1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines SValBuilder, the base class for all (complete) SValBuilder
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/LLVM.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
43 using namespace clang
;
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
50 void SValBuilder::anchor() {}
52 SValBuilder::SValBuilder(llvm::BumpPtrAllocator
&alloc
, ASTContext
&context
,
53 ProgramStateManager
&stateMgr
)
54 : Context(context
), BasicVals(context
, alloc
),
55 SymMgr(context
, BasicVals
, alloc
), MemMgr(context
, alloc
),
58 stateMgr
.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
59 ArrayIndexTy(context
.LongLongTy
),
60 ArrayIndexWidth(context
.getTypeSize(ArrayIndexTy
)) {}
62 DefinedOrUnknownSVal
SValBuilder::makeZeroVal(QualType type
) {
63 if (Loc::isLocType(type
))
64 return makeNullWithType(type
);
66 if (type
->isIntegralOrEnumerationType())
67 return makeIntVal(0, type
);
69 if (type
->isArrayType() || type
->isRecordType() || type
->isVectorType() ||
70 type
->isAnyComplexType())
71 return makeCompoundVal(type
, BasicVals
.getEmptySValList());
73 // FIXME: Handle floats.
77 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*lhs
,
78 BinaryOperator::Opcode op
,
79 const llvm::APSInt
&rhs
,
81 // The Environment ensures we always get a persistent APSInt in
82 // BasicValueFactory, so we don't need to get the APSInt from
83 // BasicValueFactory again.
85 assert(!Loc::isLocType(type
));
86 return nonloc::SymbolVal(SymMgr
.getSymIntExpr(lhs
, op
, rhs
, type
));
89 nonloc::SymbolVal
SValBuilder::makeNonLoc(const llvm::APSInt
&lhs
,
90 BinaryOperator::Opcode op
,
91 const SymExpr
*rhs
, QualType type
) {
93 assert(!Loc::isLocType(type
));
94 return nonloc::SymbolVal(SymMgr
.getIntSymExpr(lhs
, op
, rhs
, type
));
97 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*lhs
,
98 BinaryOperator::Opcode op
,
99 const SymExpr
*rhs
, QualType type
) {
101 assert(!Loc::isLocType(type
));
102 return nonloc::SymbolVal(SymMgr
.getSymSymExpr(lhs
, op
, rhs
, type
));
105 NonLoc
SValBuilder::makeNonLoc(const SymExpr
*operand
, UnaryOperator::Opcode op
,
108 assert(!Loc::isLocType(type
));
109 return nonloc::SymbolVal(SymMgr
.getUnarySymExpr(operand
, op
, type
));
112 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*operand
,
113 QualType fromTy
, QualType toTy
) {
115 assert(!Loc::isLocType(toTy
));
117 return nonloc::SymbolVal(operand
);
118 return nonloc::SymbolVal(SymMgr
.getCastSymbol(operand
, fromTy
, toTy
));
121 SVal
SValBuilder::convertToArrayIndex(SVal val
) {
122 if (val
.isUnknownOrUndef())
125 // Common case: we have an appropriately sized integer.
126 if (std::optional
<nonloc::ConcreteInt
> CI
=
127 val
.getAs
<nonloc::ConcreteInt
>()) {
128 const llvm::APSInt
& I
= CI
->getValue();
129 if (I
.getBitWidth() == ArrayIndexWidth
&& I
.isSigned())
133 return evalCast(val
, ArrayIndexTy
, QualType
{});
136 nonloc::ConcreteInt
SValBuilder::makeBoolVal(const CXXBoolLiteralExpr
*boolean
){
137 return makeTruthVal(boolean
->getValue());
141 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion
*region
) {
142 QualType T
= region
->getValueType();
144 if (T
->isNullPtrType())
145 return makeZeroVal(T
);
147 if (!SymbolManager::canSymbolicate(T
))
150 SymbolRef sym
= SymMgr
.getRegionValueSymbol(region
);
152 if (Loc::isLocType(T
))
153 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
155 return nonloc::SymbolVal(sym
);
158 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const void *SymbolTag
,
160 const LocationContext
*LCtx
,
162 QualType T
= Ex
->getType();
164 if (T
->isNullPtrType())
165 return makeZeroVal(T
);
167 // Compute the type of the result. If the expression is not an R-value, the
168 // result should be a location.
169 QualType ExType
= Ex
->getType();
171 T
= LCtx
->getAnalysisDeclContext()->getASTContext().getPointerType(ExType
);
173 return conjureSymbolVal(SymbolTag
, Ex
, LCtx
, T
, Count
);
176 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const void *symbolTag
,
178 const LocationContext
*LCtx
,
181 if (type
->isNullPtrType())
182 return makeZeroVal(type
);
184 if (!SymbolManager::canSymbolicate(type
))
187 SymbolRef sym
= SymMgr
.conjureSymbol(St
, LCtx
, type
, count
, symbolTag
);
189 if (Loc::isLocType(type
))
190 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
192 return nonloc::SymbolVal(sym
);
195 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const Stmt
*stmt
,
196 const LocationContext
*LCtx
,
198 unsigned visitCount
) {
199 if (type
->isNullPtrType())
200 return makeZeroVal(type
);
202 if (!SymbolManager::canSymbolicate(type
))
205 SymbolRef sym
= SymMgr
.conjureSymbol(stmt
, LCtx
, type
, visitCount
);
207 if (Loc::isLocType(type
))
208 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
210 return nonloc::SymbolVal(sym
);
213 DefinedSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr
*E
,
214 const LocationContext
*LCtx
,
215 unsigned VisitCount
) {
216 QualType T
= E
->getType();
217 return getConjuredHeapSymbolVal(E
, LCtx
, T
, VisitCount
);
220 DefinedSVal
SValBuilder::getConjuredHeapSymbolVal(const Expr
*E
,
221 const LocationContext
*LCtx
,
223 unsigned VisitCount
) {
224 assert(Loc::isLocType(type
));
225 assert(SymbolManager::canSymbolicate(type
));
226 if (type
->isNullPtrType()) {
227 // makeZeroVal() returns UnknownVal only in case of FP number, which
229 return makeZeroVal(type
).castAs
<DefinedSVal
>();
232 SymbolRef sym
= SymMgr
.conjureSymbol(E
, LCtx
, type
, VisitCount
);
233 return loc::MemRegionVal(MemMgr
.getSymbolicHeapRegion(sym
));
236 loc::MemRegionVal
SValBuilder::getAllocaRegionVal(const Expr
*E
,
237 const LocationContext
*LCtx
,
238 unsigned VisitCount
) {
239 const AllocaRegion
*R
=
240 getRegionManager().getAllocaRegion(E
, VisitCount
, LCtx
);
241 return loc::MemRegionVal(R
);
244 DefinedSVal
SValBuilder::getMetadataSymbolVal(const void *symbolTag
,
245 const MemRegion
*region
,
246 const Expr
*expr
, QualType type
,
247 const LocationContext
*LCtx
,
249 assert(SymbolManager::canSymbolicate(type
) && "Invalid metadata symbol type");
252 SymMgr
.getMetadataSymbol(region
, expr
, type
, LCtx
, count
, symbolTag
);
254 if (Loc::isLocType(type
))
255 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
257 return nonloc::SymbolVal(sym
);
261 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol
,
262 const TypedValueRegion
*region
) {
263 QualType T
= region
->getValueType();
265 if (T
->isNullPtrType())
266 return makeZeroVal(T
);
268 if (!SymbolManager::canSymbolicate(T
))
271 SymbolRef sym
= SymMgr
.getDerivedSymbol(parentSymbol
, region
);
273 if (Loc::isLocType(T
))
274 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
276 return nonloc::SymbolVal(sym
);
279 DefinedSVal
SValBuilder::getMemberPointer(const NamedDecl
*ND
) {
280 assert(!ND
|| (isa
<CXXMethodDecl
, FieldDecl
, IndirectFieldDecl
>(ND
)));
282 if (const auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(ND
)) {
283 // Sema treats pointers to static member functions as have function pointer
284 // type, so return a function pointer for the method.
285 // We don't need to play a similar trick for static member fields
286 // because these are represented as plain VarDecls and not FieldDecls
288 if (!MD
->isImplicitObjectMemberFunction())
289 return getFunctionPointer(MD
);
292 return nonloc::PointerToMember(ND
);
295 DefinedSVal
SValBuilder::getFunctionPointer(const FunctionDecl
*func
) {
296 return loc::MemRegionVal(MemMgr
.getFunctionCodeRegion(func
));
299 DefinedSVal
SValBuilder::getBlockPointer(const BlockDecl
*block
,
301 const LocationContext
*locContext
,
302 unsigned blockCount
) {
303 const BlockCodeRegion
*BC
=
304 MemMgr
.getBlockCodeRegion(block
, locTy
, locContext
->getAnalysisDeclContext());
305 const BlockDataRegion
*BD
= MemMgr
.getBlockDataRegion(BC
, locContext
,
307 return loc::MemRegionVal(BD
);
310 std::optional
<loc::MemRegionVal
>
311 SValBuilder::getCastedMemRegionVal(const MemRegion
*R
, QualType Ty
) {
312 if (auto OptR
= StateMgr
.getStoreManager().castRegion(R
, Ty
))
313 return loc::MemRegionVal(*OptR
);
317 /// Return a memory region for the 'this' object reference.
318 loc::MemRegionVal
SValBuilder::getCXXThis(const CXXMethodDecl
*D
,
319 const StackFrameContext
*SFC
) {
320 return loc::MemRegionVal(
321 getRegionManager().getCXXThisRegion(D
->getThisType(), SFC
));
324 /// Return a memory region for the 'this' object reference.
325 loc::MemRegionVal
SValBuilder::getCXXThis(const CXXRecordDecl
*D
,
326 const StackFrameContext
*SFC
) {
327 const Type
*T
= D
->getTypeForDecl();
328 QualType PT
= getContext().getPointerType(QualType(T
, 0));
329 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT
, SFC
));
332 std::optional
<SVal
> SValBuilder::getConstantVal(const Expr
*E
) {
333 E
= E
->IgnoreParens();
335 switch (E
->getStmtClass()) {
336 // Handle expressions that we treat differently from the AST's constant
338 case Stmt::AddrLabelExprClass
:
339 return makeLoc(cast
<AddrLabelExpr
>(E
));
341 case Stmt::CXXScalarValueInitExprClass
:
342 case Stmt::ImplicitValueInitExprClass
:
343 return makeZeroVal(E
->getType());
345 case Stmt::ObjCStringLiteralClass
: {
346 const auto *SL
= cast
<ObjCStringLiteral
>(E
);
347 return makeLoc(getRegionManager().getObjCStringRegion(SL
));
350 case Stmt::StringLiteralClass
: {
351 const auto *SL
= cast
<StringLiteral
>(E
);
352 return makeLoc(getRegionManager().getStringRegion(SL
));
355 case Stmt::PredefinedExprClass
: {
356 const auto *PE
= cast
<PredefinedExpr
>(E
);
357 assert(PE
->getFunctionName() &&
358 "Since we analyze only instantiated functions, PredefinedExpr "
359 "should have a function name.");
360 return makeLoc(getRegionManager().getStringRegion(PE
->getFunctionName()));
363 // Fast-path some expressions to avoid the overhead of going through the AST's
364 // constant evaluator
365 case Stmt::CharacterLiteralClass
: {
366 const auto *C
= cast
<CharacterLiteral
>(E
);
367 return makeIntVal(C
->getValue(), C
->getType());
370 case Stmt::CXXBoolLiteralExprClass
:
371 return makeBoolVal(cast
<CXXBoolLiteralExpr
>(E
));
373 case Stmt::TypeTraitExprClass
: {
374 const auto *TE
= cast
<TypeTraitExpr
>(E
);
375 return makeTruthVal(TE
->getValue(), TE
->getType());
378 case Stmt::IntegerLiteralClass
:
379 return makeIntVal(cast
<IntegerLiteral
>(E
));
381 case Stmt::ObjCBoolLiteralExprClass
:
382 return makeBoolVal(cast
<ObjCBoolLiteralExpr
>(E
));
384 case Stmt::CXXNullPtrLiteralExprClass
:
385 return makeNullWithType(E
->getType());
387 case Stmt::CStyleCastExprClass
:
388 case Stmt::CXXFunctionalCastExprClass
:
389 case Stmt::CXXConstCastExprClass
:
390 case Stmt::CXXReinterpretCastExprClass
:
391 case Stmt::CXXStaticCastExprClass
:
392 case Stmt::ImplicitCastExprClass
: {
393 const auto *CE
= cast
<CastExpr
>(E
);
394 switch (CE
->getCastKind()) {
397 case CK_ArrayToPointerDecay
:
398 case CK_IntegralToPointer
:
401 const Expr
*SE
= CE
->getSubExpr();
402 std::optional
<SVal
> Val
= getConstantVal(SE
);
405 return evalCast(*Val
, CE
->getType(), SE
->getType());
411 // If we don't have a special case, fall back to the AST's constant evaluator.
413 // Don't try to come up with a value for materialized temporaries.
417 ASTContext
&Ctx
= getContext();
418 Expr::EvalResult Result
;
419 if (E
->EvaluateAsInt(Result
, Ctx
))
420 return makeIntVal(Result
.Val
.getInt());
422 if (Loc::isLocType(E
->getType()))
423 if (E
->isNullPointerConstant(Ctx
, Expr::NPC_ValueDependentIsNotNull
))
424 return makeNullWithType(E
->getType());
431 SVal
SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op
,
432 NonLoc LHS
, NonLoc RHS
,
434 SymbolRef symLHS
= LHS
.getAsSymbol();
435 SymbolRef symRHS
= RHS
.getAsSymbol();
437 // TODO: When the Max Complexity is reached, we should conjure a symbol
438 // instead of generating an Unknown value and propagate the taint info to it.
439 const unsigned MaxComp
= AnOpts
.MaxSymbolComplexity
;
441 if (symLHS
&& symRHS
&&
442 (symLHS
->computeComplexity() + symRHS
->computeComplexity()) < MaxComp
)
443 return makeNonLoc(symLHS
, Op
, symRHS
, ResultTy
);
445 if (symLHS
&& symLHS
->computeComplexity() < MaxComp
)
446 if (std::optional
<nonloc::ConcreteInt
> rInt
=
447 RHS
.getAs
<nonloc::ConcreteInt
>())
448 return makeNonLoc(symLHS
, Op
, rInt
->getValue(), ResultTy
);
450 if (symRHS
&& symRHS
->computeComplexity() < MaxComp
)
451 if (std::optional
<nonloc::ConcreteInt
> lInt
=
452 LHS
.getAs
<nonloc::ConcreteInt
>())
453 return makeNonLoc(lInt
->getValue(), Op
, symRHS
, ResultTy
);
458 SVal
SValBuilder::evalMinus(NonLoc X
) {
459 switch (X
.getKind()) {
460 case nonloc::ConcreteIntKind
:
461 return makeIntVal(-X
.castAs
<nonloc::ConcreteInt
>().getValue());
462 case nonloc::SymbolValKind
:
463 return makeNonLoc(X
.castAs
<nonloc::SymbolVal
>().getSymbol(), UO_Minus
,
470 SVal
SValBuilder::evalComplement(NonLoc X
) {
471 switch (X
.getKind()) {
472 case nonloc::ConcreteIntKind
:
473 return makeIntVal(~X
.castAs
<nonloc::ConcreteInt
>().getValue());
474 case nonloc::SymbolValKind
:
475 return makeNonLoc(X
.castAs
<nonloc::SymbolVal
>().getSymbol(), UO_Not
,
482 SVal
SValBuilder::evalUnaryOp(ProgramStateRef state
, UnaryOperator::Opcode opc
,
483 SVal operand
, QualType type
) {
484 auto OpN
= operand
.getAs
<NonLoc
>();
489 return evalMinus(*OpN
);
491 return evalComplement(*OpN
);
492 llvm_unreachable("Unexpected unary operator");
495 SVal
SValBuilder::evalBinOp(ProgramStateRef state
, BinaryOperator::Opcode op
,
496 SVal lhs
, SVal rhs
, QualType type
) {
497 if (lhs
.isUndef() || rhs
.isUndef())
498 return UndefinedVal();
500 if (lhs
.isUnknown() || rhs
.isUnknown())
503 if (isa
<nonloc::LazyCompoundVal
>(lhs
) || isa
<nonloc::LazyCompoundVal
>(rhs
)) {
507 if (op
== BinaryOperatorKind::BO_Cmp
) {
508 // We can't reason about C++20 spaceship operator yet.
510 // FIXME: Support C++20 spaceship operator.
511 // The main problem here is that the result is not integer.
515 if (std::optional
<Loc
> LV
= lhs
.getAs
<Loc
>()) {
516 if (std::optional
<Loc
> RV
= rhs
.getAs
<Loc
>())
517 return evalBinOpLL(state
, op
, *LV
, *RV
, type
);
519 return evalBinOpLN(state
, op
, *LV
, rhs
.castAs
<NonLoc
>(), type
);
522 if (const std::optional
<Loc
> RV
= rhs
.getAs
<Loc
>()) {
523 const auto IsCommutative
= [](BinaryOperatorKind Op
) {
524 return Op
== BO_Mul
|| Op
== BO_Add
|| Op
== BO_And
|| Op
== BO_Xor
||
528 if (IsCommutative(op
)) {
530 return evalBinOpLN(state
, op
, *RV
, lhs
.castAs
<NonLoc
>(), type
);
533 // If the right operand is a concrete int location then we have nothing
534 // better but to treat it as a simple nonloc.
535 if (auto RV
= rhs
.getAs
<loc::ConcreteInt
>()) {
536 const nonloc::ConcreteInt RhsAsLoc
= makeIntVal(RV
->getValue());
537 return evalBinOpNN(state
, op
, lhs
.castAs
<NonLoc
>(), RhsAsLoc
, type
);
541 return evalBinOpNN(state
, op
, lhs
.castAs
<NonLoc
>(), rhs
.castAs
<NonLoc
>(),
545 ConditionTruthVal
SValBuilder::areEqual(ProgramStateRef state
, SVal lhs
,
547 return state
->isNonNull(evalEQ(state
, lhs
, rhs
));
550 SVal
SValBuilder::evalEQ(ProgramStateRef state
, SVal lhs
, SVal rhs
) {
551 return evalBinOp(state
, BO_EQ
, lhs
, rhs
, getConditionType());
554 DefinedOrUnknownSVal
SValBuilder::evalEQ(ProgramStateRef state
,
555 DefinedOrUnknownSVal lhs
,
556 DefinedOrUnknownSVal rhs
) {
557 return evalEQ(state
, static_cast<SVal
>(lhs
), static_cast<SVal
>(rhs
))
558 .castAs
<DefinedOrUnknownSVal
>();
561 /// Recursively check if the pointer types are equal modulo const, volatile,
562 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
563 /// Assumes the input types are canonical.
564 static bool shouldBeModeledWithNoOp(ASTContext
&Context
, QualType ToTy
,
566 while (Context
.UnwrapSimilarTypes(ToTy
, FromTy
)) {
567 Qualifiers Quals1
, Quals2
;
568 ToTy
= Context
.getUnqualifiedArrayType(ToTy
, Quals1
);
569 FromTy
= Context
.getUnqualifiedArrayType(FromTy
, Quals2
);
571 // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
572 // spaces) are identical.
573 Quals1
.removeCVRQualifiers();
574 Quals2
.removeCVRQualifiers();
575 if (Quals1
!= Quals2
)
579 // If we are casting to void, the 'From' value can be used to represent the
582 // FIXME: Doing this after unwrapping the types doesn't make any sense. A
583 // cast from 'int**' to 'void**' is not special in the way that a cast from
584 // 'int*' to 'void*' is.
585 if (ToTy
->isVoidType())
594 // Handles casts of type CK_IntegralCast.
595 // At the moment, this function will redirect to evalCast, except when the range
596 // of the original value is known to be greater than the max of the target type.
597 SVal
SValBuilder::evalIntegralCast(ProgramStateRef state
, SVal val
,
598 QualType castTy
, QualType originalTy
) {
599 // No truncations if target type is big enough.
600 if (getContext().getTypeSize(castTy
) >= getContext().getTypeSize(originalTy
))
601 return evalCast(val
, castTy
, originalTy
);
603 auto AsNonLoc
= val
.getAs
<NonLoc
>();
604 SymbolRef AsSymbol
= val
.getAsSymbol();
605 if (!AsSymbol
|| !AsNonLoc
) // Let evalCast handle non symbolic expressions.
606 return evalCast(val
, castTy
, originalTy
);
608 // Find the maximum value of the target type.
609 APSIntType
ToType(getContext().getTypeSize(castTy
),
610 castTy
->isUnsignedIntegerType());
611 llvm::APSInt ToTypeMax
= ToType
.getMaxValue();
613 NonLoc ToTypeMaxVal
= makeIntVal(ToTypeMax
);
615 // Check the range of the symbol being casted against the maximum value of the
617 QualType CmpTy
= getConditionType();
618 NonLoc CompVal
= evalBinOpNN(state
, BO_LE
, *AsNonLoc
, ToTypeMaxVal
, CmpTy
)
620 ProgramStateRef IsNotTruncated
, IsTruncated
;
621 std::tie(IsNotTruncated
, IsTruncated
) = state
->assume(CompVal
);
622 if (!IsNotTruncated
&& IsTruncated
) {
623 // Symbol is truncated so we evaluate it as a cast.
624 return makeNonLoc(AsSymbol
, originalTy
, castTy
);
626 return evalCast(val
, castTy
, originalTy
);
629 //===----------------------------------------------------------------------===//
631 // `evalCast` and its helper `EvalCastVisitor`
632 //===----------------------------------------------------------------------===//
635 class EvalCastVisitor
: public SValVisitor
<EvalCastVisitor
, SVal
> {
639 QualType CastTy
, OriginalTy
;
642 EvalCastVisitor(SValBuilder
&VB
, QualType CastTy
, QualType OriginalTy
)
643 : VB(VB
), Context(VB
.getContext()), CastTy(CastTy
),
644 OriginalTy(OriginalTy
) {}
650 CastTy
= Context
.getCanonicalType(CastTy
);
652 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
653 if (!IsUnknownOriginalType
) {
654 OriginalTy
= Context
.getCanonicalType(OriginalTy
);
656 if (CastTy
== OriginalTy
)
659 // FIXME: Move this check to the most appropriate
660 // evalCastKind/evalCastSubKind function. For const casts, casts to void,
661 // just propagate the value.
662 if (!CastTy
->isVariableArrayType() && !OriginalTy
->isVariableArrayType())
663 if (shouldBeModeledWithNoOp(Context
, Context
.getPointerType(CastTy
),
664 Context
.getPointerType(OriginalTy
)))
667 return SValVisitor::Visit(V
);
669 SVal
VisitUndefinedVal(UndefinedVal V
) { return V
; }
670 SVal
VisitUnknownVal(UnknownVal V
) { return V
; }
671 SVal
VisitConcreteInt(loc::ConcreteInt V
) {
673 if (CastTy
->isBooleanType())
674 return VB
.makeTruthVal(V
.getValue().getBoolValue(), CastTy
);
676 // Pointer to integer.
677 if (CastTy
->isIntegralOrEnumerationType()) {
678 llvm::APSInt Value
= V
.getValue();
679 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
680 return VB
.makeIntVal(Value
);
683 // Pointer to any pointer.
684 if (Loc::isLocType(CastTy
)) {
685 llvm::APSInt Value
= V
.getValue();
686 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
687 return loc::ConcreteInt(VB
.getBasicValueFactory().getValue(Value
));
690 // Pointer to whatever else.
693 SVal
VisitGotoLabel(loc::GotoLabel V
) {
695 if (CastTy
->isBooleanType())
696 // Labels are always true.
697 return VB
.makeTruthVal(true, CastTy
);
699 // Pointer to integer.
700 if (CastTy
->isIntegralOrEnumerationType()) {
701 const unsigned BitWidth
= Context
.getIntWidth(CastTy
);
702 return VB
.makeLocAsInteger(V
, BitWidth
);
705 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
706 if (!IsUnknownOriginalType
) {
708 if (isa
<ArrayType
>(OriginalTy
))
709 if (CastTy
->isPointerType() || CastTy
->isReferenceType())
713 // Pointer to any pointer.
714 if (Loc::isLocType(CastTy
))
717 // Pointer to whatever else.
720 SVal
VisitMemRegionVal(loc::MemRegionVal V
) {
722 if (CastTy
->isBooleanType()) {
723 const MemRegion
*R
= V
.getRegion();
724 if (const FunctionCodeRegion
*FTR
= dyn_cast
<FunctionCodeRegion
>(R
))
725 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(FTR
->getDecl()))
727 // FIXME: Currently we are using an extent symbol here,
728 // because there are no generic region address metadata
729 // symbols to use, only content metadata.
730 return nonloc::SymbolVal(
731 VB
.getSymbolManager().getExtentSymbol(FTR
));
733 if (const SymbolicRegion
*SymR
= R
->getSymbolicBase()) {
734 SymbolRef Sym
= SymR
->getSymbol();
735 QualType Ty
= Sym
->getType();
736 // This change is needed for architectures with varying
737 // pointer widths. See the amdgcn opencl reproducer with
738 // this change as an example: solver-sym-simplification-ptr-bool.cl
739 if (!Ty
->isReferenceType())
740 return VB
.makeNonLoc(
741 Sym
, BO_NE
, VB
.getBasicValueFactory().getZeroWithTypeSize(Ty
),
744 // Non-symbolic memory regions are always true.
745 return VB
.makeTruthVal(true, CastTy
);
748 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
749 // Try to cast to array
750 const auto *ArrayTy
=
751 IsUnknownOriginalType
753 : dyn_cast
<ArrayType
>(OriginalTy
.getCanonicalType());
755 // Pointer to integer.
756 if (CastTy
->isIntegralOrEnumerationType()) {
760 // We will always decay to a pointer.
761 QualType ElemTy
= ArrayTy
->getElementType();
762 Val
= VB
.getStateManager().ArrayToPointer(V
, ElemTy
);
763 // FIXME: Keep these here for now in case we decide soon that we
764 // need the original decayed type.
765 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
766 // QualType pointerTy = C.getPointerType(elemTy);
768 const unsigned BitWidth
= Context
.getIntWidth(CastTy
);
769 return VB
.makeLocAsInteger(Val
.castAs
<Loc
>(), BitWidth
);
772 // Pointer to pointer.
773 if (Loc::isLocType(CastTy
)) {
775 if (IsUnknownOriginalType
) {
776 // When retrieving symbolic pointer and expecting a non-void pointer,
777 // wrap them into element regions of the expected type if necessary.
778 // It is necessary to make sure that the retrieved value makes sense,
779 // because there's no other cast in the AST that would tell us to cast
780 // it to the correct pointer type. We might need to do that for non-void
782 // FIXME: We really need a single good function to perform casts for us
783 // correctly every time we need it.
784 const MemRegion
*R
= V
.getRegion();
785 if (CastTy
->isPointerType() && !CastTy
->isVoidPointerType()) {
786 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(R
)) {
787 QualType SRTy
= SR
->getSymbol()->getType();
789 auto HasSameUnqualifiedPointeeType
= [](QualType ty1
,
791 return ty1
->getPointeeType().getCanonicalType().getTypePtr() ==
792 ty2
->getPointeeType().getCanonicalType().getTypePtr();
794 if (!HasSameUnqualifiedPointeeType(SRTy
, CastTy
)) {
795 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(SR
, CastTy
))
800 // Next fixes pointer dereference using type different from its initial
801 // one. See PR37503 and PR49007 for details.
802 if (const auto *ER
= dyn_cast
<ElementRegion
>(R
)) {
803 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(ER
, CastTy
))
810 if (OriginalTy
->isIntegralOrEnumerationType() ||
811 OriginalTy
->isBlockPointerType() ||
812 OriginalTy
->isFunctionPointerType())
817 // Are we casting from an array to a pointer? If so just pass on
818 // the decayed value.
819 if (CastTy
->isPointerType() || CastTy
->isReferenceType()) {
820 // We will always decay to a pointer.
821 QualType ElemTy
= ArrayTy
->getElementType();
822 return VB
.getStateManager().ArrayToPointer(V
, ElemTy
);
824 // Are we casting from an array to an integer? If so, cast the decayed
825 // pointer value to an integer.
826 assert(CastTy
->isIntegralOrEnumerationType());
829 // Other pointer to pointer.
830 assert(Loc::isLocType(OriginalTy
) || OriginalTy
->isFunctionType() ||
831 CastTy
->isReferenceType());
833 // We get a symbolic function pointer for a dereference of a function
834 // pointer, but it is of function type. Example:
837 // void (*my_func)(int * x);
842 // int f1_a(struct FPRec* foo) {
844 // (*foo->my_func)(&x);
845 // return bar(x)+1; // no-warning
848 // Get the result of casting a region to a different type.
849 const MemRegion
*R
= V
.getRegion();
850 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
854 // Pointer to whatever else.
855 // FIXME: There can be gross cases where one casts the result of a
856 // function (that returns a pointer) to some other value that happens to
857 // fit within that pointer value. We currently have no good way to model
858 // such operations. When this happens, the underlying operation is that
859 // the caller is reasoning about bits. Conceptually we are layering a
860 // "view" of a location on top of those bits. Perhaps we need to be more
861 // lazy about mutual possible views, even on an SVal? This may be
862 // necessary for bit-level reasoning as well.
865 SVal
VisitCompoundVal(nonloc::CompoundVal V
) {
866 // Compound to whatever.
869 SVal
VisitConcreteInt(nonloc::ConcreteInt V
) {
870 auto CastedValue
= [V
, this]() {
871 llvm::APSInt Value
= V
.getValue();
872 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
877 if (CastTy
->isBooleanType())
878 return VB
.makeTruthVal(V
.getValue().getBoolValue(), CastTy
);
880 // Integer to pointer.
881 if (CastTy
->isIntegralOrEnumerationType())
882 return VB
.makeIntVal(CastedValue());
884 // Integer to pointer.
885 if (Loc::isLocType(CastTy
))
886 return VB
.makeIntLocVal(CastedValue());
888 // Pointer to whatever else.
891 SVal
VisitLazyCompoundVal(nonloc::LazyCompoundVal V
) {
892 // LazyCompound to whatever.
895 SVal
VisitLocAsInteger(nonloc::LocAsInteger V
) {
898 // Pointer as integer to bool.
899 if (CastTy
->isBooleanType())
900 // Pass to Loc function.
903 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
904 // Pointer as integer to pointer.
905 if (!IsUnknownOriginalType
&& Loc::isLocType(CastTy
) &&
906 OriginalTy
->isIntegralOrEnumerationType()) {
907 if (const MemRegion
*R
= L
.getAsRegion())
908 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
913 // Pointer as integer with region to integer/pointer.
914 const MemRegion
*R
= L
.getAsRegion();
915 if (!IsUnknownOriginalType
&& R
) {
916 if (CastTy
->isIntegralOrEnumerationType())
917 return VisitMemRegionVal(loc::MemRegionVal(R
));
919 if (Loc::isLocType(CastTy
)) {
920 assert(Loc::isLocType(OriginalTy
) || OriginalTy
->isFunctionType() ||
921 CastTy
->isReferenceType());
922 // Delegate to store manager to get the result of casting a region to a
923 // different type. If the MemRegion* returned is NULL, this expression
924 // Evaluates to UnknownVal.
925 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
929 if (Loc::isLocType(CastTy
)) {
930 if (IsUnknownOriginalType
)
931 return VisitMemRegionVal(loc::MemRegionVal(R
));
935 SymbolRef SE
= nullptr;
937 if (const SymbolicRegion
*SR
=
938 dyn_cast
<SymbolicRegion
>(R
->StripCasts())) {
939 SE
= SR
->getSymbol();
943 if (!CastTy
->isFloatingType() || !SE
|| SE
->getType()->isFloatingType()) {
944 // FIXME: Correctly support promotions/truncations.
945 const unsigned CastSize
= Context
.getIntWidth(CastTy
);
946 if (CastSize
== V
.getNumBits())
949 return VB
.makeLocAsInteger(L
, CastSize
);
953 // Pointer as integer to whatever else.
956 SVal
VisitSymbolVal(nonloc::SymbolVal V
) {
957 SymbolRef SE
= V
.getSymbol();
959 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
961 if (!IsUnknownOriginalType
&& CastTy
->isBooleanType()) {
962 // Non-float to bool.
963 if (Loc::isLocType(OriginalTy
) ||
964 OriginalTy
->isIntegralOrEnumerationType() ||
965 OriginalTy
->isMemberPointerType()) {
966 BasicValueFactory
&BVF
= VB
.getBasicValueFactory();
967 return VB
.makeNonLoc(SE
, BO_NE
, BVF
.getValue(0, SE
->getType()), CastTy
);
970 // Symbol to integer, float.
971 QualType T
= Context
.getCanonicalType(SE
->getType());
973 // Produce SymbolCast if CastTy and T are different integers.
974 // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
975 if (T
->isIntegralOrUnscopedEnumerationType() &&
976 CastTy
->isIntegralOrUnscopedEnumerationType()) {
977 AnalyzerOptions
&Opts
= VB
.getStateManager()
979 .getAnalysisManager()
980 .getAnalyzerOptions();
981 // If appropriate option is disabled, ignore the cast.
982 // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
983 if (!Opts
.ShouldSupportSymbolicIntegerCasts
)
985 return simplifySymbolCast(V
, CastTy
);
987 if (!Loc::isLocType(CastTy
))
988 if (!IsUnknownOriginalType
|| !CastTy
->isFloatingType() ||
990 return VB
.makeNonLoc(SE
, T
, CastTy
);
993 // FIXME: We should be able to cast NonLoc -> Loc
994 // (when Loc::isLocType(CastTy) is true)
995 // But it's hard to do as SymbolicRegions can't refer to SymbolCasts holding
996 // generic SymExprs. Check the commit message for the details.
998 // Symbol to pointer and whatever else.
1001 SVal
VisitPointerToMember(nonloc::PointerToMember V
) {
1002 // Member pointer to whatever.
1006 /// Reduce cast expression by removing redundant intermediate casts.
1008 /// - (char)(short)(int x) -> (char)(int x)
1009 /// - (int)(int x) -> int x
1011 /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
1012 /// that is applicable for cast operation.
1013 /// \param CastTy -- QualType, which `V` shall be cast to.
1014 /// \return SVal with simplified cast expression.
1015 /// \note: Currently only support integral casts.
1016 nonloc::SymbolVal
simplifySymbolCast(nonloc::SymbolVal V
, QualType CastTy
) {
1017 // We use seven conditions to recognize a simplification case.
1018 // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
1019 // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
1020 // (char)(short)(uint x)
1021 // ( sC )( sT )( uR x)
1023 // C === R (the same type)
1024 // (char)(char x) -> (char x)
1025 // (long)(long x) -> (long x)
1026 // Note: Comparisons operators below are for bit width.
1028 // (short)(short)(int x) -> (short)(int x)
1029 // (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
1030 // (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
1033 // (short)(int)(char x) -> (short)(char x)
1034 // (char)(int)(short x) -> (char)(short x)
1035 // (short)(int)(short x) -> (short x)
1037 // (int)(short)(uchar x) -> (int)(uchar x)
1038 // (uint)(short)(uchar x) -> (uint)(uchar x)
1039 // (int)(ushort)(uchar x) -> (int)(uchar x)
1041 // (int)(short)(char x) -> (int)(char x)
1042 // (uint)(short)(char x) -> (uint)(char x)
1044 // (int)(char)(char x) -> (int)(char x)
1045 // (uint)(short)(short x) -> (uint)(short x)
1047 // (int)(uchar)(uchar x) -> (int)(uchar x)
1048 // (uint)(ushort)(ushort x) -> (uint)(ushort x)
1049 // (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
1052 SymbolRef SE
= V
.getSymbol();
1053 QualType T
= Context
.getCanonicalType(SE
->getType());
1058 if (!isa
<SymbolCast
>(SE
))
1059 return VB
.makeNonLoc(SE
, T
, CastTy
);
1061 SymbolRef RootSym
= cast
<SymbolCast
>(SE
)->getOperand();
1062 QualType RT
= RootSym
->getType().getCanonicalType();
1064 // FIXME support simplification from non-integers.
1065 if (!RT
->isIntegralOrEnumerationType())
1066 return VB
.makeNonLoc(SE
, T
, CastTy
);
1068 BasicValueFactory
&BVF
= VB
.getBasicValueFactory();
1069 APSIntType CTy
= BVF
.getAPSIntType(CastTy
);
1070 APSIntType TTy
= BVF
.getAPSIntType(T
);
1072 const auto WC
= CTy
.getBitWidth();
1073 const auto WT
= TTy
.getBitWidth();
1076 const bool isSameType
= (RT
== CastTy
);
1078 return nonloc::SymbolVal(RootSym
);
1079 return VB
.makeNonLoc(RootSym
, RT
, CastTy
);
1082 APSIntType RTy
= BVF
.getAPSIntType(RT
);
1083 const auto WR
= RTy
.getBitWidth();
1084 const bool UT
= TTy
.isUnsigned();
1085 const bool UR
= RTy
.isUnsigned();
1087 if (((WT
> WR
) && (UR
|| !UT
)) || ((WT
== WR
) && (UT
== UR
)))
1088 return VB
.makeNonLoc(RootSym
, RT
, CastTy
);
1090 return VB
.makeNonLoc(SE
, T
, CastTy
);
1093 } // end anonymous namespace
1095 /// Cast a given SVal to another SVal using given QualType's.
1096 /// \param V -- SVal that should be casted.
1097 /// \param CastTy -- QualType that V should be casted according to.
1098 /// \param OriginalTy -- QualType which is associated to V. It provides
1099 /// additional information about what type the cast performs from.
1100 /// \returns the most appropriate casted SVal.
1101 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
1102 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
1103 /// It can be crucial in certain cases and generates different results.
1104 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
1105 /// only. This behavior is uncertain and should be improved.
1106 SVal
SValBuilder::evalCast(SVal V
, QualType CastTy
, QualType OriginalTy
) {
1107 EvalCastVisitor TRV
{*this, CastTy
, OriginalTy
};
1108 return TRV
.Visit(V
);