[FMV][AArch64] Changes in fmv-features metadata. (#122192)
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / BugReporterVisitors.cpp
bloba9b4dbb39b5bd623b4a3badc78b32a8163d6b810
1 //===- BugReporterVisitors.cpp - Helpers for reporting bugs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a set of BugReporter "visitors" which can be used to
10 // enhance the diagnostics reported for a bug.
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclBase.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/Stmt.h"
23 #include "clang/AST/Type.h"
24 #include "clang/ASTMatchers/ASTMatchFinder.h"
25 #include "clang/Analysis/Analyses/Dominators.h"
26 #include "clang/Analysis/AnalysisDeclContext.h"
27 #include "clang/Analysis/CFG.h"
28 #include "clang/Analysis/CFGStmtMap.h"
29 #include "clang/Analysis/PathDiagnostic.h"
30 #include "clang/Analysis/ProgramPoint.h"
31 #include "clang/Basic/IdentifierTable.h"
32 #include "clang/Basic/LLVM.h"
33 #include "clang/Basic/SourceLocation.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Lex/Lexer.h"
36 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
37 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "llvm/ADT/ArrayRef.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/ADT/StringRef.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <cassert>
59 #include <deque>
60 #include <memory>
61 #include <optional>
62 #include <stack>
63 #include <string>
64 #include <utility>
66 using namespace clang;
67 using namespace ento;
68 using namespace bugreporter;
70 //===----------------------------------------------------------------------===//
71 // Utility functions.
72 //===----------------------------------------------------------------------===//
74 static const Expr *peelOffPointerArithmetic(const BinaryOperator *B) {
75 if (B->isAdditiveOp() && B->getType()->isPointerType()) {
76 if (B->getLHS()->getType()->isPointerType()) {
77 return B->getLHS();
78 } else if (B->getRHS()->getType()->isPointerType()) {
79 return B->getRHS();
82 return nullptr;
85 /// \return A subexpression of @c Ex which represents the
86 /// expression-of-interest.
87 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N);
89 /// Given that expression S represents a pointer that would be dereferenced,
90 /// try to find a sub-expression from which the pointer came from.
91 /// This is used for tracking down origins of a null or undefined value:
92 /// "this is null because that is null because that is null" etc.
93 /// We wipe away field and element offsets because they merely add offsets.
94 /// We also wipe away all casts except lvalue-to-rvalue casts, because the
95 /// latter represent an actual pointer dereference; however, we remove
96 /// the final lvalue-to-rvalue cast before returning from this function
97 /// because it demonstrates more clearly from where the pointer rvalue was
98 /// loaded. Examples:
99 /// x->y.z ==> x (lvalue)
100 /// foo()->y.z ==> foo() (rvalue)
101 const Expr *bugreporter::getDerefExpr(const Stmt *S) {
102 const auto *E = dyn_cast<Expr>(S);
103 if (!E)
104 return nullptr;
106 while (true) {
107 if (const auto *CE = dyn_cast<CastExpr>(E)) {
108 if (CE->getCastKind() == CK_LValueToRValue) {
109 // This cast represents the load we're looking for.
110 break;
112 E = CE->getSubExpr();
113 } else if (const auto *B = dyn_cast<BinaryOperator>(E)) {
114 // Pointer arithmetic: '*(x + 2)' -> 'x') etc.
115 if (const Expr *Inner = peelOffPointerArithmetic(B)) {
116 E = Inner;
117 } else if (B->isAssignmentOp()) {
118 // Follow LHS of assignments: '*p = 404' -> 'p'.
119 E = B->getLHS();
120 } else {
121 // Probably more arithmetic can be pattern-matched here,
122 // but for now give up.
123 break;
125 } else if (const auto *U = dyn_cast<UnaryOperator>(E)) {
126 if (U->getOpcode() == UO_Deref || U->getOpcode() == UO_AddrOf ||
127 (U->isIncrementDecrementOp() && U->getType()->isPointerType())) {
128 // Operators '*' and '&' don't actually mean anything.
129 // We look at casts instead.
130 E = U->getSubExpr();
131 } else {
132 // Probably more arithmetic can be pattern-matched here,
133 // but for now give up.
134 break;
137 // Pattern match for a few useful cases: a[0], p->f, *p etc.
138 else if (const auto *ME = dyn_cast<MemberExpr>(E)) {
139 // This handles the case when the dereferencing of a member reference
140 // happens. This is needed, because the AST for dereferencing a
141 // member reference looks like the following:
142 // |-MemberExpr
143 // `-DeclRefExpr
144 // Without this special case the notes would refer to the whole object
145 // (struct, class or union variable) instead of just the relevant member.
147 if (ME->getMemberDecl()->getType()->isReferenceType())
148 break;
149 E = ME->getBase();
150 } else if (const auto *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
151 E = IvarRef->getBase();
152 } else if (const auto *AE = dyn_cast<ArraySubscriptExpr>(E)) {
153 E = AE->getBase();
154 } else if (const auto *PE = dyn_cast<ParenExpr>(E)) {
155 E = PE->getSubExpr();
156 } else if (const auto *FE = dyn_cast<FullExpr>(E)) {
157 E = FE->getSubExpr();
158 } else {
159 // Other arbitrary stuff.
160 break;
164 // Special case: remove the final lvalue-to-rvalue cast, but do not recurse
165 // deeper into the sub-expression. This way we return the lvalue from which
166 // our pointer rvalue was loaded.
167 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E))
168 if (CE->getCastKind() == CK_LValueToRValue)
169 E = CE->getSubExpr();
171 return E;
174 static const VarDecl *getVarDeclForExpression(const Expr *E) {
175 if (const auto *DR = dyn_cast<DeclRefExpr>(E))
176 return dyn_cast<VarDecl>(DR->getDecl());
177 return nullptr;
180 static const MemRegion *
181 getLocationRegionIfReference(const Expr *E, const ExplodedNode *N,
182 bool LookingForReference = true) {
183 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
184 // This handles null references from FieldRegions, for example:
185 // struct Wrapper { int &ref; };
186 // Wrapper w = { *(int *)0 };
187 // w.ref = 1;
188 const Expr *Base = ME->getBase();
189 const VarDecl *VD = getVarDeclForExpression(Base);
190 if (!VD)
191 return nullptr;
193 const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
194 if (!FD)
195 return nullptr;
197 if (FD->getType()->isReferenceType()) {
198 SVal StructSVal = N->getState()->getLValue(VD, N->getLocationContext());
199 return N->getState()->getLValue(FD, StructSVal).getAsRegion();
201 return nullptr;
204 const VarDecl *VD = getVarDeclForExpression(E);
205 if (!VD)
206 return nullptr;
207 if (LookingForReference && !VD->getType()->isReferenceType())
208 return nullptr;
209 return N->getState()->getLValue(VD, N->getLocationContext()).getAsRegion();
212 /// Comparing internal representations of symbolic values (via
213 /// SVal::operator==()) is a valid way to check if the value was updated,
214 /// unless it's a LazyCompoundVal that may have a different internal
215 /// representation every time it is loaded from the state. In this function we
216 /// do an approximate comparison for lazy compound values, checking that they
217 /// are the immediate snapshots of the tracked region's bindings within the
218 /// node's respective states but not really checking that these snapshots
219 /// actually contain the same set of bindings.
220 static bool hasVisibleUpdate(const ExplodedNode *LeftNode, SVal LeftVal,
221 const ExplodedNode *RightNode, SVal RightVal) {
222 if (LeftVal == RightVal)
223 return true;
225 const auto LLCV = LeftVal.getAs<nonloc::LazyCompoundVal>();
226 if (!LLCV)
227 return false;
229 const auto RLCV = RightVal.getAs<nonloc::LazyCompoundVal>();
230 if (!RLCV)
231 return false;
233 return LLCV->getRegion() == RLCV->getRegion() &&
234 LLCV->getStore() == LeftNode->getState()->getStore() &&
235 RLCV->getStore() == RightNode->getState()->getStore();
238 static std::optional<SVal> getSValForVar(const Expr *CondVarExpr,
239 const ExplodedNode *N) {
240 ProgramStateRef State = N->getState();
241 const LocationContext *LCtx = N->getLocationContext();
243 assert(CondVarExpr);
244 CondVarExpr = CondVarExpr->IgnoreImpCasts();
246 // The declaration of the value may rely on a pointer so take its l-value.
247 // FIXME: As seen in VisitCommonDeclRefExpr, sometimes DeclRefExpr may
248 // evaluate to a FieldRegion when it refers to a declaration of a lambda
249 // capture variable. We most likely need to duplicate that logic here.
250 if (const auto *DRE = dyn_cast<DeclRefExpr>(CondVarExpr))
251 if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
252 return State->getSVal(State->getLValue(VD, LCtx));
254 if (const auto *ME = dyn_cast<MemberExpr>(CondVarExpr))
255 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
256 if (auto FieldL = State->getSVal(ME, LCtx).getAs<Loc>())
257 return State->getRawSVal(*FieldL, FD->getType());
259 return std::nullopt;
262 static std::optional<const llvm::APSInt *>
263 getConcreteIntegerValue(const Expr *CondVarExpr, const ExplodedNode *N) {
265 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
266 if (auto CI = V->getAs<nonloc::ConcreteInt>())
267 return CI->getValue().get();
268 return std::nullopt;
271 static bool isVarAnInterestingCondition(const Expr *CondVarExpr,
272 const ExplodedNode *N,
273 const PathSensitiveBugReport *B) {
274 // Even if this condition is marked as interesting, it isn't *that*
275 // interesting if it didn't happen in a nested stackframe, the user could just
276 // follow the arrows.
277 if (!B->getErrorNode()->getStackFrame()->isParentOf(N->getStackFrame()))
278 return false;
280 if (std::optional<SVal> V = getSValForVar(CondVarExpr, N))
281 if (std::optional<bugreporter::TrackingKind> K =
282 B->getInterestingnessKind(*V))
283 return *K == bugreporter::TrackingKind::Condition;
285 return false;
288 static bool isInterestingExpr(const Expr *E, const ExplodedNode *N,
289 const PathSensitiveBugReport *B) {
290 if (std::optional<SVal> V = getSValForVar(E, N))
291 return B->getInterestingnessKind(*V).has_value();
292 return false;
295 /// \return name of the macro inside the location \p Loc.
296 static StringRef getMacroName(SourceLocation Loc,
297 BugReporterContext &BRC) {
298 return Lexer::getImmediateMacroName(
299 Loc,
300 BRC.getSourceManager(),
301 BRC.getASTContext().getLangOpts());
304 /// \return Whether given spelling location corresponds to an expansion
305 /// of a function-like macro.
306 static bool isFunctionMacroExpansion(SourceLocation Loc,
307 const SourceManager &SM) {
308 if (!Loc.isMacroID())
309 return false;
310 while (SM.isMacroArgExpansion(Loc))
311 Loc = SM.getImmediateExpansionRange(Loc).getBegin();
312 std::pair<FileID, unsigned> TLInfo = SM.getDecomposedLoc(Loc);
313 SrcMgr::SLocEntry SE = SM.getSLocEntry(TLInfo.first);
314 const SrcMgr::ExpansionInfo &EInfo = SE.getExpansion();
315 return EInfo.isFunctionMacroExpansion();
318 /// \return Whether \c RegionOfInterest was modified at \p N,
319 /// where \p ValueAfter is \c RegionOfInterest's value at the end of the
320 /// stack frame.
321 static bool wasRegionOfInterestModifiedAt(const SubRegion *RegionOfInterest,
322 const ExplodedNode *N,
323 SVal ValueAfter) {
324 ProgramStateRef State = N->getState();
325 ProgramStateManager &Mgr = N->getState()->getStateManager();
327 if (!N->getLocationAs<PostStore>() && !N->getLocationAs<PostInitializer>() &&
328 !N->getLocationAs<PostStmt>())
329 return false;
331 // Writing into region of interest.
332 if (auto PS = N->getLocationAs<PostStmt>())
333 if (auto *BO = PS->getStmtAs<BinaryOperator>())
334 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(
335 N->getSVal(BO->getLHS()).getAsRegion()))
336 return true;
338 // SVal after the state is possibly different.
339 SVal ValueAtN = N->getState()->getSVal(RegionOfInterest);
340 if (!Mgr.getSValBuilder()
341 .areEqual(State, ValueAtN, ValueAfter)
342 .isConstrainedTrue() &&
343 (!ValueAtN.isUndef() || !ValueAfter.isUndef()))
344 return true;
346 return false;
349 //===----------------------------------------------------------------------===//
350 // Implementation of BugReporterVisitor.
351 //===----------------------------------------------------------------------===//
353 PathDiagnosticPieceRef BugReporterVisitor::getEndPath(BugReporterContext &,
354 const ExplodedNode *,
355 PathSensitiveBugReport &) {
356 return nullptr;
359 void BugReporterVisitor::finalizeVisitor(BugReporterContext &,
360 const ExplodedNode *,
361 PathSensitiveBugReport &) {}
363 PathDiagnosticPieceRef
364 BugReporterVisitor::getDefaultEndPath(const BugReporterContext &BRC,
365 const ExplodedNode *EndPathNode,
366 const PathSensitiveBugReport &BR) {
367 PathDiagnosticLocation L = BR.getLocation();
368 const auto &Ranges = BR.getRanges();
370 // Only add the statement itself as a range if we didn't specify any
371 // special ranges for this report.
372 auto P = std::make_shared<PathDiagnosticEventPiece>(
373 L, BR.getDescription(), Ranges.begin() == Ranges.end());
374 for (SourceRange Range : Ranges)
375 P->addRange(Range);
377 return P;
380 //===----------------------------------------------------------------------===//
381 // Implementation of NoStateChangeFuncVisitor.
382 //===----------------------------------------------------------------------===//
384 bool NoStateChangeFuncVisitor::isModifiedInFrame(const ExplodedNode *N) {
385 const LocationContext *Ctx = N->getLocationContext();
386 const StackFrameContext *SCtx = Ctx->getStackFrame();
387 if (!FramesModifyingCalculated.count(SCtx))
388 findModifyingFrames(N);
389 return FramesModifying.count(SCtx);
392 void NoStateChangeFuncVisitor::markFrameAsModifying(
393 const StackFrameContext *SCtx) {
394 while (!SCtx->inTopFrame()) {
395 auto p = FramesModifying.insert(SCtx);
396 if (!p.second)
397 break; // Frame and all its parents already inserted.
399 SCtx = SCtx->getParent()->getStackFrame();
403 static const ExplodedNode *getMatchingCallExitEnd(const ExplodedNode *N) {
404 assert(N->getLocationAs<CallEnter>());
405 // The stackframe of the callee is only found in the nodes succeeding
406 // the CallEnter node. CallEnter's stack frame refers to the caller.
407 const StackFrameContext *OrigSCtx = N->getFirstSucc()->getStackFrame();
409 // Similarly, the nodes preceding CallExitEnd refer to the callee's stack
410 // frame.
411 auto IsMatchingCallExitEnd = [OrigSCtx](const ExplodedNode *N) {
412 return N->getLocationAs<CallExitEnd>() &&
413 OrigSCtx == N->getFirstPred()->getStackFrame();
415 while (N && !IsMatchingCallExitEnd(N)) {
416 assert(N->succ_size() <= 1 &&
417 "This function is to be used on the trimmed ExplodedGraph!");
418 N = N->getFirstSucc();
420 return N;
423 void NoStateChangeFuncVisitor::findModifyingFrames(
424 const ExplodedNode *const CallExitBeginN) {
426 assert(CallExitBeginN->getLocationAs<CallExitBegin>());
428 const StackFrameContext *const OriginalSCtx =
429 CallExitBeginN->getLocationContext()->getStackFrame();
431 const ExplodedNode *CurrCallExitBeginN = CallExitBeginN;
432 const StackFrameContext *CurrentSCtx = OriginalSCtx;
434 for (const ExplodedNode *CurrN = CallExitBeginN; CurrN;
435 CurrN = CurrN->getFirstPred()) {
436 // Found a new inlined call.
437 if (CurrN->getLocationAs<CallExitBegin>()) {
438 CurrCallExitBeginN = CurrN;
439 CurrentSCtx = CurrN->getStackFrame();
440 FramesModifyingCalculated.insert(CurrentSCtx);
441 // We won't see a change in between two identical exploded nodes: skip.
442 continue;
445 if (auto CE = CurrN->getLocationAs<CallEnter>()) {
446 if (const ExplodedNode *CallExitEndN = getMatchingCallExitEnd(CurrN))
447 if (wasModifiedInFunction(CurrN, CallExitEndN))
448 markFrameAsModifying(CurrentSCtx);
450 // We exited this inlined call, lets actualize the stack frame.
451 CurrentSCtx = CurrN->getStackFrame();
453 // Stop calculating at the current function, but always regard it as
454 // modifying, so we can avoid notes like this:
455 // void f(Foo &F) {
456 // F.field = 0; // note: 0 assigned to 'F.field'
457 // // note: returning without writing to 'F.field'
458 // }
459 if (CE->getCalleeContext() == OriginalSCtx) {
460 markFrameAsModifying(CurrentSCtx);
461 break;
465 if (wasModifiedBeforeCallExit(CurrN, CurrCallExitBeginN))
466 markFrameAsModifying(CurrentSCtx);
470 PathDiagnosticPieceRef NoStateChangeFuncVisitor::VisitNode(
471 const ExplodedNode *N, BugReporterContext &BR, PathSensitiveBugReport &R) {
473 const LocationContext *Ctx = N->getLocationContext();
474 const StackFrameContext *SCtx = Ctx->getStackFrame();
475 ProgramStateRef State = N->getState();
476 auto CallExitLoc = N->getLocationAs<CallExitBegin>();
478 // No diagnostic if region was modified inside the frame.
479 if (!CallExitLoc || isModifiedInFrame(N))
480 return nullptr;
482 CallEventRef<> Call =
483 BR.getStateManager().getCallEventManager().getCaller(SCtx, State);
485 // Optimistically suppress uninitialized value bugs that result
486 // from system headers having a chance to initialize the value
487 // but failing to do so. It's too unlikely a system header's fault.
488 // It's much more likely a situation in which the function has a failure
489 // mode that the user decided not to check. If we want to hunt such
490 // omitted checks, we should provide an explicit function-specific note
491 // describing the precondition under which the function isn't supposed to
492 // initialize its out-parameter, and additionally check that such
493 // precondition can actually be fulfilled on the current path.
494 if (Call->isInSystemHeader()) {
495 // We make an exception for system header functions that have no branches.
496 // Such functions unconditionally fail to initialize the variable.
497 // If they call other functions that have more paths within them,
498 // this suppression would still apply when we visit these inner functions.
499 // One common example of a standard function that doesn't ever initialize
500 // its out parameter is operator placement new; it's up to the follow-up
501 // constructor (if any) to initialize the memory.
502 if (!N->getStackFrame()->getCFG()->isLinear()) {
503 static int i = 0;
504 R.markInvalid(&i, nullptr);
506 return nullptr;
509 if (const auto *MC = dyn_cast<ObjCMethodCall>(Call)) {
510 // If we failed to construct a piece for self, we still want to check
511 // whether the entity of interest is in a parameter.
512 if (PathDiagnosticPieceRef Piece = maybeEmitNoteForObjCSelf(R, *MC, N))
513 return Piece;
516 if (const auto *CCall = dyn_cast<CXXConstructorCall>(Call)) {
517 // Do not generate diagnostics for not modified parameters in
518 // constructors.
519 return maybeEmitNoteForCXXThis(R, *CCall, N);
522 return maybeEmitNoteForParameters(R, *Call, N);
525 /// \return Whether the method declaration \p Parent
526 /// syntactically has a binary operation writing into the ivar \p Ivar.
527 static bool potentiallyWritesIntoIvar(const Decl *Parent,
528 const ObjCIvarDecl *Ivar) {
529 using namespace ast_matchers;
530 const char *IvarBind = "Ivar";
531 if (!Parent || !Parent->hasBody())
532 return false;
533 StatementMatcher WriteIntoIvarM = binaryOperator(
534 hasOperatorName("="),
535 hasLHS(ignoringParenImpCasts(
536 objcIvarRefExpr(hasDeclaration(equalsNode(Ivar))).bind(IvarBind))));
537 StatementMatcher ParentM = stmt(hasDescendant(WriteIntoIvarM));
538 auto Matches = match(ParentM, *Parent->getBody(), Parent->getASTContext());
539 for (BoundNodes &Match : Matches) {
540 auto IvarRef = Match.getNodeAs<ObjCIvarRefExpr>(IvarBind);
541 if (IvarRef->isFreeIvar())
542 return true;
544 const Expr *Base = IvarRef->getBase();
545 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Base))
546 Base = ICE->getSubExpr();
548 if (const auto *DRE = dyn_cast<DeclRefExpr>(Base))
549 if (const auto *ID = dyn_cast<ImplicitParamDecl>(DRE->getDecl()))
550 if (ID->getParameterKind() == ImplicitParamKind::ObjCSelf)
551 return true;
553 return false;
555 return false;
558 /// Attempts to find the region of interest in a given CXX decl,
559 /// by either following the base classes or fields.
560 /// Dereferences fields up to a given recursion limit.
561 /// Note that \p Vec is passed by value, leading to quadratic copying cost,
562 /// but it's OK in practice since its length is limited to DEREFERENCE_LIMIT.
563 /// \return A chain fields leading to the region of interest or std::nullopt.
564 const std::optional<NoStoreFuncVisitor::RegionVector>
565 NoStoreFuncVisitor::findRegionOfInterestInRecord(
566 const RecordDecl *RD, ProgramStateRef State, const MemRegion *R,
567 const NoStoreFuncVisitor::RegionVector &Vec /* = {} */,
568 int depth /* = 0 */) {
570 if (depth == DEREFERENCE_LIMIT) // Limit the recursion depth.
571 return std::nullopt;
573 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
574 if (!RDX->hasDefinition())
575 return std::nullopt;
577 // Recursively examine the base classes.
578 // Note that following base classes does not increase the recursion depth.
579 if (const auto *RDX = dyn_cast<CXXRecordDecl>(RD))
580 for (const auto &II : RDX->bases())
581 if (const RecordDecl *RRD = II.getType()->getAsRecordDecl())
582 if (std::optional<RegionVector> Out =
583 findRegionOfInterestInRecord(RRD, State, R, Vec, depth))
584 return Out;
586 for (const FieldDecl *I : RD->fields()) {
587 QualType FT = I->getType();
588 const FieldRegion *FR = MmrMgr.getFieldRegion(I, cast<SubRegion>(R));
589 const SVal V = State->getSVal(FR);
590 const MemRegion *VR = V.getAsRegion();
592 RegionVector VecF = Vec;
593 VecF.push_back(FR);
595 if (RegionOfInterest == VR)
596 return VecF;
598 if (const RecordDecl *RRD = FT->getAsRecordDecl())
599 if (auto Out =
600 findRegionOfInterestInRecord(RRD, State, FR, VecF, depth + 1))
601 return Out;
603 QualType PT = FT->getPointeeType();
604 if (PT.isNull() || PT->isVoidType() || !VR)
605 continue;
607 if (const RecordDecl *RRD = PT->getAsRecordDecl())
608 if (std::optional<RegionVector> Out =
609 findRegionOfInterestInRecord(RRD, State, VR, VecF, depth + 1))
610 return Out;
613 return std::nullopt;
616 PathDiagnosticPieceRef
617 NoStoreFuncVisitor::maybeEmitNoteForObjCSelf(PathSensitiveBugReport &R,
618 const ObjCMethodCall &Call,
619 const ExplodedNode *N) {
620 if (const auto *IvarR = dyn_cast<ObjCIvarRegion>(RegionOfInterest)) {
621 const MemRegion *SelfRegion = Call.getReceiverSVal().getAsRegion();
622 if (RegionOfInterest->isSubRegionOf(SelfRegion) &&
623 potentiallyWritesIntoIvar(Call.getRuntimeDefinition().getDecl(),
624 IvarR->getDecl()))
625 return maybeEmitNote(R, Call, N, {}, SelfRegion, "self",
626 /*FirstIsReferenceType=*/false, 1);
628 return nullptr;
631 PathDiagnosticPieceRef
632 NoStoreFuncVisitor::maybeEmitNoteForCXXThis(PathSensitiveBugReport &R,
633 const CXXConstructorCall &Call,
634 const ExplodedNode *N) {
635 const MemRegion *ThisR = Call.getCXXThisVal().getAsRegion();
636 if (RegionOfInterest->isSubRegionOf(ThisR) && !Call.getDecl()->isImplicit())
637 return maybeEmitNote(R, Call, N, {}, ThisR, "this",
638 /*FirstIsReferenceType=*/false, 1);
640 // Do not generate diagnostics for not modified parameters in
641 // constructors.
642 return nullptr;
645 /// \return whether \p Ty points to a const type, or is a const reference.
646 static bool isPointerToConst(QualType Ty) {
647 return !Ty->getPointeeType().isNull() &&
648 Ty->getPointeeType().getCanonicalType().isConstQualified();
651 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNoteForParameters(
652 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N) {
653 ArrayRef<ParmVarDecl *> Parameters = Call.parameters();
654 for (unsigned I = 0; I < Call.getNumArgs() && I < Parameters.size(); ++I) {
655 const ParmVarDecl *PVD = Parameters[I];
656 SVal V = Call.getArgSVal(I);
657 bool ParamIsReferenceType = PVD->getType()->isReferenceType();
658 std::string ParamName = PVD->getNameAsString();
660 unsigned IndirectionLevel = 1;
661 QualType T = PVD->getType();
662 while (const MemRegion *MR = V.getAsRegion()) {
663 if (RegionOfInterest->isSubRegionOf(MR) && !isPointerToConst(T))
664 return maybeEmitNote(R, Call, N, {}, MR, ParamName,
665 ParamIsReferenceType, IndirectionLevel);
667 QualType PT = T->getPointeeType();
668 if (PT.isNull() || PT->isVoidType())
669 break;
671 ProgramStateRef State = N->getState();
673 if (const RecordDecl *RD = PT->getAsRecordDecl())
674 if (std::optional<RegionVector> P =
675 findRegionOfInterestInRecord(RD, State, MR))
676 return maybeEmitNote(R, Call, N, *P, RegionOfInterest, ParamName,
677 ParamIsReferenceType, IndirectionLevel);
679 V = State->getSVal(MR, PT);
680 T = PT;
681 IndirectionLevel++;
685 return nullptr;
688 bool NoStoreFuncVisitor::wasModifiedBeforeCallExit(
689 const ExplodedNode *CurrN, const ExplodedNode *CallExitBeginN) {
690 return ::wasRegionOfInterestModifiedAt(
691 RegionOfInterest, CurrN,
692 CallExitBeginN->getState()->getSVal(RegionOfInterest));
695 static llvm::StringLiteral WillBeUsedForACondition =
696 ", which participates in a condition later";
698 PathDiagnosticPieceRef NoStoreFuncVisitor::maybeEmitNote(
699 PathSensitiveBugReport &R, const CallEvent &Call, const ExplodedNode *N,
700 const RegionVector &FieldChain, const MemRegion *MatchedRegion,
701 StringRef FirstElement, bool FirstIsReferenceType,
702 unsigned IndirectionLevel) {
704 PathDiagnosticLocation L =
705 PathDiagnosticLocation::create(N->getLocation(), SM);
707 // For now this shouldn't trigger, but once it does (as we add more
708 // functions to the body farm), we'll need to decide if these reports
709 // are worth suppressing as well.
710 if (!L.hasValidLocation())
711 return nullptr;
713 SmallString<256> sbuf;
714 llvm::raw_svector_ostream os(sbuf);
715 os << "Returning without writing to '";
717 // Do not generate the note if failed to pretty-print.
718 if (!prettyPrintRegionName(FieldChain, MatchedRegion, FirstElement,
719 FirstIsReferenceType, IndirectionLevel, os))
720 return nullptr;
722 os << "'";
723 if (TKind == bugreporter::TrackingKind::Condition)
724 os << WillBeUsedForACondition;
725 return std::make_shared<PathDiagnosticEventPiece>(L, os.str());
728 bool NoStoreFuncVisitor::prettyPrintRegionName(const RegionVector &FieldChain,
729 const MemRegion *MatchedRegion,
730 StringRef FirstElement,
731 bool FirstIsReferenceType,
732 unsigned IndirectionLevel,
733 llvm::raw_svector_ostream &os) {
735 if (FirstIsReferenceType)
736 IndirectionLevel--;
738 RegionVector RegionSequence;
740 // Add the regions in the reverse order, then reverse the resulting array.
741 assert(RegionOfInterest->isSubRegionOf(MatchedRegion));
742 const MemRegion *R = RegionOfInterest;
743 while (R != MatchedRegion) {
744 RegionSequence.push_back(R);
745 R = cast<SubRegion>(R)->getSuperRegion();
747 std::reverse(RegionSequence.begin(), RegionSequence.end());
748 RegionSequence.append(FieldChain.begin(), FieldChain.end());
750 StringRef Sep;
751 for (const MemRegion *R : RegionSequence) {
753 // Just keep going up to the base region.
754 // Element regions may appear due to casts.
755 if (isa<CXXBaseObjectRegion, CXXTempObjectRegion>(R))
756 continue;
758 if (Sep.empty())
759 Sep = prettyPrintFirstElement(FirstElement,
760 /*MoreItemsExpected=*/true,
761 IndirectionLevel, os);
763 os << Sep;
765 // Can only reasonably pretty-print DeclRegions.
766 if (!isa<DeclRegion>(R))
767 return false;
769 const auto *DR = cast<DeclRegion>(R);
770 Sep = DR->getValueType()->isAnyPointerType() ? "->" : ".";
771 DR->getDecl()->getDeclName().print(os, PP);
774 if (Sep.empty())
775 prettyPrintFirstElement(FirstElement,
776 /*MoreItemsExpected=*/false, IndirectionLevel, os);
777 return true;
780 StringRef NoStoreFuncVisitor::prettyPrintFirstElement(
781 StringRef FirstElement, bool MoreItemsExpected, int IndirectionLevel,
782 llvm::raw_svector_ostream &os) {
783 StringRef Out = ".";
785 if (IndirectionLevel > 0 && MoreItemsExpected) {
786 IndirectionLevel--;
787 Out = "->";
790 if (IndirectionLevel > 0 && MoreItemsExpected)
791 os << "(";
793 for (int i = 0; i < IndirectionLevel; i++)
794 os << "*";
795 os << FirstElement;
797 if (IndirectionLevel > 0 && MoreItemsExpected)
798 os << ")";
800 return Out;
803 //===----------------------------------------------------------------------===//
804 // Implementation of MacroNullReturnSuppressionVisitor.
805 //===----------------------------------------------------------------------===//
807 namespace {
809 /// Suppress null-pointer-dereference bugs where dereferenced null was returned
810 /// the macro.
811 class MacroNullReturnSuppressionVisitor final : public BugReporterVisitor {
812 const SubRegion *RegionOfInterest;
813 const SVal ValueAtDereference;
815 // Do not invalidate the reports where the value was modified
816 // after it got assigned to from the macro.
817 bool WasModified = false;
819 public:
820 MacroNullReturnSuppressionVisitor(const SubRegion *R, const SVal V)
821 : RegionOfInterest(R), ValueAtDereference(V) {}
823 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
824 BugReporterContext &BRC,
825 PathSensitiveBugReport &BR) override {
826 if (WasModified)
827 return nullptr;
829 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
830 if (!BugPoint)
831 return nullptr;
833 const SourceManager &SMgr = BRC.getSourceManager();
834 if (auto Loc = matchAssignment(N)) {
835 if (isFunctionMacroExpansion(*Loc, SMgr)) {
836 std::string MacroName = std::string(getMacroName(*Loc, BRC));
837 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
838 if (!BugLoc.isMacroID() || getMacroName(BugLoc, BRC) != MacroName)
839 BR.markInvalid(getTag(), MacroName.c_str());
843 if (wasRegionOfInterestModifiedAt(RegionOfInterest, N, ValueAtDereference))
844 WasModified = true;
846 return nullptr;
849 static void addMacroVisitorIfNecessary(
850 const ExplodedNode *N, const MemRegion *R,
851 bool EnableNullFPSuppression, PathSensitiveBugReport &BR,
852 const SVal V) {
853 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
854 if (EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths &&
855 isa<Loc>(V))
856 BR.addVisitor<MacroNullReturnSuppressionVisitor>(R->getAs<SubRegion>(),
860 void* getTag() const {
861 static int Tag = 0;
862 return static_cast<void *>(&Tag);
865 void Profile(llvm::FoldingSetNodeID &ID) const override {
866 ID.AddPointer(getTag());
869 private:
870 /// \return Source location of right hand side of an assignment
871 /// into \c RegionOfInterest, empty optional if none found.
872 std::optional<SourceLocation> matchAssignment(const ExplodedNode *N) {
873 const Stmt *S = N->getStmtForDiagnostics();
874 ProgramStateRef State = N->getState();
875 auto *LCtx = N->getLocationContext();
876 if (!S)
877 return std::nullopt;
879 if (const auto *DS = dyn_cast<DeclStmt>(S)) {
880 if (const auto *VD = dyn_cast<VarDecl>(DS->getSingleDecl()))
881 if (const Expr *RHS = VD->getInit())
882 if (RegionOfInterest->isSubRegionOf(
883 State->getLValue(VD, LCtx).getAsRegion()))
884 return RHS->getBeginLoc();
885 } else if (const auto *BO = dyn_cast<BinaryOperator>(S)) {
886 const MemRegion *R = N->getSVal(BO->getLHS()).getAsRegion();
887 const Expr *RHS = BO->getRHS();
888 if (BO->isAssignmentOp() && RegionOfInterest->isSubRegionOf(R)) {
889 return RHS->getBeginLoc();
892 return std::nullopt;
896 } // end of anonymous namespace
898 namespace {
900 /// Emits an extra note at the return statement of an interesting stack frame.
902 /// The returned value is marked as an interesting value, and if it's null,
903 /// adds a visitor to track where it became null.
905 /// This visitor is intended to be used when another visitor discovers that an
906 /// interesting value comes from an inlined function call.
907 class ReturnVisitor : public TrackingBugReporterVisitor {
908 const StackFrameContext *CalleeSFC;
909 enum {
910 Initial,
911 MaybeUnsuppress,
912 Satisfied
913 } Mode = Initial;
915 bool EnableNullFPSuppression;
916 bool ShouldInvalidate = true;
917 AnalyzerOptions& Options;
918 bugreporter::TrackingKind TKind;
920 public:
921 ReturnVisitor(TrackerRef ParentTracker, const StackFrameContext *Frame,
922 bool Suppressed, AnalyzerOptions &Options,
923 bugreporter::TrackingKind TKind)
924 : TrackingBugReporterVisitor(ParentTracker), CalleeSFC(Frame),
925 EnableNullFPSuppression(Suppressed), Options(Options), TKind(TKind) {}
927 static void *getTag() {
928 static int Tag = 0;
929 return static_cast<void *>(&Tag);
932 void Profile(llvm::FoldingSetNodeID &ID) const override {
933 ID.AddPointer(ReturnVisitor::getTag());
934 ID.AddPointer(CalleeSFC);
935 ID.AddBoolean(EnableNullFPSuppression);
938 PathDiagnosticPieceRef visitNodeInitial(const ExplodedNode *N,
939 BugReporterContext &BRC,
940 PathSensitiveBugReport &BR) {
941 // Only print a message at the interesting return statement.
942 if (N->getLocationContext() != CalleeSFC)
943 return nullptr;
945 std::optional<StmtPoint> SP = N->getLocationAs<StmtPoint>();
946 if (!SP)
947 return nullptr;
949 const auto *Ret = dyn_cast<ReturnStmt>(SP->getStmt());
950 if (!Ret)
951 return nullptr;
953 // Okay, we're at the right return statement, but do we have the return
954 // value available?
955 ProgramStateRef State = N->getState();
956 SVal V = State->getSVal(Ret, CalleeSFC);
957 if (V.isUnknownOrUndef())
958 return nullptr;
960 // Don't print any more notes after this one.
961 Mode = Satisfied;
963 const Expr *RetE = Ret->getRetValue();
964 assert(RetE && "Tracking a return value for a void function");
966 // Handle cases where a reference is returned and then immediately used.
967 std::optional<Loc> LValue;
968 if (RetE->isGLValue()) {
969 if ((LValue = V.getAs<Loc>())) {
970 SVal RValue = State->getRawSVal(*LValue, RetE->getType());
971 if (isa<DefinedSVal>(RValue))
972 V = RValue;
976 // Ignore aggregate rvalues.
977 if (isa<nonloc::LazyCompoundVal, nonloc::CompoundVal>(V))
978 return nullptr;
980 RetE = RetE->IgnoreParenCasts();
982 // Let's track the return value.
983 getParentTracker().track(RetE, N, {TKind, EnableNullFPSuppression});
985 // Build an appropriate message based on the return value.
986 SmallString<64> Msg;
987 llvm::raw_svector_ostream Out(Msg);
989 bool WouldEventBeMeaningless = false;
991 if (State->isNull(V).isConstrainedTrue()) {
992 if (isa<Loc>(V)) {
994 // If we have counter-suppression enabled, make sure we keep visiting
995 // future nodes. We want to emit a path note as well, in case
996 // the report is resurrected as valid later on.
997 if (EnableNullFPSuppression &&
998 Options.ShouldAvoidSuppressingNullArgumentPaths)
999 Mode = MaybeUnsuppress;
1001 if (RetE->getType()->isObjCObjectPointerType()) {
1002 Out << "Returning nil";
1003 } else {
1004 Out << "Returning null pointer";
1006 } else {
1007 Out << "Returning zero";
1010 } else {
1011 if (auto CI = V.getAs<nonloc::ConcreteInt>()) {
1012 Out << "Returning the value " << CI->getValue();
1013 } else {
1014 // There is nothing interesting about returning a value, when it is
1015 // plain value without any constraints, and the function is guaranteed
1016 // to return that every time. We could use CFG::isLinear() here, but
1017 // constexpr branches are obvious to the compiler, not necesserily to
1018 // the programmer.
1019 if (N->getCFG().size() == 3)
1020 WouldEventBeMeaningless = true;
1022 Out << (isa<Loc>(V) ? "Returning pointer" : "Returning value");
1026 if (LValue) {
1027 if (const MemRegion *MR = LValue->getAsRegion()) {
1028 if (MR->canPrintPretty()) {
1029 Out << " (reference to ";
1030 MR->printPretty(Out);
1031 Out << ")";
1034 } else {
1035 // FIXME: We should have a more generalized location printing mechanism.
1036 if (const auto *DR = dyn_cast<DeclRefExpr>(RetE))
1037 if (const auto *DD = dyn_cast<DeclaratorDecl>(DR->getDecl()))
1038 Out << " (loaded from '" << *DD << "')";
1041 PathDiagnosticLocation L(Ret, BRC.getSourceManager(), CalleeSFC);
1042 if (!L.isValid() || !L.asLocation().isValid())
1043 return nullptr;
1045 if (TKind == bugreporter::TrackingKind::Condition)
1046 Out << WillBeUsedForACondition;
1048 auto EventPiece = std::make_shared<PathDiagnosticEventPiece>(L, Out.str());
1050 // If we determined that the note is meaningless, make it prunable, and
1051 // don't mark the stackframe interesting.
1052 if (WouldEventBeMeaningless)
1053 EventPiece->setPrunable(true);
1054 else
1055 BR.markInteresting(CalleeSFC);
1057 return EventPiece;
1060 PathDiagnosticPieceRef visitNodeMaybeUnsuppress(const ExplodedNode *N,
1061 BugReporterContext &BRC,
1062 PathSensitiveBugReport &BR) {
1063 assert(Options.ShouldAvoidSuppressingNullArgumentPaths);
1065 // Are we at the entry node for this call?
1066 std::optional<CallEnter> CE = N->getLocationAs<CallEnter>();
1067 if (!CE)
1068 return nullptr;
1070 if (CE->getCalleeContext() != CalleeSFC)
1071 return nullptr;
1073 Mode = Satisfied;
1075 // Don't automatically suppress a report if one of the arguments is
1076 // known to be a null pointer. Instead, start tracking /that/ null
1077 // value back to its origin.
1078 ProgramStateManager &StateMgr = BRC.getStateManager();
1079 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1081 ProgramStateRef State = N->getState();
1082 CallEventRef<> Call = CallMgr.getCaller(CalleeSFC, State);
1083 for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) {
1084 std::optional<Loc> ArgV = Call->getArgSVal(I).getAs<Loc>();
1085 if (!ArgV)
1086 continue;
1088 const Expr *ArgE = Call->getArgExpr(I);
1089 if (!ArgE)
1090 continue;
1092 // Is it possible for this argument to be non-null?
1093 if (!State->isNull(*ArgV).isConstrainedTrue())
1094 continue;
1096 if (getParentTracker()
1097 .track(ArgE, N, {TKind, EnableNullFPSuppression})
1098 .FoundSomethingToTrack)
1099 ShouldInvalidate = false;
1101 // If we /can't/ track the null pointer, we should err on the side of
1102 // false negatives, and continue towards marking this report invalid.
1103 // (We will still look at the other arguments, though.)
1106 return nullptr;
1109 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1110 BugReporterContext &BRC,
1111 PathSensitiveBugReport &BR) override {
1112 switch (Mode) {
1113 case Initial:
1114 return visitNodeInitial(N, BRC, BR);
1115 case MaybeUnsuppress:
1116 return visitNodeMaybeUnsuppress(N, BRC, BR);
1117 case Satisfied:
1118 return nullptr;
1121 llvm_unreachable("Invalid visit mode!");
1124 void finalizeVisitor(BugReporterContext &, const ExplodedNode *,
1125 PathSensitiveBugReport &BR) override {
1126 if (EnableNullFPSuppression && ShouldInvalidate)
1127 BR.markInvalid(ReturnVisitor::getTag(), CalleeSFC);
1131 //===----------------------------------------------------------------------===//
1132 // StoreSiteFinder
1133 //===----------------------------------------------------------------------===//
1135 /// Finds last store into the given region,
1136 /// which is different from a given symbolic value.
1137 class StoreSiteFinder final : public TrackingBugReporterVisitor {
1138 const MemRegion *R;
1139 SVal V;
1140 bool Satisfied = false;
1142 TrackingOptions Options;
1143 const StackFrameContext *OriginSFC;
1145 public:
1146 /// \param V We're searching for the store where \c R received this value.
1147 /// \param R The region we're tracking.
1148 /// \param Options Tracking behavior options.
1149 /// \param OriginSFC Only adds notes when the last store happened in a
1150 /// different stackframe to this one. Disregarded if the tracking kind
1151 /// is thorough.
1152 /// This is useful, because for non-tracked regions, notes about
1153 /// changes to its value in a nested stackframe could be pruned, and
1154 /// this visitor can prevent that without polluting the bugpath too
1155 /// much.
1156 StoreSiteFinder(bugreporter::TrackerRef ParentTracker, SVal V,
1157 const MemRegion *R, TrackingOptions Options,
1158 const StackFrameContext *OriginSFC = nullptr)
1159 : TrackingBugReporterVisitor(ParentTracker), R(R), V(V), Options(Options),
1160 OriginSFC(OriginSFC) {
1161 assert(R);
1164 void Profile(llvm::FoldingSetNodeID &ID) const override;
1166 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1167 BugReporterContext &BRC,
1168 PathSensitiveBugReport &BR) override;
1170 } // namespace
1172 void StoreSiteFinder::Profile(llvm::FoldingSetNodeID &ID) const {
1173 static int tag = 0;
1174 ID.AddPointer(&tag);
1175 ID.AddPointer(R);
1176 ID.Add(V);
1177 ID.AddInteger(static_cast<int>(Options.Kind));
1178 ID.AddBoolean(Options.EnableNullFPSuppression);
1181 /// Returns true if \p N represents the DeclStmt declaring and initializing
1182 /// \p VR.
1183 static bool isInitializationOfVar(const ExplodedNode *N, const VarRegion *VR) {
1184 std::optional<PostStmt> P = N->getLocationAs<PostStmt>();
1185 if (!P)
1186 return false;
1188 const DeclStmt *DS = P->getStmtAs<DeclStmt>();
1189 if (!DS)
1190 return false;
1192 if (DS->getSingleDecl() != VR->getDecl())
1193 return false;
1195 const MemSpaceRegion *VarSpace = VR->getMemorySpace();
1196 const auto *FrameSpace = dyn_cast<StackSpaceRegion>(VarSpace);
1197 if (!FrameSpace) {
1198 // If we ever directly evaluate global DeclStmts, this assertion will be
1199 // invalid, but this still seems preferable to silently accepting an
1200 // initialization that may be for a path-sensitive variable.
1201 assert(VR->getDecl()->isStaticLocal() && "non-static stackless VarRegion");
1202 return true;
1205 assert(VR->getDecl()->hasLocalStorage());
1206 const LocationContext *LCtx = N->getLocationContext();
1207 return FrameSpace->getStackFrame() == LCtx->getStackFrame();
1210 static bool isObjCPointer(const MemRegion *R) {
1211 if (R->isBoundable())
1212 if (const auto *TR = dyn_cast<TypedValueRegion>(R))
1213 return TR->getValueType()->isObjCObjectPointerType();
1215 return false;
1218 static bool isObjCPointer(const ValueDecl *D) {
1219 return D->getType()->isObjCObjectPointerType();
1222 /// Show diagnostics for initializing or declaring a region \p R with a bad value.
1223 static void showBRDiagnostics(llvm::raw_svector_ostream &OS, StoreInfo SI) {
1224 const bool HasPrefix = SI.Dest->canPrintPretty();
1226 if (HasPrefix) {
1227 SI.Dest->printPretty(OS);
1228 OS << " ";
1231 const char *Action = nullptr;
1233 switch (SI.StoreKind) {
1234 case StoreInfo::Initialization:
1235 Action = HasPrefix ? "initialized to " : "Initializing to ";
1236 break;
1237 case StoreInfo::BlockCapture:
1238 Action = HasPrefix ? "captured by block as " : "Captured by block as ";
1239 break;
1240 default:
1241 llvm_unreachable("Unexpected store kind");
1244 if (isa<loc::ConcreteInt>(SI.Value)) {
1245 OS << Action << (isObjCPointer(SI.Dest) ? "nil" : "a null pointer value");
1247 } else if (auto CVal = SI.Value.getAs<nonloc::ConcreteInt>()) {
1248 OS << Action << CVal->getValue();
1250 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1251 OS << Action << "the value of ";
1252 SI.Origin->printPretty(OS);
1254 } else if (SI.StoreKind == StoreInfo::Initialization) {
1255 // We don't need to check here, all these conditions were
1256 // checked by StoreSiteFinder, when it figured out that it is
1257 // initialization.
1258 const auto *DS =
1259 cast<DeclStmt>(SI.StoreSite->getLocationAs<PostStmt>()->getStmt());
1261 if (SI.Value.isUndef()) {
1262 if (isa<VarRegion>(SI.Dest)) {
1263 const auto *VD = cast<VarDecl>(DS->getSingleDecl());
1265 if (VD->getInit()) {
1266 OS << (HasPrefix ? "initialized" : "Initializing")
1267 << " to a garbage value";
1268 } else {
1269 OS << (HasPrefix ? "declared" : "Declaring")
1270 << " without an initial value";
1273 } else {
1274 OS << (HasPrefix ? "initialized" : "Initialized") << " here";
1279 /// Display diagnostics for passing bad region as a parameter.
1280 static void showBRParamDiagnostics(llvm::raw_svector_ostream &OS,
1281 StoreInfo SI) {
1282 const auto *VR = cast<VarRegion>(SI.Dest);
1283 const auto *D = VR->getDecl();
1285 OS << "Passing ";
1287 if (isa<loc::ConcreteInt>(SI.Value)) {
1288 OS << (isObjCPointer(D) ? "nil object reference" : "null pointer value");
1290 } else if (SI.Value.isUndef()) {
1291 OS << "uninitialized value";
1293 } else if (auto CI = SI.Value.getAs<nonloc::ConcreteInt>()) {
1294 OS << "the value " << CI->getValue();
1296 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1297 SI.Origin->printPretty(OS);
1299 } else {
1300 OS << "value";
1303 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1304 // Printed parameter indexes are 1-based, not 0-based.
1305 unsigned Idx = Param->getFunctionScopeIndex() + 1;
1306 OS << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter";
1307 if (VR->canPrintPretty()) {
1308 OS << " ";
1309 VR->printPretty(OS);
1311 } else if (const auto *ImplParam = dyn_cast<ImplicitParamDecl>(D)) {
1312 if (ImplParam->getParameterKind() == ImplicitParamKind::ObjCSelf) {
1313 OS << " via implicit parameter 'self'";
1318 /// Show default diagnostics for storing bad region.
1319 static void showBRDefaultDiagnostics(llvm::raw_svector_ostream &OS,
1320 StoreInfo SI) {
1321 const bool HasSuffix = SI.Dest->canPrintPretty();
1323 if (isa<loc::ConcreteInt>(SI.Value)) {
1324 OS << (isObjCPointer(SI.Dest) ? "nil object reference stored"
1325 : (HasSuffix ? "Null pointer value stored"
1326 : "Storing null pointer value"));
1328 } else if (SI.Value.isUndef()) {
1329 OS << (HasSuffix ? "Uninitialized value stored"
1330 : "Storing uninitialized value");
1332 } else if (auto CV = SI.Value.getAs<nonloc::ConcreteInt>()) {
1333 if (HasSuffix)
1334 OS << "The value " << CV->getValue() << " is assigned";
1335 else
1336 OS << "Assigning " << CV->getValue();
1338 } else if (SI.Origin && SI.Origin->canPrintPretty()) {
1339 if (HasSuffix) {
1340 OS << "The value of ";
1341 SI.Origin->printPretty(OS);
1342 OS << " is assigned";
1343 } else {
1344 OS << "Assigning the value of ";
1345 SI.Origin->printPretty(OS);
1348 } else {
1349 OS << (HasSuffix ? "Value assigned" : "Assigning value");
1352 if (HasSuffix) {
1353 OS << " to ";
1354 SI.Dest->printPretty(OS);
1358 static bool isTrivialCopyOrMoveCtor(const CXXConstructExpr *CE) {
1359 if (!CE)
1360 return false;
1362 const auto *CtorDecl = CE->getConstructor();
1364 return CtorDecl->isCopyOrMoveConstructor() && CtorDecl->isTrivial();
1367 static const Expr *tryExtractInitializerFromList(const InitListExpr *ILE,
1368 const MemRegion *R) {
1370 const auto *TVR = dyn_cast_or_null<TypedValueRegion>(R);
1372 if (!TVR)
1373 return nullptr;
1375 const auto ITy = ILE->getType().getCanonicalType();
1377 // Push each sub-region onto the stack.
1378 std::stack<const TypedValueRegion *> TVRStack;
1379 while (isa<FieldRegion>(TVR) || isa<ElementRegion>(TVR)) {
1380 // We found a region that matches the type of the init list,
1381 // so we assume this is the outer-most region. This can happen
1382 // if the initializer list is inside a class. If our assumption
1383 // is wrong, we return a nullptr in the end.
1384 if (ITy == TVR->getValueType().getCanonicalType())
1385 break;
1387 TVRStack.push(TVR);
1388 TVR = cast<TypedValueRegion>(TVR->getSuperRegion());
1391 // If the type of the outer most region doesn't match the type
1392 // of the ILE, we can't match the ILE and the region.
1393 if (ITy != TVR->getValueType().getCanonicalType())
1394 return nullptr;
1396 const Expr *Init = ILE;
1397 while (!TVRStack.empty()) {
1398 TVR = TVRStack.top();
1399 TVRStack.pop();
1401 // We hit something that's not an init list before
1402 // running out of regions, so we most likely failed.
1403 if (!isa<InitListExpr>(Init))
1404 return nullptr;
1406 ILE = cast<InitListExpr>(Init);
1407 auto NumInits = ILE->getNumInits();
1409 if (const auto *FR = dyn_cast<FieldRegion>(TVR)) {
1410 const auto *FD = FR->getDecl();
1412 if (FD->getFieldIndex() >= NumInits)
1413 return nullptr;
1415 Init = ILE->getInit(FD->getFieldIndex());
1416 } else if (const auto *ER = dyn_cast<ElementRegion>(TVR)) {
1417 const auto Ind = ER->getIndex();
1419 // If index is symbolic, we can't figure out which expression
1420 // belongs to the region.
1421 if (!Ind.isConstant())
1422 return nullptr;
1424 const auto IndVal = Ind.getAsInteger()->getLimitedValue();
1425 if (IndVal >= NumInits)
1426 return nullptr;
1428 Init = ILE->getInit(IndVal);
1432 return Init;
1435 PathDiagnosticPieceRef StoreSiteFinder::VisitNode(const ExplodedNode *Succ,
1436 BugReporterContext &BRC,
1437 PathSensitiveBugReport &BR) {
1438 if (Satisfied)
1439 return nullptr;
1441 const ExplodedNode *StoreSite = nullptr;
1442 const ExplodedNode *Pred = Succ->getFirstPred();
1443 const Expr *InitE = nullptr;
1444 bool IsParam = false;
1446 // First see if we reached the declaration of the region.
1447 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1448 if (isInitializationOfVar(Pred, VR)) {
1449 StoreSite = Pred;
1450 InitE = VR->getDecl()->getInit();
1454 // If this is a post initializer expression, initializing the region, we
1455 // should track the initializer expression.
1456 if (std::optional<PostInitializer> PIP =
1457 Pred->getLocationAs<PostInitializer>()) {
1458 const MemRegion *FieldReg = (const MemRegion *)PIP->getLocationValue();
1459 if (FieldReg == R) {
1460 StoreSite = Pred;
1461 InitE = PIP->getInitializer()->getInit();
1465 // Otherwise, see if this is the store site:
1466 // (1) Succ has this binding and Pred does not, i.e. this is
1467 // where the binding first occurred.
1468 // (2) Succ has this binding and is a PostStore node for this region, i.e.
1469 // the same binding was re-assigned here.
1470 if (!StoreSite) {
1471 if (Succ->getState()->getSVal(R) != V)
1472 return nullptr;
1474 if (hasVisibleUpdate(Pred, Pred->getState()->getSVal(R), Succ, V)) {
1475 std::optional<PostStore> PS = Succ->getLocationAs<PostStore>();
1476 if (!PS || PS->getLocationValue() != R)
1477 return nullptr;
1480 StoreSite = Succ;
1482 if (std::optional<PostStmt> P = Succ->getLocationAs<PostStmt>()) {
1483 // If this is an assignment expression, we can track the value
1484 // being assigned.
1485 if (const BinaryOperator *BO = P->getStmtAs<BinaryOperator>()) {
1486 if (BO->isAssignmentOp())
1487 InitE = BO->getRHS();
1489 // If we have a declaration like 'S s{1,2}' that needs special
1490 // handling, we handle it here.
1491 else if (const auto *DS = P->getStmtAs<DeclStmt>()) {
1492 const auto *Decl = DS->getSingleDecl();
1493 if (isa<VarDecl>(Decl)) {
1494 const auto *VD = cast<VarDecl>(Decl);
1496 // FIXME: Here we only track the inner most region, so we lose
1497 // information, but it's still better than a crash or no information
1498 // at all.
1500 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y',
1501 // and throw away the rest.
1502 if (const auto *ILE = dyn_cast<InitListExpr>(VD->getInit()))
1503 InitE = tryExtractInitializerFromList(ILE, R);
1505 } else if (const auto *CE = P->getStmtAs<CXXConstructExpr>()) {
1507 const auto State = Succ->getState();
1509 if (isTrivialCopyOrMoveCtor(CE) && isa<SubRegion>(R)) {
1510 // Migrate the field regions from the current object to
1511 // the parent object. If we track 'a.y.e' and encounter
1512 // 'S a = b' then we need to track 'b.y.e'.
1514 // Push the regions to a stack, from last to first, so
1515 // considering the example above the stack will look like
1516 // (bottom) 'e' -> 'y' (top).
1518 std::stack<const SubRegion *> SRStack;
1519 const SubRegion *SR = cast<SubRegion>(R);
1520 while (isa<FieldRegion>(SR) || isa<ElementRegion>(SR)) {
1521 SRStack.push(SR);
1522 SR = cast<SubRegion>(SR->getSuperRegion());
1525 // Get the region for the object we copied/moved from.
1526 const auto *OriginEx = CE->getArg(0);
1527 const auto OriginVal =
1528 State->getSVal(OriginEx, Succ->getLocationContext());
1530 // Pop the stored field regions and apply them to the origin
1531 // object in the same order we had them on the copy.
1532 // OriginField will evolve like 'b' -> 'b.y' -> 'b.y.e'.
1533 SVal OriginField = OriginVal;
1534 while (!SRStack.empty()) {
1535 const auto *TopR = SRStack.top();
1536 SRStack.pop();
1538 if (const auto *FR = dyn_cast<FieldRegion>(TopR)) {
1539 OriginField = State->getLValue(FR->getDecl(), OriginField);
1540 } else if (const auto *ER = dyn_cast<ElementRegion>(TopR)) {
1541 OriginField = State->getLValue(ER->getElementType(),
1542 ER->getIndex(), OriginField);
1543 } else {
1544 // FIXME: handle other region type
1548 // Track 'b.y.e'.
1549 getParentTracker().track(V, OriginField.getAsRegion(), Options);
1550 InitE = OriginEx;
1553 // This branch can occur in cases like `Ctor() : field{ x, y } {}'.
1554 else if (const auto *ILE = P->getStmtAs<InitListExpr>()) {
1555 // FIXME: Here we only track the top level region, so we lose
1556 // information, but it's still better than a crash or no information
1557 // at all.
1559 // E.g.: The region we have is 's.s2.s3.s4.y' and we only track 'y', and
1560 // throw away the rest.
1561 InitE = tryExtractInitializerFromList(ILE, R);
1565 // If this is a call entry, the variable should be a parameter.
1566 // FIXME: Handle CXXThisRegion as well. (This is not a priority because
1567 // 'this' should never be NULL, but this visitor isn't just for NULL and
1568 // UndefinedVal.)
1569 if (std::optional<CallEnter> CE = Succ->getLocationAs<CallEnter>()) {
1570 if (const auto *VR = dyn_cast<VarRegion>(R)) {
1572 if (const auto *Param = dyn_cast<ParmVarDecl>(VR->getDecl())) {
1573 ProgramStateManager &StateMgr = BRC.getStateManager();
1574 CallEventManager &CallMgr = StateMgr.getCallEventManager();
1576 CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(),
1577 Succ->getState());
1578 InitE = Call->getArgExpr(Param->getFunctionScopeIndex());
1579 } else {
1580 // Handle Objective-C 'self'.
1581 assert(isa<ImplicitParamDecl>(VR->getDecl()));
1582 InitE = cast<ObjCMessageExpr>(CE->getCalleeContext()->getCallSite())
1583 ->getInstanceReceiver()->IgnoreParenCasts();
1585 IsParam = true;
1589 // If this is a CXXTempObjectRegion, the Expr responsible for its creation
1590 // is wrapped inside of it.
1591 if (const auto *TmpR = dyn_cast<CXXTempObjectRegion>(R))
1592 InitE = TmpR->getExpr();
1595 if (!StoreSite)
1596 return nullptr;
1598 Satisfied = true;
1600 // If we have an expression that provided the value, try to track where it
1601 // came from.
1602 if (InitE) {
1603 if (!IsParam)
1604 InitE = InitE->IgnoreParenCasts();
1606 getParentTracker().track(InitE, StoreSite, Options);
1609 // Let's try to find the region where the value came from.
1610 const MemRegion *OldRegion = nullptr;
1612 // If we have init expression, it might be simply a reference
1613 // to a variable, so we can use it.
1614 if (InitE) {
1615 // That region might still be not exactly what we are looking for.
1616 // In situations like `int &ref = val;`, we can't say that
1617 // `ref` is initialized with `val`, rather refers to `val`.
1619 // In order, to mitigate situations like this, we check if the last
1620 // stored value in that region is the value that we track.
1622 // TODO: support other situations better.
1623 if (const MemRegion *Candidate =
1624 getLocationRegionIfReference(InitE, Succ, false)) {
1625 const StoreManager &SM = BRC.getStateManager().getStoreManager();
1627 // Here we traverse the graph up to find the last node where the
1628 // candidate region is still in the store.
1629 for (const ExplodedNode *N = StoreSite; N; N = N->getFirstPred()) {
1630 if (SM.includedInBindings(N->getState()->getStore(), Candidate)) {
1631 // And if it was bound to the target value, we can use it.
1632 if (N->getState()->getSVal(Candidate) == V) {
1633 OldRegion = Candidate;
1635 break;
1641 // Otherwise, if the current region does indeed contain the value
1642 // we are looking for, we can look for a region where this value
1643 // was before.
1645 // It can be useful for situations like:
1646 // new = identity(old)
1647 // where the analyzer knows that 'identity' returns the value of its
1648 // first argument.
1650 // NOTE: If the region R is not a simple var region, it can contain
1651 // V in one of its subregions.
1652 if (!OldRegion && StoreSite->getState()->getSVal(R) == V) {
1653 // Let's go up the graph to find the node where the region is
1654 // bound to V.
1655 const ExplodedNode *NodeWithoutBinding = StoreSite->getFirstPred();
1656 for (;
1657 NodeWithoutBinding && NodeWithoutBinding->getState()->getSVal(R) == V;
1658 NodeWithoutBinding = NodeWithoutBinding->getFirstPred()) {
1661 if (NodeWithoutBinding) {
1662 // Let's try to find a unique binding for the value in that node.
1663 // We want to use this to find unique bindings because of the following
1664 // situations:
1665 // b = a;
1666 // c = identity(b);
1668 // Telling the user that the value of 'a' is assigned to 'c', while
1669 // correct, can be confusing.
1670 StoreManager::FindUniqueBinding FB(V.getAsLocSymbol());
1671 BRC.getStateManager().iterBindings(NodeWithoutBinding->getState(), FB);
1672 if (FB)
1673 OldRegion = FB.getRegion();
1677 if (Options.Kind == TrackingKind::Condition && OriginSFC &&
1678 !OriginSFC->isParentOf(StoreSite->getStackFrame()))
1679 return nullptr;
1681 // Okay, we've found the binding. Emit an appropriate message.
1682 SmallString<256> sbuf;
1683 llvm::raw_svector_ostream os(sbuf);
1685 StoreInfo SI = {StoreInfo::Assignment, // default kind
1686 StoreSite,
1687 InitE,
1690 OldRegion};
1692 if (std::optional<PostStmt> PS = StoreSite->getLocationAs<PostStmt>()) {
1693 const Stmt *S = PS->getStmt();
1694 const auto *DS = dyn_cast<DeclStmt>(S);
1695 const auto *VR = dyn_cast<VarRegion>(R);
1697 if (DS) {
1698 SI.StoreKind = StoreInfo::Initialization;
1699 } else if (isa<BlockExpr>(S)) {
1700 SI.StoreKind = StoreInfo::BlockCapture;
1701 if (VR) {
1702 // See if we can get the BlockVarRegion.
1703 ProgramStateRef State = StoreSite->getState();
1704 SVal V = StoreSite->getSVal(S);
1705 if (const auto *BDR =
1706 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
1707 if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) {
1708 getParentTracker().track(State->getSVal(OriginalR), OriginalR,
1709 Options, OriginSFC);
1714 } else if (SI.StoreSite->getLocation().getAs<CallEnter>() &&
1715 isa<VarRegion>(SI.Dest)) {
1716 SI.StoreKind = StoreInfo::CallArgument;
1719 return getParentTracker().handle(SI, BRC, Options);
1722 //===----------------------------------------------------------------------===//
1723 // Implementation of TrackConstraintBRVisitor.
1724 //===----------------------------------------------------------------------===//
1726 void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
1727 static int tag = 0;
1728 ID.AddPointer(&tag);
1729 ID.AddString(Message);
1730 ID.AddBoolean(Assumption);
1731 ID.Add(Constraint);
1734 /// Return the tag associated with this visitor. This tag will be used
1735 /// to make all PathDiagnosticPieces created by this visitor.
1736 const char *TrackConstraintBRVisitor::getTag() {
1737 return "TrackConstraintBRVisitor";
1740 bool TrackConstraintBRVisitor::isZeroCheck() const {
1741 return !Assumption && Constraint.getAs<Loc>();
1744 bool TrackConstraintBRVisitor::isUnderconstrained(const ExplodedNode *N) const {
1745 if (isZeroCheck())
1746 return N->getState()->isNull(Constraint).isUnderconstrained();
1747 return (bool)N->getState()->assume(Constraint, !Assumption);
1750 PathDiagnosticPieceRef TrackConstraintBRVisitor::VisitNode(
1751 const ExplodedNode *N, BugReporterContext &BRC, PathSensitiveBugReport &) {
1752 const ExplodedNode *PrevN = N->getFirstPred();
1753 if (IsSatisfied)
1754 return nullptr;
1756 // Start tracking after we see the first state in which the value is
1757 // constrained.
1758 if (!IsTrackingTurnedOn)
1759 if (!isUnderconstrained(N))
1760 IsTrackingTurnedOn = true;
1761 if (!IsTrackingTurnedOn)
1762 return nullptr;
1764 // Check if in the previous state it was feasible for this constraint
1765 // to *not* be true.
1766 if (isUnderconstrained(PrevN)) {
1767 IsSatisfied = true;
1769 // At this point, the negation of the constraint should be infeasible. If it
1770 // is feasible, make sure that the negation of the constrainti was
1771 // infeasible in the current state. If it is feasible, we somehow missed
1772 // the transition point.
1773 assert(!isUnderconstrained(N));
1775 // Construct a new PathDiagnosticPiece.
1776 ProgramPoint P = N->getLocation();
1778 // If this node already have a specialized note, it's probably better
1779 // than our generic note.
1780 // FIXME: This only looks for note tags, not for other ways to add a note.
1781 if (isa_and_nonnull<NoteTag>(P.getTag()))
1782 return nullptr;
1784 PathDiagnosticLocation L =
1785 PathDiagnosticLocation::create(P, BRC.getSourceManager());
1786 if (!L.isValid())
1787 return nullptr;
1789 auto X = std::make_shared<PathDiagnosticEventPiece>(L, Message);
1790 X->setTag(getTag());
1791 return std::move(X);
1794 return nullptr;
1797 //===----------------------------------------------------------------------===//
1798 // Implementation of SuppressInlineDefensiveChecksVisitor.
1799 //===----------------------------------------------------------------------===//
1801 SuppressInlineDefensiveChecksVisitor::
1802 SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N)
1803 : V(Value) {
1804 // Check if the visitor is disabled.
1805 AnalyzerOptions &Options = N->getState()->getAnalysisManager().options;
1806 if (!Options.ShouldSuppressInlinedDefensiveChecks)
1807 IsSatisfied = true;
1810 void SuppressInlineDefensiveChecksVisitor::Profile(
1811 llvm::FoldingSetNodeID &ID) const {
1812 static int id = 0;
1813 ID.AddPointer(&id);
1814 ID.Add(V);
1817 const char *SuppressInlineDefensiveChecksVisitor::getTag() {
1818 return "IDCVisitor";
1821 PathDiagnosticPieceRef
1822 SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ,
1823 BugReporterContext &BRC,
1824 PathSensitiveBugReport &BR) {
1825 const ExplodedNode *Pred = Succ->getFirstPred();
1826 if (IsSatisfied)
1827 return nullptr;
1829 // Start tracking after we see the first state in which the value is null.
1830 if (!IsTrackingTurnedOn)
1831 if (Succ->getState()->isNull(V).isConstrainedTrue())
1832 IsTrackingTurnedOn = true;
1833 if (!IsTrackingTurnedOn)
1834 return nullptr;
1836 // Check if in the previous state it was feasible for this value
1837 // to *not* be null.
1838 if (!Pred->getState()->isNull(V).isConstrainedTrue() &&
1839 Succ->getState()->isNull(V).isConstrainedTrue()) {
1840 IsSatisfied = true;
1842 // Check if this is inlined defensive checks.
1843 const LocationContext *CurLC = Succ->getLocationContext();
1844 const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext();
1845 if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) {
1846 BR.markInvalid("Suppress IDC", CurLC);
1847 return nullptr;
1850 // Treat defensive checks in function-like macros as if they were an inlined
1851 // defensive check. If the bug location is not in a macro and the
1852 // terminator for the current location is in a macro then suppress the
1853 // warning.
1854 auto BugPoint = BR.getErrorNode()->getLocation().getAs<StmtPoint>();
1856 if (!BugPoint)
1857 return nullptr;
1859 ProgramPoint CurPoint = Succ->getLocation();
1860 const Stmt *CurTerminatorStmt = nullptr;
1861 if (auto BE = CurPoint.getAs<BlockEdge>()) {
1862 CurTerminatorStmt = BE->getSrc()->getTerminator().getStmt();
1863 } else if (auto SP = CurPoint.getAs<StmtPoint>()) {
1864 const Stmt *CurStmt = SP->getStmt();
1865 if (!CurStmt->getBeginLoc().isMacroID())
1866 return nullptr;
1868 CFGStmtMap *Map = CurLC->getAnalysisDeclContext()->getCFGStmtMap();
1869 CurTerminatorStmt = Map->getBlock(CurStmt)->getTerminatorStmt();
1870 } else {
1871 return nullptr;
1874 if (!CurTerminatorStmt)
1875 return nullptr;
1877 SourceLocation TerminatorLoc = CurTerminatorStmt->getBeginLoc();
1878 if (TerminatorLoc.isMacroID()) {
1879 SourceLocation BugLoc = BugPoint->getStmt()->getBeginLoc();
1881 // Suppress reports unless we are in that same macro.
1882 if (!BugLoc.isMacroID() ||
1883 getMacroName(BugLoc, BRC) != getMacroName(TerminatorLoc, BRC)) {
1884 BR.markInvalid("Suppress Macro IDC", CurLC);
1886 return nullptr;
1889 return nullptr;
1892 //===----------------------------------------------------------------------===//
1893 // TrackControlDependencyCondBRVisitor.
1894 //===----------------------------------------------------------------------===//
1896 namespace {
1897 /// Tracks the expressions that are a control dependency of the node that was
1898 /// supplied to the constructor.
1899 /// For example:
1901 /// cond = 1;
1902 /// if (cond)
1903 /// 10 / 0;
1905 /// An error is emitted at line 3. This visitor realizes that the branch
1906 /// on line 2 is a control dependency of line 3, and tracks it's condition via
1907 /// trackExpressionValue().
1908 class TrackControlDependencyCondBRVisitor final
1909 : public TrackingBugReporterVisitor {
1910 const ExplodedNode *Origin;
1911 ControlDependencyCalculator ControlDeps;
1912 llvm::SmallSet<const CFGBlock *, 32> VisitedBlocks;
1914 public:
1915 TrackControlDependencyCondBRVisitor(TrackerRef ParentTracker,
1916 const ExplodedNode *O)
1917 : TrackingBugReporterVisitor(ParentTracker), Origin(O),
1918 ControlDeps(&O->getCFG()) {}
1920 void Profile(llvm::FoldingSetNodeID &ID) const override {
1921 static int x = 0;
1922 ID.AddPointer(&x);
1925 PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
1926 BugReporterContext &BRC,
1927 PathSensitiveBugReport &BR) override;
1929 } // end of anonymous namespace
1931 static std::shared_ptr<PathDiagnosticEventPiece>
1932 constructDebugPieceForTrackedCondition(const Expr *Cond,
1933 const ExplodedNode *N,
1934 BugReporterContext &BRC) {
1936 if (BRC.getAnalyzerOptions().AnalysisDiagOpt == PD_NONE ||
1937 !BRC.getAnalyzerOptions().ShouldTrackConditionsDebug)
1938 return nullptr;
1940 std::string ConditionText = std::string(Lexer::getSourceText(
1941 CharSourceRange::getTokenRange(Cond->getSourceRange()),
1942 BRC.getSourceManager(), BRC.getASTContext().getLangOpts()));
1944 return std::make_shared<PathDiagnosticEventPiece>(
1945 PathDiagnosticLocation::createBegin(
1946 Cond, BRC.getSourceManager(), N->getLocationContext()),
1947 (Twine() + "Tracking condition '" + ConditionText + "'").str());
1950 static bool isAssertlikeBlock(const CFGBlock *B, ASTContext &Context) {
1951 if (B->succ_size() != 2)
1952 return false;
1954 const CFGBlock *Then = B->succ_begin()->getReachableBlock();
1955 const CFGBlock *Else = (B->succ_begin() + 1)->getReachableBlock();
1957 if (!Then || !Else)
1958 return false;
1960 if (Then->isInevitablySinking() != Else->isInevitablySinking())
1961 return true;
1963 // For the following condition the following CFG would be built:
1965 // ------------->
1966 // / \
1967 // [B1] -> [B2] -> [B3] -> [sink]
1968 // assert(A && B || C); \ \
1969 // -----------> [go on with the execution]
1971 // It so happens that CFGBlock::getTerminatorCondition returns 'A' for block
1972 // B1, 'A && B' for B2, and 'A && B || C' for B3. Let's check whether we
1973 // reached the end of the condition!
1974 if (const Stmt *ElseCond = Else->getTerminatorCondition())
1975 if (const auto *BinOp = dyn_cast<BinaryOperator>(ElseCond))
1976 if (BinOp->isLogicalOp())
1977 return isAssertlikeBlock(Else, Context);
1979 return false;
1982 PathDiagnosticPieceRef
1983 TrackControlDependencyCondBRVisitor::VisitNode(const ExplodedNode *N,
1984 BugReporterContext &BRC,
1985 PathSensitiveBugReport &BR) {
1986 // We can only reason about control dependencies within the same stack frame.
1987 if (Origin->getStackFrame() != N->getStackFrame())
1988 return nullptr;
1990 CFGBlock *NB = const_cast<CFGBlock *>(N->getCFGBlock());
1992 // Skip if we already inspected this block.
1993 if (!VisitedBlocks.insert(NB).second)
1994 return nullptr;
1996 CFGBlock *OriginB = const_cast<CFGBlock *>(Origin->getCFGBlock());
1998 // TODO: Cache CFGBlocks for each ExplodedNode.
1999 if (!OriginB || !NB)
2000 return nullptr;
2002 if (isAssertlikeBlock(NB, BRC.getASTContext()))
2003 return nullptr;
2005 if (ControlDeps.isControlDependent(OriginB, NB)) {
2006 // We don't really want to explain for range loops. Evidence suggests that
2007 // the only thing that leads to is the addition of calls to operator!=.
2008 if (llvm::isa_and_nonnull<CXXForRangeStmt>(NB->getTerminatorStmt()))
2009 return nullptr;
2011 if (const Expr *Condition = NB->getLastCondition()) {
2013 // If we can't retrieve a sensible condition, just bail out.
2014 const Expr *InnerExpr = peelOffOuterExpr(Condition, N);
2015 if (!InnerExpr)
2016 return nullptr;
2018 // If the condition was a function call, we likely won't gain much from
2019 // tracking it either. Evidence suggests that it will mostly trigger in
2020 // scenarios like this:
2022 // void f(int *x) {
2023 // x = nullptr;
2024 // if (alwaysTrue()) // We don't need a whole lot of explanation
2025 // // here, the function name is good enough.
2026 // *x = 5;
2027 // }
2029 // Its easy to create a counterexample where this heuristic would make us
2030 // lose valuable information, but we've never really seen one in practice.
2031 if (isa<CallExpr>(InnerExpr))
2032 return nullptr;
2034 // Keeping track of the already tracked conditions on a visitor level
2035 // isn't sufficient, because a new visitor is created for each tracked
2036 // expression, hence the BugReport level set.
2037 if (BR.addTrackedCondition(N)) {
2038 getParentTracker().track(InnerExpr, N,
2039 {bugreporter::TrackingKind::Condition,
2040 /*EnableNullFPSuppression=*/false});
2041 return constructDebugPieceForTrackedCondition(Condition, N, BRC);
2046 return nullptr;
2049 //===----------------------------------------------------------------------===//
2050 // Implementation of trackExpressionValue.
2051 //===----------------------------------------------------------------------===//
2053 static const Expr *peelOffOuterExpr(const Expr *Ex, const ExplodedNode *N) {
2055 Ex = Ex->IgnoreParenCasts();
2056 if (const auto *FE = dyn_cast<FullExpr>(Ex))
2057 return peelOffOuterExpr(FE->getSubExpr(), N);
2058 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ex))
2059 return peelOffOuterExpr(OVE->getSourceExpr(), N);
2060 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Ex)) {
2061 const auto *PropRef = dyn_cast<ObjCPropertyRefExpr>(POE->getSyntacticForm());
2062 if (PropRef && PropRef->isMessagingGetter()) {
2063 const Expr *GetterMessageSend =
2064 POE->getSemanticExpr(POE->getNumSemanticExprs() - 1);
2065 assert(isa<ObjCMessageExpr>(GetterMessageSend->IgnoreParenCasts()));
2066 return peelOffOuterExpr(GetterMessageSend, N);
2070 // Peel off the ternary operator.
2071 if (const auto *CO = dyn_cast<ConditionalOperator>(Ex)) {
2072 // Find a node where the branching occurred and find out which branch
2073 // we took (true/false) by looking at the ExplodedGraph.
2074 const ExplodedNode *NI = N;
2075 do {
2076 ProgramPoint ProgPoint = NI->getLocation();
2077 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2078 const CFGBlock *srcBlk = BE->getSrc();
2079 if (const Stmt *term = srcBlk->getTerminatorStmt()) {
2080 if (term == CO) {
2081 bool TookTrueBranch = (*(srcBlk->succ_begin()) == BE->getDst());
2082 if (TookTrueBranch)
2083 return peelOffOuterExpr(CO->getTrueExpr(), N);
2084 else
2085 return peelOffOuterExpr(CO->getFalseExpr(), N);
2089 NI = NI->getFirstPred();
2090 } while (NI);
2093 if (auto *BO = dyn_cast<BinaryOperator>(Ex))
2094 if (const Expr *SubEx = peelOffPointerArithmetic(BO))
2095 return peelOffOuterExpr(SubEx, N);
2097 if (auto *UO = dyn_cast<UnaryOperator>(Ex)) {
2098 if (UO->getOpcode() == UO_LNot)
2099 return peelOffOuterExpr(UO->getSubExpr(), N);
2101 // FIXME: There's a hack in our Store implementation that always computes
2102 // field offsets around null pointers as if they are always equal to 0.
2103 // The idea here is to report accesses to fields as null dereferences
2104 // even though the pointer value that's being dereferenced is actually
2105 // the offset of the field rather than exactly 0.
2106 // See the FIXME in StoreManager's getLValueFieldOrIvar() method.
2107 // This code interacts heavily with this hack; otherwise the value
2108 // would not be null at all for most fields, so we'd be unable to track it.
2109 if (UO->getOpcode() == UO_AddrOf && UO->getSubExpr()->isLValue())
2110 if (const Expr *DerefEx = bugreporter::getDerefExpr(UO->getSubExpr()))
2111 return peelOffOuterExpr(DerefEx, N);
2114 return Ex;
2117 /// Find the ExplodedNode where the lvalue (the value of 'Ex')
2118 /// was computed.
2119 static const ExplodedNode* findNodeForExpression(const ExplodedNode *N,
2120 const Expr *Inner) {
2121 while (N) {
2122 if (N->getStmtForDiagnostics() == Inner)
2123 return N;
2124 N = N->getFirstPred();
2126 return N;
2129 //===----------------------------------------------------------------------===//
2130 // Tracker implementation
2131 //===----------------------------------------------------------------------===//
2133 PathDiagnosticPieceRef StoreHandler::constructNote(StoreInfo SI,
2134 BugReporterContext &BRC,
2135 StringRef NodeText) {
2136 // Construct a new PathDiagnosticPiece.
2137 ProgramPoint P = SI.StoreSite->getLocation();
2138 PathDiagnosticLocation L;
2139 if (P.getAs<CallEnter>() && SI.SourceOfTheValue)
2140 L = PathDiagnosticLocation(SI.SourceOfTheValue, BRC.getSourceManager(),
2141 P.getLocationContext());
2143 if (!L.isValid() || !L.asLocation().isValid())
2144 L = PathDiagnosticLocation::create(P, BRC.getSourceManager());
2146 if (!L.isValid() || !L.asLocation().isValid())
2147 return nullptr;
2149 return std::make_shared<PathDiagnosticEventPiece>(L, NodeText);
2152 namespace {
2153 class DefaultStoreHandler final : public StoreHandler {
2154 public:
2155 using StoreHandler::StoreHandler;
2157 PathDiagnosticPieceRef handle(StoreInfo SI, BugReporterContext &BRC,
2158 TrackingOptions Opts) override {
2159 // Okay, we've found the binding. Emit an appropriate message.
2160 SmallString<256> Buffer;
2161 llvm::raw_svector_ostream OS(Buffer);
2163 switch (SI.StoreKind) {
2164 case StoreInfo::Initialization:
2165 case StoreInfo::BlockCapture:
2166 showBRDiagnostics(OS, SI);
2167 break;
2168 case StoreInfo::CallArgument:
2169 showBRParamDiagnostics(OS, SI);
2170 break;
2171 case StoreInfo::Assignment:
2172 showBRDefaultDiagnostics(OS, SI);
2173 break;
2176 if (Opts.Kind == bugreporter::TrackingKind::Condition)
2177 OS << WillBeUsedForACondition;
2179 return constructNote(SI, BRC, OS.str());
2183 class ControlDependencyHandler final : public ExpressionHandler {
2184 public:
2185 using ExpressionHandler::ExpressionHandler;
2187 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2188 const ExplodedNode *LVNode,
2189 TrackingOptions Opts) override {
2190 PathSensitiveBugReport &Report = getParentTracker().getReport();
2192 // We only track expressions if we believe that they are important. Chances
2193 // are good that control dependencies to the tracking point are also
2194 // important because of this, let's explain why we believe control reached
2195 // this point.
2196 // TODO: Shouldn't we track control dependencies of every bug location,
2197 // rather than only tracked expressions?
2198 if (LVNode->getState()
2199 ->getAnalysisManager()
2200 .getAnalyzerOptions()
2201 .ShouldTrackConditions) {
2202 Report.addVisitor<TrackControlDependencyCondBRVisitor>(
2203 &getParentTracker(), InputNode);
2204 return {/*FoundSomethingToTrack=*/true};
2207 return {};
2211 class NilReceiverHandler final : public ExpressionHandler {
2212 public:
2213 using ExpressionHandler::ExpressionHandler;
2215 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2216 const ExplodedNode *LVNode,
2217 TrackingOptions Opts) override {
2218 // The message send could be nil due to the receiver being nil.
2219 // At this point in the path, the receiver should be live since we are at
2220 // the message send expr. If it is nil, start tracking it.
2221 if (const Expr *Receiver =
2222 NilReceiverBRVisitor::getNilReceiver(Inner, LVNode))
2223 return getParentTracker().track(Receiver, LVNode, Opts);
2225 return {};
2229 class ArrayIndexHandler final : public ExpressionHandler {
2230 public:
2231 using ExpressionHandler::ExpressionHandler;
2233 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2234 const ExplodedNode *LVNode,
2235 TrackingOptions Opts) override {
2236 // Track the index if this is an array subscript.
2237 if (const auto *Arr = dyn_cast<ArraySubscriptExpr>(Inner))
2238 return getParentTracker().track(
2239 Arr->getIdx(), LVNode,
2240 {Opts.Kind, /*EnableNullFPSuppression*/ false});
2242 return {};
2246 // TODO: extract it into more handlers
2247 class InterestingLValueHandler final : public ExpressionHandler {
2248 public:
2249 using ExpressionHandler::ExpressionHandler;
2251 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2252 const ExplodedNode *LVNode,
2253 TrackingOptions Opts) override {
2254 ProgramStateRef LVState = LVNode->getState();
2255 const StackFrameContext *SFC = LVNode->getStackFrame();
2256 PathSensitiveBugReport &Report = getParentTracker().getReport();
2257 Tracker::Result Result;
2259 // See if the expression we're interested refers to a variable.
2260 // If so, we can track both its contents and constraints on its value.
2261 if (ExplodedGraph::isInterestingLValueExpr(Inner)) {
2262 SVal LVal = LVNode->getSVal(Inner);
2264 const MemRegion *RR = getLocationRegionIfReference(Inner, LVNode);
2265 bool LVIsNull = LVState->isNull(LVal).isConstrainedTrue();
2267 // If this is a C++ reference to a null pointer, we are tracking the
2268 // pointer. In addition, we should find the store at which the reference
2269 // got initialized.
2270 if (RR && !LVIsNull)
2271 Result.combineWith(getParentTracker().track(LVal, RR, Opts, SFC));
2273 // In case of C++ references, we want to differentiate between a null
2274 // reference and reference to null pointer.
2275 // If the LVal is null, check if we are dealing with null reference.
2276 // For those, we want to track the location of the reference.
2277 const MemRegion *R =
2278 (RR && LVIsNull) ? RR : LVNode->getSVal(Inner).getAsRegion();
2280 if (R) {
2282 // Mark both the variable region and its contents as interesting.
2283 SVal V = LVState->getRawSVal(loc::MemRegionVal(R));
2284 Report.addVisitor<NoStoreFuncVisitor>(cast<SubRegion>(R), Opts.Kind);
2286 // When we got here, we do have something to track, and we will
2287 // interrupt.
2288 Result.FoundSomethingToTrack = true;
2289 Result.WasInterrupted = true;
2291 MacroNullReturnSuppressionVisitor::addMacroVisitorIfNecessary(
2292 LVNode, R, Opts.EnableNullFPSuppression, Report, V);
2294 Report.markInteresting(V, Opts.Kind);
2295 Report.addVisitor<UndefOrNullArgVisitor>(R);
2297 // If the contents are symbolic and null, find out when they became
2298 // null.
2299 if (V.getAsLocSymbol(/*IncludeBaseRegions=*/true))
2300 if (LVState->isNull(V).isConstrainedTrue())
2301 Report.addVisitor<TrackConstraintBRVisitor>(
2302 V.castAs<DefinedSVal>(),
2303 /*Assumption=*/false, "Assuming pointer value is null");
2305 // Add visitor, which will suppress inline defensive checks.
2306 if (auto DV = V.getAs<DefinedSVal>())
2307 if (!DV->isZeroConstant() && Opts.EnableNullFPSuppression)
2308 // Note that LVNode may be too late (i.e., too far from the
2309 // InputNode) because the lvalue may have been computed before the
2310 // inlined call was evaluated. InputNode may as well be too early
2311 // here, because the symbol is already dead; this, however, is fine
2312 // because we can still find the node in which it collapsed to null
2313 // previously.
2314 Report.addVisitor<SuppressInlineDefensiveChecksVisitor>(*DV,
2315 InputNode);
2316 getParentTracker().track(V, R, Opts, SFC);
2320 return Result;
2324 /// Adds a ReturnVisitor if the given statement represents a call that was
2325 /// inlined.
2327 /// This will search back through the ExplodedGraph, starting from the given
2328 /// node, looking for when the given statement was processed. If it turns out
2329 /// the statement is a call that was inlined, we add the visitor to the
2330 /// bug report, so it can print a note later.
2331 class InlinedFunctionCallHandler final : public ExpressionHandler {
2332 using ExpressionHandler::ExpressionHandler;
2334 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2335 const ExplodedNode *ExprNode,
2336 TrackingOptions Opts) override {
2337 if (!CallEvent::isCallStmt(E))
2338 return {};
2340 // First, find when we processed the statement.
2341 // If we work with a 'CXXNewExpr' that is going to be purged away before
2342 // its call take place. We would catch that purge in the last condition
2343 // as a 'StmtPoint' so we have to bypass it.
2344 const bool BypassCXXNewExprEval = isa<CXXNewExpr>(E);
2346 // This is moving forward when we enter into another context.
2347 const StackFrameContext *CurrentSFC = ExprNode->getStackFrame();
2349 do {
2350 // If that is satisfied we found our statement as an inlined call.
2351 if (std::optional<CallExitEnd> CEE =
2352 ExprNode->getLocationAs<CallExitEnd>())
2353 if (CEE->getCalleeContext()->getCallSite() == E)
2354 break;
2356 // Try to move forward to the end of the call-chain.
2357 ExprNode = ExprNode->getFirstPred();
2358 if (!ExprNode)
2359 break;
2361 const StackFrameContext *PredSFC = ExprNode->getStackFrame();
2363 // If that is satisfied we found our statement.
2364 // FIXME: This code currently bypasses the call site for the
2365 // conservatively evaluated allocator.
2366 if (!BypassCXXNewExprEval)
2367 if (std::optional<StmtPoint> SP = ExprNode->getLocationAs<StmtPoint>())
2368 // See if we do not enter into another context.
2369 if (SP->getStmt() == E && CurrentSFC == PredSFC)
2370 break;
2372 CurrentSFC = PredSFC;
2373 } while (ExprNode->getStackFrame() == CurrentSFC);
2375 // Next, step over any post-statement checks.
2376 while (ExprNode && ExprNode->getLocation().getAs<PostStmt>())
2377 ExprNode = ExprNode->getFirstPred();
2378 if (!ExprNode)
2379 return {};
2381 // Finally, see if we inlined the call.
2382 std::optional<CallExitEnd> CEE = ExprNode->getLocationAs<CallExitEnd>();
2383 if (!CEE)
2384 return {};
2386 const StackFrameContext *CalleeContext = CEE->getCalleeContext();
2387 if (CalleeContext->getCallSite() != E)
2388 return {};
2390 // Check the return value.
2391 ProgramStateRef State = ExprNode->getState();
2392 SVal RetVal = ExprNode->getSVal(E);
2394 // Handle cases where a reference is returned and then immediately used.
2395 if (cast<Expr>(E)->isGLValue())
2396 if (std::optional<Loc> LValue = RetVal.getAs<Loc>())
2397 RetVal = State->getSVal(*LValue);
2399 // See if the return value is NULL. If so, suppress the report.
2400 AnalyzerOptions &Options = State->getAnalysisManager().options;
2402 bool EnableNullFPSuppression = false;
2403 if (Opts.EnableNullFPSuppression && Options.ShouldSuppressNullReturnPaths)
2404 if (std::optional<Loc> RetLoc = RetVal.getAs<Loc>())
2405 EnableNullFPSuppression = State->isNull(*RetLoc).isConstrainedTrue();
2407 PathSensitiveBugReport &Report = getParentTracker().getReport();
2408 Report.addVisitor<ReturnVisitor>(&getParentTracker(), CalleeContext,
2409 EnableNullFPSuppression, Options,
2410 Opts.Kind);
2411 return {true};
2415 class DefaultExpressionHandler final : public ExpressionHandler {
2416 public:
2417 using ExpressionHandler::ExpressionHandler;
2419 Tracker::Result handle(const Expr *Inner, const ExplodedNode *InputNode,
2420 const ExplodedNode *LVNode,
2421 TrackingOptions Opts) override {
2422 ProgramStateRef LVState = LVNode->getState();
2423 const StackFrameContext *SFC = LVNode->getStackFrame();
2424 PathSensitiveBugReport &Report = getParentTracker().getReport();
2425 Tracker::Result Result;
2427 // If the expression is not an "lvalue expression", we can still
2428 // track the constraints on its contents.
2429 SVal V = LVState->getSValAsScalarOrLoc(Inner, LVNode->getLocationContext());
2431 // Is it a symbolic value?
2432 if (auto L = V.getAs<loc::MemRegionVal>()) {
2433 // FIXME: this is a hack for fixing a later crash when attempting to
2434 // dereference a void* pointer.
2435 // We should not try to dereference pointers at all when we don't care
2436 // what is written inside the pointer.
2437 bool CanDereference = true;
2438 if (const auto *SR = L->getRegionAs<SymbolicRegion>()) {
2439 if (SR->getPointeeStaticType()->isVoidType())
2440 CanDereference = false;
2441 } else if (L->getRegionAs<AllocaRegion>())
2442 CanDereference = false;
2444 // At this point we are dealing with the region's LValue.
2445 // However, if the rvalue is a symbolic region, we should track it as
2446 // well. Try to use the correct type when looking up the value.
2447 SVal RVal;
2448 if (ExplodedGraph::isInterestingLValueExpr(Inner))
2449 RVal = LVState->getRawSVal(*L, Inner->getType());
2450 else if (CanDereference)
2451 RVal = LVState->getSVal(L->getRegion());
2453 if (CanDereference) {
2454 Report.addVisitor<UndefOrNullArgVisitor>(L->getRegion());
2455 Result.FoundSomethingToTrack = true;
2457 if (!RVal.isUnknown())
2458 Result.combineWith(
2459 getParentTracker().track(RVal, L->getRegion(), Opts, SFC));
2462 const MemRegion *RegionRVal = RVal.getAsRegion();
2463 if (isa_and_nonnull<SymbolicRegion>(RegionRVal)) {
2464 Report.markInteresting(RegionRVal, Opts.Kind);
2465 Report.addVisitor<TrackConstraintBRVisitor>(
2466 loc::MemRegionVal(RegionRVal),
2467 /*Assumption=*/false, "Assuming pointer value is null");
2468 Result.FoundSomethingToTrack = true;
2472 return Result;
2476 /// Attempts to add visitors to track an RValue expression back to its point of
2477 /// origin.
2478 class PRValueHandler final : public ExpressionHandler {
2479 public:
2480 using ExpressionHandler::ExpressionHandler;
2482 Tracker::Result handle(const Expr *E, const ExplodedNode *InputNode,
2483 const ExplodedNode *ExprNode,
2484 TrackingOptions Opts) override {
2485 if (!E->isPRValue())
2486 return {};
2488 const ExplodedNode *RVNode = findNodeForExpression(ExprNode, E);
2489 if (!RVNode)
2490 return {};
2492 Tracker::Result CombinedResult;
2493 Tracker &Parent = getParentTracker();
2495 const auto track = [&CombinedResult, &Parent, ExprNode,
2496 Opts](const Expr *Inner) {
2497 CombinedResult.combineWith(Parent.track(Inner, ExprNode, Opts));
2500 // FIXME: Initializer lists can appear in many different contexts
2501 // and most of them needs a special handling. For now let's handle
2502 // what we can. If the initializer list only has 1 element, we track
2503 // that.
2504 // This snippet even handles nesting, e.g.: int *x{{{{{y}}}}};
2505 if (const auto *ILE = dyn_cast<InitListExpr>(E)) {
2506 if (ILE->getNumInits() == 1) {
2507 track(ILE->getInit(0));
2509 return CombinedResult;
2512 return {};
2515 ProgramStateRef RVState = RVNode->getState();
2516 SVal V = RVState->getSValAsScalarOrLoc(E, RVNode->getLocationContext());
2517 const auto *BO = dyn_cast<BinaryOperator>(E);
2519 if (!BO || !BO->isMultiplicativeOp() || !V.isZeroConstant())
2520 return {};
2522 SVal RHSV = RVState->getSVal(BO->getRHS(), RVNode->getLocationContext());
2523 SVal LHSV = RVState->getSVal(BO->getLHS(), RVNode->getLocationContext());
2525 // Track both LHS and RHS of a multiplication.
2526 if (BO->getOpcode() == BO_Mul) {
2527 if (LHSV.isZeroConstant())
2528 track(BO->getLHS());
2529 if (RHSV.isZeroConstant())
2530 track(BO->getRHS());
2531 } else { // Track only the LHS of a division or a modulo.
2532 if (LHSV.isZeroConstant())
2533 track(BO->getLHS());
2536 return CombinedResult;
2539 } // namespace
2541 Tracker::Tracker(PathSensitiveBugReport &Report) : Report(Report) {
2542 // Default expression handlers.
2543 addLowPriorityHandler<ControlDependencyHandler>();
2544 addLowPriorityHandler<NilReceiverHandler>();
2545 addLowPriorityHandler<ArrayIndexHandler>();
2546 addLowPriorityHandler<InterestingLValueHandler>();
2547 addLowPriorityHandler<InlinedFunctionCallHandler>();
2548 addLowPriorityHandler<DefaultExpressionHandler>();
2549 addLowPriorityHandler<PRValueHandler>();
2550 // Default store handlers.
2551 addHighPriorityHandler<DefaultStoreHandler>();
2554 Tracker::Result Tracker::track(const Expr *E, const ExplodedNode *N,
2555 TrackingOptions Opts) {
2556 if (!E || !N)
2557 return {};
2559 const Expr *Inner = peelOffOuterExpr(E, N);
2560 const ExplodedNode *LVNode = findNodeForExpression(N, Inner);
2561 if (!LVNode)
2562 return {};
2564 Result CombinedResult;
2565 // Iterate through the handlers in the order according to their priorities.
2566 for (ExpressionHandlerPtr &Handler : ExpressionHandlers) {
2567 CombinedResult.combineWith(Handler->handle(Inner, N, LVNode, Opts));
2568 if (CombinedResult.WasInterrupted) {
2569 // There is no need to confuse our users here.
2570 // We got interrupted, but our users don't need to know about it.
2571 CombinedResult.WasInterrupted = false;
2572 break;
2576 return CombinedResult;
2579 Tracker::Result Tracker::track(SVal V, const MemRegion *R, TrackingOptions Opts,
2580 const StackFrameContext *Origin) {
2581 if (!V.isUnknown()) {
2582 Report.addVisitor<StoreSiteFinder>(this, V, R, Opts, Origin);
2583 return {true};
2585 return {};
2588 PathDiagnosticPieceRef Tracker::handle(StoreInfo SI, BugReporterContext &BRC,
2589 TrackingOptions Opts) {
2590 // Iterate through the handlers in the order according to their priorities.
2591 for (StoreHandlerPtr &Handler : StoreHandlers) {
2592 if (PathDiagnosticPieceRef Result = Handler->handle(SI, BRC, Opts))
2593 // If the handler produced a non-null piece, return it.
2594 // There is no need in asking other handlers.
2595 return Result;
2597 return {};
2600 bool bugreporter::trackExpressionValue(const ExplodedNode *InputNode,
2601 const Expr *E,
2603 PathSensitiveBugReport &Report,
2604 TrackingOptions Opts) {
2605 return Tracker::create(Report)
2606 ->track(E, InputNode, Opts)
2607 .FoundSomethingToTrack;
2610 void bugreporter::trackStoredValue(SVal V, const MemRegion *R,
2611 PathSensitiveBugReport &Report,
2612 TrackingOptions Opts,
2613 const StackFrameContext *Origin) {
2614 Tracker::create(Report)->track(V, R, Opts, Origin);
2617 //===----------------------------------------------------------------------===//
2618 // Implementation of NulReceiverBRVisitor.
2619 //===----------------------------------------------------------------------===//
2621 const Expr *NilReceiverBRVisitor::getNilReceiver(const Stmt *S,
2622 const ExplodedNode *N) {
2623 const auto *ME = dyn_cast<ObjCMessageExpr>(S);
2624 if (!ME)
2625 return nullptr;
2626 if (const Expr *Receiver = ME->getInstanceReceiver()) {
2627 ProgramStateRef state = N->getState();
2628 SVal V = N->getSVal(Receiver);
2629 if (state->isNull(V).isConstrainedTrue())
2630 return Receiver;
2632 return nullptr;
2635 PathDiagnosticPieceRef
2636 NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2637 PathSensitiveBugReport &BR) {
2638 std::optional<PreStmt> P = N->getLocationAs<PreStmt>();
2639 if (!P)
2640 return nullptr;
2642 const Stmt *S = P->getStmt();
2643 const Expr *Receiver = getNilReceiver(S, N);
2644 if (!Receiver)
2645 return nullptr;
2647 llvm::SmallString<256> Buf;
2648 llvm::raw_svector_ostream OS(Buf);
2650 if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
2651 OS << "'";
2652 ME->getSelector().print(OS);
2653 OS << "' not called";
2655 else {
2656 OS << "No method is called";
2658 OS << " because the receiver is nil";
2660 // The receiver was nil, and hence the method was skipped.
2661 // Register a BugReporterVisitor to issue a message telling us how
2662 // the receiver was null.
2663 bugreporter::trackExpressionValue(N, Receiver, BR,
2664 {bugreporter::TrackingKind::Thorough,
2665 /*EnableNullFPSuppression*/ false});
2666 // Issue a message saying that the method was skipped.
2667 PathDiagnosticLocation L(Receiver, BRC.getSourceManager(),
2668 N->getLocationContext());
2669 return std::make_shared<PathDiagnosticEventPiece>(L, OS.str());
2672 //===----------------------------------------------------------------------===//
2673 // Visitor that tries to report interesting diagnostics from conditions.
2674 //===----------------------------------------------------------------------===//
2676 /// Return the tag associated with this visitor. This tag will be used
2677 /// to make all PathDiagnosticPieces created by this visitor.
2678 const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; }
2680 PathDiagnosticPieceRef
2681 ConditionBRVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
2682 PathSensitiveBugReport &BR) {
2683 auto piece = VisitNodeImpl(N, BRC, BR);
2684 if (piece) {
2685 piece->setTag(getTag());
2686 if (auto *ev = dyn_cast<PathDiagnosticEventPiece>(piece.get()))
2687 ev->setPrunable(true, /* override */ false);
2689 return piece;
2692 PathDiagnosticPieceRef
2693 ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N,
2694 BugReporterContext &BRC,
2695 PathSensitiveBugReport &BR) {
2696 ProgramPoint ProgPoint = N->getLocation();
2697 const std::pair<const ProgramPointTag *, const ProgramPointTag *> &Tags =
2698 ExprEngine::getEagerlyAssumeBifurcationTags();
2700 // If an assumption was made on a branch, it should be caught
2701 // here by looking at the state transition.
2702 if (std::optional<BlockEdge> BE = ProgPoint.getAs<BlockEdge>()) {
2703 const CFGBlock *SrcBlock = BE->getSrc();
2704 if (const Stmt *Term = SrcBlock->getTerminatorStmt()) {
2705 // If the tag of the previous node is 'Eagerly Assume...' the current
2706 // 'BlockEdge' has the same constraint information. We do not want to
2707 // report the value as it is just an assumption on the predecessor node
2708 // which will be caught in the next VisitNode() iteration as a 'PostStmt'.
2709 const ProgramPointTag *PreviousNodeTag =
2710 N->getFirstPred()->getLocation().getTag();
2711 if (PreviousNodeTag == Tags.first || PreviousNodeTag == Tags.second)
2712 return nullptr;
2714 return VisitTerminator(Term, N, SrcBlock, BE->getDst(), BR, BRC);
2716 return nullptr;
2719 if (std::optional<PostStmt> PS = ProgPoint.getAs<PostStmt>()) {
2720 const ProgramPointTag *CurrentNodeTag = PS->getTag();
2721 if (CurrentNodeTag != Tags.first && CurrentNodeTag != Tags.second)
2722 return nullptr;
2724 bool TookTrue = CurrentNodeTag == Tags.first;
2725 return VisitTrueTest(cast<Expr>(PS->getStmt()), BRC, BR, N, TookTrue);
2728 return nullptr;
2731 PathDiagnosticPieceRef ConditionBRVisitor::VisitTerminator(
2732 const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk,
2733 const CFGBlock *dstBlk, PathSensitiveBugReport &R,
2734 BugReporterContext &BRC) {
2735 const Expr *Cond = nullptr;
2737 // In the code below, Term is a CFG terminator and Cond is a branch condition
2738 // expression upon which the decision is made on this terminator.
2740 // For example, in "if (x == 0)", the "if (x == 0)" statement is a terminator,
2741 // and "x == 0" is the respective condition.
2743 // Another example: in "if (x && y)", we've got two terminators and two
2744 // conditions due to short-circuit nature of operator "&&":
2745 // 1. The "if (x && y)" statement is a terminator,
2746 // and "y" is the respective condition.
2747 // 2. Also "x && ..." is another terminator,
2748 // and "x" is its condition.
2750 switch (Term->getStmtClass()) {
2751 // FIXME: Stmt::SwitchStmtClass is worth handling, however it is a bit
2752 // more tricky because there are more than two branches to account for.
2753 default:
2754 return nullptr;
2755 case Stmt::IfStmtClass:
2756 Cond = cast<IfStmt>(Term)->getCond();
2757 break;
2758 case Stmt::ConditionalOperatorClass:
2759 Cond = cast<ConditionalOperator>(Term)->getCond();
2760 break;
2761 case Stmt::BinaryOperatorClass:
2762 // When we encounter a logical operator (&& or ||) as a CFG terminator,
2763 // then the condition is actually its LHS; otherwise, we'd encounter
2764 // the parent, such as if-statement, as a terminator.
2765 const auto *BO = cast<BinaryOperator>(Term);
2766 assert(BO->isLogicalOp() &&
2767 "CFG terminator is not a short-circuit operator!");
2768 Cond = BO->getLHS();
2769 break;
2772 Cond = Cond->IgnoreParens();
2774 // However, when we encounter a logical operator as a branch condition,
2775 // then the condition is actually its RHS, because LHS would be
2776 // the condition for the logical operator terminator.
2777 while (const auto *InnerBO = dyn_cast<BinaryOperator>(Cond)) {
2778 if (!InnerBO->isLogicalOp())
2779 break;
2780 Cond = InnerBO->getRHS()->IgnoreParens();
2783 assert(Cond);
2784 assert(srcBlk->succ_size() == 2);
2785 const bool TookTrue = *(srcBlk->succ_begin()) == dstBlk;
2786 return VisitTrueTest(Cond, BRC, R, N, TookTrue);
2789 PathDiagnosticPieceRef
2790 ConditionBRVisitor::VisitTrueTest(const Expr *Cond, BugReporterContext &BRC,
2791 PathSensitiveBugReport &R,
2792 const ExplodedNode *N, bool TookTrue) {
2793 ProgramStateRef CurrentState = N->getState();
2794 ProgramStateRef PrevState = N->getFirstPred()->getState();
2795 const LocationContext *LCtx = N->getLocationContext();
2797 // If the constraint information is changed between the current and the
2798 // previous program state we assuming the newly seen constraint information.
2799 // If we cannot evaluate the condition (and the constraints are the same)
2800 // the analyzer has no information about the value and just assuming it.
2801 // FIXME: This logic is not entirely correct, because e.g. in code like
2802 // void f(unsigned arg) {
2803 // if (arg >= 0) {
2804 // // ...
2805 // }
2806 // }
2807 // it will say that the "arg >= 0" check is _assuming_ something new because
2808 // the constraint that "$arg >= 0" is 1 was added to the list of known
2809 // constraints. However, the unsigned value is always >= 0 so semantically
2810 // this is not a "real" assumption.
2811 bool IsAssuming =
2812 !BRC.getStateManager().haveEqualConstraints(CurrentState, PrevState) ||
2813 CurrentState->getSVal(Cond, LCtx).isUnknownOrUndef();
2815 // These will be modified in code below, but we need to preserve the original
2816 // values in case we want to throw the generic message.
2817 const Expr *CondTmp = Cond;
2818 bool TookTrueTmp = TookTrue;
2820 while (true) {
2821 CondTmp = CondTmp->IgnoreParenCasts();
2822 switch (CondTmp->getStmtClass()) {
2823 default:
2824 break;
2825 case Stmt::BinaryOperatorClass:
2826 if (auto P = VisitTrueTest(Cond, cast<BinaryOperator>(CondTmp),
2827 BRC, R, N, TookTrueTmp, IsAssuming))
2828 return P;
2829 break;
2830 case Stmt::DeclRefExprClass:
2831 if (auto P = VisitTrueTest(Cond, cast<DeclRefExpr>(CondTmp),
2832 BRC, R, N, TookTrueTmp, IsAssuming))
2833 return P;
2834 break;
2835 case Stmt::MemberExprClass:
2836 if (auto P = VisitTrueTest(Cond, cast<MemberExpr>(CondTmp),
2837 BRC, R, N, TookTrueTmp, IsAssuming))
2838 return P;
2839 break;
2840 case Stmt::UnaryOperatorClass: {
2841 const auto *UO = cast<UnaryOperator>(CondTmp);
2842 if (UO->getOpcode() == UO_LNot) {
2843 TookTrueTmp = !TookTrueTmp;
2844 CondTmp = UO->getSubExpr();
2845 continue;
2847 break;
2850 break;
2853 // Condition too complex to explain? Just say something so that the user
2854 // knew we've made some path decision at this point.
2855 // If it is too complex and we know the evaluation of the condition do not
2856 // repeat the note from 'BugReporter.cpp'
2857 if (!IsAssuming)
2858 return nullptr;
2860 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
2861 if (!Loc.isValid() || !Loc.asLocation().isValid())
2862 return nullptr;
2864 return std::make_shared<PathDiagnosticEventPiece>(
2865 Loc, TookTrue ? GenericTrueMessage : GenericFalseMessage);
2868 bool ConditionBRVisitor::patternMatch(const Expr *Ex, const Expr *ParentEx,
2869 raw_ostream &Out, BugReporterContext &BRC,
2870 PathSensitiveBugReport &report,
2871 const ExplodedNode *N,
2872 std::optional<bool> &prunable,
2873 bool IsSameFieldName) {
2874 const Expr *OriginalExpr = Ex;
2875 Ex = Ex->IgnoreParenCasts();
2877 if (isa<GNUNullExpr, ObjCBoolLiteralExpr, CXXBoolLiteralExpr, IntegerLiteral,
2878 FloatingLiteral>(Ex)) {
2879 // Use heuristics to determine if the expression is a macro
2880 // expanding to a literal and if so, use the macro's name.
2881 SourceLocation BeginLoc = OriginalExpr->getBeginLoc();
2882 SourceLocation EndLoc = OriginalExpr->getEndLoc();
2883 if (BeginLoc.isMacroID() && EndLoc.isMacroID()) {
2884 const SourceManager &SM = BRC.getSourceManager();
2885 const LangOptions &LO = BRC.getASTContext().getLangOpts();
2886 if (Lexer::isAtStartOfMacroExpansion(BeginLoc, SM, LO) &&
2887 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, LO)) {
2888 CharSourceRange R = Lexer::getAsCharRange({BeginLoc, EndLoc}, SM, LO);
2889 Out << Lexer::getSourceText(R, SM, LO);
2890 return false;
2895 if (const auto *DR = dyn_cast<DeclRefExpr>(Ex)) {
2896 const bool quotes = isa<VarDecl>(DR->getDecl());
2897 if (quotes) {
2898 Out << '\'';
2899 const LocationContext *LCtx = N->getLocationContext();
2900 const ProgramState *state = N->getState().get();
2901 if (const MemRegion *R = state->getLValue(cast<VarDecl>(DR->getDecl()),
2902 LCtx).getAsRegion()) {
2903 if (report.isInteresting(R))
2904 prunable = false;
2905 else {
2906 const ProgramState *state = N->getState().get();
2907 SVal V = state->getSVal(R);
2908 if (report.isInteresting(V))
2909 prunable = false;
2913 Out << DR->getDecl()->getDeclName().getAsString();
2914 if (quotes)
2915 Out << '\'';
2916 return quotes;
2919 if (const auto *IL = dyn_cast<IntegerLiteral>(Ex)) {
2920 QualType OriginalTy = OriginalExpr->getType();
2921 if (OriginalTy->isPointerType()) {
2922 if (IL->getValue() == 0) {
2923 Out << "null";
2924 return false;
2927 else if (OriginalTy->isObjCObjectPointerType()) {
2928 if (IL->getValue() == 0) {
2929 Out << "nil";
2930 return false;
2934 Out << IL->getValue();
2935 return false;
2938 if (const auto *ME = dyn_cast<MemberExpr>(Ex)) {
2939 if (!IsSameFieldName)
2940 Out << "field '" << ME->getMemberDecl()->getName() << '\'';
2941 else
2942 Out << '\''
2943 << Lexer::getSourceText(
2944 CharSourceRange::getTokenRange(Ex->getSourceRange()),
2945 BRC.getSourceManager(), BRC.getASTContext().getLangOpts(),
2946 nullptr)
2947 << '\'';
2950 return false;
2953 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
2954 const Expr *Cond, const BinaryOperator *BExpr, BugReporterContext &BRC,
2955 PathSensitiveBugReport &R, const ExplodedNode *N, bool TookTrue,
2956 bool IsAssuming) {
2957 bool shouldInvert = false;
2958 std::optional<bool> shouldPrune;
2960 // Check if the field name of the MemberExprs is ambiguous. Example:
2961 // " 'a.d' is equal to 'h.d' " in 'test/Analysis/null-deref-path-notes.cpp'.
2962 bool IsSameFieldName = false;
2963 const auto *LhsME = dyn_cast<MemberExpr>(BExpr->getLHS()->IgnoreParenCasts());
2964 const auto *RhsME = dyn_cast<MemberExpr>(BExpr->getRHS()->IgnoreParenCasts());
2966 if (LhsME && RhsME)
2967 IsSameFieldName =
2968 LhsME->getMemberDecl()->getName() == RhsME->getMemberDecl()->getName();
2970 SmallString<128> LhsString, RhsString;
2972 llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString);
2973 const bool isVarLHS = patternMatch(BExpr->getLHS(), BExpr, OutLHS, BRC, R,
2974 N, shouldPrune, IsSameFieldName);
2975 const bool isVarRHS = patternMatch(BExpr->getRHS(), BExpr, OutRHS, BRC, R,
2976 N, shouldPrune, IsSameFieldName);
2978 shouldInvert = !isVarLHS && isVarRHS;
2981 BinaryOperator::Opcode Op = BExpr->getOpcode();
2983 if (BinaryOperator::isAssignmentOp(Op)) {
2984 // For assignment operators, all that we care about is that the LHS
2985 // evaluates to "true" or "false".
2986 return VisitConditionVariable(LhsString, BExpr->getLHS(), BRC, R, N,
2987 TookTrue);
2990 // For non-assignment operations, we require that we can understand
2991 // both the LHS and RHS.
2992 if (LhsString.empty() || RhsString.empty() ||
2993 !BinaryOperator::isComparisonOp(Op) || Op == BO_Cmp)
2994 return nullptr;
2996 // Should we invert the strings if the LHS is not a variable name?
2997 SmallString<256> buf;
2998 llvm::raw_svector_ostream Out(buf);
2999 Out << (IsAssuming ? "Assuming " : "")
3000 << (shouldInvert ? RhsString : LhsString) << " is ";
3002 // Do we need to invert the opcode?
3003 if (shouldInvert)
3004 switch (Op) {
3005 default: break;
3006 case BO_LT: Op = BO_GT; break;
3007 case BO_GT: Op = BO_LT; break;
3008 case BO_LE: Op = BO_GE; break;
3009 case BO_GE: Op = BO_LE; break;
3012 if (!TookTrue)
3013 switch (Op) {
3014 case BO_EQ: Op = BO_NE; break;
3015 case BO_NE: Op = BO_EQ; break;
3016 case BO_LT: Op = BO_GE; break;
3017 case BO_GT: Op = BO_LE; break;
3018 case BO_LE: Op = BO_GT; break;
3019 case BO_GE: Op = BO_LT; break;
3020 default:
3021 return nullptr;
3024 switch (Op) {
3025 case BO_EQ:
3026 Out << "equal to ";
3027 break;
3028 case BO_NE:
3029 Out << "not equal to ";
3030 break;
3031 default:
3032 Out << BinaryOperator::getOpcodeStr(Op) << ' ';
3033 break;
3036 Out << (shouldInvert ? LhsString : RhsString);
3037 const LocationContext *LCtx = N->getLocationContext();
3038 const SourceManager &SM = BRC.getSourceManager();
3040 if (isVarAnInterestingCondition(BExpr->getLHS(), N, &R) ||
3041 isVarAnInterestingCondition(BExpr->getRHS(), N, &R))
3042 Out << WillBeUsedForACondition;
3044 // Convert 'field ...' to 'Field ...' if it is a MemberExpr.
3045 std::string Message = std::string(Out.str());
3046 Message[0] = toupper(Message[0]);
3048 // If we know the value create a pop-up note to the value part of 'BExpr'.
3049 if (!IsAssuming) {
3050 PathDiagnosticLocation Loc;
3051 if (!shouldInvert) {
3052 if (LhsME && LhsME->getMemberLoc().isValid())
3053 Loc = PathDiagnosticLocation(LhsME->getMemberLoc(), SM);
3054 else
3055 Loc = PathDiagnosticLocation(BExpr->getLHS(), SM, LCtx);
3056 } else {
3057 if (RhsME && RhsME->getMemberLoc().isValid())
3058 Loc = PathDiagnosticLocation(RhsME->getMemberLoc(), SM);
3059 else
3060 Loc = PathDiagnosticLocation(BExpr->getRHS(), SM, LCtx);
3063 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Message);
3066 PathDiagnosticLocation Loc(Cond, SM, LCtx);
3067 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Message);
3068 if (shouldPrune)
3069 event->setPrunable(*shouldPrune);
3070 return event;
3073 PathDiagnosticPieceRef ConditionBRVisitor::VisitConditionVariable(
3074 StringRef LhsString, const Expr *CondVarExpr, BugReporterContext &BRC,
3075 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue) {
3076 // FIXME: If there's already a constraint tracker for this variable,
3077 // we shouldn't emit anything here (c.f. the double note in
3078 // test/Analysis/inlining/path-notes.c)
3079 SmallString<256> buf;
3080 llvm::raw_svector_ostream Out(buf);
3081 Out << "Assuming " << LhsString << " is ";
3083 if (!printValue(CondVarExpr, Out, N, TookTrue, /*IsAssuming=*/true))
3084 return nullptr;
3086 const LocationContext *LCtx = N->getLocationContext();
3087 PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx);
3089 if (isVarAnInterestingCondition(CondVarExpr, N, &report))
3090 Out << WillBeUsedForACondition;
3092 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3094 if (isInterestingExpr(CondVarExpr, N, &report))
3095 event->setPrunable(false);
3097 return event;
3100 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3101 const Expr *Cond, const DeclRefExpr *DRE, BugReporterContext &BRC,
3102 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3103 bool IsAssuming) {
3104 const auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
3105 if (!VD)
3106 return nullptr;
3108 SmallString<256> Buf;
3109 llvm::raw_svector_ostream Out(Buf);
3111 Out << (IsAssuming ? "Assuming '" : "'") << VD->getDeclName() << "' is ";
3113 if (!printValue(DRE, Out, N, TookTrue, IsAssuming))
3114 return nullptr;
3116 const LocationContext *LCtx = N->getLocationContext();
3118 if (isVarAnInterestingCondition(DRE, N, &report))
3119 Out << WillBeUsedForACondition;
3121 // If we know the value create a pop-up note to the 'DRE'.
3122 if (!IsAssuming) {
3123 PathDiagnosticLocation Loc(DRE, BRC.getSourceManager(), LCtx);
3124 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3127 PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx);
3128 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3130 if (isInterestingExpr(DRE, N, &report))
3131 event->setPrunable(false);
3133 return std::move(event);
3136 PathDiagnosticPieceRef ConditionBRVisitor::VisitTrueTest(
3137 const Expr *Cond, const MemberExpr *ME, BugReporterContext &BRC,
3138 PathSensitiveBugReport &report, const ExplodedNode *N, bool TookTrue,
3139 bool IsAssuming) {
3140 SmallString<256> Buf;
3141 llvm::raw_svector_ostream Out(Buf);
3143 Out << (IsAssuming ? "Assuming field '" : "Field '")
3144 << ME->getMemberDecl()->getName() << "' is ";
3146 if (!printValue(ME, Out, N, TookTrue, IsAssuming))
3147 return nullptr;
3149 const LocationContext *LCtx = N->getLocationContext();
3150 PathDiagnosticLocation Loc;
3152 // If we know the value create a pop-up note to the member of the MemberExpr.
3153 if (!IsAssuming && ME->getMemberLoc().isValid())
3154 Loc = PathDiagnosticLocation(ME->getMemberLoc(), BRC.getSourceManager());
3155 else
3156 Loc = PathDiagnosticLocation(Cond, BRC.getSourceManager(), LCtx);
3158 if (!Loc.isValid() || !Loc.asLocation().isValid())
3159 return nullptr;
3161 if (isVarAnInterestingCondition(ME, N, &report))
3162 Out << WillBeUsedForACondition;
3164 // If we know the value create a pop-up note.
3165 if (!IsAssuming)
3166 return std::make_shared<PathDiagnosticPopUpPiece>(Loc, Out.str());
3168 auto event = std::make_shared<PathDiagnosticEventPiece>(Loc, Out.str());
3169 if (isInterestingExpr(ME, N, &report))
3170 event->setPrunable(false);
3171 return event;
3174 bool ConditionBRVisitor::printValue(const Expr *CondVarExpr, raw_ostream &Out,
3175 const ExplodedNode *N, bool TookTrue,
3176 bool IsAssuming) {
3177 QualType Ty = CondVarExpr->getType();
3179 if (Ty->isPointerType()) {
3180 Out << (TookTrue ? "non-null" : "null");
3181 return true;
3184 if (Ty->isObjCObjectPointerType()) {
3185 Out << (TookTrue ? "non-nil" : "nil");
3186 return true;
3189 if (!Ty->isIntegralOrEnumerationType())
3190 return false;
3192 std::optional<const llvm::APSInt *> IntValue;
3193 if (!IsAssuming)
3194 IntValue = getConcreteIntegerValue(CondVarExpr, N);
3196 if (IsAssuming || !IntValue) {
3197 if (Ty->isBooleanType())
3198 Out << (TookTrue ? "true" : "false");
3199 else
3200 Out << (TookTrue ? "not equal to 0" : "0");
3201 } else {
3202 if (Ty->isBooleanType())
3203 Out << ((*IntValue)->getBoolValue() ? "true" : "false");
3204 else
3205 Out << **IntValue;
3208 return true;
3211 constexpr llvm::StringLiteral ConditionBRVisitor::GenericTrueMessage;
3212 constexpr llvm::StringLiteral ConditionBRVisitor::GenericFalseMessage;
3214 bool ConditionBRVisitor::isPieceMessageGeneric(
3215 const PathDiagnosticPiece *Piece) {
3216 return Piece->getString() == GenericTrueMessage ||
3217 Piece->getString() == GenericFalseMessage;
3220 //===----------------------------------------------------------------------===//
3221 // Implementation of LikelyFalsePositiveSuppressionBRVisitor.
3222 //===----------------------------------------------------------------------===//
3224 void LikelyFalsePositiveSuppressionBRVisitor::finalizeVisitor(
3225 BugReporterContext &BRC, const ExplodedNode *N,
3226 PathSensitiveBugReport &BR) {
3227 // Here we suppress false positives coming from system headers. This list is
3228 // based on known issues.
3229 const AnalyzerOptions &Options = BRC.getAnalyzerOptions();
3230 const Decl *D = N->getLocationContext()->getDecl();
3232 if (AnalysisDeclContext::isInStdNamespace(D)) {
3233 // Skip reports within the 'std' namespace. Although these can sometimes be
3234 // the user's fault, we currently don't report them very well, and
3235 // Note that this will not help for any other data structure libraries, like
3236 // TR1, Boost, or llvm/ADT.
3237 if (Options.ShouldSuppressFromCXXStandardLibrary) {
3238 BR.markInvalid(getTag(), nullptr);
3239 return;
3240 } else {
3241 // If the complete 'std' suppression is not enabled, suppress reports
3242 // from the 'std' namespace that are known to produce false positives.
3244 // The analyzer issues a false use-after-free when std::list::pop_front
3245 // or std::list::pop_back are called multiple times because we cannot
3246 // reason about the internal invariants of the data structure.
3247 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3248 const CXXRecordDecl *CD = MD->getParent();
3249 if (CD->getName() == "list") {
3250 BR.markInvalid(getTag(), nullptr);
3251 return;
3255 // The analyzer issues a false positive when the constructor of
3256 // std::__independent_bits_engine from algorithms is used.
3257 if (const auto *MD = dyn_cast<CXXConstructorDecl>(D)) {
3258 const CXXRecordDecl *CD = MD->getParent();
3259 if (CD->getName() == "__independent_bits_engine") {
3260 BR.markInvalid(getTag(), nullptr);
3261 return;
3265 for (const LocationContext *LCtx = N->getLocationContext(); LCtx;
3266 LCtx = LCtx->getParent()) {
3267 const auto *MD = dyn_cast<CXXMethodDecl>(LCtx->getDecl());
3268 if (!MD)
3269 continue;
3271 const CXXRecordDecl *CD = MD->getParent();
3272 // The analyzer issues a false positive on
3273 // std::basic_string<uint8_t> v; v.push_back(1);
3274 // and
3275 // std::u16string s; s += u'a';
3276 // because we cannot reason about the internal invariants of the
3277 // data structure.
3278 if (CD->getName() == "basic_string") {
3279 BR.markInvalid(getTag(), nullptr);
3280 return;
3283 // The analyzer issues a false positive on
3284 // std::shared_ptr<int> p(new int(1)); p = nullptr;
3285 // because it does not reason properly about temporary destructors.
3286 if (CD->getName() == "shared_ptr") {
3287 BR.markInvalid(getTag(), nullptr);
3288 return;
3294 // Skip reports within the sys/queue.h macros as we do not have the ability to
3295 // reason about data structure shapes.
3296 const SourceManager &SM = BRC.getSourceManager();
3297 FullSourceLoc Loc = BR.getLocation().asLocation();
3298 while (Loc.isMacroID()) {
3299 Loc = Loc.getSpellingLoc();
3300 if (SM.getFilename(Loc).ends_with("sys/queue.h")) {
3301 BR.markInvalid(getTag(), nullptr);
3302 return;
3307 //===----------------------------------------------------------------------===//
3308 // Implementation of UndefOrNullArgVisitor.
3309 //===----------------------------------------------------------------------===//
3311 PathDiagnosticPieceRef
3312 UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, BugReporterContext &BRC,
3313 PathSensitiveBugReport &BR) {
3314 ProgramStateRef State = N->getState();
3315 ProgramPoint ProgLoc = N->getLocation();
3317 // We are only interested in visiting CallEnter nodes.
3318 std::optional<CallEnter> CEnter = ProgLoc.getAs<CallEnter>();
3319 if (!CEnter)
3320 return nullptr;
3322 // Check if one of the arguments is the region the visitor is tracking.
3323 CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager();
3324 CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State);
3325 unsigned Idx = 0;
3326 ArrayRef<ParmVarDecl *> parms = Call->parameters();
3328 for (const auto ParamDecl : parms) {
3329 const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion();
3330 ++Idx;
3332 // Are we tracking the argument or its subregion?
3333 if ( !ArgReg || !R->isSubRegionOf(ArgReg->StripCasts()))
3334 continue;
3336 // Check the function parameter type.
3337 assert(ParamDecl && "Formal parameter has no decl?");
3338 QualType T = ParamDecl->getType();
3340 if (!(T->isAnyPointerType() || T->isReferenceType())) {
3341 // Function can only change the value passed in by address.
3342 continue;
3345 // If it is a const pointer value, the function does not intend to
3346 // change the value.
3347 if (T->getPointeeType().isConstQualified())
3348 continue;
3350 // Mark the call site (LocationContext) as interesting if the value of the
3351 // argument is undefined or '0'/'NULL'.
3352 SVal BoundVal = State->getSVal(R);
3353 if (BoundVal.isUndef() || BoundVal.isZeroConstant()) {
3354 BR.markInteresting(CEnter->getCalleeContext());
3355 return nullptr;
3358 return nullptr;
3361 //===----------------------------------------------------------------------===//
3362 // Implementation of TagVisitor.
3363 //===----------------------------------------------------------------------===//
3365 int NoteTag::Kind = 0;
3367 void TagVisitor::Profile(llvm::FoldingSetNodeID &ID) const {
3368 static int Tag = 0;
3369 ID.AddPointer(&Tag);
3372 PathDiagnosticPieceRef TagVisitor::VisitNode(const ExplodedNode *N,
3373 BugReporterContext &BRC,
3374 PathSensitiveBugReport &R) {
3375 ProgramPoint PP = N->getLocation();
3376 const NoteTag *T = dyn_cast_or_null<NoteTag>(PP.getTag());
3377 if (!T)
3378 return nullptr;
3380 if (std::optional<std::string> Msg = T->generateMessage(BRC, R)) {
3381 PathDiagnosticLocation Loc =
3382 PathDiagnosticLocation::create(PP, BRC.getSourceManager());
3383 auto Piece = std::make_shared<PathDiagnosticEventPiece>(Loc, *Msg);
3384 Piece->setPrunable(T->isPrunable());
3385 return Piece;
3388 return nullptr;