[libc] Switch to using the generic `<gpuintrin.h>` implementations (#121810)
[llvm-project.git] / clang / unittests / Interpreter / InterpreterTest.cpp
blob30b051e747f928c0864f74848a58c25d96c118d3
1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Unit tests for Clang's Interpreter library.
11 //===----------------------------------------------------------------------===//
13 #include "InterpreterTestFixture.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclGroup.h"
17 #include "clang/AST/Mangle.h"
18 #include "clang/Frontend/CompilerInstance.h"
19 #include "clang/Frontend/TextDiagnosticPrinter.h"
20 #include "clang/Interpreter/Interpreter.h"
21 #include "clang/Interpreter/Value.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/Sema.h"
25 #include "gmock/gmock.h"
26 #include "gtest/gtest.h"
28 using namespace clang;
30 int Global = 42;
31 // JIT reports symbol not found on Windows without the visibility attribute.
32 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
33 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
35 namespace {
37 class InterpreterTest : public InterpreterTestBase {
38 // TODO: Collect common variables and utility functions here
41 using Args = std::vector<const char *>;
42 static std::unique_ptr<Interpreter>
43 createInterpreter(const Args &ExtraArgs = {},
44 DiagnosticConsumer *Client = nullptr) {
45 Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
46 ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
47 auto CB = clang::IncrementalCompilerBuilder();
48 CB.SetCompilerArgs(ClangArgs);
49 auto CI = cantFail(CB.CreateCpp());
50 if (Client)
51 CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
52 return cantFail(clang::Interpreter::create(std::move(CI)));
55 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
56 return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
59 TEST_F(InterpreterTest, Sanity) {
60 std::unique_ptr<Interpreter> Interp = createInterpreter();
62 using PTU = PartialTranslationUnit;
64 PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
65 EXPECT_EQ(2U, DeclsSize(R1.TUPart));
67 PTU &R2(cantFail(Interp->Parse("int i;")));
68 EXPECT_EQ(1U, DeclsSize(R2.TUPart));
71 static std::string DeclToString(Decl *D) {
72 return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
75 TEST_F(InterpreterTest, IncrementalInputTopLevelDecls) {
76 std::unique_ptr<Interpreter> Interp = createInterpreter();
77 auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
78 // gtest doesn't expand into explicit bool conversions.
79 EXPECT_TRUE(!!R1);
80 auto R1DeclRange = R1->TUPart->decls();
81 EXPECT_EQ(2U, DeclsSize(R1->TUPart));
82 EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
83 EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
85 auto R2 = Interp->Parse("int var2 = f();");
86 EXPECT_TRUE(!!R2);
87 auto R2DeclRange = R2->TUPart->decls();
88 EXPECT_EQ(1U, DeclsSize(R2->TUPart));
89 EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
92 TEST_F(InterpreterTest, Errors) {
93 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
95 // Create the diagnostic engine with unowned consumer.
96 std::string DiagnosticOutput;
97 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
98 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
99 DiagnosticsOS, new DiagnosticOptions());
101 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
102 auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
103 using ::testing::HasSubstr;
104 EXPECT_THAT(DiagnosticOutput,
105 HasSubstr("error: unknown type name 'intentional_error'"));
106 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
108 auto RecoverErr = Interp->Parse("int var1 = 42;");
109 EXPECT_TRUE(!!RecoverErr);
112 // Here we test whether the user can mix declarations and statements. The
113 // interpreter should be smart enough to recognize the declarations from the
114 // statements and wrap the latter into a declaration, producing valid code.
116 TEST_F(InterpreterTest, DeclsAndStatements) {
117 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
119 // Create the diagnostic engine with unowned consumer.
120 std::string DiagnosticOutput;
121 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
122 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
123 DiagnosticsOS, new DiagnosticOptions());
125 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
126 auto R1 = Interp->Parse(
127 "int var1 = 42; extern \"C\" int printf(const char*, ...);");
128 // gtest doesn't expand into explicit bool conversions.
129 EXPECT_TRUE(!!R1);
131 auto *PTU1 = R1->TUPart;
132 EXPECT_EQ(2U, DeclsSize(PTU1));
134 auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
135 EXPECT_TRUE(!!R2);
138 TEST_F(InterpreterTest, UndoCommand) {
139 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
141 // Create the diagnostic engine with unowned consumer.
142 std::string DiagnosticOutput;
143 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
144 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
145 DiagnosticsOS, new DiagnosticOptions());
147 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
149 // Fail to undo.
150 auto Err1 = Interp->Undo();
151 EXPECT_EQ("Operation failed. Too many undos",
152 llvm::toString(std::move(Err1)));
153 auto Err2 = Interp->Parse("int foo = 42;");
154 EXPECT_TRUE(!!Err2);
155 auto Err3 = Interp->Undo(2);
156 EXPECT_EQ("Operation failed. Too many undos",
157 llvm::toString(std::move(Err3)));
159 // Succeed to undo.
160 auto Err4 = Interp->Parse("int x = 42;");
161 EXPECT_TRUE(!!Err4);
162 auto Err5 = Interp->Undo();
163 EXPECT_FALSE(Err5);
164 auto Err6 = Interp->Parse("int x = 24;");
165 EXPECT_TRUE(!!Err6);
166 auto Err7 = Interp->Parse("#define X 42");
167 EXPECT_TRUE(!!Err7);
168 auto Err8 = Interp->Undo();
169 EXPECT_FALSE(Err8);
170 auto Err9 = Interp->Parse("#define X 24");
171 EXPECT_TRUE(!!Err9);
173 // Undo input contains errors.
174 auto Err10 = Interp->Parse("int y = ;");
175 EXPECT_FALSE(!!Err10);
176 EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
177 auto Err11 = Interp->Parse("int y = 42;");
178 EXPECT_TRUE(!!Err11);
179 auto Err12 = Interp->Undo();
180 EXPECT_FALSE(Err12);
183 static std::string MangleName(NamedDecl *ND) {
184 ASTContext &C = ND->getASTContext();
185 std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
186 std::string mangledName;
187 llvm::raw_string_ostream RawStr(mangledName);
188 MangleC->mangleName(ND, RawStr);
189 return mangledName;
192 TEST_F(InterpreterTest, FindMangledNameSymbol) {
193 std::unique_ptr<Interpreter> Interp = createInterpreter();
195 auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
196 EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
197 auto R1DeclRange = PTU.TUPart->decls();
199 NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
200 // Lower the PTU
201 if (llvm::Error Err = Interp->Execute(PTU)) {
202 // We cannot execute on the platform.
203 consumeError(std::move(Err));
204 return;
207 std::string MangledName = MangleName(FD);
208 auto Addr = Interp->getSymbolAddress(MangledName);
209 EXPECT_FALSE(!Addr);
210 EXPECT_NE(0U, Addr->getValue());
211 GlobalDecl GD(FD);
212 EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
213 cantFail(
214 Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
215 Addr = Interp->getSymbolAddress("printf");
216 EXPECT_FALSE(!Addr);
218 // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
219 #ifndef _WIN32
220 EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
221 #endif // _WIN32
224 static Value AllocateObject(TypeDecl *TD, Interpreter &Interp) {
225 std::string Name = TD->getQualifiedNameAsString();
226 Value Addr;
227 // FIXME: Consider providing an option in clang::Value to take ownership of
228 // the memory created from the interpreter.
229 // cantFail(Interp.ParseAndExecute("new " + Name + "()", &Addr));
231 // The lifetime of the temporary is extended by the clang::Value.
232 cantFail(Interp.ParseAndExecute(Name + "()", &Addr));
233 return Addr;
236 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
237 Sema &SemaRef = Interp.getCompilerInstance()->getSema();
238 ASTContext &C = SemaRef.getASTContext();
239 DeclarationName DeclName = &C.Idents.get(Name);
240 LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
241 SemaRef.LookupName(R, SemaRef.TUScope);
242 assert(!R.empty());
243 return R.getFoundDecl();
246 TEST_F(InterpreterTest, InstantiateTemplate) {
247 // FIXME: We cannot yet handle delayed template parsing. If we run with
248 // -fdelayed-template-parsing we try adding the newly created decl to the
249 // active PTU which causes an assert.
250 std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
251 std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
253 llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
254 "class A {};"
255 "struct B {"
256 " template<typename T>"
257 " static int callme(T) { return 42; }"
258 "};"));
259 auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
260 auto PTUDeclRange = PTU.TUPart->decls();
261 EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
263 // Lower the PTU
264 if (llvm::Error Err = Interp->Execute(PTU)) {
265 // We cannot execute on the platform.
266 consumeError(std::move(Err));
267 return;
270 TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
271 Value NewA = AllocateObject(TD, *Interp);
273 // Find back the template specialization
274 VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
275 UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
276 NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
278 std::string MangledName = MangleName(TmpltSpec);
279 typedef int (*TemplateSpecFn)(void *);
280 auto fn =
281 cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
282 EXPECT_EQ(42, fn(NewA.getPtr()));
285 TEST_F(InterpreterTest, Value) {
286 std::vector<const char *> Args = {"-fno-sized-deallocation"};
287 std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
289 Value V1;
290 llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
291 llvm::cantFail(Interp->ParseAndExecute("x", &V1));
292 EXPECT_TRUE(V1.isValid());
293 EXPECT_TRUE(V1.hasValue());
294 EXPECT_EQ(V1.getInt(), 42);
295 EXPECT_EQ(V1.convertTo<int>(), 42);
296 EXPECT_TRUE(V1.getType()->isIntegerType());
297 EXPECT_EQ(V1.getKind(), Value::K_Int);
298 EXPECT_FALSE(V1.isManuallyAlloc());
300 Value V1b;
301 llvm::cantFail(Interp->ParseAndExecute("char c = 42;"));
302 llvm::cantFail(Interp->ParseAndExecute("c", &V1b));
303 EXPECT_TRUE(V1b.getKind() == Value::K_Char_S ||
304 V1b.getKind() == Value::K_Char_U);
306 Value V2;
307 llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
308 llvm::cantFail(Interp->ParseAndExecute("y", &V2));
309 EXPECT_TRUE(V2.isValid());
310 EXPECT_TRUE(V2.hasValue());
311 EXPECT_EQ(V2.getDouble(), 3.14);
312 EXPECT_EQ(V2.convertTo<double>(), 3.14);
313 EXPECT_TRUE(V2.getType()->isFloatingType());
314 EXPECT_EQ(V2.getKind(), Value::K_Double);
315 EXPECT_FALSE(V2.isManuallyAlloc());
317 Value V3;
318 llvm::cantFail(Interp->ParseAndExecute(
319 "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
320 llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
321 EXPECT_TRUE(V3.isValid());
322 EXPECT_TRUE(V3.hasValue());
323 EXPECT_TRUE(V3.getType()->isRecordType());
324 EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
325 EXPECT_TRUE(V3.isManuallyAlloc());
327 Value V4;
328 llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
329 llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
330 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
331 EXPECT_EQ(V4.getInt(), 42);
332 EXPECT_TRUE(V4.getType()->isIntegerType());
334 Value V5;
335 // Change the global from the compiled code.
336 setGlobal(43);
337 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
338 EXPECT_EQ(V5.getInt(), 43);
339 EXPECT_TRUE(V5.getType()->isIntegerType());
341 // Change the global from the interpreted code.
342 llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
343 EXPECT_EQ(getGlobal(), 44);
345 Value V6;
346 llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
347 llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
348 EXPECT_TRUE(V6.isValid());
349 EXPECT_FALSE(V6.hasValue());
350 EXPECT_TRUE(V6.getType()->isVoidType());
351 EXPECT_EQ(V6.getKind(), Value::K_Void);
352 EXPECT_FALSE(V2.isManuallyAlloc());
354 Value V7;
355 llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
356 EXPECT_TRUE(V7.isValid());
357 EXPECT_TRUE(V7.hasValue());
358 EXPECT_TRUE(V7.getType()->isFunctionProtoType());
359 EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
360 EXPECT_FALSE(V7.isManuallyAlloc());
362 Value V8;
363 llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
364 llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
365 EXPECT_TRUE(V8.isValid());
366 EXPECT_TRUE(V8.hasValue());
367 EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
368 EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
369 EXPECT_TRUE(V8.isManuallyAlloc());
371 Value V9;
372 llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
373 llvm::cantFail(
374 Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
375 llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
376 llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
377 EXPECT_TRUE(V9.isValid());
378 EXPECT_TRUE(V9.hasValue());
379 EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
380 EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
381 EXPECT_TRUE(V9.isManuallyAlloc());
384 TEST_F(InterpreterTest, TranslationUnit_CanonicalDecl) {
385 std::vector<const char *> Args;
386 std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
388 Sema &sema = Interp->getCompilerInstance()->getSema();
390 llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
392 TranslationUnitDecl *TU =
393 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl();
395 llvm::cantFail(Interp->ParseAndExecute("long y = 84;"));
397 EXPECT_EQ(TU,
398 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
400 llvm::cantFail(Interp->ParseAndExecute("char z = 'z';"));
402 EXPECT_EQ(TU,
403 sema.getASTContext().getTranslationUnitDecl()->getCanonicalDecl());
406 } // end anonymous namespace