376 Offset.getOffset() == 0) {
1377 // Get the base region's size.
1378 DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
1380 ProgramStateRef StateWholeReg, StateNotWholeReg;
1381 std::tie(StateWholeReg, StateNotWholeReg) =
1382 State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
1384 // With the semantic of 'memset()', we should convert the CharVal to
1385 // unsigned char.
1386 CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
1388 ProgramStateRef StateNullChar, StateNonNullChar;
1389 std::tie(StateNullChar, StateNonNullChar) =
1390 assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
1392 if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
1393 !StateNonNullChar) {
1394 // If the 'memset()' acts on the whole region of destination buffer and
1395 // the value of the second argument of 'memset()' is zero, bind the second
1396 // argument's value to the destination buffer with 'default binding'.
1397 // FIXME: Since there is no perfect way to bind the non-zero character, we
1398 // can only deal with zero value here. In the future, we need to deal with
1399 // the binding of non-zero value in the case of whole region.
1400 State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
1401 C.getLocationContext());
1402 } else {
1403 // If the destination buffer's extent is not equal to the value of
1404 // third argument, just invalidate buffer.
1405 State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
1406 SizeVal, Size->getType());
1409 if (StateNullChar && !StateNonNullChar) {
1410 // If the value of the second argument of 'memset()' is zero, set the
1411 // string length of destination buffer to 0 directly.
1412 State = setCStringLength(State, MR,
1413 svalBuilder.makeZeroVal(Ctx.getSizeType()));
1414 } else if (!StateNullChar && StateNonNullChar) {
1415 SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
1416 CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
1417 C.getLocationContext(), C.blockCount());
1419 // If the value of second argument is not zero, then the string length
1420 // is at least the size argument.
1421 SVal NewStrLenGESize = svalBuilder.evalBinOp(
1422 State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
1424 State = setCStringLength(
1425 State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
1426 MR, NewStrLen);
1428 } else {
1429 // If the offset is not zero and char value is not concrete, we can do
1430 // nothing but invalidate the buffer.
1431 State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
1432 SizeVal, Size->getType());
1434 return true;
1437 //===----------------------------------------------------------------------===//
1438 // evaluation of individual function calls.
1439 //===----------------------------------------------------------------------===//
1441 void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call,
1442 ProgramStateRef state, SizeArgExpr Size,
1443 DestinationArgExpr Dest,
1444 SourceArgExpr Source, bool Restricted,
1445 bool IsMempcpy, CharKind CK) const {
1446 CurrentFunctionDescription = "memory copy function";
1448 // See if the size argument is zero.
1449 const LocationContext *LCtx = C.getLocationContext();
1450 SVal sizeVal = state->getSVal(Size.Expression, LCtx);
1451 QualType sizeTy = Size.Expression->getType();
1453 ProgramStateRef stateZeroSize, stateNonZeroSize;
1454 std::tie(stateZeroSize, stateNonZeroSize) =
1455 assumeZero(C, state, sizeVal, sizeTy);
1457 // Get the value of the Dest.
1458 SVal destVal = state->getSVal(Dest.Expression, LCtx);
1460 // If the size is zero, there won't be any actual memory access, so
1461 // just bind the return value to the destination buffer and return.
1462 if (stateZeroSize && !stateNonZeroSize) {
1463 stateZeroSize =
1464 stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, destVal);
1465 C.addTransition(stateZeroSize);
1466 return;
1469 // If the size can be nonzero, we have to check the other arguments.
1470 if (stateNonZeroSize) {
1471 // TODO: If Size is tainted and we cannot prove that it is smaller or equal
1472 // to the size of the destination buffer, then emit a warning
1473 // that an attacker may provoke a buffer overflow error.
1474 state = stateNonZeroSize;
1476 // Ensure the destination is not null. If it is NULL there will be a
1477 // NULL pointer dereference.
1478 state = checkNonNull(C, state, Dest, destVal);
1479 if (!state)
1480 return;
1482 // Get the value of the Src.
1483 SVal srcVal = state->getSVal(Source.Expression, LCtx);
1485 // Ensure the source is not null. If it is NULL there will be a
1486 // NULL pointer dereference.
1487 state = checkNonNull(C, state, Source, srcVal);
1488 if (!state)
1489 return;
1491 // Ensure the accesses are valid and that the buffers do not overlap.
1492 state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK);
1493 state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK);
1495 if (Restricted)
1496 state = CheckOverlap(C, state, Size, Dest, Source, CK);
1498 if (!state)
1499 return;
1501 // If this is mempcpy, get the byte after the last byte copied and
1502 // bind the expr.
1503 if (IsMempcpy) {
1504 // Get the byte after the last byte copied.
1505 SValBuilder &SvalBuilder = C.getSValBuilder();
1506 ASTContext &Ctx = SvalBuilder.getContext();
1507 QualType CharPtrTy = getCharPtrType(Ctx, CK);
1508 SVal DestRegCharVal =
1509 SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
1510 SVal lastElement = C.getSValBuilder().evalBinOp(
1511 state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
1512 // If we don't know how much we copied, we can at least
1513 // conjure a return value for later.
1514 if (lastElement.isUnknown())
1515 lastElement = C.getSValBuilder().conjureSymbolVal(
1516 nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1518 // The byte after the last byte copied is the return value.
1519 state = state->BindExpr(Call.getOriginExpr(), LCtx, lastElement);
1520 } else {
1521 // All other copies return the destination buffer.
1522 // (Well, bcopy() has a void return type, but this won't hurt.)
1523 state = state->BindExpr(Call.getOriginExpr(), LCtx, destVal);
1526 // Invalidate the destination (regular invalidation without pointer-escaping
1527 // the address of the top-level region).
1528 // FIXME: Even if we can't perfectly model the copy, we should see if we
1529 // can use LazyCompoundVals to copy the source values into the destination.
1530 // This would probably remove any existing bindings past the end of the
1531 // copied region, but that's still an improvement over blank invalidation.
1532 state = invalidateDestinationBufferBySize(
1533 C, state, Dest.Expression, C.getSVal(Dest.Expression), sizeVal,
1534 Size.Expression->getType());
1536 // Invalidate the source (const-invalidation without const-pointer-escaping
1537 // the address of the top-level region).
1538 state = invalidateSourceBuffer(C, state, Source.Expression,
1539 C.getSVal(Source.Expression));
1541 C.addTransition(state);
1545 void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call,
1546 CharKind CK) const {
1547 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1548 // The return value is the address of the destination buffer.
1549 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1550 SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1551 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1553 ProgramStateRef State = C.getState();
1555 constexpr bool IsRestricted = true;
1556 constexpr bool IsMempcpy = false;
1557 evalCopyCommon(C, Call, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK);
1560 void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call,
1561 CharKind CK) const {
1562 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1563 // The return value is a pointer to the byte following the last written byte.
1564 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1565 SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1566 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1568 constexpr bool IsRestricted = true;
1569 constexpr bool IsMempcpy = true;
1570 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1571 IsMempcpy, CK);
1574 void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call,
1575 CharKind CK) const {
1576 // void *memmove(void *dst, const void *src, size_t n);
1577 // The return value is the address of the destination buffer.
1578 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
1579 SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
1580 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1582 constexpr bool IsRestricted = false;
1583 constexpr bool IsMempcpy = false;
1584 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1585 IsMempcpy, CK);
1588 void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const {
1589 // void bcopy(const void *src, void *dst, size_t n);
1590 SourceArgExpr Src{{Call.getArgExpr(0), 0}};
1591 DestinationArgExpr Dest = {{Call.getArgExpr(1), 1}};
1592 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1594 constexpr bool IsRestricted = false;
1595 constexpr bool IsMempcpy = false;
1596 evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
1597 IsMempcpy, CharKind::Regular);
1600 void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call,
1601 CharKind CK) const {
1602 // int memcmp(const void *s1, const void *s2, size_t n);
1603 CurrentFunctionDescription = "memory comparison function";
1605 AnyArgExpr Left = {Call.getArgExpr(0), 0};
1606 AnyArgExpr Right = {Call.getArgExpr(1), 1};
1607 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
1609 ProgramStateRef State = C.getState();
1610 SValBuilder &Builder = C.getSValBuilder();
1611 const LocationContext *LCtx = C.getLocationContext();
1613 // See if the size argument is zero.
1614 SVal sizeVal = State->getSVal(Size.Expression, LCtx);
1615 QualType sizeTy = Size.Expression->getType();
1617 ProgramStateRef stateZeroSize, stateNonZeroSize;
1618 std::tie(stateZeroSize, stateNonZeroSize) =
1619 assumeZero(C, State, sizeVal, sizeTy);
1621 // If the size can be zero, the result will be 0 in that case, and we don't
1622 // have to check either of the buffers.
1623 if (stateZeroSize) {
1624 State = stateZeroSize;
1625 State = State->BindExpr(Call.getOriginExpr(), LCtx,
1626 Builder.makeZeroVal(Call.getResultType()));
1627 C.addTransition(State);
1630 // If the size can be nonzero, we have to check the other arguments.
1631 if (stateNonZeroSize) {
1632 State = stateNonZeroSize;
1633 // If we know the two buffers are the same, we know the result is 0.
1634 // First, get the two buffers' addresses. Another checker will have already
1635 // made sure they're not undefined.
1636 DefinedOrUnknownSVal LV =
1637 State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1638 DefinedOrUnknownSVal RV =
1639 State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
1641 // See if they are the same.
1642 ProgramStateRef SameBuffer, NotSameBuffer;
1643 std::tie(SameBuffer, NotSameBuffer) =
1644 State->assume(Builder.evalEQ(State, LV, RV));
1646 // If the two arguments are the same buffer, we know the result is 0,
1647 // and we only need to check one size.
1648 if (SameBuffer && !NotSameBuffer) {
1649 State = SameBuffer;
1650 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
1651 if (State) {
1652 State = SameBuffer->BindExpr(Call.getOriginExpr(), LCtx,
1653 Builder.makeZeroVal(Call.getResultType()));
1654 C.addTransition(State);
1656 return;
1659 // If the two arguments might be different buffers, we have to check
1660 // the size of both of them.
1661 assert(NotSameBuffer);
1662 State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK);
1663 State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK);
1664 if (State) {
1665 // The return value is the comparison result, which we don't know.
1666 SVal CmpV = Builder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
1667 C.blockCount());
1668 State = State->BindExpr(Call.getOriginExpr(), LCtx, CmpV);
1669 C.addTransition(State);
1674 void CStringChecker::evalstrLength(CheckerContext &C,
1675 const CallEvent &Call) const {
1676 // size_t strlen(const char *s);
1677 evalstrLengthCommon(C, Call, /* IsStrnlen = */ false);
1680 void CStringChecker::evalstrnLength(CheckerContext &C,
1681 const CallEvent &Call) const {
1682 // size_t strnlen(const char *s, size_t maxlen);
1683 evalstrLengthCommon(C, Call, /* IsStrnlen = */ true);
1686 void CStringChecker::evalstrLengthCommon(CheckerContext &C,
1687 const CallEvent &Call,
1688 bool IsStrnlen) const {
1689 CurrentFunctionDescription = "string length function";
1690 ProgramStateRef state = C.getState();
1691 const LocationContext *LCtx = C.getLocationContext();
1693 if (IsStrnlen) {
1694 const Expr *maxlenExpr = Call.getArgExpr(1);
1695 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1697 ProgramStateRef stateZeroSize, stateNonZeroSize;
1698 std::tie(stateZeroSize, stateNonZeroSize) =
1699 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1701 // If the size can be zero, the result will be 0 in that case, and we don't
1702 // have to check the string itself.
1703 if (stateZeroSize) {
1704 SVal zero = C.getSValBuilder().makeZeroVal(Call.getResultType());
1705 stateZeroSize = stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, zero);
1706 C.addTransition(stateZeroSize);
1709 // If the size is GUARANTEED to be zero, we're done!
1710 if (!stateNonZeroSize)
1711 return;
1713 // Otherwise, record the assumption that the size is nonzero.
1714 state = stateNonZeroSize;
1717 // Check that the string argument is non-null.
1718 AnyArgExpr Arg = {Call.getArgExpr(0), 0};
1719 SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
1720 state = checkNonNull(C, state, Arg, ArgVal);
1722 if (!state)
1723 return;
1725 SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
1727 // If the argument isn't a valid C string, there's no valid state to
1728 // transition to.
1729 if (strLength.isUndef())
1730 return;
1732 DefinedOrUnknownSVal result = UnknownVal();
1734 // If the check is for strnlen() then bind the return value to no more than
1735 // the maxlen value.
1736 if (IsStrnlen) {
1737 QualType cmpTy = C.getSValBuilder().getConditionType();
1739 // It's a little unfortunate to be getting this again,
1740 // but it's not that expensive...
1741 const Expr *maxlenExpr = Call.getArgExpr(1);
1742 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1744 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1745 std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1747 if (strLengthNL && maxlenValNL) {
1748 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1750 // Check if the strLength is greater than the maxlen.
1751 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1752 C.getSValBuilder()
1753 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1754 .castAs<DefinedOrUnknownSVal>());
1756 if (stateStringTooLong && !stateStringNotTooLong) {
1757 // If the string is longer than maxlen, return maxlen.
1758 result = *maxlenValNL;
1759 } else if (stateStringNotTooLong && !stateStringTooLong) {
1760 // If the string is shorter than maxlen, return its length.
1761 result = *strLengthNL;
1765 if (result.isUnknown()) {
1766 // If we don't have enough information for a comparison, there's
1767 // no guarantee the full string length will actually be returned.
1768 // All we know is the return value is the min of the string length
1769 // and the limit. This is better than nothing.
1770 result = C.getSValBuilder().conjureSymbolVal(
1771 nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1772 NonLoc resultNL = result.castAs<NonLoc>();
1774 if (strLengthNL) {
1775 state = state->assume(C.getSValBuilder().evalBinOpNN(
1776 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1777 .castAs<DefinedOrUnknownSVal>(), true);
1780 if (maxlenValNL) {
1781 state = state->assume(C.getSValBuilder().evalBinOpNN(
1782 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1783 .castAs<DefinedOrUnknownSVal>(), true);
1787 } else {
1788 // This is a plain strlen(), not strnlen().
1789 result = strLength.castAs<DefinedOrUnknownSVal>();
1791 // If we don't know the length of the string, conjure a return
1792 // value, so it can be used in constraints, at least.
1793 if (result.isUnknown()) {
1794 result = C.getSValBuilder().conjureSymbolVal(
1795 nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
1799 // Bind the return value.
1800 assert(!result.isUnknown() && "Should have conjured a value by now");
1801 state = state->BindExpr(Call.getOriginExpr(), LCtx, result);
1802 C.addTransition(state);
1805 void CStringChecker::evalStrcpy(CheckerContext &C,
1806 const CallEvent &Call) const {
1807 // char *strcpy(char *restrict dst, const char *restrict src);
1808 evalStrcpyCommon(C, Call,
1809 /* ReturnEnd = */ false,
1810 /* IsBounded = */ false,
1811 /* appendK = */ ConcatFnKind::none);
1814 void CStringChecker::evalStrncpy(CheckerContext &C,
1815 const CallEvent &Call) const {
1816 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1817 evalStrcpyCommon(C, Call,
1818 /* ReturnEnd = */ false,
1819 /* IsBounded = */ true,
1820 /* appendK = */ ConcatFnKind::none);
1823 void CStringChecker::evalStpcpy(CheckerContext &C,
1824 const CallEvent &Call) const {
1825 // char *stpcpy(char *restrict dst, const char *restrict src);
1826 evalStrcpyCommon(C, Call,
1827 /* ReturnEnd = */ true,
1828 /* IsBounded = */ false,
1829 /* appendK = */ ConcatFnKind::none);
1832 void CStringChecker::evalStrlcpy(CheckerContext &C,
1833 const CallEvent &Call) const {
1834 // size_t strlcpy(char *dest, const char *src, size_t size);
1835 evalStrcpyCommon(C, Call,
1836 /* ReturnEnd = */ true,
1837 /* IsBounded = */ true,
1838 /* appendK = */ ConcatFnKind::none,
1839 /* returnPtr = */ false);
1842 void CStringChecker::evalStrcat(CheckerContext &C,
1843 const CallEvent &Call) const {
1844 // char *strcat(char *restrict s1, const char *restrict s2);
1845 evalStrcpyCommon(C, Call,
1846 /* ReturnEnd = */ false,
1847 /* IsBounded = */ false,
1848 /* appendK = */ ConcatFnKind::strcat);
1851 void CStringChecker::evalStrncat(CheckerContext &C,
1852 const CallEvent &Call) const {
1853 // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1854 evalStrcpyCommon(C, Call,
1855 /* ReturnEnd = */ false,
1856 /* IsBounded = */ true,
1857 /* appendK = */ ConcatFnKind::strcat);
1860 void CStringChecker::evalStrlcat(CheckerContext &C,
1861 const CallEvent &Call) const {
1862 // size_t strlcat(char *dst, const char *src, size_t size);
1863 // It will append at most size - strlen(dst) - 1 bytes,
1864 // NULL-terminating the result.
1865 evalStrcpyCommon(C, Call,
1866 /* ReturnEnd = */ false,
1867 /* IsBounded = */ true,
1868 /* appendK = */ ConcatFnKind::strlcat,
1869 /* returnPtr = */ false);
1872 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
1873 bool ReturnEnd, bool IsBounded,
1874 ConcatFnKind appendK,
1875 bool returnPtr) const {
1876 if (appendK == ConcatFnKind::none)
1877 CurrentFunctionDescription = "string copy function";
1878 else
1879 CurrentFunctionDescription = "string concatenation function";
1881 ProgramStateRef state = C.getState();
1882 const LocationContext *LCtx = C.getLocationContext();
1884 // Check that the destination is non-null.
1885 DestinationArgExpr Dst = {{Call.getArgExpr(0), 0}};
1886 SVal DstVal = state->getSVal(Dst.Expression, LCtx);
1887 state = checkNonNull(C, state, Dst, DstVal);
1888 if (!state)
1889 return;
1891 // Check that the source is non-null.
1892 SourceArgExpr srcExpr = {{Call.getArgExpr(1), 1}};
1893 SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
1894 state = checkNonNull(C, state, srcExpr, srcVal);
1895 if (!state)
1896 return;
1898 // Get the string length of the source.
1899 SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
1900 std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1902 // Get the string length of the destination buffer.
1903 SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
1904 std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1906 // If the source isn't a valid C string, give up.
1907 if (strLength.isUndef())
1908 return;
1910 SValBuilder &svalBuilder = C.getSValBuilder();
1911 QualType cmpTy = svalBuilder.getConditionType();
1912 QualType sizeTy = svalBuilder.getContext().getSizeType();
1914 // These two values allow checking two kinds of errors:
1915 // - actual overflows caused by a source that doesn't fit in the destination
1916 // - potential overflows caused by a bound that could exceed the destination
1917 SVal amountCopied = UnknownVal();
1918 SVal maxLastElementIndex = UnknownVal();
1919 const char *boundWarning = nullptr;
1921 // FIXME: Why do we choose the srcExpr if the access has no size?
1922 // Note that the 3rd argument of the call would be the size parameter.
1923 SizeArgExpr SrcExprAsSizeDummy = {
1924 {srcExpr.Expression, srcExpr.ArgumentIndex}};
1925 state = CheckOverlap(
1926 C, state,
1927 (IsBounded ? SizeArgExpr{{Call.getArgExpr(2), 2}} : SrcExprAsSizeDummy),
1928 Dst, srcExpr);
1930 if (!state)
1931 return;
1933 // If the function is strncpy, strncat, etc... it is bounded.
1934 if (IsBounded) {
1935 // Get the max number of characters to copy.
1936 SizeArgExpr lenExpr = {{Call.getArgExpr(2), 2}};
1937 SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
1939 // Protect against misdeclared strncpy().
1940 lenVal =
1941 svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
1943 std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1945 // If we know both values, we might be able to figure out how much
1946 // we're copying.
1947 if (strLengthNL && lenValNL) {
1948 switch (appendK) {
1949 case ConcatFnKind::none:
1950 case ConcatFnKind::strcat: {
1951 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1952 // Check if the max number to copy is less than the length of the src.
1953 // If the bound is equal to the source length, strncpy won't null-
1954 // terminate the result!
1955 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1956 svalBuilder
1957 .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1958 .castAs<DefinedOrUnknownSVal>());
1960 if (stateSourceTooLong && !stateSourceNotTooLong) {
1961 // Max number to copy is less than the length of the src, so the
1962 // actual strLength copied is the max number arg.
1963 state = stateSourceTooLong;
1964 amountCopied = lenVal;
1966 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1967 // The source buffer entirely fits in the bound.
1968 state = stateSourceNotTooLong;
1969 amountCopied = strLength;
1971 break;
1973 case ConcatFnKind::strlcat:
1974 if (!dstStrLengthNL)
1975 return;
1977 // amountCopied = min (size - dstLen - 1 , srcLen)
1978 SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1979 *dstStrLengthNL, sizeTy);
1980 if (!isa<NonLoc>(freeSpace))
1981 return;
1982 freeSpace =
1983 svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
1984 svalBuilder.makeIntVal(1, sizeTy), sizeTy);
1985 std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
1987 // While unlikely, it is possible that the subtraction is
1988 // too complex to compute, let's check whether it succeeded.
1989 if (!freeSpaceNL)
1990 return;
1991 SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
1992 state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
1994 ProgramStateRef TrueState, FalseState;
1995 std::tie(TrueState, FalseState) =
1996 state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
1998 // srcStrLength <= size - dstStrLength -1
1999 if (TrueState && !FalseState) {
2000 amountCopied = strLength;
2003 // srcStrLength > size - dstStrLength -1
2004 if (!TrueState && FalseState) {
2005 amountCopied = freeSpace;
2008 if (TrueState && FalseState)
2009 amountCopied = UnknownVal();
2010 break;
2013 // We still want to know if the bound is known to be too large.
2014 if (lenValNL) {
2015 switch (appendK) {
2016 case ConcatFnKind::strcat:
2017 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
2019 // Get the string length of the destination. If the destination is
2020 // memory that can't have a string length, we shouldn't be copying
2021 // into it anyway.
2022 if (dstStrLength.isUndef())
2023 return;
2025 if (dstStrLengthNL) {
2026 maxLastElementIndex = svalBuilder.evalBinOpNN(
2027 state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
2029 boundWarning = "Size argument is greater than the free space in the "
2030 "destination buffer";
2032 break;
2033 case ConcatFnKind::none:
2034 case ConcatFnKind::strlcat:
2035 // For strncpy and strlcat, this is just checking
2036 // that lenVal <= sizeof(dst).
2037 // (Yes, strncpy and strncat differ in how they treat termination.
2038 // strncat ALWAYS terminates, but strncpy doesn't.)
2040 // We need a special case for when the copy size is zero, in which
2041 // case strncpy will do no work at all. Our bounds check uses n-1
2042 // as the last element accessed, so n == 0 is problematic.
2043 ProgramStateRef StateZeroSize, StateNonZeroSize;
2044 std::tie(StateZeroSize, StateNonZeroSize) =
2045 assumeZero(C, state, *lenValNL, sizeTy);
2047 // If the size is known to be zero, we're done.
2048 if (StateZeroSize && !StateNonZeroSize) {
2049 if (returnPtr) {
2050 StateZeroSize =
2051 StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, DstVal);
2052 } else {
2053 if (appendK == ConcatFnKind::none) {
2054 // strlcpy returns strlen(src)
2055 StateZeroSize = StateZeroSize->BindExpr(Call.getOriginExpr(),
2056 LCtx, strLength);
2057 } else {
2058 // strlcat returns strlen(src) + strlen(dst)
2059 SVal retSize = svalBuilder.evalBinOp(
2060 state, BO_Add, strLength, dstStrLength, sizeTy);
2061 StateZeroSize =
2062 StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, retSize);
2065 C.addTransition(StateZeroSize);
2066 return;
2069 // Otherwise, go ahead and figure out the last element we'll touch.
2070 // We don't record the non-zero assumption here because we can't
2071 // be sure. We won't warn on a possible zero.
2072 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
2073 maxLastElementIndex =
2074 svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
2075 boundWarning = "Size argument is greater than the length of the "
2076 "destination buffer";
2077 break;
2080 } else {
2081 // The function isn't bounded. The amount copied should match the length
2082 // of the source buffer.
2083 amountCopied = strLength;
2086 assert(state);
2088 // This represents the number of characters copied into the destination
2089 // buffer. (It may not actually be the strlen if the destination buffer
2090 // is not terminated.)
2091 SVal finalStrLength = UnknownVal();
2092 SVal strlRetVal = UnknownVal();
2094 if (appendK == ConcatFnKind::none && !returnPtr) {
2095 // strlcpy returns the sizeof(src)
2096 strlRetVal = strLength;
2099 // If this is an appending function (strcat, strncat...) then set the
2100 // string length to strlen(src) + strlen(dst) since the buffer will
2101 // ultimately contain both.
2102 if (appendK != ConcatFnKind::none) {
2103 // Get the string length of the destination. If the destination is memory
2104 // that can't have a string length, we shouldn't be copying into it anyway.
2105 if (dstStrLength.isUndef())
2106 return;
2108 if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
2109 strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
2110 *dstStrLengthNL, sizeTy);
2113 std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
2115 // If we know both string lengths, we might know the final string length.
2116 if (amountCopiedNL && dstStrLengthNL) {
2117 // Make sure the two lengths together don't overflow a size_t.
2118 state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
2119 if (!state)
2120 return;
2122 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
2123 *dstStrLengthNL, sizeTy);
2126 // If we couldn't get a single value for the final string length,
2127 // we can at least bound it by the individual lengths.
2128 if (finalStrLength.isUnknown()) {
2129 // Try to get a "hypothetical" string length symbol, which we can later
2130 // set as a real value if that turns out to be the case.
2131 finalStrLength =
2132 getCStringLength(C, state, Call.getOriginExpr(), DstVal, true);
2133 assert(!finalStrLength.isUndef());
2135 if (std::optional<NonLoc> finalStrLengthNL =
2136 finalStrLength.getAs<NonLoc>()) {
2137 if (amountCopiedNL && appendK == ConcatFnKind::none) {
2138 // we overwrite dst string with the src
2139 // finalStrLength >= srcStrLength
2140 SVal sourceInResult = svalBuilder.evalBinOpNN(
2141 state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
2142 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
2143 true);
2144 if (!state)
2145 return;
2148 if (dstStrLengthNL && appendK != ConcatFnKind::none) {
2149 // we extend the dst string with the src
2150 // finalStrLength >= dstStrLength
2151 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
2152 *finalStrLengthNL,
2153 *dstStrLengthNL,
2154 cmpTy);
2155 state =
2156 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
2157 if (!state)
2158 return;
2163 } else {
2164 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
2165 // the final string length will match the input string length.
2166 finalStrLength = amountCopied;
2169 SVal Result;
2171 if (returnPtr) {
2172 // The final result of the function will either be a pointer past the last
2173 // copied element, or a pointer to the start of the destination buffer.
2174 Result = (ReturnEnd ? UnknownVal() : DstVal);
2175 } else {
2176 if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
2177 //strlcpy, strlcat
2178 Result = strlRetVal;
2179 else
2180 Result = finalStrLength;
2183 assert(state);
2185 // If the destination is a MemRegion, try to check for a buffer overflow and
2186 // record the new string length.
2187 if (std::optional<loc::MemRegionVal> dstRegVal =
2188 DstVal.getAs<loc::MemRegionVal>()) {
2189 QualType ptrTy = Dst.Expression->getType();
2191 // If we have an exact value on a bounded copy, use that to check for
2192 // overflows, rather than our estimate about how much is actually copied.
2193 if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
2194 SVal maxLastElement =
2195 svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
2197 // Check if the first byte of the destination is writable.
2198 state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
2199 if (!state)
2200 return;
2201 // Check if the last byte of the destination is writable.
2202 state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
2203 if (!state)
2204 return;
2207 // Then, if the final length is known...
2208 if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
2209 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
2210 *knownStrLength, ptrTy);
2212 // ...and we haven't checked the bound, we'll check the actual copy.
2213 if (!boundWarning) {
2214 // Check if the first byte of the destination is writable.
2215 state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
2216 if (!state)
2217 return;
2218 // Check if the last byte of the destination is writable.
2219 state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
2220 if (!state)
2221 return;
2224 // If this is a stpcpy-style copy, the last element is the return value.
2225 if (returnPtr && ReturnEnd)
2226 Result = lastElement;
2229 // Invalidate the destination (regular invalidation without pointer-escaping
2230 // the address of the top-level region). This must happen before we set the
2231 // C string length because invalidation will clear the length.
2232 // FIXME: Even if we can't perfectly model the copy, we should see if we
2233 // can use LazyCompoundVals to copy the source values into the destination.
2234 // This would probably remove any existing bindings past the end of the
2235 // string, but that's still an improvement over blank invalidation.
2236 state = invalidateDestinationBufferBySize(C, state, Dst.Expression,
2237 *dstRegVal, amountCopied,
2238 C.getASTContext().getSizeType());
2240 // Invalidate the source (const-invalidation without const-pointer-escaping
2241 // the address of the top-level region).
2242 state = invalidateSourceBuffer(C, state, srcExpr.Expression, srcVal);
2244 // Set the C string length of the destination, if we know it.
2245 if (IsBounded && (appendK == ConcatFnKind::none)) {
2246 // strncpy is annoying in that it doesn't guarantee to null-terminate
2247 // the result string. If the original string didn't fit entirely inside
2248 // the bound (including the null-terminator), we don't know how long the
2249 // result is.
2250 if (amountCopied != strLength)
2251 finalStrLength = UnknownVal();
2253 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
2256 assert(state);
2258 if (returnPtr) {
2259 // If this is a stpcpy-style copy, but we were unable to check for a buffer
2260 // overflow, we still need a result. Conjure a return value.
2261 if (ReturnEnd && Result.isUnknown()) {
2262 Result = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
2263 C.blockCount());
2266 // Set the return value.
2267 state = state->BindExpr(Call.getOriginExpr(), LCtx, Result);
2268 C.addTransition(state);
2271 void CStringChecker::evalStrcmp(CheckerContext &C,
2272 const CallEvent &Call) const {
2273 //int strcmp(const char *s1, const char *s2);
2274 evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false);
2277 void CStringChecker::evalStrncmp(CheckerContext &C,
2278 const CallEvent &Call) const {
2279 //int strncmp(const char *s1, const char *s2, size_t n);
2280 evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false);
2283 void CStringChecker::evalStrcasecmp(CheckerContext &C,
2284 const CallEvent &Call) const {
2285 //int strcasecmp(const char *s1, const char *s2);
2286 evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true);
2289 void CStringChecker::evalStrncasecmp(CheckerContext &C,
2290 const CallEvent &Call) const {
2291 //int strncasecmp(const char *s1, const char *s2, size_t n);
2292 evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true);
2295 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
2296 bool IsBounded, bool IgnoreCase) const {
2297 CurrentFunctionDescription = "string comparison function";
2298 ProgramStateRef state = C.getState();
2299 const LocationContext *LCtx = C.getLocationContext();
2301 // Check that the first string is non-null
2302 AnyArgExpr Left = {Call.getArgExpr(0), 0};
2303 SVal LeftVal = state->getSVal(Left.Expression, LCtx);
2304 state = checkNonNull(C, state, Left, LeftVal);
2305 if (!state)
2306 return;
2308 // Check that the second string is non-null.
2309 AnyArgExpr Right = {Call.getArgExpr(1), 1};
2310 SVal RightVal = state->getSVal(Right.Expression, LCtx);
2311 state = checkNonNull(C, state, Right, RightVal);
2312 if (!state)
2313 return;
2315 // Get the string length of the first string or give up.
2316 SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
2317 if (LeftLength.isUndef())
2318 return;
2320 // Get the string length of the second string or give up.
2321 SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
2322 if (RightLength.isUndef())
2323 return;
2325 // If we know the two buffers are the same, we know the result is 0.
2326 // First, get the two buffers' addresses. Another checker will have already
2327 // made sure they're not undefined.
2328 DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
2329 DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
2331 // See if they are the same.
2332 SValBuilder &svalBuilder = C.getSValBuilder();
2333 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
2334 ProgramStateRef StSameBuf, StNotSameBuf;
2335 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
2337 // If the two arguments might be the same buffer, we know the result is 0,
2338 // and we only need to check one size.
2339 if (StSameBuf) {
2340 StSameBuf =
2341 StSameBuf->BindExpr(Call.getOriginExpr(), LCtx,
2342 svalBuilder.makeZeroVal(Call.getResultType()));
2343 C.addTransition(StSameBuf);
2345 // If the two arguments are GUARANTEED to be the same, we're done!
2346 if (!StNotSameBuf)
2347 return;
2350 assert(StNotSameBuf);
2351 state = StNotSameBuf;
2353 // At this point we can go about comparing the two buffers.
2354 // For now, we only do this if they're both known string literals.
2356 // Attempt to extract string literals from both expressions.
2357 const StringLiteral *LeftStrLiteral =
2358 getCStringLiteral(C, state, Left.Expression, LeftVal);
2359 const StringLiteral *RightStrLiteral =
2360 getCStringLiteral(C, state, Right.Expression, RightVal);
2361 bool canComputeResult = false;
2362 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(),
2363 LCtx, C.blockCount());
2365 if (LeftStrLiteral && RightStrLiteral) {
2366 StringRef LeftStrRef = LeftStrLiteral->getString();
2367 StringRef RightStrRef = RightStrLiteral->getString();
2369 if (IsBounded) {
2370 // Get the max number of characters to compare.
2371 const Expr *lenExpr = Call.getArgExpr(2);
2372 SVal lenVal = state->getSVal(lenExpr, LCtx);
2374 // If the length is known, we can get the right substrings.
2375 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
2376 // Create substrings of each to compare the prefix.
2377 LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
2378 RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
2379 canComputeResult = true;
2381 } else {
2382 // This is a normal, unbounded strcmp.
2383 canComputeResult = true;
2386 if (canComputeResult) {
2387 // Real strcmp stops at null characters.
2388 size_t s1Term = LeftStrRef.find('\0');
2389 if (s1Term != StringRef::npos)
2390 LeftStrRef = LeftStrRef.substr(0, s1Term);
2392 size_t s2Term = RightStrRef.find('\0');
2393 if (s2Term != StringRef::npos)
2394 RightStrRef = RightStrRef.substr(0, s2Term);
2396 // Use StringRef's comparison methods to compute the actual result.
2397 int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
2398 : LeftStrRef.compare(RightStrRef);
2400 // The strcmp function returns an integer greater than, equal to, or less
2401 // than zero, [c11, p7.24.4.2].
2402 if (compareRes == 0) {
2403 resultVal = svalBuilder.makeIntVal(compareRes, Call.getResultType());
2405 else {
2406 DefinedSVal zeroVal = svalBuilder.makeIntVal(0, Call.getResultType());
2407 // Constrain strcmp's result range based on the result of StringRef's
2408 // comparison methods.
2409 BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT;
2410 SVal compareWithZero =
2411 svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
2412 svalBuilder.getConditionType());
2413 DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
2414 state = state->assume(compareWithZeroVal, true);
2419 state = state->BindExpr(Call.getOriginExpr(), LCtx, resultVal);
2421 // Record this as a possible path.
2422 C.addTransition(state);
2425 void CStringChecker::evalStrsep(CheckerContext &C,
2426 const CallEvent &Call) const {
2427 // char *strsep(char **stringp, const char *delim);
2428 // Verify whether the search string parameter matches the return type.
2429 SourceArgExpr SearchStrPtr = {{Call.getArgExpr(0), 0}};
2431 QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
2432 if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() !=
2433 CharPtrTy.getUnqualifiedType())
2434 return;
2436 CurrentFunctionDescription = "strsep()";
2437 ProgramStateRef State = C.getState();
2438 const LocationContext *LCtx = C.getLocationContext();
2440 // Check that the search string pointer is non-null (though it may point to
2441 // a null string).
2442 SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
2443 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
2444 if (!State)
2445 return;
2447 // Check that the delimiter string is non-null.
2448 AnyArgExpr DelimStr = {Call.getArgExpr(1), 1};
2449 SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
2450 State = checkNonNull(C, State, DelimStr, DelimStrVal);
2451 if (!State)
2452 return;
2454 SValBuilder &SVB = C.getSValBuilder();
2455 SVal Result;
2456 if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
2457 // Get the current value of the search string pointer, as a char*.
2458 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
2460 // Invalidate the search string, representing the change of one delimiter
2461 // character to NUL.
2462 // As the replacement never overflows, do not invalidate its super region.
2463 State = invalidateDestinationBufferNeverOverflows(
2464 C, State, SearchStrPtr.Expression, Result);
2466 // Overwrite the search string pointer. The new value is either an address
2467 // further along in the same string, or NULL if there are no more tokens.
2468 State =
2469 State->bindLoc(*SearchStrLoc,
2470 SVB.conjureSymbolVal(getTag(), Call.getOriginExpr(),
2471 LCtx, CharPtrTy, C.blockCount()),
2472 LCtx);
2473 } else {
2474 assert(SearchStrVal.isUnknown());
2475 // Conjure a symbolic value. It's the best we can do.
2476 Result = SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
2477 C.blockCount());
2480 // Set the return value, and finish.
2481 State = State->BindExpr(Call.getOriginExpr(), LCtx, Result);
2482 C.addTransition(State);
2485 // These should probably be moved into a C++ standard library checker.
2486 void CStringChecker::evalStdCopy(CheckerContext &C,
2487 const CallEvent &Call) const {
2488 evalStdCopyCommon(C, Call);
2491 void CStringChecker::evalStdCopyBackward(CheckerContext &C,
2492 const CallEvent &Call) const {
2493 evalStdCopyCommon(C, Call);
2496 void CStringChecker::evalStdCopyCommon(CheckerContext &C,
2497 const CallEvent &Call) const {
2498 if (!Call.getArgExpr(2)->getType()->isPointerType())
2499 return;
2501 ProgramStateRef State = C.getState();
2503 const LocationContext *LCtx = C.getLocationContext();
2505 // template <class _InputIterator, class _OutputIterator>
2506 // _OutputIterator
2507 // copy(_InputIterator __first, _InputIterator __last,
2508 // _OutputIterator __result)
2510 // Invalidate the destination buffer
2511 const Expr *Dst = Call.getArgExpr(2);
2512 SVal DstVal = State->getSVal(Dst, LCtx);
2513 // FIXME: As we do not know how many items are copied, we also invalidate the
2514 // super region containing the target location.
2515 State =
2516 invalidateDestinationBufferAlwaysEscapeSuperRegion(C, State, Dst, DstVal);
2518 SValBuilder &SVB = C.getSValBuilder();
2520 SVal ResultVal =
2521 SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
2522 State = State->BindExpr(Call.getOriginExpr(), LCtx, ResultVal);
2524 C.addTransition(State);
2527 void CStringChecker::evalMemset(CheckerContext &C,
2528 const CallEvent &Call) const {
2529 // void *memset(void *s, int c, size_t n);
2530 CurrentFunctionDescription = "memory set function";
2532 DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
2533 AnyArgExpr CharE = {Call.getArgExpr(1), 1};
2534 SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
2536 ProgramStateRef State = C.getState();
2538 // See if the size argument is zero.
2539 const LocationContext *LCtx = C.getLocationContext();
2540 SVal SizeVal = C.getSVal(Size.Expression);
2541 QualType SizeTy = Size.Expression->getType();
2543 ProgramStateRef ZeroSize, NonZeroSize;
2544 std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
2546 // Get the value of the memory area.
2547 SVal BufferPtrVal = C.getSVal(Buffer.Expression);
2549 // If the size is zero, there won't be any actual memory access, so
2550 // just bind the return value to the buffer and return.
2551 if (ZeroSize && !NonZeroSize) {
2552 ZeroSize = ZeroSize->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
2553 C.addTransition(ZeroSize);
2554 return;
2557 // Ensure the memory area is not null.
2558 // If it is NULL there will be a NULL pointer dereference.
2559 State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
2560 if (!State)
2561 return;
2563 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2564 if (!State)
2565 return;
2567 // According to the values of the arguments, bind the value of the second
2568 // argument to the destination buffer and set string length, or just
2569 // invalidate the destination buffer.
2570 if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
2571 Size.Expression, C, State))
2572 return;
2574 State = State->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
2575 C.addTransition(State);
2578 void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const {
2579 CurrentFunctionDescription = "memory clearance function";
2581 DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
2582 SizeArgExpr Size = {{Call.getArgExpr(1), 1}};
2583 SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
2585 ProgramStateRef State = C.getState();
2587 // See if the size argument is zero.
2588 SVal SizeVal = C.getSVal(Size.Expression);
2589 QualType SizeTy = Size.Expression->getType();
2591 ProgramStateRef StateZeroSize, StateNonZeroSize;
2592 std::tie(StateZeroSize, StateNonZeroSize) =
2593 assumeZero(C, State, SizeVal, SizeTy);
2595 // If the size is zero, there won't be any actual memory access,
2596 // In this case we just return.
2597 if (StateZeroSize && !StateNonZeroSize) {
2598 C.addTransition(StateZeroSize);
2599 return;
2602 // Get the value of the memory area.
2603 SVal MemVal = C.getSVal(Buffer.Expression);
2605 // Ensure the memory area is not null.
2606 // If it is NULL there will be a NULL pointer dereference.
2607 State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
2608 if (!State)
2609 return;
2611 State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
2612 if (!State)
2613 return;
2615 if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
2616 return;
2618 C.addTransition(State);
2621 void CStringChecker::evalSprintf(CheckerContext &C,
2622 const CallEvent &Call) const {
2623 CurrentFunctionDescription = "'sprintf'";
2624 evalSprintfCommon(C, Call, /* IsBounded = */ false);
2627 void CStringChecker::evalSnprintf(CheckerContext &C,
2628 const CallEvent &Call) const {
2629 CurrentFunctionDescription = "'snprintf'";
2630 evalSprintfCommon(C, Call, /* IsBounded = */ true);
2633 void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
2634 bool IsBounded) const {
2635 ProgramStateRef State = C.getState();
2636 const auto *CE = cast<CallExpr>(Call.getOriginExpr());
2637 DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
2639 const auto NumParams = Call.parameters().size();
2640 if (CE->getNumArgs() < NumParams) {
2641 // This is an invalid call, let's just ignore it.
2642 return;
2645 const auto AllArguments =
2646 llvm::make_range(CE->getArgs(), CE->getArgs() + CE->getNumArgs());
2647 const auto VariadicArguments = drop_begin(enumerate(AllArguments), NumParams);
2649 for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) {
2650 // We consider only string buffers
2651 if (const QualType type = ArgExpr->getType();
2652 !type->isAnyPointerType() ||
2653 !type->getPointeeType()->isAnyCharacterType())
2654 continue;
2655 SourceArgExpr Source = {{ArgExpr, unsigned(ArgIdx)}};
2657 // Ensure the buffers do not overlap.
2658 SizeArgExpr SrcExprAsSizeDummy = {
2659 {Source.Expression, Source.ArgumentIndex}};
2660 State = CheckOverlap(
2661 C, State,
2662 (IsBounded ? SizeArgExpr{{Call.getArgExpr(1), 1}} : SrcExprAsSizeDummy),
2663 Dest, Source);
2664 if (!State)
2665 return;
2668 C.addTransition(State);
2671 //===----------------------------------------------------------------------===//
2672 // The driver method, and other Checker callbacks.
2673 //===----------------------------------------------------------------------===//
2675 CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
2676 CheckerContext &C) const {
2677 const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
2678 if (!CE)
2679 return nullptr;
2681 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
2682 if (!FD)
2683 return nullptr;
2685 if (StdCopy.matches(Call))
2686 return &CStringChecker::evalStdCopy;
2687 if (StdCopyBackward.matches(Call))
2688 return &CStringChecker::evalStdCopyBackward;
2690 // Pro-actively check that argument types are safe to do arithmetic upon.
2691 // We do not want to crash if someone accidentally passes a structure
2692 // into, say, a C++ overload of any of these functions. We could not check
2693 // that for std::copy because they may have arguments of other types.
2694 for (auto I : CE->arguments()) {
2695 QualType T = I->getType();
2696 if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
2697 return nullptr;
2700 const FnCheck *Callback = Callbacks.lookup(Call);
2701 if (Callback)
2702 return *Callback;
2704 return nullptr;
2707 bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
2708 FnCheck Callback = identifyCall(Call, C);
2710 // If the callee isn't a string function, let another checker handle it.
2711 if (!Callback)
2712 return false;
2714 // Check and evaluate the call.
2715 assert(isa<CallExpr>(Call.getOriginExpr()));
2716 Callback(this, C, Call);
2718 // If the evaluate call resulted in no change, chain to the next eval call
2719 // handler.
2720 // Note, the custom CString evaluation calls assume that basic safety
2721 // properties are held. However, if the user chooses to turn off some of these
2722 // checks, we ignore the issues and leave the call evaluation to a generic
2723 // handler.
2724 return C.isDifferent();
2727 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2728 // Record string length for char a[] = "abc";
2729 ProgramStateRef state = C.getState();
2731 for (const auto *I : DS->decls()) {
2732 const VarDecl *D = dyn_cast<VarDecl>(I);
2733 if (!D)
2734 continue;
2736 // FIXME: Handle array fields of structs.
2737 if (!D->getType()->isArrayType())
2738 continue;
2740 const Expr *Init = D->getInit();
2741 if (!Init)
2742 continue;
2743 if (!isa<StringLiteral>(Init))
2744 continue;
2746 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2747 const MemRegion *MR = VarLoc.getAsRegion();
2748 if (!MR)
2749 continue;
2751 SVal StrVal = C.getSVal(Init);
2752 assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2753 DefinedOrUnknownSVal strLength =
2754 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2756 state = state->set<CStringLength>(MR, strLength);
2759 C.addTransition(state);
2762 ProgramStateRef
2763 CStringChecker::checkRegionChanges(ProgramStateRef state,
2764 const InvalidatedSymbols *,
2765 ArrayRef<const MemRegion *> ExplicitRegions,
2766 ArrayRef<const MemRegion *> Regions,
2767 const LocationContext *LCtx,
2768 const CallEvent *Call) const {
2769 CStringLengthTy Entries = state->get<CStringLength>();
2770 if (Entries.isEmpty())
2771 return state;
2773 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2774 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2776 // First build sets for the changed regions and their super-regions.
2777 for (const MemRegion *MR : Regions) {
2778 Invalidated.insert(MR);
2780 SuperRegions.insert(MR);
2781 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2782 MR = SR->getSuperRegion();
2783 SuperRegions.insert(MR);
2787 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2789 // Then loop over the entries in the current state.
2790 for (const MemRegion *MR : llvm::make_first_range(Entries)) {
2791 // Is this entry for a super-region of a changed region?
2792 if (SuperRegions.count(MR)) {
2793 Entries = F.remove(Entries, MR);
2794 continue;
2797 // Is this entry for a sub-region of a changed region?
2798 const MemRegion *Super = MR;
2799 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2800 Super = SR->getSuperRegion();
2801 if (Invalidated.count(Super)) {
2802 Entries = F.remove(Entries, MR);
2803 break;
2808 return state->set<CStringLength>(Entries);
2811 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2812 SymbolReaper &SR) const {
2813 // Mark all symbols in our string length map as valid.
2814 CStringLengthTy Entries = state->get<CStringLength>();
2816 for (SVal Len : llvm::make_second_range(Entries)) {
2817 for (SymbolRef Sym : Len.symbols())
2818 SR.markInUse(Sym);
2822 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2823 CheckerContext &C) const {
2824 ProgramStateRef state = C.getState();
2825 CStringLengthTy Entries = state->get<CStringLength>();
2826 if (Entries.isEmpty())
2827 return;
2829 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2830 for (auto [Reg, Len] : Entries) {
2831 if (SymbolRef Sym = Len.getAsSymbol()) {
2832 if (SR.isDead(Sym))
2833 Entries = F.remove(Entries, Reg);
2837 state = state->set<CStringLength>(Entries);
2838 C.addTransition(state);
2841 void ento::registerCStringModeling(CheckerManager &Mgr) {
2842 Mgr.registerChecker<CStringChecker>();
2845 bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
2846 return true;
2849 #define REGISTER_CHECKER(name) \
2850 void ento::register##name(CheckerManager &mgr) { \
2851 CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
2852 checker->Filter.Check##name = true; \
2853 checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
2856 bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
2858 REGISTER_CHECKER(CStringNullArg)
2859 REGISTER_CHECKER(CStringOutOfBounds)
2860 REGISTER_CHECKER(CStringBufferOverlap)
2861 REGISTER_CHECKER(CStringNotNullTerm)
2862 REGISTER_CHECKER(CStringUninitializedRead)