Revert "[InstCombine] Support gep nuw in icmp folds" (#118698)
[llvm-project.git] / clang / utils / TableGen / ClangAttrEmitter.cpp
blob630beaef983bc6fcfb7fe16eefe3b2650bebd87a
1 //===-- ClangAttrEmitter.cpp - Generate Clang attribute handling ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
11 //===----------------------------------------------------------------------===//
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include "llvm/TableGen/StringMatcher.h"
30 #include "llvm/TableGen/TableGenBackend.h"
31 #include <cassert>
32 #include <cctype>
33 #include <cstddef>
34 #include <cstdint>
35 #include <map>
36 #include <memory>
37 #include <optional>
38 #include <set>
39 #include <string>
40 #include <utility>
41 #include <vector>
43 using namespace llvm;
45 namespace {
47 class FlattenedSpelling {
48 StringRef V, N, NS;
49 bool K = false;
50 const Record &OriginalSpelling;
52 public:
53 FlattenedSpelling(StringRef Variety, StringRef Name, StringRef Namespace,
54 bool KnownToGCC, const Record &OriginalSpelling)
55 : V(Variety), N(Name), NS(Namespace), K(KnownToGCC),
56 OriginalSpelling(OriginalSpelling) {}
57 explicit FlattenedSpelling(const Record &Spelling)
58 : V(Spelling.getValueAsString("Variety")),
59 N(Spelling.getValueAsString("Name")), OriginalSpelling(Spelling) {
60 assert(V != "GCC" && V != "Clang" &&
61 "Given a GCC spelling, which means this hasn't been flattened!");
62 if (V == "CXX11" || V == "C23" || V == "Pragma")
63 NS = Spelling.getValueAsString("Namespace");
66 StringRef variety() const { return V; }
67 StringRef name() const { return N; }
68 StringRef nameSpace() const { return NS; }
69 bool knownToGCC() const { return K; }
70 const Record &getSpellingRecord() const { return OriginalSpelling; }
73 struct FlattenedSpellingInfo {
74 FlattenedSpellingInfo(StringRef Syntax, StringRef Scope,
75 const std::string &TargetTest, uint32_t ArgMask)
76 : Syntax(Syntax), Scope(Scope), TargetTest(TargetTest), ArgMask(ArgMask) {
78 StringRef Syntax;
79 StringRef Scope;
80 std::string TargetTest;
81 uint32_t ArgMask;
83 using FSIVecTy = std::vector<FlattenedSpellingInfo>;
85 } // end anonymous namespace
87 static bool GenerateTargetSpecificAttrChecks(const Record *R,
88 std::vector<StringRef> &Arches,
89 std::string &Test,
90 std::string *FnName);
91 static bool isStringLiteralArgument(const Record *Arg);
92 static bool isVariadicStringLiteralArgument(const Record *Arg);
94 static std::vector<FlattenedSpelling>
95 GetFlattenedSpellings(const Record &Attr) {
96 std::vector<FlattenedSpelling> Ret;
98 for (const auto &Spelling : Attr.getValueAsListOfDefs("Spellings")) {
99 StringRef Variety = Spelling->getValueAsString("Variety");
100 StringRef Name = Spelling->getValueAsString("Name");
101 if (Variety == "GCC") {
102 Ret.emplace_back("GNU", Name, "", true, *Spelling);
103 Ret.emplace_back("CXX11", Name, "gnu", true, *Spelling);
104 if (Spelling->getValueAsBit("AllowInC"))
105 Ret.emplace_back("C23", Name, "gnu", true, *Spelling);
106 } else if (Variety == "Clang") {
107 Ret.emplace_back("GNU", Name, "", false, *Spelling);
108 Ret.emplace_back("CXX11", Name, "clang", false, *Spelling);
109 if (Spelling->getValueAsBit("AllowInC"))
110 Ret.emplace_back("C23", Name, "clang", false, *Spelling);
111 } else {
112 Ret.push_back(FlattenedSpelling(*Spelling));
116 return Ret;
119 static std::string ReadPCHRecord(StringRef type) {
120 return StringSwitch<std::string>(type)
121 .EndsWith("Decl *", "Record.readDeclAs<" + type.drop_back().str() + ">()")
122 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
123 .Case("Expr *", "Record.readExpr()")
124 .Case("IdentifierInfo *", "Record.readIdentifier()")
125 .Case("StringRef", "Record.readString()")
126 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
127 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
128 .Default("Record.readInt()");
131 // Get a type that is suitable for storing an object of the specified type.
132 static StringRef getStorageType(StringRef type) {
133 return StringSwitch<StringRef>(type)
134 .Case("StringRef", "std::string")
135 .Default(type);
138 // Assumes that the way to get the value is SA->getname()
139 static std::string WritePCHRecord(StringRef type, StringRef name) {
140 return "Record." +
141 StringSwitch<std::string>(type)
142 .EndsWith("Decl *", "AddDeclRef(" + name.str() + ");\n")
143 .Case("TypeSourceInfo *",
144 "AddTypeSourceInfo(" + name.str() + ");\n")
145 .Case("Expr *", "AddStmt(" + name.str() + ");\n")
146 .Case("IdentifierInfo *",
147 "AddIdentifierRef(" + name.str() + ");\n")
148 .Case("StringRef", "AddString(" + name.str() + ");\n")
149 .Case("ParamIdx", "push_back(" + name.str() + ".serialize());\n")
150 .Case("OMPTraitInfo *", "writeOMPTraitInfo(" + name.str() + ");\n")
151 .Default("push_back(" + name.str() + ");\n");
154 // Normalize attribute name by removing leading and trailing
155 // underscores. For example, __foo, foo__, __foo__ would
156 // become foo.
157 static StringRef NormalizeAttrName(StringRef AttrName) {
158 AttrName.consume_front("__");
159 AttrName.consume_back("__");
160 return AttrName;
163 // Normalize the name by removing any and all leading and trailing underscores.
164 // This is different from NormalizeAttrName in that it also handles names like
165 // _pascal and __pascal.
166 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
167 return Name.trim("_");
170 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
171 // removing "__" if it appears at the beginning and end of the attribute's name.
172 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
173 if (AttrSpelling.starts_with("__") && AttrSpelling.ends_with("__")) {
174 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
177 return AttrSpelling;
180 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
182 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
183 ParsedAttrMap *Dupes = nullptr,
184 bool SemaOnly = true) {
185 std::set<std::string> Seen;
186 ParsedAttrMap R;
187 for (const Record *Attr : Records.getAllDerivedDefinitions("Attr")) {
188 if (!SemaOnly || Attr->getValueAsBit("SemaHandler")) {
189 std::string AN;
190 if (Attr->isSubClassOf("TargetSpecificAttr") &&
191 !Attr->isValueUnset("ParseKind")) {
192 AN = Attr->getValueAsString("ParseKind").str();
194 // If this attribute has already been handled, it does not need to be
195 // handled again.
196 if (!Seen.insert(AN).second) {
197 if (Dupes)
198 Dupes->push_back(std::make_pair(AN, Attr));
199 continue;
201 } else
202 AN = NormalizeAttrName(Attr->getName()).str();
204 R.push_back(std::make_pair(AN, Attr));
207 return R;
210 namespace {
212 class Argument {
213 std::string lowerName, upperName;
214 StringRef attrName;
215 bool isOpt;
216 bool Fake;
218 public:
219 Argument(StringRef Arg, StringRef Attr)
220 : lowerName(Arg.str()), upperName(lowerName), attrName(Attr),
221 isOpt(false), Fake(false) {
222 if (!lowerName.empty()) {
223 lowerName[0] = std::tolower(lowerName[0]);
224 upperName[0] = std::toupper(upperName[0]);
226 // Work around MinGW's macro definition of 'interface' to 'struct'. We
227 // have an attribute argument called 'Interface', so only the lower case
228 // name conflicts with the macro definition.
229 if (lowerName == "interface")
230 lowerName = "interface_";
232 Argument(const Record &Arg, StringRef Attr)
233 : Argument(Arg.getValueAsString("Name"), Attr) {}
234 virtual ~Argument() = default;
236 StringRef getLowerName() const { return lowerName; }
237 StringRef getUpperName() const { return upperName; }
238 StringRef getAttrName() const { return attrName; }
240 bool isOptional() const { return isOpt; }
241 void setOptional(bool set) { isOpt = set; }
243 bool isFake() const { return Fake; }
244 void setFake(bool fake) { Fake = fake; }
246 // These functions print the argument contents formatted in different ways.
247 virtual void writeAccessors(raw_ostream &OS) const = 0;
248 virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
249 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
250 virtual void writeCloneArgs(raw_ostream &OS) const = 0;
251 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
252 virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
253 virtual void writeCtorBody(raw_ostream &OS) const {}
254 virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
255 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
256 virtual void writeCtorParameters(raw_ostream &OS) const = 0;
257 virtual void writeDeclarations(raw_ostream &OS) const = 0;
258 virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
259 virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
260 virtual void writePCHWrite(raw_ostream &OS) const = 0;
261 virtual std::string getIsOmitted() const { return "false"; }
262 virtual void writeValue(raw_ostream &OS) const = 0;
263 virtual void writeDump(raw_ostream &OS) const = 0;
264 virtual void writeDumpChildren(raw_ostream &OS) const {}
265 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
267 virtual bool isEnumArg() const { return false; }
268 virtual bool isVariadicEnumArg() const { return false; }
269 virtual bool isVariadic() const { return false; }
271 virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
272 OS << getUpperName();
276 class SimpleArgument : public Argument {
277 std::string type;
279 public:
280 SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
281 : Argument(Arg, Attr), type(std::move(T)) {}
283 std::string getType() const { return type; }
285 void writeAccessors(raw_ostream &OS) const override {
286 OS << " " << type << " get" << getUpperName() << "() const {\n";
287 OS << " return " << getLowerName() << ";\n";
288 OS << " }";
291 void writeCloneArgs(raw_ostream &OS) const override {
292 OS << getLowerName();
295 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
296 OS << "A->get" << getUpperName() << "()";
299 void writeCtorInitializers(raw_ostream &OS) const override {
300 OS << getLowerName() << "(" << getUpperName() << ")";
303 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
304 OS << getLowerName() << "()";
307 void writeCtorParameters(raw_ostream &OS) const override {
308 OS << type << " " << getUpperName();
311 void writeDeclarations(raw_ostream &OS) const override {
312 OS << type << " " << getLowerName() << ";";
315 void writePCHReadDecls(raw_ostream &OS) const override {
316 std::string read = ReadPCHRecord(type);
317 OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
320 void writePCHReadArgs(raw_ostream &OS) const override {
321 OS << getLowerName();
324 void writePCHWrite(raw_ostream &OS) const override {
325 OS << " "
326 << WritePCHRecord(type, "SA->get" + getUpperName().str() + "()");
329 std::string getIsOmitted() const override {
330 auto IsOneOf = [](StringRef subject, auto... list) {
331 return ((subject == list) || ...);
334 if (IsOneOf(type, "IdentifierInfo *", "Expr *"))
335 return "!get" + getUpperName().str() + "()";
336 if (IsOneOf(type, "TypeSourceInfo *"))
337 return "!get" + getUpperName().str() + "Loc()";
338 if (IsOneOf(type, "ParamIdx"))
339 return "!get" + getUpperName().str() + "().isValid()";
341 assert(IsOneOf(type, "unsigned", "int", "bool", "FunctionDecl *",
342 "VarDecl *"));
343 return "false";
346 void writeValue(raw_ostream &OS) const override {
347 if (type == "FunctionDecl *")
348 OS << "\" << get" << getUpperName()
349 << "()->getNameInfo().getAsString() << \"";
350 else if (type == "IdentifierInfo *")
351 // Some non-optional (comma required) identifier arguments can be the
352 // empty string but are then recorded as a nullptr.
353 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
354 << "()->getName() : \"\") << \"";
355 else if (type == "VarDecl *")
356 OS << "\" << get" << getUpperName() << "()->getName() << \"";
357 else if (type == "TypeSourceInfo *")
358 OS << "\" << get" << getUpperName() << "().getAsString() << \"";
359 else if (type == "ParamIdx")
360 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
361 else
362 OS << "\" << get" << getUpperName() << "() << \"";
365 void writeDump(raw_ostream &OS) const override {
366 if (StringRef(type).ends_with("Decl *")) {
367 OS << " OS << \" \";\n";
368 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
369 } else if (type == "IdentifierInfo *") {
370 // Some non-optional (comma required) identifier arguments can be the
371 // empty string but are then recorded as a nullptr.
372 OS << " if (SA->get" << getUpperName() << "())\n"
373 << " OS << \" \" << SA->get" << getUpperName()
374 << "()->getName();\n";
375 } else if (type == "TypeSourceInfo *") {
376 if (isOptional())
377 OS << " if (SA->get" << getUpperName() << "Loc())";
378 OS << " OS << \" \" << SA->get" << getUpperName()
379 << "().getAsString();\n";
380 } else if (type == "bool") {
381 OS << " if (SA->get" << getUpperName() << "()) OS << \" "
382 << getUpperName() << "\";\n";
383 } else if (type == "int" || type == "unsigned") {
384 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
385 } else if (type == "ParamIdx") {
386 if (isOptional())
387 OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
388 OS << " OS << \" \" << SA->get" << getUpperName()
389 << "().getSourceIndex();\n";
390 } else if (type == "OMPTraitInfo *") {
391 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
392 } else {
393 llvm_unreachable("Unknown SimpleArgument type!");
398 class DefaultSimpleArgument : public SimpleArgument {
399 int64_t Default;
401 public:
402 DefaultSimpleArgument(const Record &Arg, StringRef Attr,
403 std::string T, int64_t Default)
404 : SimpleArgument(Arg, Attr, T), Default(Default) {}
406 void writeAccessors(raw_ostream &OS) const override {
407 SimpleArgument::writeAccessors(OS);
409 OS << "\n\n static const " << getType() << " Default" << getUpperName()
410 << " = ";
411 if (getType() == "bool")
412 OS << (Default != 0 ? "true" : "false");
413 else
414 OS << Default;
415 OS << ";";
419 class StringArgument : public Argument {
420 public:
421 StringArgument(const Record &Arg, StringRef Attr)
422 : Argument(Arg, Attr)
425 void writeAccessors(raw_ostream &OS) const override {
426 OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
427 OS << " return llvm::StringRef(" << getLowerName() << ", "
428 << getLowerName() << "Length);\n";
429 OS << " }\n";
430 OS << " unsigned get" << getUpperName() << "Length() const {\n";
431 OS << " return " << getLowerName() << "Length;\n";
432 OS << " }\n";
433 OS << " void set" << getUpperName()
434 << "(ASTContext &C, llvm::StringRef S) {\n";
435 OS << " " << getLowerName() << "Length = S.size();\n";
436 OS << " this->" << getLowerName() << " = new (C, 1) char ["
437 << getLowerName() << "Length];\n";
438 OS << " if (!S.empty())\n";
439 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
440 << getLowerName() << "Length);\n";
441 OS << " }";
444 void writeCloneArgs(raw_ostream &OS) const override {
445 OS << "get" << getUpperName() << "()";
448 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
449 OS << "A->get" << getUpperName() << "()";
452 void writeCtorBody(raw_ostream &OS) const override {
453 OS << " if (!" << getUpperName() << ".empty())\n";
454 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
455 << ".data(), " << getLowerName() << "Length);\n";
458 void writeCtorInitializers(raw_ostream &OS) const override {
459 OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
460 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
461 << "Length])";
464 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
465 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
468 void writeCtorParameters(raw_ostream &OS) const override {
469 OS << "llvm::StringRef " << getUpperName();
472 void writeDeclarations(raw_ostream &OS) const override {
473 OS << "unsigned " << getLowerName() << "Length;\n";
474 OS << "char *" << getLowerName() << ";";
477 void writePCHReadDecls(raw_ostream &OS) const override {
478 OS << " std::string " << getLowerName()
479 << "= Record.readString();\n";
482 void writePCHReadArgs(raw_ostream &OS) const override {
483 OS << getLowerName();
486 void writePCHWrite(raw_ostream &OS) const override {
487 OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
490 void writeValue(raw_ostream &OS) const override {
491 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
494 void writeDump(raw_ostream &OS) const override {
495 OS << " OS << \" \\\"\" << SA->get" << getUpperName()
496 << "() << \"\\\"\";\n";
500 class AlignedArgument : public Argument {
501 public:
502 AlignedArgument(const Record &Arg, StringRef Attr)
503 : Argument(Arg, Attr)
506 void writeAccessors(raw_ostream &OS) const override {
507 OS << " bool is" << getUpperName() << "Dependent() const;\n";
508 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
510 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
512 OS << " bool is" << getUpperName() << "Expr() const {\n";
513 OS << " return is" << getLowerName() << "Expr;\n";
514 OS << " }\n";
516 OS << " Expr *get" << getUpperName() << "Expr() const {\n";
517 OS << " assert(is" << getLowerName() << "Expr);\n";
518 OS << " return " << getLowerName() << "Expr;\n";
519 OS << " }\n";
521 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
522 OS << " assert(!is" << getLowerName() << "Expr);\n";
523 OS << " return " << getLowerName() << "Type;\n";
524 OS << " }";
526 OS << " std::optional<unsigned> getCached" << getUpperName()
527 << "Value() const {\n";
528 OS << " return " << getLowerName() << "Cache;\n";
529 OS << " }";
531 OS << " void setCached" << getUpperName()
532 << "Value(unsigned AlignVal) {\n";
533 OS << " " << getLowerName() << "Cache = AlignVal;\n";
534 OS << " }";
537 void writeAccessorDefinitions(raw_ostream &OS) const override {
538 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
539 << "Dependent() const {\n";
540 OS << " if (is" << getLowerName() << "Expr)\n";
541 OS << " return " << getLowerName() << "Expr && (" << getLowerName()
542 << "Expr->isValueDependent() || " << getLowerName()
543 << "Expr->isTypeDependent());\n";
544 OS << " else\n";
545 OS << " return " << getLowerName()
546 << "Type->getType()->isDependentType();\n";
547 OS << "}\n";
549 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
550 << "ErrorDependent() const {\n";
551 OS << " if (is" << getLowerName() << "Expr)\n";
552 OS << " return " << getLowerName() << "Expr && " << getLowerName()
553 << "Expr->containsErrors();\n";
554 OS << " return " << getLowerName()
555 << "Type->getType()->containsErrors();\n";
556 OS << "}\n";
559 void writeASTVisitorTraversal(raw_ostream &OS) const override {
560 StringRef Name = getUpperName();
561 OS << " if (A->is" << Name << "Expr()) {\n"
562 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
563 << " return false;\n"
564 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
565 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
566 << " return false;\n"
567 << " }\n";
570 void writeCloneArgs(raw_ostream &OS) const override {
571 OS << "is" << getLowerName() << "Expr, is" << getLowerName()
572 << "Expr ? static_cast<void*>(" << getLowerName()
573 << "Expr) : " << getLowerName()
574 << "Type";
577 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
578 // FIXME: move the definition in Sema::InstantiateAttrs to here.
579 // In the meantime, aligned attributes are cloned.
582 void writeCtorBody(raw_ostream &OS) const override {
583 OS << " if (is" << getLowerName() << "Expr)\n";
584 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
585 << getUpperName() << ");\n";
586 OS << " else\n";
587 OS << " " << getLowerName()
588 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
589 << ");\n";
592 void writeCtorInitializers(raw_ostream &OS) const override {
593 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
596 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
597 OS << "is" << getLowerName() << "Expr(false)";
600 void writeCtorParameters(raw_ostream &OS) const override {
601 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
604 void writeImplicitCtorArgs(raw_ostream &OS) const override {
605 OS << "Is" << getUpperName() << "Expr, " << getUpperName();
608 void writeDeclarations(raw_ostream &OS) const override {
609 OS << "bool is" << getLowerName() << "Expr;\n";
610 OS << "union {\n";
611 OS << "Expr *" << getLowerName() << "Expr;\n";
612 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
613 OS << "};\n";
614 OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n";
617 void writePCHReadArgs(raw_ostream &OS) const override {
618 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
621 void writePCHReadDecls(raw_ostream &OS) const override {
622 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
623 OS << " void *" << getLowerName() << "Ptr;\n";
624 OS << " if (is" << getLowerName() << "Expr)\n";
625 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
626 OS << " else\n";
627 OS << " " << getLowerName()
628 << "Ptr = Record.readTypeSourceInfo();\n";
631 void writePCHWrite(raw_ostream &OS) const override {
632 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
633 OS << " if (SA->is" << getUpperName() << "Expr())\n";
634 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
635 OS << " else\n";
636 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
637 << "Type());\n";
640 std::string getIsOmitted() const override {
641 return "!((is" + getLowerName().str() + "Expr && " +
642 getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
643 "Expr && " + getLowerName().str() + "Type))";
646 void writeValue(raw_ostream &OS) const override {
647 OS << "\";\n";
648 OS << " if (is" << getLowerName() << "Expr && " << getLowerName()
649 << "Expr)";
650 OS << " " << getLowerName()
651 << "Expr->printPretty(OS, nullptr, Policy);\n";
652 OS << " if (!is" << getLowerName() << "Expr && " << getLowerName()
653 << "Type)";
654 OS << " " << getLowerName()
655 << "Type->getType().print(OS, Policy);\n";
656 OS << " OS << \"";
659 void writeDump(raw_ostream &OS) const override {
660 OS << " if (!SA->is" << getUpperName() << "Expr())\n";
661 OS << " dumpType(SA->get" << getUpperName()
662 << "Type()->getType());\n";
665 void writeDumpChildren(raw_ostream &OS) const override {
666 OS << " if (SA->is" << getUpperName() << "Expr())\n";
667 OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
670 void writeHasChildren(raw_ostream &OS) const override {
671 OS << "SA->is" << getUpperName() << "Expr()";
675 class VariadicArgument : public Argument {
676 std::string Type, ArgName, ArgSizeName, RangeName;
678 protected:
679 // Assumed to receive a parameter: raw_ostream OS.
680 virtual void writeValueImpl(raw_ostream &OS) const {
681 OS << " OS << Val;\n";
683 // Assumed to receive a parameter: raw_ostream OS.
684 virtual void writeDumpImpl(raw_ostream &OS) const {
685 OS << " OS << \" \" << Val;\n";
688 public:
689 VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
690 : Argument(Arg, Attr), Type(std::move(T)),
691 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
692 RangeName(getLowerName().str()) {}
694 VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
695 : Argument(Arg, Attr), Type(std::move(T)),
696 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
697 RangeName(getLowerName().str()) {}
699 const std::string &getType() const { return Type; }
700 const std::string &getArgName() const { return ArgName; }
701 const std::string &getArgSizeName() const { return ArgSizeName; }
702 bool isVariadic() const override { return true; }
704 void writeAccessors(raw_ostream &OS) const override {
705 std::string IteratorType = getLowerName().str() + "_iterator";
706 std::string BeginFn = getLowerName().str() + "_begin()";
707 std::string EndFn = getLowerName().str() + "_end()";
709 OS << " typedef " << Type << "* " << IteratorType << ";\n";
710 OS << " " << IteratorType << " " << BeginFn << " const {"
711 << " return " << ArgName << "; }\n";
712 OS << " " << IteratorType << " " << EndFn << " const {"
713 << " return " << ArgName << " + " << ArgSizeName << "; }\n";
714 OS << " unsigned " << getLowerName() << "_size() const {"
715 << " return " << ArgSizeName << "; }\n";
716 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
717 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
718 << "); }\n";
721 void writeSetter(raw_ostream &OS) const {
722 OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
723 writeCtorParameters(OS);
724 OS << ") {\n";
725 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
726 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
727 << ArgSizeName << "];\n";
728 OS << " ";
729 writeCtorBody(OS);
730 OS << " }\n";
733 void writeCloneArgs(raw_ostream &OS) const override {
734 OS << ArgName << ", " << ArgSizeName;
737 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
738 // This isn't elegant, but we have to go through public methods...
739 OS << "A->" << getLowerName() << "_begin(), "
740 << "A->" << getLowerName() << "_size()";
743 void writeASTVisitorTraversal(raw_ostream &OS) const override {
744 // FIXME: Traverse the elements.
747 void writeCtorBody(raw_ostream &OS) const override {
748 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
749 << ArgSizeName << ", " << ArgName << ");\n";
752 void writeCtorInitializers(raw_ostream &OS) const override {
753 OS << ArgSizeName << "(" << getUpperName() << "Size), "
754 << ArgName << "(new (Ctx, 16) " << getType() << "["
755 << ArgSizeName << "])";
758 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
759 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
762 void writeCtorParameters(raw_ostream &OS) const override {
763 OS << getType() << " *" << getUpperName() << ", unsigned "
764 << getUpperName() << "Size";
767 void writeImplicitCtorArgs(raw_ostream &OS) const override {
768 OS << getUpperName() << ", " << getUpperName() << "Size";
771 void writeDeclarations(raw_ostream &OS) const override {
772 OS << " unsigned " << ArgSizeName << ";\n";
773 OS << " " << getType() << " *" << ArgName << ";";
776 void writePCHReadDecls(raw_ostream &OS) const override {
777 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
778 OS << " SmallVector<" << getType() << ", 4> "
779 << getLowerName() << ";\n";
780 OS << " " << getLowerName() << ".reserve(" << getLowerName()
781 << "Size);\n";
783 // If we can't store the values in the current type (if it's something
784 // like StringRef), store them in a different type and convert the
785 // container afterwards.
786 std::string StorageType = getStorageType(getType()).str();
787 std::string StorageName = getLowerName().str();
788 if (StorageType != getType()) {
789 StorageName += "Storage";
790 OS << " SmallVector<" << StorageType << ", 4> "
791 << StorageName << ";\n";
792 OS << " " << StorageName << ".reserve(" << getLowerName()
793 << "Size);\n";
796 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
797 std::string read = ReadPCHRecord(Type);
798 OS << " " << StorageName << ".push_back(" << read << ");\n";
800 if (StorageType != getType()) {
801 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
802 OS << " " << getLowerName() << ".push_back("
803 << StorageName << "[i]);\n";
807 void writePCHReadArgs(raw_ostream &OS) const override {
808 OS << getLowerName() << ".data(), " << getLowerName() << "Size";
811 void writePCHWrite(raw_ostream &OS) const override {
812 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
813 OS << " for (auto &Val : SA->" << RangeName << "())\n";
814 OS << " " << WritePCHRecord(Type, "Val");
817 void writeValue(raw_ostream &OS) const override {
818 OS << "\";\n";
819 OS << " for (const auto &Val : " << RangeName << "()) {\n"
820 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
821 writeValueImpl(OS);
822 OS << " }\n";
823 OS << " OS << \"";
826 void writeDump(raw_ostream &OS) const override {
827 OS << " for (const auto &Val : SA->" << RangeName << "())\n";
828 writeDumpImpl(OS);
832 class VariadicOMPInteropInfoArgument : public VariadicArgument {
833 public:
834 VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr)
835 : VariadicArgument(Arg, Attr, "OMPInteropInfo") {}
837 void writeDump(raw_ostream &OS) const override {
838 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
839 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
840 << getLowerName() << "_end(); I != E; ++I) {\n";
841 OS << " if (I->IsTarget && I->IsTargetSync)\n";
842 OS << " OS << \" Target_TargetSync\";\n";
843 OS << " else if (I->IsTarget)\n";
844 OS << " OS << \" Target\";\n";
845 OS << " else\n";
846 OS << " OS << \" TargetSync\";\n";
847 OS << " }\n";
850 void writePCHReadDecls(raw_ostream &OS) const override {
851 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
852 OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
853 OS << " " << getLowerName() << ".reserve(" << getLowerName()
854 << "Size);\n";
855 OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
856 OS << "I != E; ++I) {\n";
857 OS << " bool IsTarget = Record.readBool();\n";
858 OS << " bool IsTargetSync = Record.readBool();\n";
859 OS << " " << getLowerName()
860 << ".emplace_back(IsTarget, IsTargetSync);\n";
861 OS << " }\n";
864 void writePCHWrite(raw_ostream &OS) const override {
865 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
866 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
867 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
868 << getLowerName() << "_end(); I != E; ++I) {\n";
869 OS << " Record.writeBool(I->IsTarget);\n";
870 OS << " Record.writeBool(I->IsTargetSync);\n";
871 OS << " }\n";
875 class VariadicParamIdxArgument : public VariadicArgument {
876 public:
877 VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
878 : VariadicArgument(Arg, Attr, "ParamIdx") {}
880 public:
881 void writeValueImpl(raw_ostream &OS) const override {
882 OS << " OS << Val.getSourceIndex();\n";
885 void writeDumpImpl(raw_ostream &OS) const override {
886 OS << " OS << \" \" << Val.getSourceIndex();\n";
890 struct VariadicParamOrParamIdxArgument : public VariadicArgument {
891 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
892 : VariadicArgument(Arg, Attr, "int") {}
895 // Unique the enums, but maintain the original declaration ordering.
896 std::vector<StringRef>
897 uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
898 std::vector<StringRef> uniques;
899 SmallDenseSet<StringRef, 8> unique_set;
900 for (const auto &i : enums) {
901 if (unique_set.insert(i).second)
902 uniques.push_back(i);
904 return uniques;
907 class EnumArgument : public Argument {
908 std::string fullType;
909 StringRef shortType;
910 std::vector<StringRef> values, enums, uniques;
911 bool isExternal;
912 bool isCovered;
914 public:
915 EnumArgument(const Record &Arg, StringRef Attr)
916 : Argument(Arg, Attr), values(Arg.getValueAsListOfStrings("Values")),
917 enums(Arg.getValueAsListOfStrings("Enums")),
918 uniques(uniqueEnumsInOrder(enums)),
919 isExternal(Arg.getValueAsBit("IsExternalType")),
920 isCovered(Arg.getValueAsBit("IsCovered")) {
921 StringRef Type = Arg.getValueAsString("Type");
922 shortType = isExternal ? Type.rsplit("::").second : Type;
923 // If shortType didn't contain :: at all rsplit will give us an empty
924 // string.
925 if (shortType.empty())
926 shortType = Type;
927 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
929 // FIXME: Emit a proper error
930 assert(!uniques.empty());
933 bool isEnumArg() const override { return true; }
935 void writeAccessors(raw_ostream &OS) const override {
936 OS << " " << fullType << " get" << getUpperName() << "() const {\n";
937 OS << " return " << getLowerName() << ";\n";
938 OS << " }";
941 void writeCloneArgs(raw_ostream &OS) const override {
942 OS << getLowerName();
945 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
946 OS << "A->get" << getUpperName() << "()";
948 void writeCtorInitializers(raw_ostream &OS) const override {
949 OS << getLowerName() << "(" << getUpperName() << ")";
951 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
952 OS << getLowerName() << "(" << fullType << "(0))";
954 void writeCtorParameters(raw_ostream &OS) const override {
955 OS << fullType << " " << getUpperName();
957 void writeDeclarations(raw_ostream &OS) const override {
958 if (!isExternal) {
959 auto i = uniques.cbegin(), e = uniques.cend();
960 // The last one needs to not have a comma.
961 --e;
963 OS << "public:\n";
964 OS << " enum " << shortType << " {\n";
965 for (; i != e; ++i)
966 OS << " " << *i << ",\n";
967 OS << " " << *e << "\n";
968 OS << " };\n";
971 OS << "private:\n";
972 OS << " " << fullType << " " << getLowerName() << ";";
975 void writePCHReadDecls(raw_ostream &OS) const override {
976 OS << " " << fullType << " " << getLowerName() << "(static_cast<"
977 << fullType << ">(Record.readInt()));\n";
980 void writePCHReadArgs(raw_ostream &OS) const override {
981 OS << getLowerName();
984 void writePCHWrite(raw_ostream &OS) const override {
985 OS << "Record.push_back(static_cast<uint64_t>(SA->get" << getUpperName()
986 << "()));\n";
989 void writeValue(raw_ostream &OS) const override {
990 // FIXME: this isn't 100% correct -- some enum arguments require printing
991 // as a string literal, while others require printing as an identifier.
992 // Tablegen currently does not distinguish between the two forms.
993 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << shortType
994 << "ToStr(get" << getUpperName() << "()) << \"\\\"";
997 void writeDump(raw_ostream &OS) const override {
998 OS << " switch(SA->get" << getUpperName() << "()) {\n";
999 for (const auto &I : uniques) {
1000 OS << " case " << fullType << "::" << I << ":\n";
1001 OS << " OS << \" " << I << "\";\n";
1002 OS << " break;\n";
1004 if (!isCovered) {
1005 OS << " default:\n";
1006 OS << " llvm_unreachable(\"Invalid attribute value\");\n";
1008 OS << " }\n";
1011 void writeConversion(raw_ostream &OS, bool Header) const {
1012 if (Header) {
1013 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1014 << fullType << " &Out);\n";
1015 OS << " static const char *Convert" << shortType << "ToStr("
1016 << fullType << " Val);\n";
1017 return;
1020 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1021 << "(StringRef Val, " << fullType << " &Out) {\n";
1022 OS << " std::optional<" << fullType << "> "
1023 << "R = llvm::StringSwitch<std::optional<" << fullType << ">>(Val)\n";
1024 for (size_t I = 0; I < enums.size(); ++I) {
1025 OS << " .Case(\"" << values[I] << "\", ";
1026 OS << fullType << "::" << enums[I] << ")\n";
1028 OS << " .Default(std::optional<" << fullType << ">());\n";
1029 OS << " if (R) {\n";
1030 OS << " Out = *R;\n return true;\n }\n";
1031 OS << " return false;\n";
1032 OS << "}\n\n";
1034 // Mapping from enumeration values back to enumeration strings isn't
1035 // trivial because some enumeration values have multiple named
1036 // enumerators, such as type_visibility(internal) and
1037 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
1038 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1039 << "ToStr(" << fullType << " Val) {\n"
1040 << " switch(Val) {\n";
1041 SmallDenseSet<StringRef, 8> Uniques;
1042 for (size_t I = 0; I < enums.size(); ++I) {
1043 if (Uniques.insert(enums[I]).second)
1044 OS << " case " << fullType << "::" << enums[I] << ": return \""
1045 << values[I] << "\";\n";
1047 if (!isCovered) {
1048 OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
1050 OS << " }\n"
1051 << " llvm_unreachable(\"No enumerator with that value\");\n"
1052 << "}\n";
1056 class VariadicEnumArgument: public VariadicArgument {
1057 std::string fullType;
1058 StringRef shortType;
1059 std::vector<StringRef> values, enums, uniques;
1060 bool isExternal;
1061 bool isCovered;
1063 protected:
1064 void writeValueImpl(raw_ostream &OS) const override {
1065 // FIXME: this isn't 100% correct -- some enum arguments require printing
1066 // as a string literal, while others require printing as an identifier.
1067 // Tablegen currently does not distinguish between the two forms.
1068 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert"
1069 << shortType << "ToStr(Val)"
1070 << "<< \"\\\"\";\n";
1073 public:
1074 VariadicEnumArgument(const Record &Arg, StringRef Attr)
1075 : VariadicArgument(Arg, Attr, Arg.getValueAsString("Type").str()),
1076 values(Arg.getValueAsListOfStrings("Values")),
1077 enums(Arg.getValueAsListOfStrings("Enums")),
1078 uniques(uniqueEnumsInOrder(enums)),
1079 isExternal(Arg.getValueAsBit("IsExternalType")),
1080 isCovered(Arg.getValueAsBit("IsCovered")) {
1081 StringRef Type = Arg.getValueAsString("Type");
1082 shortType = isExternal ? Type.rsplit("::").second : Type;
1083 // If shortType didn't contain :: at all rsplit will give us an empty
1084 // string.
1085 if (shortType.empty())
1086 shortType = Type;
1087 fullType = isExternal ? Type : (getAttrName() + "Attr::" + Type).str();
1089 // FIXME: Emit a proper error
1090 assert(!uniques.empty());
1093 bool isVariadicEnumArg() const override { return true; }
1095 void writeDeclarations(raw_ostream &OS) const override {
1096 if (!isExternal) {
1097 auto i = uniques.cbegin(), e = uniques.cend();
1098 // The last one needs to not have a comma.
1099 --e;
1101 OS << "public:\n";
1102 OS << " enum " << shortType << " {\n";
1103 for (; i != e; ++i)
1104 OS << " " << *i << ",\n";
1105 OS << " " << *e << "\n";
1106 OS << " };\n";
1108 OS << "private:\n";
1110 VariadicArgument::writeDeclarations(OS);
1113 void writeDump(raw_ostream &OS) const override {
1114 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1115 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1116 << getLowerName() << "_end(); I != E; ++I) {\n";
1117 OS << " switch(*I) {\n";
1118 for (const auto &UI : uniques) {
1119 OS << " case " << fullType << "::" << UI << ":\n";
1120 OS << " OS << \" " << UI << "\";\n";
1121 OS << " break;\n";
1123 if (!isCovered) {
1124 OS << " default:\n";
1125 OS << " llvm_unreachable(\"Invalid attribute value\");\n";
1127 OS << " }\n";
1128 OS << " }\n";
1131 void writePCHReadDecls(raw_ostream &OS) const override {
1132 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1133 OS << " SmallVector<" << fullType << ", 4> " << getLowerName()
1134 << ";\n";
1135 OS << " " << getLowerName() << ".reserve(" << getLowerName()
1136 << "Size);\n";
1137 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1138 OS << " " << getLowerName() << ".push_back("
1139 << "static_cast<" << fullType << ">(Record.readInt()));\n";
1142 void writePCHWrite(raw_ostream &OS) const override {
1143 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
1144 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1145 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1146 << getLowerName() << "_end(); i != e; ++i)\n";
1147 OS << " " << WritePCHRecord(fullType, "(*i)");
1150 void writeConversion(raw_ostream &OS, bool Header) const {
1151 if (Header) {
1152 OS << " static bool ConvertStrTo" << shortType << "(StringRef Val, "
1153 << fullType << " &Out);\n";
1154 OS << " static const char *Convert" << shortType << "ToStr("
1155 << fullType << " Val);\n";
1156 return;
1159 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << shortType
1160 << "(StringRef Val, ";
1161 OS << fullType << " &Out) {\n";
1162 OS << " std::optional<" << fullType
1163 << "> R = llvm::StringSwitch<std::optional<";
1164 OS << fullType << ">>(Val)\n";
1165 for (size_t I = 0; I < enums.size(); ++I) {
1166 OS << " .Case(\"" << values[I] << "\", ";
1167 OS << fullType << "::" << enums[I] << ")\n";
1169 OS << " .Default(std::optional<" << fullType << ">());\n";
1170 OS << " if (R) {\n";
1171 OS << " Out = *R;\n return true;\n }\n";
1172 OS << " return false;\n";
1173 OS << "}\n\n";
1175 OS << "const char *" << getAttrName() << "Attr::Convert" << shortType
1176 << "ToStr(" << fullType << " Val) {\n"
1177 << " switch(Val) {\n";
1178 SmallDenseSet<StringRef, 8> Uniques;
1179 for (size_t I = 0; I < enums.size(); ++I) {
1180 if (Uniques.insert(enums[I]).second)
1181 OS << " case " << fullType << "::" << enums[I] << ": return \""
1182 << values[I] << "\";\n";
1184 if (!isCovered) {
1185 OS << " default: llvm_unreachable(\"Invalid attribute value\");\n";
1187 OS << " }\n"
1188 << " llvm_unreachable(\"No enumerator with that value\");\n"
1189 << "}\n";
1193 class VersionArgument : public Argument {
1194 public:
1195 VersionArgument(const Record &Arg, StringRef Attr)
1196 : Argument(Arg, Attr)
1199 void writeAccessors(raw_ostream &OS) const override {
1200 OS << " VersionTuple get" << getUpperName() << "() const {\n";
1201 OS << " return " << getLowerName() << ";\n";
1202 OS << " }\n";
1203 OS << " void set" << getUpperName()
1204 << "(ASTContext &C, VersionTuple V) {\n";
1205 OS << " " << getLowerName() << " = V;\n";
1206 OS << " }";
1209 void writeCloneArgs(raw_ostream &OS) const override {
1210 OS << "get" << getUpperName() << "()";
1213 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1214 OS << "A->get" << getUpperName() << "()";
1217 void writeCtorInitializers(raw_ostream &OS) const override {
1218 OS << getLowerName() << "(" << getUpperName() << ")";
1221 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1222 OS << getLowerName() << "()";
1225 void writeCtorParameters(raw_ostream &OS) const override {
1226 OS << "VersionTuple " << getUpperName();
1229 void writeDeclarations(raw_ostream &OS) const override {
1230 OS << "VersionTuple " << getLowerName() << ";\n";
1233 void writePCHReadDecls(raw_ostream &OS) const override {
1234 OS << " VersionTuple " << getLowerName()
1235 << "= Record.readVersionTuple();\n";
1238 void writePCHReadArgs(raw_ostream &OS) const override {
1239 OS << getLowerName();
1242 void writePCHWrite(raw_ostream &OS) const override {
1243 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1246 void writeValue(raw_ostream &OS) const override {
1247 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1250 void writeDump(raw_ostream &OS) const override {
1251 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
1255 class ExprArgument : public SimpleArgument {
1256 public:
1257 ExprArgument(const Record &Arg, StringRef Attr)
1258 : SimpleArgument(Arg, Attr, "Expr *")
1261 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1262 OS << " if (!"
1263 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1264 OS << " return false;\n";
1267 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1268 OS << "tempInst" << getUpperName();
1271 void writeTemplateInstantiation(raw_ostream &OS) const override {
1272 OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
1273 OS << " {\n";
1274 OS << " EnterExpressionEvaluationContext "
1275 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1276 OS << " ExprResult " << "Result = S.SubstExpr("
1277 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1278 OS << " if (Result.isInvalid())\n";
1279 OS << " return nullptr;\n";
1280 OS << " tempInst" << getUpperName() << " = Result.get();\n";
1281 OS << " }\n";
1284 void writeValue(raw_ostream &OS) const override {
1285 OS << "\";\n";
1286 OS << " get" << getUpperName()
1287 << "()->printPretty(OS, nullptr, Policy);\n";
1288 OS << " OS << \"";
1291 void writeDump(raw_ostream &OS) const override {}
1293 void writeDumpChildren(raw_ostream &OS) const override {
1294 OS << " Visit(SA->get" << getUpperName() << "());\n";
1297 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1300 class VariadicExprArgument : public VariadicArgument {
1301 public:
1302 VariadicExprArgument(const Record &Arg, StringRef Attr)
1303 : VariadicArgument(Arg, Attr, "Expr *")
1306 VariadicExprArgument(StringRef ArgName, StringRef Attr)
1307 : VariadicArgument(ArgName, Attr, "Expr *") {}
1309 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1310 OS << " {\n";
1311 OS << " " << getType() << " *I = A->" << getLowerName()
1312 << "_begin();\n";
1313 OS << " " << getType() << " *E = A->" << getLowerName()
1314 << "_end();\n";
1315 OS << " for (; I != E; ++I) {\n";
1316 OS << " if (!getDerived().TraverseStmt(*I))\n";
1317 OS << " return false;\n";
1318 OS << " }\n";
1319 OS << " }\n";
1322 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1323 OS << "tempInst" << getUpperName() << ", "
1324 << "A->" << getLowerName() << "_size()";
1327 void writeTemplateInstantiation(raw_ostream &OS) const override {
1328 OS << " auto *tempInst" << getUpperName()
1329 << " = new (C, 16) " << getType()
1330 << "[A->" << getLowerName() << "_size()];\n";
1331 OS << " {\n";
1332 OS << " EnterExpressionEvaluationContext "
1333 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1334 OS << " " << getType() << " *TI = tempInst" << getUpperName()
1335 << ";\n";
1336 OS << " " << getType() << " *I = A->" << getLowerName()
1337 << "_begin();\n";
1338 OS << " " << getType() << " *E = A->" << getLowerName()
1339 << "_end();\n";
1340 OS << " for (; I != E; ++I, ++TI) {\n";
1341 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1342 OS << " if (Result.isInvalid())\n";
1343 OS << " return nullptr;\n";
1344 OS << " *TI = Result.get();\n";
1345 OS << " }\n";
1346 OS << " }\n";
1349 void writeDump(raw_ostream &OS) const override {}
1351 void writeDumpChildren(raw_ostream &OS) const override {
1352 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1353 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1354 << getLowerName() << "_end(); I != E; ++I)\n";
1355 OS << " Visit(*I);\n";
1358 void writeHasChildren(raw_ostream &OS) const override {
1359 OS << "SA->" << getLowerName() << "_begin() != "
1360 << "SA->" << getLowerName() << "_end()";
1364 class VariadicIdentifierArgument : public VariadicArgument {
1365 public:
1366 VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1367 : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1371 class VariadicStringArgument : public VariadicArgument {
1372 public:
1373 VariadicStringArgument(const Record &Arg, StringRef Attr)
1374 : VariadicArgument(Arg, Attr, "StringRef")
1377 void writeCtorBody(raw_ostream &OS) const override {
1378 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1379 " ++I) {\n"
1380 " StringRef Ref = " << getUpperName() << "[I];\n"
1381 " if (!Ref.empty()) {\n"
1382 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1383 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1384 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1385 " }\n"
1386 " }\n";
1389 void writeValueImpl(raw_ostream &OS) const override {
1390 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
1394 class TypeArgument : public SimpleArgument {
1395 public:
1396 TypeArgument(const Record &Arg, StringRef Attr)
1397 : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1400 void writeAccessors(raw_ostream &OS) const override {
1401 OS << " QualType get" << getUpperName() << "() const {\n";
1402 OS << " return " << getLowerName() << "->getType();\n";
1403 OS << " }";
1404 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1405 OS << " return " << getLowerName() << ";\n";
1406 OS << " }";
1409 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1410 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1411 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1412 OS << " return false;\n";
1415 void writeTemplateInstantiation(raw_ostream &OS) const override {
1416 OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
1417 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
1418 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1419 OS << " if (!tempInst" << getUpperName() << ")\n";
1420 OS << " return nullptr;\n";
1423 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1424 OS << "tempInst" << getUpperName();
1427 void writePCHWrite(raw_ostream &OS) const override {
1428 OS << " "
1429 << WritePCHRecord(getType(),
1430 "SA->get" + getUpperName().str() + "Loc()");
1434 class WrappedAttr : public SimpleArgument {
1435 public:
1436 WrappedAttr(const Record &Arg, StringRef Attr)
1437 : SimpleArgument(Arg, Attr, "Attr *") {}
1439 void writePCHReadDecls(raw_ostream &OS) const override {
1440 OS << " Attr *" << getLowerName() << " = Record.readAttr();";
1443 void writePCHWrite(raw_ostream &OS) const override {
1444 OS << " AddAttr(SA->get" << getUpperName() << "());";
1447 void writeDump(raw_ostream &OS) const override {}
1449 void writeDumpChildren(raw_ostream &OS) const override {
1450 OS << " Visit(SA->get" << getUpperName() << "());\n";
1453 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1456 } // end anonymous namespace
1458 static std::unique_ptr<Argument>
1459 createArgument(const Record &Arg, StringRef Attr,
1460 const Record *Search = nullptr) {
1461 if (!Search)
1462 Search = &Arg;
1464 std::unique_ptr<Argument> Ptr;
1465 StringRef ArgName = Search->getName();
1467 if (ArgName == "AlignedArgument")
1468 Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1469 else if (ArgName == "EnumArgument")
1470 Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1471 else if (ArgName == "ExprArgument")
1472 Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1473 else if (ArgName == "DeclArgument")
1474 Ptr = std::make_unique<SimpleArgument>(
1475 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1476 else if (ArgName == "IdentifierArgument")
1477 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1478 else if (ArgName == "DefaultBoolArgument")
1479 Ptr = std::make_unique<DefaultSimpleArgument>(
1480 Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1481 else if (ArgName == "BoolArgument")
1482 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1483 else if (ArgName == "DefaultIntArgument")
1484 Ptr = std::make_unique<DefaultSimpleArgument>(
1485 Arg, Attr, "int", Arg.getValueAsInt("Default"));
1486 else if (ArgName == "IntArgument")
1487 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1488 else if (ArgName == "StringArgument")
1489 Ptr = std::make_unique<StringArgument>(Arg, Attr);
1490 else if (ArgName == "TypeArgument")
1491 Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1492 else if (ArgName == "UnsignedArgument")
1493 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1494 else if (ArgName == "VariadicUnsignedArgument")
1495 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1496 else if (ArgName == "VariadicStringArgument")
1497 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1498 else if (ArgName == "VariadicEnumArgument")
1499 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1500 else if (ArgName == "VariadicExprArgument")
1501 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1502 else if (ArgName == "VariadicParamIdxArgument")
1503 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1504 else if (ArgName == "VariadicParamOrParamIdxArgument")
1505 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1506 else if (ArgName == "ParamIdxArgument")
1507 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1508 else if (ArgName == "VariadicIdentifierArgument")
1509 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1510 else if (ArgName == "VersionArgument")
1511 Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1512 else if (ArgName == "WrappedAttr")
1513 Ptr = std::make_unique<WrappedAttr>(Arg, Attr);
1514 else if (ArgName == "OMPTraitInfoArgument")
1515 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1516 else if (ArgName == "VariadicOMPInteropInfoArgument")
1517 Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(Arg, Attr);
1519 if (!Ptr) {
1520 // Search in reverse order so that the most-derived type is handled first.
1521 for (const auto &[Base, _] : reverse(Search->getSuperClasses())) {
1522 if ((Ptr = createArgument(Arg, Attr, Base)))
1523 break;
1527 if (Ptr && Arg.getValueAsBit("Optional"))
1528 Ptr->setOptional(true);
1530 if (Ptr && Arg.getValueAsBit("Fake"))
1531 Ptr->setFake(true);
1533 return Ptr;
1536 static void writeAvailabilityValue(raw_ostream &OS) {
1537 OS << "\" << getPlatform()->getName();\n"
1538 << " if (getStrict()) OS << \", strict\";\n"
1539 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1540 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1541 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1542 << " if (getUnavailable()) OS << \", unavailable\";\n"
1543 << " OS << \"";
1546 static void writeDeprecatedAttrValue(raw_ostream &OS, StringRef Variety) {
1547 OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1548 // Only GNU deprecated has an optional fixit argument at the second position.
1549 if (Variety == "GNU")
1550 OS << " if (!getReplacement().empty()) OS << \", \\\"\""
1551 " << getReplacement() << \"\\\"\";\n";
1552 OS << " OS << \"";
1555 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1556 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1558 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1559 if (Spellings.empty()) {
1560 OS << " return \"(No spelling)\";\n}\n\n";
1561 return;
1564 OS << " switch (getAttributeSpellingListIndex()) {\n"
1565 " default:\n"
1566 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1567 " return \"(No spelling)\";\n";
1569 for (const auto &[Idx, S] : enumerate(Spellings)) {
1570 // clang-format off
1571 OS << " case " << Idx << ":\n"
1572 " return \"" << S.name() << "\";\n";
1573 // clang-format on
1575 // End of the switch statement.
1576 OS << " }\n";
1577 // End of the getSpelling function.
1578 OS << "}\n\n";
1581 static void
1582 writePrettyPrintFunction(const Record &R,
1583 const std::vector<std::unique_ptr<Argument>> &Args,
1584 raw_ostream &OS) {
1585 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1587 OS << "void " << R.getName() << "Attr::printPretty("
1588 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1590 if (Spellings.empty()) {
1591 OS << "}\n\n";
1592 return;
1595 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1596 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1597 << " switch (getAttributeSpellingListIndex()) {\n"
1598 << " default:\n"
1599 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1600 << " break;\n";
1602 for (const auto &[Idx, S] : enumerate(Spellings)) {
1603 SmallString<16> Prefix;
1604 SmallString<8> Suffix;
1605 // The actual spelling of the name and namespace (if applicable)
1606 // of an attribute without considering prefix and suffix.
1607 SmallString<64> Spelling;
1608 StringRef Name = S.name();
1609 StringRef Variety = S.variety();
1611 if (Variety == "GNU") {
1612 Prefix = "__attribute__((";
1613 Suffix = "))";
1614 } else if (Variety == "CXX11" || Variety == "C23") {
1615 Prefix = "[[";
1616 Suffix = "]]";
1617 StringRef Namespace = S.nameSpace();
1618 if (!Namespace.empty()) {
1619 Spelling += Namespace;
1620 Spelling += "::";
1622 } else if (Variety == "Declspec") {
1623 Prefix = "__declspec(";
1624 Suffix = ")";
1625 } else if (Variety == "Microsoft") {
1626 Prefix = "[";
1627 Suffix = "]";
1628 } else if (Variety == "Keyword") {
1629 Prefix = "";
1630 Suffix = "";
1631 } else if (Variety == "Pragma") {
1632 Prefix = "#pragma ";
1633 Suffix = "\n";
1634 StringRef Namespace = S.nameSpace();
1635 if (!Namespace.empty()) {
1636 Spelling += Namespace;
1637 Spelling += " ";
1639 } else if (Variety == "HLSLAnnotation") {
1640 Prefix = ":";
1641 Suffix = "";
1642 } else {
1643 llvm_unreachable("Unknown attribute syntax variety!");
1646 Spelling += Name;
1648 OS << " case " << Idx << " : {\n"
1649 << " OS << \"" << Prefix << Spelling << "\";\n";
1651 if (Variety == "Pragma") {
1652 OS << " printPrettyPragma(OS, Policy);\n";
1653 OS << " OS << \"\\n\";";
1654 OS << " break;\n";
1655 OS << " }\n";
1656 continue;
1659 if (Spelling == "availability") {
1660 OS << " OS << \"(";
1661 writeAvailabilityValue(OS);
1662 OS << ")\";\n";
1663 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1664 OS << " OS << \"(";
1665 writeDeprecatedAttrValue(OS, Variety);
1666 OS << ")\";\n";
1667 } else {
1668 // To avoid printing parentheses around an empty argument list or
1669 // printing spurious commas at the end of an argument list, we need to
1670 // determine where the last provided non-fake argument is.
1671 bool FoundNonOptArg = false;
1672 for (const auto &arg : reverse(Args)) {
1673 if (arg->isFake())
1674 continue;
1675 if (FoundNonOptArg)
1676 continue;
1677 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1678 // any way to detect whether the argument was omitted.
1679 if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1680 FoundNonOptArg = true;
1681 continue;
1683 OS << " if (" << arg->getIsOmitted() << ")\n"
1684 << " ++TrailingOmittedArgs;\n";
1686 unsigned ArgIndex = 0;
1687 for (const auto &arg : Args) {
1688 if (arg->isFake())
1689 continue;
1690 std::string IsOmitted = arg->getIsOmitted();
1691 if (arg->isOptional() && IsOmitted != "false")
1692 OS << " if (!(" << IsOmitted << ")) {\n";
1693 // Variadic arguments print their own leading comma.
1694 if (!arg->isVariadic())
1695 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1696 OS << " OS << \"";
1697 arg->writeValue(OS);
1698 OS << "\";\n";
1699 if (arg->isOptional() && IsOmitted != "false")
1700 OS << " }\n";
1701 ++ArgIndex;
1703 if (ArgIndex != 0)
1704 OS << " if (!IsFirstArgument)\n"
1705 << " OS << \")\";\n";
1707 OS << " OS << \"" << Suffix << "\";\n"
1708 << " break;\n"
1709 << " }\n";
1712 // End of the switch statement.
1713 OS << "}\n";
1714 // End of the print function.
1715 OS << "}\n\n";
1718 /// Return the index of a spelling in a spelling list.
1719 static unsigned getSpellingListIndex(ArrayRef<FlattenedSpelling> SpellingList,
1720 const FlattenedSpelling &Spelling) {
1721 assert(!SpellingList.empty() && "Spelling list is empty!");
1723 for (const auto &[Index, S] : enumerate(SpellingList)) {
1724 if (S.variety() == Spelling.variety() &&
1725 S.nameSpace() == Spelling.nameSpace() && S.name() == Spelling.name())
1726 return Index;
1729 PrintFatalError("Unknown spelling: " + Spelling.name());
1732 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1733 std::vector<const Record *> Accessors = R.getValueAsListOfDefs("Accessors");
1734 if (Accessors.empty())
1735 return;
1737 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1738 assert(!SpellingList.empty() &&
1739 "Attribute with empty spelling list can't have accessors!");
1740 for (const auto *Accessor : Accessors) {
1741 const StringRef Name = Accessor->getValueAsString("Name");
1742 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1744 OS << " bool " << Name
1745 << "() const { return getAttributeSpellingListIndex() == ";
1746 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1747 OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1748 if (Index != Spellings.size() - 1)
1749 OS << " ||\n getAttributeSpellingListIndex() == ";
1750 else
1751 OS << "; }\n";
1756 static bool
1757 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1758 assert(!Spellings.empty() && "An empty list of spellings was provided");
1759 StringRef FirstName =
1760 NormalizeNameForSpellingComparison(Spellings.front().name());
1761 for (const auto &Spelling : drop_begin(Spellings)) {
1762 StringRef Name = NormalizeNameForSpellingComparison(Spelling.name());
1763 if (Name != FirstName)
1764 return false;
1766 return true;
1769 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1770 static std::string
1771 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1772 SemanticSpellingMap &Map) {
1773 // The enumerants are automatically generated based on the variety,
1774 // namespace (if present) and name for each attribute spelling. However,
1775 // care is taken to avoid trampling on the reserved namespace due to
1776 // underscores.
1777 std::string Ret(" enum Spelling {\n");
1778 std::set<std::string> Uniques;
1779 unsigned Idx = 0;
1781 // If we have a need to have this many spellings we likely need to add an
1782 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1783 // value of SpellingNotCalculated there and here.
1784 assert(Spellings.size() < 15 &&
1785 "Too many spellings, would step on SpellingNotCalculated in "
1786 "AttributeCommonInfo");
1787 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1788 const FlattenedSpelling &S = *I;
1789 StringRef Variety = S.variety();
1790 StringRef Spelling = S.name();
1791 StringRef Namespace = S.nameSpace();
1792 std::string EnumName;
1794 EnumName += Variety;
1795 EnumName += "_";
1796 if (!Namespace.empty())
1797 EnumName += NormalizeNameForSpellingComparison(Namespace).str() + "_";
1798 EnumName += NormalizeNameForSpellingComparison(Spelling);
1800 // Even if the name is not unique, this spelling index corresponds to a
1801 // particular enumerant name that we've calculated.
1802 Map[Idx] = EnumName;
1804 // Since we have been stripping underscores to avoid trampling on the
1805 // reserved namespace, we may have inadvertently created duplicate
1806 // enumerant names. These duplicates are not considered part of the
1807 // semantic spelling, and can be elided.
1808 if (!Uniques.insert(EnumName).second)
1809 continue;
1811 if (I != Spellings.begin())
1812 Ret += ",\n";
1813 // Duplicate spellings are not considered part of the semantic spelling
1814 // enumeration, but the spelling index and semantic spelling values are
1815 // meant to be equivalent, so we must specify a concrete value for each
1816 // enumerator.
1817 Ret += " " + EnumName + " = " + utostr(Idx);
1819 Ret += ",\n SpellingNotCalculated = 15\n";
1820 Ret += "\n };\n\n";
1821 return Ret;
1824 static void WriteSemanticSpellingSwitch(StringRef VarName,
1825 const SemanticSpellingMap &Map,
1826 raw_ostream &OS) {
1827 OS << " switch (" << VarName << ") {\n default: "
1828 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1829 for (const auto &I : Map)
1830 OS << " case " << I.first << ": return " << I.second << ";\n";
1831 OS << " }\n";
1834 // Note: these values need to match the values used by LateAttrParseKind in
1835 // `Attr.td`
1836 enum class LateAttrParseKind { Never = 0, Standard = 1, ExperimentalExt = 2 };
1838 static LateAttrParseKind getLateAttrParseKind(const Record *Attr) {
1839 // This function basically does
1840 // `Attr->getValueAsDef("LateParsed")->getValueAsInt("Kind")` but does a bunch
1841 // of sanity checking to ensure that `LateAttrParseMode` in `Attr.td` is in
1842 // sync with the `LateAttrParseKind` enum in this source file.
1844 static constexpr StringRef LateParsedStr = "LateParsed";
1845 static constexpr StringRef LateAttrParseKindStr = "LateAttrParseKind";
1846 static constexpr StringRef KindFieldStr = "Kind";
1848 auto *LAPK = Attr->getValueAsDef(LateParsedStr);
1850 // Typecheck the `LateParsed` field.
1851 SmallVector<const Record *, 1> SuperClasses;
1852 LAPK->getDirectSuperClasses(SuperClasses);
1853 if (SuperClasses.size() != 1)
1854 PrintFatalError(Attr, "Field `" + Twine(LateParsedStr) +
1855 "`should only have one super class");
1857 if (SuperClasses[0]->getName() != LateAttrParseKindStr)
1858 PrintFatalError(
1859 Attr, "Field `" + Twine(LateParsedStr) + "`should only have type `" +
1860 Twine(LateAttrParseKindStr) + "` but found type `" +
1861 SuperClasses[0]->getName() + "`");
1863 // Get Kind and verify the enum name matches the name in `Attr.td`.
1864 unsigned Kind = LAPK->getValueAsInt(KindFieldStr);
1865 switch (LateAttrParseKind(Kind)) {
1866 #define CASE(X) \
1867 case LateAttrParseKind::X: \
1868 if (LAPK->getName().compare("LateAttrParse" #X) != 0) { \
1869 PrintFatalError( \
1870 Attr, \
1871 "Field `" + Twine(LateParsedStr) + "` set to `" + LAPK->getName() + \
1872 "` but this converts to `LateAttrParseKind::" + Twine(#X) + \
1873 "`"); \
1875 return LateAttrParseKind::X;
1877 CASE(Never)
1878 CASE(Standard)
1879 CASE(ExperimentalExt)
1880 #undef CASE
1883 // The Kind value is completely invalid
1884 auto KindValueStr = utostr(Kind);
1885 PrintFatalError(Attr, "Field `" + Twine(LateParsedStr) + "` set to `" +
1886 LAPK->getName() + "` has unexpected `" +
1887 Twine(KindFieldStr) + "` value of " + KindValueStr);
1890 // Emits the LateParsed property for attributes.
1891 static void emitClangAttrLateParsedListImpl(const RecordKeeper &Records,
1892 raw_ostream &OS,
1893 LateAttrParseKind LateParseMode) {
1894 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
1895 if (LateAttrParseKind LateParsed = getLateAttrParseKind(Attr);
1896 LateParsed != LateParseMode)
1897 continue;
1899 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1901 // FIXME: Handle non-GNU attributes
1902 for (const auto &I : Spellings) {
1903 if (I.variety() != "GNU")
1904 continue;
1905 OS << ".Case(\"" << I.name() << "\", 1)\n";
1910 static void emitClangAttrLateParsedList(const RecordKeeper &Records,
1911 raw_ostream &OS) {
1912 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1913 emitClangAttrLateParsedListImpl(Records, OS, LateAttrParseKind::Standard);
1914 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1917 static void emitClangAttrLateParsedExperimentalList(const RecordKeeper &Records,
1918 raw_ostream &OS) {
1919 OS << "#if defined(CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST)\n";
1920 emitClangAttrLateParsedListImpl(Records, OS,
1921 LateAttrParseKind::ExperimentalExt);
1922 OS << "#endif // CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST\n\n";
1925 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1926 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1927 for (const auto &I : Spellings) {
1928 if (I.variety() == "GNU" || I.variety() == "CXX11")
1929 return true;
1931 return false;
1934 namespace {
1936 struct AttributeSubjectMatchRule {
1937 const Record *MetaSubject;
1938 const Record *Constraint;
1940 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1941 : MetaSubject(MetaSubject), Constraint(Constraint) {
1942 assert(MetaSubject && "Missing subject");
1945 bool isSubRule() const { return Constraint != nullptr; }
1947 std::vector<const Record *> getSubjects() const {
1948 return (Constraint ? Constraint : MetaSubject)
1949 ->getValueAsListOfDefs("Subjects");
1952 std::vector<const Record *> getLangOpts() const {
1953 if (Constraint) {
1954 // Lookup the options in the sub-rule first, in case the sub-rule
1955 // overrides the rules options.
1956 std::vector<const Record *> Opts =
1957 Constraint->getValueAsListOfDefs("LangOpts");
1958 if (!Opts.empty())
1959 return Opts;
1961 return MetaSubject->getValueAsListOfDefs("LangOpts");
1964 // Abstract rules are used only for sub-rules
1965 bool isAbstractRule() const { return getSubjects().empty(); }
1967 StringRef getName() const {
1968 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1971 bool isNegatedSubRule() const {
1972 assert(isSubRule() && "Not a sub-rule");
1973 return Constraint->getValueAsBit("Negated");
1976 std::string getSpelling() const {
1977 std::string Result = MetaSubject->getValueAsString("Name").str();
1978 if (isSubRule()) {
1979 Result += '(';
1980 if (isNegatedSubRule())
1981 Result += "unless(";
1982 Result += getName();
1983 if (isNegatedSubRule())
1984 Result += ')';
1985 Result += ')';
1987 return Result;
1990 std::string getEnumValueName() const {
1991 SmallString<128> Result;
1992 Result += "SubjectMatchRule_";
1993 Result += MetaSubject->getValueAsString("Name");
1994 if (isSubRule()) {
1995 Result += "_";
1996 if (isNegatedSubRule())
1997 Result += "not_";
1998 Result += Constraint->getValueAsString("Name");
2000 if (isAbstractRule())
2001 Result += "_abstract";
2002 return std::string(Result);
2005 std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
2007 static const char *EnumName;
2010 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
2012 struct PragmaClangAttributeSupport {
2013 std::vector<AttributeSubjectMatchRule> Rules;
2015 class RuleOrAggregateRuleSet {
2016 std::vector<AttributeSubjectMatchRule> Rules;
2017 bool IsRule;
2018 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
2019 bool IsRule)
2020 : Rules(Rules), IsRule(IsRule) {}
2022 public:
2023 bool isRule() const { return IsRule; }
2025 const AttributeSubjectMatchRule &getRule() const {
2026 assert(IsRule && "not a rule!");
2027 return Rules[0];
2030 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
2031 return Rules;
2034 static RuleOrAggregateRuleSet
2035 getRule(const AttributeSubjectMatchRule &Rule) {
2036 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
2038 static RuleOrAggregateRuleSet
2039 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
2040 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
2043 DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
2045 PragmaClangAttributeSupport(const RecordKeeper &Records);
2047 bool isAttributedSupported(const Record &Attribute);
2049 void emitMatchRuleList(raw_ostream &OS);
2051 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
2053 void generateParsingHelpers(raw_ostream &OS);
2056 } // end anonymous namespace
2058 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
2059 // FIXME: #pragma clang attribute does not currently support statement
2060 // attributes, so test whether the subject is one that appertains to a
2061 // declaration node. However, it may be reasonable for support for statement
2062 // attributes to be added.
2063 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
2064 Subject.getName() == "DeclBase")
2065 return true;
2067 if (Subject.isSubClassOf("SubsetSubject"))
2068 return isSupportedPragmaClangAttributeSubject(
2069 *Subject.getValueAsDef("Base"));
2071 return false;
2074 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
2075 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
2076 if (!CurrentBase)
2077 return false;
2078 if (CurrentBase == Base)
2079 return true;
2080 return doesDeclDeriveFrom(CurrentBase, Base);
2083 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
2084 const RecordKeeper &Records) {
2085 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
2086 const Record *MetaSubject,
2087 const Record *Constraint) {
2088 Rules.emplace_back(MetaSubject, Constraint);
2089 for (const Record *Subject :
2090 SubjectContainer->getValueAsListOfDefs("Subjects")) {
2091 bool Inserted =
2092 SubjectsToRules
2093 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
2094 AttributeSubjectMatchRule(MetaSubject,
2095 Constraint)))
2096 .second;
2097 if (!Inserted) {
2098 PrintFatalError("Attribute subject match rules should not represent"
2099 "same attribute subjects.");
2103 for (const auto *MetaSubject :
2104 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule")) {
2105 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
2106 for (const Record *Constraint :
2107 MetaSubject->getValueAsListOfDefs("Constraints"))
2108 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
2111 ArrayRef<const Record *> DeclNodes =
2112 Records.getAllDerivedDefinitions(DeclNodeClassName);
2113 for (const auto *Aggregate :
2114 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule")) {
2115 const Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
2117 // Gather sub-classes of the aggregate subject that act as attribute
2118 // subject rules.
2119 std::vector<AttributeSubjectMatchRule> Rules;
2120 for (const auto *D : DeclNodes) {
2121 if (doesDeclDeriveFrom(D, SubjectDecl)) {
2122 auto It = SubjectsToRules.find(D);
2123 if (It == SubjectsToRules.end())
2124 continue;
2125 if (!It->second.isRule() || It->second.getRule().isSubRule())
2126 continue; // Assume that the rule will be included as well.
2127 Rules.push_back(It->second.getRule());
2131 bool Inserted =
2132 SubjectsToRules
2133 .try_emplace(SubjectDecl,
2134 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
2135 .second;
2136 if (!Inserted) {
2137 PrintFatalError("Attribute subject match rules should not represent"
2138 "same attribute subjects.");
2143 static PragmaClangAttributeSupport &
2144 getPragmaAttributeSupport(const RecordKeeper &Records) {
2145 static PragmaClangAttributeSupport Instance(Records);
2146 return Instance;
2149 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
2150 OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
2151 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
2152 "IsNegated) "
2153 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
2154 OS << "#endif\n";
2155 for (const auto &Rule : Rules) {
2156 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
2157 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
2158 << Rule.isAbstractRule();
2159 if (Rule.isSubRule())
2160 OS << ", "
2161 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
2162 << ", " << Rule.isNegatedSubRule();
2163 OS << ")\n";
2165 OS << "#undef ATTR_MATCH_SUB_RULE\n";
2168 bool PragmaClangAttributeSupport::isAttributedSupported(
2169 const Record &Attribute) {
2170 // If the attribute explicitly specified whether to support #pragma clang
2171 // attribute, use that setting.
2172 bool Unset;
2173 bool SpecifiedResult =
2174 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
2175 if (!Unset)
2176 return SpecifiedResult;
2178 // Opt-out rules:
2180 // An attribute requires delayed parsing (LateParsed is on).
2181 switch (getLateAttrParseKind(&Attribute)) {
2182 case LateAttrParseKind::Never:
2183 break;
2184 case LateAttrParseKind::Standard:
2185 return false;
2186 case LateAttrParseKind::ExperimentalExt:
2187 // This is only late parsed in certain parsing contexts when
2188 // `LangOpts.ExperimentalLateParseAttributes` is true. Information about the
2189 // parsing context and `LangOpts` is not available in this method so just
2190 // opt this attribute out.
2191 return false;
2194 // An attribute has no GNU/CXX11 spelling
2195 if (!hasGNUorCXX11Spelling(Attribute))
2196 return false;
2197 // An attribute subject list has a subject that isn't covered by one of the
2198 // subject match rules or has no subjects at all.
2199 if (Attribute.isValueUnset("Subjects"))
2200 return false;
2201 const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
2202 bool HasAtLeastOneValidSubject = false;
2203 for (const auto *Subject : SubjectObj->getValueAsListOfDefs("Subjects")) {
2204 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2205 continue;
2206 if (!SubjectsToRules.contains(Subject))
2207 return false;
2208 HasAtLeastOneValidSubject = true;
2210 return HasAtLeastOneValidSubject;
2213 static std::string GenerateTestExpression(ArrayRef<const Record *> LangOpts) {
2214 std::string Test;
2216 for (auto *E : LangOpts) {
2217 if (!Test.empty())
2218 Test += " || ";
2220 const StringRef Code = E->getValueAsString("CustomCode");
2221 if (!Code.empty()) {
2222 Test += "(";
2223 Test += Code;
2224 Test += ")";
2225 if (!E->getValueAsString("Name").empty()) {
2226 PrintWarning(
2227 E->getLoc(),
2228 "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2230 } else {
2231 Test += "LangOpts.";
2232 Test += E->getValueAsString("Name");
2236 if (Test.empty())
2237 return "true";
2239 return Test;
2242 void
2243 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2244 raw_ostream &OS) {
2245 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2246 return;
2247 // Generate a function that constructs a set of matching rules that describe
2248 // to which declarations the attribute should apply to.
2249 OS << "void getPragmaAttributeMatchRules("
2250 << "llvm::SmallVectorImpl<std::pair<"
2251 << AttributeSubjectMatchRule::EnumName
2252 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2253 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2254 for (const auto *Subject : SubjectObj->getValueAsListOfDefs("Subjects")) {
2255 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2256 continue;
2257 auto It = SubjectsToRules.find(Subject);
2258 assert(It != SubjectsToRules.end() &&
2259 "This attribute is unsupported by #pragma clang attribute");
2260 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2261 // The rule might be language specific, so only subtract it from the given
2262 // rules if the specific language options are specified.
2263 std::vector<const Record *> LangOpts = Rule.getLangOpts();
2264 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2265 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2266 << "));\n";
2269 OS << "}\n\n";
2272 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2273 // Generate routines that check the names of sub-rules.
2274 OS << "std::optional<attr::SubjectMatchRule> "
2275 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2276 OS << " return std::nullopt;\n";
2277 OS << "}\n\n";
2279 MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2280 SubMatchRules;
2281 for (const auto &Rule : Rules) {
2282 if (!Rule.isSubRule())
2283 continue;
2284 SubMatchRules[Rule.MetaSubject].push_back(Rule);
2287 for (const auto &SubMatchRule : SubMatchRules) {
2288 OS << "std::optional<attr::SubjectMatchRule> "
2289 "isAttributeSubjectMatchSubRuleFor_"
2290 << SubMatchRule.first->getValueAsString("Name")
2291 << "(StringRef Name, bool IsUnless) {\n";
2292 OS << " if (IsUnless)\n";
2293 OS << " return "
2294 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2295 for (const auto &Rule : SubMatchRule.second) {
2296 if (Rule.isNegatedSubRule())
2297 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2298 << ").\n";
2300 OS << " Default(std::nullopt);\n";
2301 OS << " return "
2302 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2303 for (const auto &Rule : SubMatchRule.second) {
2304 if (!Rule.isNegatedSubRule())
2305 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2306 << ").\n";
2308 OS << " Default(std::nullopt);\n";
2309 OS << "}\n\n";
2312 // Generate the function that checks for the top-level rules.
2313 OS << "std::pair<std::optional<attr::SubjectMatchRule>, "
2314 "std::optional<attr::SubjectMatchRule> (*)(StringRef, "
2315 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2316 OS << " return "
2317 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
2318 "std::optional<attr::SubjectMatchRule> (*) (StringRef, "
2319 "bool)>>(Name).\n";
2320 for (const auto &Rule : Rules) {
2321 if (Rule.isSubRule())
2322 continue;
2323 std::string SubRuleFunction;
2324 if (SubMatchRules.count(Rule.MetaSubject))
2325 SubRuleFunction =
2326 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2327 else
2328 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2329 OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
2330 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2332 OS << " Default(std::make_pair(std::nullopt, "
2333 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2334 OS << "}\n\n";
2336 // Generate the function that checks for the submatch rules.
2337 OS << "const char *validAttributeSubjectMatchSubRules("
2338 << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2339 OS << " switch (Rule) {\n";
2340 for (const auto &SubMatchRule : SubMatchRules) {
2341 OS << " case "
2342 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2343 << ":\n";
2344 OS << " return \"'";
2345 bool IsFirst = true;
2346 for (const auto &Rule : SubMatchRule.second) {
2347 if (!IsFirst)
2348 OS << ", '";
2349 IsFirst = false;
2350 if (Rule.isNegatedSubRule())
2351 OS << "unless(";
2352 OS << Rule.getName();
2353 if (Rule.isNegatedSubRule())
2354 OS << ')';
2355 OS << "'";
2357 OS << "\";\n";
2359 OS << " default: return nullptr;\n";
2360 OS << " }\n";
2361 OS << "}\n\n";
2364 template <typename Fn> static void forEachSpelling(const Record &Attr, Fn &&F) {
2365 for (const FlattenedSpelling &S : GetFlattenedSpellings(Attr)) {
2366 F(S);
2370 static std::map<StringRef, std::vector<const Record *>> NameToAttrsMap;
2372 /// Build a map from the attribute name to the Attrs that use that name. If more
2373 /// than one Attr use a name, the arguments could be different so a more complex
2374 /// check is needed in the generated switch.
2375 static void generateNameToAttrsMap(const RecordKeeper &Records) {
2376 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
2377 for (const FlattenedSpelling &S : GetFlattenedSpellings(*A)) {
2378 auto [It, Inserted] = NameToAttrsMap.try_emplace(S.name());
2379 if (Inserted || !is_contained(It->second, A))
2380 It->second.emplace_back(A);
2385 /// Generate the info needed to produce the case values in case more than one
2386 /// attribute has the same name. Store the info in a map that can be processed
2387 /// after all attributes are seen.
2388 static void generateFlattenedSpellingInfo(const Record &Attr,
2389 std::map<StringRef, FSIVecTy> &Map,
2390 uint32_t ArgMask = 0) {
2391 std::string TargetTest;
2392 if (Attr.isSubClassOf("TargetSpecificAttr") &&
2393 !Attr.isValueUnset("ParseKind")) {
2394 const Record *T = Attr.getValueAsDef("Target");
2395 std::vector<StringRef> Arches = T->getValueAsListOfStrings("Arches");
2396 (void)GenerateTargetSpecificAttrChecks(T, Arches, TargetTest, nullptr);
2399 forEachSpelling(Attr, [&](const FlattenedSpelling &S) {
2400 Map[S.name()].emplace_back(S.variety(), S.nameSpace(), TargetTest, ArgMask);
2404 static bool nameAppliesToOneAttribute(StringRef Name) {
2405 auto It = NameToAttrsMap.find(Name);
2406 assert(It != NameToAttrsMap.end());
2407 return It->second.size() == 1;
2410 static bool emitIfSimpleValue(StringRef Name, uint32_t ArgMask,
2411 raw_ostream &OS) {
2412 if (nameAppliesToOneAttribute(Name)) {
2413 OS << ".Case(\"" << Name << "\", ";
2414 if (ArgMask != 0)
2415 OS << ArgMask << ")\n";
2416 else
2417 OS << "true)\n";
2418 return true;
2420 return false;
2423 static void emitSingleCondition(const FlattenedSpellingInfo &FSI,
2424 raw_ostream &OS) {
2425 OS << "(Syntax==AttributeCommonInfo::AS_" << FSI.Syntax << " && ";
2426 if (!FSI.Scope.empty())
2427 OS << "ScopeName && ScopeName->getName()==\"" << FSI.Scope << "\"";
2428 else
2429 OS << "!ScopeName";
2430 if (!FSI.TargetTest.empty())
2431 OS << " && " << FSI.TargetTest;
2432 OS << ")";
2435 static void emitStringSwitchCases(std::map<StringRef, FSIVecTy> &Map,
2436 raw_ostream &OS) {
2437 for (const auto &[Name, Vec] : Map) {
2438 if (emitIfSimpleValue(Name, Vec[0].ArgMask, OS))
2439 continue;
2441 // Not simple, build expressions for each case.
2442 OS << ".Case(\"" << Name << "\", ";
2443 for (unsigned I = 0, E = Vec.size(); I < E; ++I) {
2444 emitSingleCondition(Vec[I], OS);
2445 uint32_t ArgMask = Vec[I].ArgMask;
2446 if (E == 1 && ArgMask == 0)
2447 continue;
2449 // More than one or it's the Mask form. Create a conditional expression.
2450 uint32_t SuccessValue = ArgMask != 0 ? ArgMask : 1;
2451 OS << " ? " << SuccessValue << " : ";
2452 if (I == E - 1)
2453 OS << 0;
2455 OS << ")\n";
2459 static bool isTypeArgument(const Record *Arg) {
2460 return !Arg->getSuperClasses().empty() &&
2461 Arg->getSuperClasses().back().first->getName() == "TypeArgument";
2464 /// Emits the first-argument-is-type property for attributes.
2465 static void emitClangAttrTypeArgList(const RecordKeeper &Records,
2466 raw_ostream &OS) {
2467 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2468 std::map<StringRef, FSIVecTy> FSIMap;
2469 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
2470 // Determine whether the first argument is a type.
2471 std::vector<const Record *> Args = Attr->getValueAsListOfDefs("Args");
2472 if (Args.empty())
2473 continue;
2475 if (!isTypeArgument(Args[0]))
2476 continue;
2477 generateFlattenedSpellingInfo(*Attr, FSIMap);
2479 emitStringSwitchCases(FSIMap, OS);
2480 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2483 /// Emits the parse-arguments-in-unevaluated-context property for
2484 /// attributes.
2485 static void emitClangAttrArgContextList(const RecordKeeper &Records,
2486 raw_ostream &OS) {
2487 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2488 std::map<StringRef, FSIVecTy> FSIMap;
2489 ParsedAttrMap Attrs = getParsedAttrList(Records);
2490 for (const auto &I : Attrs) {
2491 const Record &Attr = *I.second;
2493 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2494 continue;
2495 generateFlattenedSpellingInfo(Attr, FSIMap);
2497 emitStringSwitchCases(FSIMap, OS);
2498 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2501 static bool isIdentifierArgument(const Record *Arg) {
2502 return !Arg->getSuperClasses().empty() &&
2503 StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2504 .Case("IdentifierArgument", true)
2505 .Case("EnumArgument", true)
2506 .Case("VariadicEnumArgument", true)
2507 .Default(false);
2510 static bool isVariadicIdentifierArgument(const Record *Arg) {
2511 return !Arg->getSuperClasses().empty() &&
2512 StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2513 .Case("VariadicIdentifierArgument", true)
2514 .Case("VariadicParamOrParamIdxArgument", true)
2515 .Default(false);
2518 static bool isVariadicExprArgument(const Record *Arg) {
2519 return !Arg->getSuperClasses().empty() &&
2520 StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2521 .Case("VariadicExprArgument", true)
2522 .Default(false);
2525 static bool isStringLiteralArgument(const Record *Arg) {
2526 if (Arg->getSuperClasses().empty())
2527 return false;
2528 StringRef ArgKind = Arg->getSuperClasses().back().first->getName();
2529 if (ArgKind == "EnumArgument")
2530 return Arg->getValueAsBit("IsString");
2531 return ArgKind == "StringArgument";
2534 static bool isVariadicStringLiteralArgument(const Record *Arg) {
2535 if (Arg->getSuperClasses().empty())
2536 return false;
2537 StringRef ArgKind = Arg->getSuperClasses().back().first->getName();
2538 if (ArgKind == "VariadicEnumArgument")
2539 return Arg->getValueAsBit("IsString");
2540 return ArgKind == "VariadicStringArgument";
2543 static void emitClangAttrVariadicIdentifierArgList(const RecordKeeper &Records,
2544 raw_ostream &OS) {
2545 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2546 std::map<StringRef, FSIVecTy> FSIMap;
2547 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
2548 // Determine whether the first argument is a variadic identifier.
2549 std::vector<const Record *> Args = A->getValueAsListOfDefs("Args");
2550 if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2551 continue;
2552 generateFlattenedSpellingInfo(*A, FSIMap);
2554 emitStringSwitchCases(FSIMap, OS);
2555 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2558 // Emits the list of arguments that should be parsed as unevaluated string
2559 // literals for each attribute.
2560 static void
2561 emitClangAttrUnevaluatedStringLiteralList(const RecordKeeper &Records,
2562 raw_ostream &OS) {
2563 OS << "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
2565 auto MakeMask = [](ArrayRef<const Record *> Args) {
2566 uint32_t Bits = 0;
2567 assert(Args.size() <= 32 && "unsupported number of arguments in attribute");
2568 for (uint32_t N = 0; N < Args.size(); ++N) {
2569 Bits |= (isStringLiteralArgument(Args[N]) << N);
2570 // If we have a variadic string argument, set all the remaining bits to 1
2571 if (isVariadicStringLiteralArgument(Args[N])) {
2572 Bits |= maskTrailingZeros<decltype(Bits)>(N);
2573 break;
2576 return Bits;
2579 std::map<StringRef, FSIVecTy> FSIMap;
2580 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
2581 // Determine whether there are any string arguments.
2582 uint32_t ArgMask = MakeMask(Attr->getValueAsListOfDefs("Args"));
2583 if (!ArgMask)
2584 continue;
2585 generateFlattenedSpellingInfo(*Attr, FSIMap, ArgMask);
2587 emitStringSwitchCases(FSIMap, OS);
2588 OS << "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
2591 // Emits the first-argument-is-identifier property for attributes.
2592 static void emitClangAttrIdentifierArgList(const RecordKeeper &Records,
2593 raw_ostream &OS) {
2594 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2595 std::map<StringRef, FSIVecTy> FSIMap;
2596 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
2597 // Determine whether the first argument is an identifier.
2598 std::vector<const Record *> Args = Attr->getValueAsListOfDefs("Args");
2599 if (Args.empty() || !isIdentifierArgument(Args[0]))
2600 continue;
2601 generateFlattenedSpellingInfo(*Attr, FSIMap);
2603 emitStringSwitchCases(FSIMap, OS);
2604 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2607 // Emits the list for attributes having StrictEnumParameters.
2608 static void emitClangAttrStrictIdentifierArgList(const RecordKeeper &Records,
2609 raw_ostream &OS) {
2610 OS << "#if defined(CLANG_ATTR_STRICT_IDENTIFIER_ARG_LIST)\n";
2611 std::map<StringRef, FSIVecTy> FSIMap;
2612 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
2613 if (!Attr->getValueAsBit("StrictEnumParameters"))
2614 continue;
2615 // Check that there is really an identifier argument.
2616 std::vector<const Record *> Args = Attr->getValueAsListOfDefs("Args");
2617 if (none_of(Args, [&](const Record *R) { return isIdentifierArgument(R); }))
2618 continue;
2619 generateFlattenedSpellingInfo(*Attr, FSIMap);
2621 emitStringSwitchCases(FSIMap, OS);
2622 OS << "#endif // CLANG_ATTR_STRICT_IDENTIFIER_ARG_LIST\n\n";
2625 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2626 return !Arg->getSuperClasses().empty() &&
2627 StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2628 .Case("VariadicParamOrParamIdxArgument", true)
2629 .Default(false);
2632 static void emitClangAttrThisIsaIdentifierArgList(const RecordKeeper &Records,
2633 raw_ostream &OS) {
2634 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2635 std::map<StringRef, FSIVecTy> FSIMap;
2636 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
2637 // Determine whether the first argument is a variadic identifier.
2638 std::vector<const Record *> Args = A->getValueAsListOfDefs("Args");
2639 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2640 continue;
2641 generateFlattenedSpellingInfo(*A, FSIMap);
2643 emitStringSwitchCases(FSIMap, OS);
2644 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2647 static void emitClangAttrAcceptsExprPack(const RecordKeeper &Records,
2648 raw_ostream &OS) {
2649 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2650 ParsedAttrMap Attrs = getParsedAttrList(Records);
2651 std::map<StringRef, FSIVecTy> FSIMap;
2652 for (const auto &I : Attrs) {
2653 const Record &Attr = *I.second;
2655 if (!Attr.getValueAsBit("AcceptsExprPack"))
2656 continue;
2657 generateFlattenedSpellingInfo(Attr, FSIMap);
2659 emitStringSwitchCases(FSIMap, OS);
2660 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2663 static bool isRegularKeywordAttribute(const FlattenedSpelling &S) {
2664 return (S.variety() == "Keyword" &&
2665 !S.getSpellingRecord().getValueAsBit("HasOwnParseRules"));
2668 static void emitFormInitializer(raw_ostream &OS,
2669 const FlattenedSpelling &Spelling,
2670 StringRef SpellingIndex) {
2671 bool IsAlignas =
2672 (Spelling.variety() == "Keyword" && Spelling.name() == "alignas");
2673 OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", "
2674 << SpellingIndex << ", " << (IsAlignas ? "true" : "false")
2675 << " /*IsAlignas*/, "
2676 << (isRegularKeywordAttribute(Spelling) ? "true" : "false")
2677 << " /*IsRegularKeywordAttribute*/}";
2680 static void emitAttributes(const RecordKeeper &Records, raw_ostream &OS,
2681 bool Header) {
2682 ParsedAttrMap AttrMap = getParsedAttrList(Records);
2684 // Helper to print the starting character of an attribute argument. If there
2685 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2686 // prints a comma.
2687 OS << "static inline void DelimitAttributeArgument("
2688 << "raw_ostream& OS, bool& IsFirst) {\n"
2689 << " if (IsFirst) {\n"
2690 << " IsFirst = false;\n"
2691 << " OS << \"(\";\n"
2692 << " } else\n"
2693 << " OS << \", \";\n"
2694 << "}\n";
2696 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
2697 const Record &R = *Attr;
2699 // FIXME: Currently, documentation is generated as-needed due to the fact
2700 // that there is no way to allow a generated project "reach into" the docs
2701 // directory (for instance, it may be an out-of-tree build). However, we want
2702 // to ensure that every attribute has a Documentation field, and produce an
2703 // error if it has been neglected. Otherwise, the on-demand generation which
2704 // happens server-side will fail. This code is ensuring that functionality,
2705 // even though this Emitter doesn't technically need the documentation.
2706 // When attribute documentation can be generated as part of the build
2707 // itself, this code can be removed.
2708 (void)R.getValueAsListOfDefs("Documentation");
2710 if (!R.getValueAsBit("ASTNode"))
2711 continue;
2713 ArrayRef<std::pair<const Record *, SMRange>> Supers = R.getSuperClasses();
2714 assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2715 std::string SuperName;
2716 bool Inheritable = false;
2717 for (const auto &[R, _] : reverse(Supers)) {
2718 if (R->getName() != "TargetSpecificAttr" &&
2719 R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2720 SuperName = R->getName().str();
2721 if (R->getName() == "InheritableAttr")
2722 Inheritable = true;
2725 if (Header)
2726 OS << "class CLANG_ABI " << R.getName() << "Attr : public " << SuperName
2727 << " {\n";
2728 else
2729 OS << "\n// " << R.getName() << "Attr implementation\n\n";
2731 std::vector<const Record *> ArgRecords = R.getValueAsListOfDefs("Args");
2732 std::vector<std::unique_ptr<Argument>> Args;
2733 Args.reserve(ArgRecords.size());
2735 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack");
2736 if (AttrAcceptsExprPack) {
2737 for (size_t I = 0; I < ArgRecords.size(); ++I) {
2738 const Record *ArgR = ArgRecords[I];
2739 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) ||
2740 isTypeArgument(ArgR))
2741 PrintFatalError(Attr->getLoc(),
2742 "Attributes accepting packs cannot also "
2743 "have identifier or type arguments.");
2744 // When trying to determine if value-dependent expressions can populate
2745 // the attribute without prior instantiation, the decision is made based
2746 // on the assumption that only the last argument is ever variadic.
2747 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR))
2748 PrintFatalError(Attr->getLoc(),
2749 "Attributes accepting packs can only have the last "
2750 "argument be variadic.");
2754 bool HasOptArg = false;
2755 bool HasFakeArg = false;
2756 for (const auto *ArgRecord : ArgRecords) {
2757 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2758 if (Header) {
2759 Args.back()->writeDeclarations(OS);
2760 OS << "\n\n";
2763 // For these purposes, fake takes priority over optional.
2764 if (Args.back()->isFake()) {
2765 HasFakeArg = true;
2766 } else if (Args.back()->isOptional()) {
2767 HasOptArg = true;
2771 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
2772 if (AttrAcceptsExprPack) {
2773 DelayedArgs =
2774 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
2775 if (Header) {
2776 DelayedArgs->writeDeclarations(OS);
2777 OS << "\n\n";
2781 if (Header)
2782 OS << "public:\n";
2784 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2786 // If there are zero or one spellings, all spelling-related functionality
2787 // can be elided. If all of the spellings share the same name, the spelling
2788 // functionality can also be elided.
2789 bool ElideSpelling = (Spellings.size() <= 1) ||
2790 SpellingNamesAreCommon(Spellings);
2792 // This maps spelling index values to semantic Spelling enumerants.
2793 SemanticSpellingMap SemanticToSyntacticMap;
2795 std::string SpellingEnum;
2796 if (Spellings.size() > 1)
2797 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2798 if (Header)
2799 OS << SpellingEnum;
2801 const auto &ParsedAttrSpellingItr =
2802 find_if(AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2803 return &R == P.second;
2806 // Emit CreateImplicit factory methods.
2807 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
2808 if (Header)
2809 OS << " static ";
2810 OS << R.getName() << "Attr *";
2811 if (!Header)
2812 OS << R.getName() << "Attr::";
2813 OS << "Create";
2814 if (Implicit)
2815 OS << "Implicit";
2816 if (DelayedArgsOnly)
2817 OS << "WithDelayedArgs";
2818 OS << "(";
2819 OS << "ASTContext &Ctx";
2820 if (!DelayedArgsOnly) {
2821 for (auto const &ai : Args) {
2822 if (ai->isFake() && !emitFake)
2823 continue;
2824 OS << ", ";
2825 ai->writeCtorParameters(OS);
2827 } else {
2828 OS << ", ";
2829 DelayedArgs->writeCtorParameters(OS);
2831 OS << ", const AttributeCommonInfo &CommonInfo";
2832 OS << ")";
2833 if (Header) {
2834 OS << ";\n";
2835 return;
2838 OS << " {\n";
2839 OS << " auto *A = new (Ctx) " << R.getName();
2840 OS << "Attr(Ctx, CommonInfo";
2842 if (!DelayedArgsOnly) {
2843 for (auto const &ai : Args) {
2844 if (ai->isFake() && !emitFake)
2845 continue;
2846 OS << ", ";
2847 ai->writeImplicitCtorArgs(OS);
2850 OS << ");\n";
2851 if (Implicit) {
2852 OS << " A->setImplicit(true);\n";
2854 if (Implicit || ElideSpelling) {
2855 OS << " if (!A->isAttributeSpellingListCalculated() && "
2856 "!A->getAttrName())\n";
2857 OS << " A->setAttributeSpellingListIndex(0);\n";
2859 if (DelayedArgsOnly) {
2860 OS << " A->setDelayedArgs(Ctx, ";
2861 DelayedArgs->writeImplicitCtorArgs(OS);
2862 OS << ");\n";
2864 OS << " return A;\n}\n\n";
2867 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
2868 bool emitFake) {
2869 if (Header)
2870 OS << " static ";
2871 OS << R.getName() << "Attr *";
2872 if (!Header)
2873 OS << R.getName() << "Attr::";
2874 OS << "Create";
2875 if (Implicit)
2876 OS << "Implicit";
2877 if (DelayedArgsOnly)
2878 OS << "WithDelayedArgs";
2879 OS << "(";
2880 OS << "ASTContext &Ctx";
2881 if (!DelayedArgsOnly) {
2882 for (auto const &ai : Args) {
2883 if (ai->isFake() && !emitFake)
2884 continue;
2885 OS << ", ";
2886 ai->writeCtorParameters(OS);
2888 } else {
2889 OS << ", ";
2890 DelayedArgs->writeCtorParameters(OS);
2892 OS << ", SourceRange Range";
2893 if (Header)
2894 OS << " = {}";
2895 if (Spellings.size() > 1) {
2896 OS << ", Spelling S";
2897 if (Header)
2898 OS << " = " << SemanticToSyntacticMap[0];
2900 OS << ")";
2901 if (Header) {
2902 OS << ";\n";
2903 return;
2906 OS << " {\n";
2907 OS << " AttributeCommonInfo I(Range, ";
2909 if (ParsedAttrSpellingItr != std::end(AttrMap))
2910 OS << "AT_" << ParsedAttrSpellingItr->first;
2911 else
2912 OS << "NoSemaHandlerAttribute";
2914 if (Spellings.size() == 0) {
2915 OS << ", AttributeCommonInfo::Form::Implicit()";
2916 } else if (Spellings.size() == 1) {
2917 OS << ", ";
2918 emitFormInitializer(OS, Spellings[0], "0");
2919 } else {
2920 OS << ", [&]() {\n";
2921 OS << " switch (S) {\n";
2922 std::set<std::string> Uniques;
2923 unsigned Idx = 0;
2924 for (auto I = Spellings.begin(), E = Spellings.end(); I != E;
2925 ++I, ++Idx) {
2926 const FlattenedSpelling &S = *I;
2927 const auto &Name = SemanticToSyntacticMap[Idx];
2928 if (Uniques.insert(Name).second) {
2929 OS << " case " << Name << ":\n";
2930 OS << " return AttributeCommonInfo::Form";
2931 emitFormInitializer(OS, S, Name);
2932 OS << ";\n";
2935 OS << " default:\n";
2936 OS << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
2937 << " return AttributeCommonInfo::Form";
2938 emitFormInitializer(OS, Spellings[0], "0");
2939 OS << ";\n"
2940 << " }\n"
2941 << " }()";
2944 OS << ");\n";
2945 OS << " return Create";
2946 if (Implicit)
2947 OS << "Implicit";
2948 if (DelayedArgsOnly)
2949 OS << "WithDelayedArgs";
2950 OS << "(Ctx";
2951 if (!DelayedArgsOnly) {
2952 for (auto const &ai : Args) {
2953 if (ai->isFake() && !emitFake)
2954 continue;
2955 OS << ", ";
2956 ai->writeImplicitCtorArgs(OS);
2958 } else {
2959 OS << ", ";
2960 DelayedArgs->writeImplicitCtorArgs(OS);
2962 OS << ", I);\n";
2963 OS << "}\n\n";
2966 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
2967 emitCreate(true, DelayedArgsOnly, emitFake);
2968 emitCreate(false, DelayedArgsOnly, emitFake);
2969 emitCreateNoCI(true, DelayedArgsOnly, emitFake);
2970 emitCreateNoCI(false, DelayedArgsOnly, emitFake);
2973 if (Header)
2974 OS << " // Factory methods\n";
2976 // Emit a CreateImplicit that takes all the arguments.
2977 emitCreates(false, true);
2979 // Emit a CreateImplicit that takes all the non-fake arguments.
2980 if (HasFakeArg)
2981 emitCreates(false, false);
2983 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2984 // expressions.
2985 if (DelayedArgs)
2986 emitCreates(true, false);
2988 // Emit constructors.
2989 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
2990 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2991 if (emitNoArgs)
2992 return false;
2993 if (arg->isFake())
2994 return emitFake;
2995 if (arg->isOptional())
2996 return emitOpt;
2997 return true;
2999 if (Header)
3000 OS << " ";
3001 else
3002 OS << R.getName() << "Attr::";
3003 OS << R.getName()
3004 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
3005 OS << '\n';
3006 for (auto const &ai : Args) {
3007 if (!shouldEmitArg(ai))
3008 continue;
3009 OS << " , ";
3010 ai->writeCtorParameters(OS);
3011 OS << "\n";
3014 OS << " )";
3015 if (Header) {
3016 OS << ";\n";
3017 return;
3019 OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
3020 OS << "attr::" << R.getName() << ", ";
3022 // Handle different late parsing modes.
3023 OS << "/*IsLateParsed=*/";
3024 switch (getLateAttrParseKind(&R)) {
3025 case LateAttrParseKind::Never:
3026 OS << "false";
3027 break;
3028 case LateAttrParseKind::ExperimentalExt:
3029 // Currently no clients need to know the distinction between `Standard`
3030 // and `ExperimentalExt` so treat `ExperimentalExt` just like
3031 // `Standard` for now.
3032 case LateAttrParseKind::Standard:
3033 // Note: This is misleading. `IsLateParsed` doesn't mean the
3034 // attribute was actually late parsed. Instead it means the attribute in
3035 // `Attr.td` is marked as being late parsed. Maybe it should be called
3036 // `IsLateParseable`?
3037 OS << "true";
3038 break;
3041 if (Inheritable) {
3042 OS << ", "
3043 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
3044 : "false");
3046 OS << ")\n";
3048 for (auto const &ai : Args) {
3049 OS << " , ";
3050 if (!shouldEmitArg(ai)) {
3051 ai->writeCtorDefaultInitializers(OS);
3052 } else {
3053 ai->writeCtorInitializers(OS);
3055 OS << "\n";
3057 if (DelayedArgs) {
3058 OS << " , ";
3059 DelayedArgs->writeCtorDefaultInitializers(OS);
3060 OS << "\n";
3063 OS << " {\n";
3065 for (auto const &ai : Args) {
3066 if (!shouldEmitArg(ai))
3067 continue;
3068 ai->writeCtorBody(OS);
3070 OS << "}\n\n";
3073 if (Header)
3074 OS << "\n // Constructors\n";
3076 // Emit a constructor that includes all the arguments.
3077 // This is necessary for cloning.
3078 emitCtor(true, true, false);
3080 // Emit a constructor that takes all the non-fake arguments.
3081 if (HasFakeArg)
3082 emitCtor(true, false, false);
3084 // Emit a constructor that takes all the non-fake, non-optional arguments.
3085 if (HasOptArg)
3086 emitCtor(false, false, false);
3088 // Emit constructors that takes no arguments if none already exists.
3089 // This is used for delaying arguments.
3090 bool HasRequiredArgs =
3091 count_if(Args, [=](const std::unique_ptr<Argument> &arg) {
3092 return !arg->isFake() && !arg->isOptional();
3094 if (DelayedArgs && HasRequiredArgs)
3095 emitCtor(false, false, true);
3097 if (Header) {
3098 OS << '\n';
3099 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
3100 OS << " void printPretty(raw_ostream &OS,\n"
3101 << " const PrintingPolicy &Policy) const;\n";
3102 OS << " const char *getSpelling() const;\n";
3105 if (!ElideSpelling) {
3106 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
3107 if (Header)
3108 OS << " Spelling getSemanticSpelling() const;\n";
3109 else {
3110 OS << R.getName() << "Attr::Spelling " << R.getName()
3111 << "Attr::getSemanticSpelling() const {\n";
3112 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
3113 SemanticToSyntacticMap, OS);
3114 OS << "}\n";
3118 if (Header)
3119 writeAttrAccessorDefinition(R, OS);
3121 for (auto const &ai : Args) {
3122 if (Header) {
3123 ai->writeAccessors(OS);
3124 } else {
3125 ai->writeAccessorDefinitions(OS);
3127 OS << "\n\n";
3129 // Don't write conversion routines for fake arguments.
3130 if (ai->isFake()) continue;
3132 if (ai->isEnumArg())
3133 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
3134 Header);
3135 else if (ai->isVariadicEnumArg())
3136 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
3137 OS, Header);
3140 if (Header) {
3141 if (DelayedArgs) {
3142 DelayedArgs->writeAccessors(OS);
3143 DelayedArgs->writeSetter(OS);
3146 OS << R.getValueAsString("AdditionalMembers");
3147 OS << "\n\n";
3149 OS << " static bool classof(const Attr *A) { return A->getKind() == "
3150 << "attr::" << R.getName() << "; }\n";
3152 OS << "};\n\n";
3153 } else {
3154 if (DelayedArgs)
3155 DelayedArgs->writeAccessorDefinitions(OS);
3157 OS << R.getName() << "Attr *" << R.getName()
3158 << "Attr::clone(ASTContext &C) const {\n";
3159 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
3160 for (auto const &ai : Args) {
3161 OS << ", ";
3162 ai->writeCloneArgs(OS);
3164 OS << ");\n";
3165 OS << " A->Inherited = Inherited;\n";
3166 OS << " A->IsPackExpansion = IsPackExpansion;\n";
3167 OS << " A->setImplicit(Implicit);\n";
3168 if (DelayedArgs) {
3169 OS << " A->setDelayedArgs(C, ";
3170 DelayedArgs->writeCloneArgs(OS);
3171 OS << ");\n";
3173 OS << " return A;\n}\n\n";
3175 writePrettyPrintFunction(R, Args, OS);
3176 writeGetSpellingFunction(R, OS);
3180 // Emits the class definitions for attributes.
3181 void clang::EmitClangAttrClass(const RecordKeeper &Records, raw_ostream &OS) {
3182 emitSourceFileHeader("Attribute classes' definitions", OS, Records);
3184 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
3185 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n";
3186 OS << "#include \"clang/Support/Compiler.h\"\n\n";
3188 emitAttributes(Records, OS, true);
3190 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
3193 // Emits the class method definitions for attributes.
3194 void clang::EmitClangAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
3195 emitSourceFileHeader("Attribute classes' member function definitions", OS,
3196 Records);
3198 emitAttributes(Records, OS, false);
3200 // Instead of relying on virtual dispatch we just create a huge dispatch
3201 // switch. This is both smaller and faster than virtual functions.
3202 auto EmitFunc = [&](const char *Method) {
3203 OS << " switch (getKind()) {\n";
3204 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
3205 const Record &R = *Attr;
3206 if (!R.getValueAsBit("ASTNode"))
3207 continue;
3209 OS << " case attr::" << R.getName() << ":\n";
3210 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
3211 << ";\n";
3213 OS << " }\n";
3214 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
3215 OS << "}\n\n";
3218 OS << "const char *Attr::getSpelling() const {\n";
3219 EmitFunc("getSpelling()");
3221 OS << "Attr *Attr::clone(ASTContext &C) const {\n";
3222 EmitFunc("clone(C)");
3224 OS << "void Attr::printPretty(raw_ostream &OS, "
3225 "const PrintingPolicy &Policy) const {\n";
3226 EmitFunc("printPretty(OS, Policy)");
3229 static void emitAttrList(raw_ostream &OS, StringRef Class,
3230 ArrayRef<const Record *> AttrList) {
3231 for (auto Cur : AttrList) {
3232 OS << Class << "(" << Cur->getName() << ")\n";
3236 // Determines if an attribute has a Pragma spelling.
3237 static bool AttrHasPragmaSpelling(const Record *R) {
3238 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3239 return any_of(Spellings, [](const FlattenedSpelling &S) {
3240 return S.variety() == "Pragma";
3244 namespace {
3246 struct AttrClassDescriptor {
3247 const char * const MacroName;
3248 const char * const TableGenName;
3251 } // end anonymous namespace
3253 static const AttrClassDescriptor AttrClassDescriptors[] = {
3254 {"ATTR", "Attr"},
3255 {"TYPE_ATTR", "TypeAttr"},
3256 {"STMT_ATTR", "StmtAttr"},
3257 {"DECL_OR_STMT_ATTR", "DeclOrStmtAttr"},
3258 {"INHERITABLE_ATTR", "InheritableAttr"},
3259 {"DECL_OR_TYPE_ATTR", "DeclOrTypeAttr"},
3260 {"INHERITABLE_PARAM_ATTR", "InheritableParamAttr"},
3261 {"INHERITABLE_PARAM_OR_STMT_ATTR", "InheritableParamOrStmtAttr"},
3262 {"PARAMETER_ABI_ATTR", "ParameterABIAttr"},
3263 {"HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"}};
3265 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
3266 const char *superName) {
3267 OS << "#ifndef " << name << "\n";
3268 OS << "#define " << name << "(NAME) ";
3269 if (superName) OS << superName << "(NAME)";
3270 OS << "\n#endif\n\n";
3273 namespace {
3275 /// A class of attributes.
3276 struct AttrClass {
3277 const AttrClassDescriptor &Descriptor;
3278 const Record *TheRecord;
3279 AttrClass *SuperClass = nullptr;
3280 std::vector<AttrClass*> SubClasses;
3281 std::vector<const Record *> Attrs;
3283 AttrClass(const AttrClassDescriptor &Descriptor, const Record *R)
3284 : Descriptor(Descriptor), TheRecord(R) {}
3286 void emitDefaultDefines(raw_ostream &OS) const {
3287 // Default the macro unless this is a root class (i.e. Attr).
3288 if (SuperClass) {
3289 emitDefaultDefine(OS, Descriptor.MacroName,
3290 SuperClass->Descriptor.MacroName);
3294 void emitUndefs(raw_ostream &OS) const {
3295 OS << "#undef " << Descriptor.MacroName << "\n";
3298 void emitAttrList(raw_ostream &OS) const {
3299 for (auto SubClass : SubClasses) {
3300 SubClass->emitAttrList(OS);
3303 ::emitAttrList(OS, Descriptor.MacroName, Attrs);
3306 void classifyAttrOnRoot(const Record *Attr) {
3307 bool result = classifyAttr(Attr);
3308 assert(result && "failed to classify on root"); (void) result;
3311 void emitAttrRange(raw_ostream &OS) const {
3312 OS << "ATTR_RANGE(" << Descriptor.TableGenName
3313 << ", " << getFirstAttr()->getName()
3314 << ", " << getLastAttr()->getName() << ")\n";
3317 private:
3318 bool classifyAttr(const Record *Attr) {
3319 // Check all the subclasses.
3320 for (auto SubClass : SubClasses) {
3321 if (SubClass->classifyAttr(Attr))
3322 return true;
3325 // It's not more specific than this class, but it might still belong here.
3326 if (Attr->isSubClassOf(TheRecord)) {
3327 Attrs.push_back(Attr);
3328 return true;
3331 return false;
3334 const Record *getFirstAttr() const {
3335 if (!SubClasses.empty())
3336 return SubClasses.front()->getFirstAttr();
3337 return Attrs.front();
3340 const Record *getLastAttr() const {
3341 if (!Attrs.empty())
3342 return Attrs.back();
3343 return SubClasses.back()->getLastAttr();
3347 /// The entire hierarchy of attribute classes.
3348 class AttrClassHierarchy {
3349 std::vector<std::unique_ptr<AttrClass>> Classes;
3351 public:
3352 AttrClassHierarchy(const RecordKeeper &Records) {
3353 // Find records for all the classes.
3354 for (auto &Descriptor : AttrClassDescriptors) {
3355 const Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
3356 AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
3357 Classes.emplace_back(Class);
3360 // Link up the hierarchy.
3361 for (auto &Class : Classes) {
3362 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
3363 Class->SuperClass = SuperClass;
3364 SuperClass->SubClasses.push_back(Class.get());
3368 #ifndef NDEBUG
3369 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
3370 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
3371 "only the first class should be a root class!");
3373 #endif
3376 void emitDefaultDefines(raw_ostream &OS) const {
3377 for (auto &Class : Classes) {
3378 Class->emitDefaultDefines(OS);
3382 void emitUndefs(raw_ostream &OS) const {
3383 for (auto &Class : Classes) {
3384 Class->emitUndefs(OS);
3388 void emitAttrLists(raw_ostream &OS) const {
3389 // Just start from the root class.
3390 Classes[0]->emitAttrList(OS);
3393 void emitAttrRanges(raw_ostream &OS) const {
3394 for (auto &Class : Classes)
3395 Class->emitAttrRange(OS);
3398 void classifyAttr(const Record *Attr) {
3399 // Add the attribute to the root class.
3400 Classes[0]->classifyAttrOnRoot(Attr);
3403 private:
3404 AttrClass *findClassByRecord(const Record *R) const {
3405 for (auto &Class : Classes) {
3406 if (Class->TheRecord == R)
3407 return Class.get();
3409 return nullptr;
3412 AttrClass *findSuperClass(const Record *R) const {
3413 // TableGen flattens the superclass list, so we just need to walk it
3414 // in reverse.
3415 auto SuperClasses = R->getSuperClasses();
3416 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
3417 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
3418 if (SuperClass) return SuperClass;
3420 return nullptr;
3424 } // end anonymous namespace
3426 namespace clang {
3428 // Emits the enumeration list for attributes.
3429 void EmitClangAttrList(const RecordKeeper &Records, raw_ostream &OS) {
3430 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
3431 Records);
3433 AttrClassHierarchy Hierarchy(Records);
3435 // Add defaulting macro definitions.
3436 Hierarchy.emitDefaultDefines(OS);
3437 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
3439 std::vector<const Record *> PragmaAttrs;
3440 for (auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
3441 if (!Attr->getValueAsBit("ASTNode"))
3442 continue;
3444 // Add the attribute to the ad-hoc groups.
3445 if (AttrHasPragmaSpelling(Attr))
3446 PragmaAttrs.push_back(Attr);
3448 // Place it in the hierarchy.
3449 Hierarchy.classifyAttr(Attr);
3452 // Emit the main attribute list.
3453 Hierarchy.emitAttrLists(OS);
3455 // Emit the ad hoc groups.
3456 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
3458 // Emit the attribute ranges.
3459 OS << "#ifdef ATTR_RANGE\n";
3460 Hierarchy.emitAttrRanges(OS);
3461 OS << "#undef ATTR_RANGE\n";
3462 OS << "#endif\n";
3464 Hierarchy.emitUndefs(OS);
3465 OS << "#undef PRAGMA_SPELLING_ATTR\n";
3468 // Emits the enumeration list for attributes.
3469 void EmitClangAttrSubjectMatchRuleList(const RecordKeeper &Records,
3470 raw_ostream &OS) {
3471 emitSourceFileHeader(
3472 "List of all attribute subject matching rules that Clang recognizes", OS,
3473 Records);
3474 PragmaClangAttributeSupport &PragmaAttributeSupport =
3475 getPragmaAttributeSupport(Records);
3476 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
3477 PragmaAttributeSupport.emitMatchRuleList(OS);
3478 OS << "#undef ATTR_MATCH_RULE\n";
3481 // Emits the code to read an attribute from a precompiled header.
3482 void EmitClangAttrPCHRead(const RecordKeeper &Records, raw_ostream &OS) {
3483 emitSourceFileHeader("Attribute deserialization code", OS, Records);
3485 const Record *InhClass = Records.getClass("InheritableAttr");
3486 std::vector<const Record *> ArgRecords;
3487 std::vector<std::unique_ptr<Argument>> Args;
3488 std::unique_ptr<VariadicExprArgument> DelayedArgs;
3490 OS << " switch (Kind) {\n";
3491 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
3492 const Record &R = *Attr;
3493 if (!R.getValueAsBit("ASTNode"))
3494 continue;
3496 OS << " case attr::" << R.getName() << ": {\n";
3497 if (R.isSubClassOf(InhClass))
3498 OS << " bool isInherited = Record.readInt();\n";
3499 OS << " bool isImplicit = Record.readInt();\n";
3500 OS << " bool isPackExpansion = Record.readInt();\n";
3501 DelayedArgs = nullptr;
3502 if (Attr->getValueAsBit("AcceptsExprPack")) {
3503 DelayedArgs =
3504 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
3505 DelayedArgs->writePCHReadDecls(OS);
3507 ArgRecords = R.getValueAsListOfDefs("Args");
3508 Args.clear();
3509 for (const auto *Arg : ArgRecords) {
3510 Args.emplace_back(createArgument(*Arg, R.getName()));
3511 Args.back()->writePCHReadDecls(OS);
3513 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
3514 for (auto const &ri : Args) {
3515 OS << ", ";
3516 ri->writePCHReadArgs(OS);
3518 OS << ");\n";
3519 if (R.isSubClassOf(InhClass))
3520 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3521 OS << " New->setImplicit(isImplicit);\n";
3522 OS << " New->setPackExpansion(isPackExpansion);\n";
3523 if (DelayedArgs) {
3524 OS << " cast<" << R.getName()
3525 << "Attr>(New)->setDelayedArgs(Context, ";
3526 DelayedArgs->writePCHReadArgs(OS);
3527 OS << ");\n";
3529 OS << " break;\n";
3530 OS << " }\n";
3532 OS << " }\n";
3535 // Emits the code to write an attribute to a precompiled header.
3536 void EmitClangAttrPCHWrite(const RecordKeeper &Records, raw_ostream &OS) {
3537 emitSourceFileHeader("Attribute serialization code", OS, Records);
3539 const Record *InhClass = Records.getClass("InheritableAttr");
3540 OS << " switch (A->getKind()) {\n";
3541 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
3542 const Record &R = *Attr;
3543 if (!R.getValueAsBit("ASTNode"))
3544 continue;
3545 OS << " case attr::" << R.getName() << ": {\n";
3546 std::vector<const Record *> Args = R.getValueAsListOfDefs("Args");
3547 if (R.isSubClassOf(InhClass) || !Args.empty())
3548 OS << " const auto *SA = cast<" << R.getName()
3549 << "Attr>(A);\n";
3550 if (R.isSubClassOf(InhClass))
3551 OS << " Record.push_back(SA->isInherited());\n";
3552 OS << " Record.push_back(A->isImplicit());\n";
3553 OS << " Record.push_back(A->isPackExpansion());\n";
3554 if (Attr->getValueAsBit("AcceptsExprPack"))
3555 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
3557 for (const auto *Arg : Args)
3558 createArgument(*Arg, R.getName())->writePCHWrite(OS);
3559 OS << " break;\n";
3560 OS << " }\n";
3562 OS << " }\n";
3565 } // namespace clang
3567 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3568 // parameter with only a single check type, if applicable.
3569 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
3570 std::string *FnName,
3571 StringRef ListName,
3572 StringRef CheckAgainst,
3573 StringRef Scope) {
3574 if (!R->isValueUnset(ListName)) {
3575 Test += " && (";
3576 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3577 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3578 StringRef Part = *I;
3579 Test += CheckAgainst;
3580 Test += " == ";
3581 Test += Scope;
3582 Test += Part;
3583 if (I + 1 != E)
3584 Test += " || ";
3585 if (FnName)
3586 *FnName += Part;
3588 Test += ")";
3589 return true;
3591 return false;
3594 // Generate a conditional expression to check if the current target satisfies
3595 // the conditions for a TargetSpecificAttr record, and append the code for
3596 // those checks to the Test string. If the FnName string pointer is non-null,
3597 // append a unique suffix to distinguish this set of target checks from other
3598 // TargetSpecificAttr records.
3599 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3600 std::vector<StringRef> &Arches,
3601 std::string &Test,
3602 std::string *FnName) {
3603 bool AnyTargetChecks = false;
3605 // It is assumed that there will be an Triple object
3606 // named "T" and a TargetInfo object named "Target" within
3607 // scope that can be used to determine whether the attribute exists in
3608 // a given target.
3609 Test += "true";
3610 // If one or more architectures is specified, check those. Arches are handled
3611 // differently because GenerateTargetRequirements needs to combine the list
3612 // with ParseKind.
3613 if (!Arches.empty()) {
3614 AnyTargetChecks = true;
3615 Test += " && (";
3616 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3617 StringRef Part = *I;
3618 Test += "T.getArch() == llvm::Triple::";
3619 Test += Part;
3620 if (I + 1 != E)
3621 Test += " || ";
3622 if (FnName)
3623 *FnName += Part;
3625 Test += ")";
3628 // If the attribute is specific to particular OSes, check those.
3629 AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3630 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3632 // If one or more object formats is specified, check those.
3633 AnyTargetChecks |=
3634 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3635 "T.getObjectFormat()", "llvm::Triple::");
3637 // If custom code is specified, emit it.
3638 StringRef Code = R->getValueAsString("CustomCode");
3639 if (!Code.empty()) {
3640 AnyTargetChecks = true;
3641 Test += " && (";
3642 Test += Code;
3643 Test += ")";
3646 return AnyTargetChecks;
3649 static void GenerateHasAttrSpellingStringSwitch(
3650 ArrayRef<std::pair<const Record *, FlattenedSpelling>> Attrs,
3651 raw_ostream &OS, StringRef Variety, StringRef Scope = "") {
3652 for (const auto &[Attr, Spelling] : Attrs) {
3653 // C++11-style attributes have specific version information associated with
3654 // them. If the attribute has no scope, the version information must not
3655 // have the default value (1), as that's incorrect. Instead, the unscoped
3656 // attribute version information should be taken from the SD-6 standing
3657 // document, which can be found at:
3658 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3660 // C23-style attributes have the same kind of version information
3661 // associated with them. The unscoped attribute version information should
3662 // be taken from the specification of the attribute in the C Standard.
3664 // Clang-specific attributes have the same kind of version information
3665 // associated with them. This version is typically the default value (1).
3666 // These version values are clang-specific and should typically be
3667 // incremented once the attribute changes its syntax and/or semantics in a
3668 // a way that is impactful to the end user.
3669 int Version = 1;
3671 assert(Spelling.variety() == Variety);
3672 std::string Name = "";
3673 if (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace()) {
3674 Name = Spelling.name();
3675 Version = static_cast<int>(
3676 Spelling.getSpellingRecord().getValueAsInt("Version"));
3677 // Verify that explicitly specified CXX11 and C23 spellings (i.e.
3678 // not inferred from Clang/GCC spellings) have a version that's
3679 // different from the default (1).
3680 bool RequiresValidVersion =
3681 (Variety == "CXX11" || Variety == "C23") &&
3682 Spelling.getSpellingRecord().getValueAsString("Variety") == Variety;
3683 if (RequiresValidVersion && Scope.empty() && Version == 1)
3684 PrintError(Spelling.getSpellingRecord().getLoc(),
3685 "Standard attributes must have "
3686 "valid version information.");
3689 std::string Test;
3690 if (Attr->isSubClassOf("TargetSpecificAttr")) {
3691 const Record *R = Attr->getValueAsDef("Target");
3692 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3693 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3694 } else if (!Attr->getValueAsListOfDefs("TargetSpecificSpellings").empty()) {
3695 // Add target checks if this spelling is target-specific.
3696 for (const auto &TargetSpelling :
3697 Attr->getValueAsListOfDefs("TargetSpecificSpellings")) {
3698 // Find spelling that matches current scope and name.
3699 for (const auto &Spelling : GetFlattenedSpellings(*TargetSpelling)) {
3700 if (Scope == Spelling.nameSpace() && Name == Spelling.name()) {
3701 const Record *Target = TargetSpelling->getValueAsDef("Target");
3702 std::vector<StringRef> Arches =
3703 Target->getValueAsListOfStrings("Arches");
3704 GenerateTargetSpecificAttrChecks(Target, Arches, Test,
3705 /*FnName=*/nullptr);
3706 break;
3712 std::string TestStr = !Test.empty()
3713 ? Test + " ? " + itostr(Version) + " : 0"
3714 : itostr(Version);
3715 if (Scope.empty() || Scope == Spelling.nameSpace())
3716 OS << " .Case(\"" << Spelling.name() << "\", " << TestStr << ")\n";
3718 OS << " .Default(0);\n";
3721 namespace clang {
3723 // Emits list of regular keyword attributes with info about their arguments.
3724 void EmitClangRegularKeywordAttributeInfo(const RecordKeeper &Records,
3725 raw_ostream &OS) {
3726 emitSourceFileHeader(
3727 "A list of regular keyword attributes generated from the attribute"
3728 " definitions",
3729 OS);
3730 // Assume for now that the same token is not used in multiple regular
3731 // keyword attributes.
3732 for (auto *R : Records.getAllDerivedDefinitions("Attr"))
3733 for (const auto &S : GetFlattenedSpellings(*R)) {
3734 if (!isRegularKeywordAttribute(S))
3735 continue;
3736 std::vector<const Record *> Args = R->getValueAsListOfDefs("Args");
3737 bool HasArgs = any_of(
3738 Args, [](const Record *Arg) { return !Arg->getValueAsBit("Fake"); });
3740 OS << "KEYWORD_ATTRIBUTE("
3741 << S.getSpellingRecord().getValueAsString("Name") << ", "
3742 << (HasArgs ? "true" : "false") << ", )\n";
3744 OS << "#undef KEYWORD_ATTRIBUTE\n";
3747 // Emits the list of spellings for attributes.
3748 void EmitClangAttrHasAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
3749 emitSourceFileHeader("Code to implement the __has_attribute logic", OS,
3750 Records);
3752 // Separate all of the attributes out into four group: generic, C++11, GNU,
3753 // and declspecs. Then generate a big switch statement for each of them.
3754 using PairTy = std::pair<const Record *, FlattenedSpelling>;
3755 std::vector<PairTy> Declspec, Microsoft, GNU, Pragma, HLSLAnnotation;
3756 std::map<StringRef, std::vector<PairTy>> CXX, C23;
3758 // Walk over the list of all attributes, and split them out based on the
3759 // spelling variety.
3760 for (auto *R : Records.getAllDerivedDefinitions("Attr")) {
3761 for (const FlattenedSpelling &SI : GetFlattenedSpellings(*R)) {
3762 StringRef Variety = SI.variety();
3763 if (Variety == "GNU")
3764 GNU.emplace_back(R, SI);
3765 else if (Variety == "Declspec")
3766 Declspec.emplace_back(R, SI);
3767 else if (Variety == "Microsoft")
3768 Microsoft.emplace_back(R, SI);
3769 else if (Variety == "CXX11")
3770 CXX[SI.nameSpace()].emplace_back(R, SI);
3771 else if (Variety == "C23")
3772 C23[SI.nameSpace()].emplace_back(R, SI);
3773 else if (Variety == "Pragma")
3774 Pragma.emplace_back(R, SI);
3775 else if (Variety == "HLSLAnnotation")
3776 HLSLAnnotation.emplace_back(R, SI);
3780 OS << "const llvm::Triple &T = Target.getTriple();\n";
3781 OS << "switch (Syntax) {\n";
3782 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3783 OS << " return llvm::StringSwitch<int>(Name)\n";
3784 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3785 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3786 OS << " return llvm::StringSwitch<int>(Name)\n";
3787 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3788 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3789 OS << " return llvm::StringSwitch<int>(Name)\n";
3790 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3791 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3792 OS << " return llvm::StringSwitch<int>(Name)\n";
3793 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3794 OS << "case AttributeCommonInfo::Syntax::AS_HLSLAnnotation:\n";
3795 OS << " return llvm::StringSwitch<int>(Name)\n";
3796 GenerateHasAttrSpellingStringSwitch(HLSLAnnotation, OS, "HLSLAnnotation");
3797 auto fn = [&OS](StringRef Spelling,
3798 const std::map<StringRef, std::vector<PairTy>> &Map) {
3799 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
3800 // C++11-style attributes are further split out based on the Scope.
3801 ListSeparator LS(" else ");
3802 for (const auto &[Scope, List] : Map) {
3803 OS << LS;
3804 OS << "if (ScopeName == \"" << Scope << "\") {\n";
3805 OS << " return llvm::StringSwitch<int>(Name)\n";
3806 GenerateHasAttrSpellingStringSwitch(List, OS, Spelling, Scope);
3807 OS << "}";
3809 OS << "\n} break;\n";
3811 fn("CXX11", CXX);
3812 fn("C23", C23);
3813 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3814 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3815 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3816 OS << " return 0;\n";
3817 OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
3818 OS << " llvm_unreachable (\"hasAttribute not supported for "
3819 "AS_Implicit\");\n";
3820 OS << " return 0;\n";
3822 OS << "}\n";
3825 void EmitClangAttrSpellingListIndex(const RecordKeeper &Records,
3826 raw_ostream &OS) {
3827 emitSourceFileHeader("Code to translate different attribute spellings into "
3828 "internal identifiers",
3829 OS, Records);
3831 OS << " switch (getParsedKind()) {\n";
3832 OS << " case IgnoredAttribute:\n";
3833 OS << " case UnknownAttribute:\n";
3834 OS << " case NoSemaHandlerAttribute:\n";
3835 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3837 ParsedAttrMap Attrs = getParsedAttrList(Records);
3838 for (const auto &I : Attrs) {
3839 const Record &R = *I.second;
3840 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3841 OS << " case AT_" << I.first << ": {\n";
3843 // If there are none or one spelling to check, resort to the default
3844 // behavior of returning index as 0.
3845 if (Spellings.size() <= 1) {
3846 OS << " return 0;\n"
3847 << " break;\n"
3848 << " }\n";
3849 continue;
3852 std::vector<StringRef> Names;
3853 llvm::transform(Spellings, std::back_inserter(Names),
3854 [](const FlattenedSpelling &FS) { return FS.name(); });
3855 llvm::sort(Names);
3856 Names.erase(llvm::unique(Names), Names.end());
3858 for (const auto &[Idx, FS] : enumerate(Spellings)) {
3859 OS << " if (";
3860 if (Names.size() > 1) {
3861 SmallVector<StringRef, 6> SameLenNames;
3862 StringRef FSName = FS.name();
3863 llvm::copy_if(
3864 Names, std::back_inserter(SameLenNames),
3865 [&](StringRef N) { return N.size() == FSName.size(); });
3867 if (SameLenNames.size() == 1) {
3868 OS << "Name.size() == " << FS.name().size() << " && ";
3869 } else {
3870 // FIXME: We currently fall back to comparing entire strings if there
3871 // are 2 or more spelling names with the same length. This can be
3872 // optimized to check only for the the first differing character
3873 // between them instead.
3874 OS << "Name == \"" << FS.name() << "\""
3875 << " && ";
3879 OS << "getSyntax() == AttributeCommonInfo::AS_" << FS.variety()
3880 << " && ComputedScope == ";
3881 if (FS.nameSpace() == "")
3882 OS << "AttributeCommonInfo::Scope::NONE";
3883 else
3884 OS << "AttributeCommonInfo::Scope::" + FS.nameSpace().upper();
3886 OS << ")\n"
3887 << " return " << Idx << ";\n";
3890 OS << " break;\n"
3891 << " }\n";
3894 OS << " }\n"
3895 << " return 0;\n";
3898 // Emits code used by RecursiveASTVisitor to visit attributes
3899 void EmitClangAttrASTVisitor(const RecordKeeper &Records, raw_ostream &OS) {
3900 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS,
3901 Records);
3902 // Write method declarations for Traverse* methods.
3903 // We emit this here because we only generate methods for attributes that
3904 // are declared as ASTNodes.
3905 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3906 ArrayRef<const Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3907 for (const auto *Attr : Attrs) {
3908 const Record &R = *Attr;
3909 if (!R.getValueAsBit("ASTNode"))
3910 continue;
3911 OS << " bool Traverse"
3912 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3913 OS << " bool Visit"
3914 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3915 << " return true; \n"
3916 << " }\n";
3918 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3920 // Write individual Traverse* methods for each attribute class.
3921 for (const auto *Attr : Attrs) {
3922 const Record &R = *Attr;
3923 if (!R.getValueAsBit("ASTNode"))
3924 continue;
3926 OS << "template <typename Derived>\n"
3927 << "bool VISITORCLASS<Derived>::Traverse"
3928 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3929 << " if (!getDerived().VisitAttr(A))\n"
3930 << " return false;\n"
3931 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3932 << " return false;\n";
3934 for (const auto *Arg : R.getValueAsListOfDefs("Args"))
3935 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3937 if (Attr->getValueAsBit("AcceptsExprPack"))
3938 VariadicExprArgument("DelayedArgs", R.getName())
3939 .writeASTVisitorTraversal(OS);
3941 OS << " return true;\n";
3942 OS << "}\n\n";
3945 // Write generic Traverse routine
3946 OS << "template <typename Derived>\n"
3947 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3948 << " if (!A)\n"
3949 << " return true;\n"
3950 << "\n"
3951 << " switch (A->getKind()) {\n";
3953 for (const auto *Attr : Attrs) {
3954 const Record &R = *Attr;
3955 if (!R.getValueAsBit("ASTNode"))
3956 continue;
3958 OS << " case attr::" << R.getName() << ":\n"
3959 << " return getDerived().Traverse" << R.getName() << "Attr("
3960 << "cast<" << R.getName() << "Attr>(A));\n";
3962 OS << " }\n"; // end switch
3963 OS << " llvm_unreachable(\"bad attribute kind\");\n";
3964 OS << "}\n"; // end function
3965 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
3968 static void
3969 EmitClangAttrTemplateInstantiateHelper(ArrayRef<const Record *> Attrs,
3970 raw_ostream &OS, bool AppliesToDecl) {
3972 OS << " switch (At->getKind()) {\n";
3973 for (const auto *Attr : Attrs) {
3974 const Record &R = *Attr;
3975 if (!R.getValueAsBit("ASTNode"))
3976 continue;
3977 OS << " case attr::" << R.getName() << ": {\n";
3978 bool ShouldClone = R.getValueAsBit("Clone") &&
3979 (!AppliesToDecl ||
3980 R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3982 if (!ShouldClone) {
3983 OS << " return nullptr;\n";
3984 OS << " }\n";
3985 continue;
3988 OS << " const auto *A = cast<"
3989 << R.getName() << "Attr>(At);\n";
3990 bool TDependent = R.getValueAsBit("TemplateDependent");
3992 if (!TDependent) {
3993 OS << " return A->clone(C);\n";
3994 OS << " }\n";
3995 continue;
3998 std::vector<const Record *> ArgRecords = R.getValueAsListOfDefs("Args");
3999 std::vector<std::unique_ptr<Argument>> Args;
4000 Args.reserve(ArgRecords.size());
4002 for (const auto *ArgRecord : ArgRecords)
4003 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
4005 for (auto const &ai : Args)
4006 ai->writeTemplateInstantiation(OS);
4008 OS << " return new (C) " << R.getName() << "Attr(C, *A";
4009 for (auto const &ai : Args) {
4010 OS << ", ";
4011 ai->writeTemplateInstantiationArgs(OS);
4013 OS << ");\n"
4014 << " }\n";
4016 OS << " } // end switch\n"
4017 << " llvm_unreachable(\"Unknown attribute!\");\n"
4018 << " return nullptr;\n";
4021 // Emits code to instantiate dependent attributes on templates.
4022 void EmitClangAttrTemplateInstantiate(const RecordKeeper &Records,
4023 raw_ostream &OS) {
4024 emitSourceFileHeader("Template instantiation code for attributes", OS,
4025 Records);
4027 ArrayRef<const Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4029 OS << "namespace clang {\n"
4030 << "namespace sema {\n\n"
4031 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
4032 << "Sema &S,\n"
4033 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
4034 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
4035 OS << "}\n\n"
4036 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
4037 << " ASTContext &C, Sema &S,\n"
4038 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
4039 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
4040 OS << "}\n\n"
4041 << "} // end namespace sema\n"
4042 << "} // end namespace clang\n";
4045 // Emits the list of parsed attributes.
4046 void EmitClangAttrParsedAttrList(const RecordKeeper &Records, raw_ostream &OS) {
4047 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
4048 Records);
4050 OS << "#ifndef PARSED_ATTR\n";
4051 OS << "#define PARSED_ATTR(NAME) NAME\n";
4052 OS << "#endif\n\n";
4054 ParsedAttrMap Names = getParsedAttrList(Records);
4055 for (const auto &I : Names) {
4056 OS << "PARSED_ATTR(" << I.first << ")\n";
4060 static bool isArgVariadic(const Record &R, StringRef AttrName) {
4061 return createArgument(R, AttrName)->isVariadic();
4064 static void emitArgInfo(const Record &R, raw_ostream &OS) {
4065 // This function will count the number of arguments specified for the
4066 // attribute and emit the number of required arguments followed by the
4067 // number of optional arguments.
4068 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
4069 bool HasVariadic = false;
4070 for (const auto *Arg : R.getValueAsListOfDefs("Args")) {
4071 // If the arg is fake, it's the user's job to supply it: general parsing
4072 // logic shouldn't need to know anything about it.
4073 if (Arg->getValueAsBit("Fake"))
4074 continue;
4075 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
4076 ++ArgMemberCount;
4077 if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
4078 HasVariadic = true;
4081 // If there is a variadic argument, we will set the optional argument count
4082 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
4083 OS << " /*NumArgs=*/" << ArgCount << ",\n";
4084 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
4085 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
4088 static std::string GetDiagnosticSpelling(const Record &R) {
4089 StringRef Ret = R.getValueAsString("DiagSpelling");
4090 if (!Ret.empty())
4091 return Ret.str();
4093 // If we couldn't find the DiagSpelling in this object, we can check to see
4094 // if the object is one that has a base, and if it is, loop up to the Base
4095 // member recursively.
4096 if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
4097 return GetDiagnosticSpelling(*Base);
4099 return "";
4102 static std::string CalculateDiagnostic(const Record &S) {
4103 // If the SubjectList object has a custom diagnostic associated with it,
4104 // return that directly.
4105 const StringRef CustomDiag = S.getValueAsString("CustomDiag");
4106 if (!CustomDiag.empty())
4107 return ("\"" + Twine(CustomDiag) + "\"").str();
4109 std::vector<std::string> DiagList;
4110 for (const auto *Subject : S.getValueAsListOfDefs("Subjects")) {
4111 const Record &R = *Subject;
4112 // Get the diagnostic text from the Decl or Stmt node given.
4113 std::string V = GetDiagnosticSpelling(R);
4114 if (V.empty()) {
4115 PrintError(R.getLoc(),
4116 "Could not determine diagnostic spelling for the node: " +
4117 R.getName() + "; please add one to DeclNodes.td");
4118 } else {
4119 // The node may contain a list of elements itself, so split the elements
4120 // by a comma, and trim any whitespace.
4121 SmallVector<StringRef, 2> Frags;
4122 SplitString(V, Frags, ",");
4123 for (auto Str : Frags) {
4124 DiagList.push_back(Str.trim().str());
4129 if (DiagList.empty()) {
4130 PrintFatalError(S.getLoc(),
4131 "Could not deduce diagnostic argument for Attr subjects");
4132 return "";
4135 // FIXME: this is not particularly good for localization purposes and ideally
4136 // should be part of the diagnostics engine itself with some sort of list
4137 // specifier.
4139 // A single member of the list can be returned directly.
4140 if (DiagList.size() == 1)
4141 return '"' + DiagList.front() + '"';
4143 if (DiagList.size() == 2)
4144 return '"' + DiagList[0] + " and " + DiagList[1] + '"';
4146 // If there are more than two in the list, we serialize the first N - 1
4147 // elements with a comma. This leaves the string in the state: foo, bar,
4148 // baz (but misses quux). We can then add ", and " for the last element
4149 // manually.
4150 std::string Diag = join(DiagList.begin(), DiagList.end() - 1, ", ");
4151 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
4154 static std::string GetSubjectWithSuffix(const Record *R) {
4155 const std::string B = R->getName().str();
4156 if (B == "DeclBase")
4157 return "Decl";
4158 return B + "Decl";
4161 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
4162 return "is" + Subject.getName().str();
4165 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
4166 std::string FnName = functionNameForCustomAppertainsTo(Subject);
4168 // If this code has already been generated, we don't need to do anything.
4169 static std::set<std::string> CustomSubjectSet;
4170 auto I = CustomSubjectSet.find(FnName);
4171 if (I != CustomSubjectSet.end())
4172 return;
4174 // This only works with non-root Decls.
4175 const Record *Base = Subject.getValueAsDef(BaseFieldName);
4177 // Not currently support custom subjects within custom subjects.
4178 if (Base->isSubClassOf("SubsetSubject")) {
4179 PrintFatalError(Subject.getLoc(),
4180 "SubsetSubjects within SubsetSubjects is not supported");
4181 return;
4184 OS << "static bool " << FnName << "(const Decl *D) {\n";
4185 OS << " if (const auto *S = dyn_cast<";
4186 OS << GetSubjectWithSuffix(Base);
4187 OS << ">(D))\n";
4188 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
4189 OS << " return false;\n";
4190 OS << "}\n\n";
4192 CustomSubjectSet.insert(FnName);
4195 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
4196 // If the attribute does not contain a Subjects definition, then use the
4197 // default appertainsTo logic.
4198 if (Attr.isValueUnset("Subjects"))
4199 return;
4201 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
4202 std::vector<const Record *> Subjects =
4203 SubjectObj->getValueAsListOfDefs("Subjects");
4205 // If the list of subjects is empty, it is assumed that the attribute
4206 // appertains to everything.
4207 if (Subjects.empty())
4208 return;
4210 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
4212 // Split the subjects into declaration subjects and statement subjects.
4213 // FIXME: subset subjects are added to the declaration list until there are
4214 // enough statement attributes with custom subject needs to warrant
4215 // the implementation effort.
4216 std::vector<const Record *> DeclSubjects, StmtSubjects;
4217 copy_if(Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
4218 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
4220 copy_if(Subjects, std::back_inserter(StmtSubjects),
4221 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
4223 // We should have sorted all of the subjects into two lists.
4224 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
4225 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
4227 if (DeclSubjects.empty()) {
4228 // If there are no decl subjects but there are stmt subjects, diagnose
4229 // trying to apply a statement attribute to a declaration.
4230 if (!StmtSubjects.empty()) {
4231 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
4232 OS << "const Decl *D) const override {\n";
4233 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
4234 OS << " << AL << AL.isRegularKeywordAttribute() << "
4235 "D->getLocation();\n";
4236 OS << " return false;\n";
4237 OS << "}\n\n";
4239 } else {
4240 // Otherwise, generate an appertainsTo check specific to this attribute
4241 // which checks all of the given subjects against the Decl passed in.
4242 OS << "bool diagAppertainsToDecl(Sema &S, ";
4243 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
4244 OS << " if (";
4245 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
4246 // If the subject has custom code associated with it, use the generated
4247 // function for it. The function cannot be inlined into this check (yet)
4248 // because it requires the subject to be of a specific type, and were that
4249 // information inlined here, it would not support an attribute with
4250 // multiple custom subjects.
4251 if ((*I)->isSubClassOf("SubsetSubject"))
4252 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
4253 else
4254 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4256 if (I + 1 != E)
4257 OS << " && ";
4259 OS << ") {\n";
4260 OS << " S.Diag(Attr.getLoc(), diag::";
4261 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4262 : "err_attribute_wrong_decl_type_str");
4263 OS << ")\n";
4264 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4265 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4266 OS << " return false;\n";
4267 OS << " }\n";
4268 OS << " return true;\n";
4269 OS << "}\n\n";
4272 if (StmtSubjects.empty()) {
4273 // If there are no stmt subjects but there are decl subjects, diagnose
4274 // trying to apply a declaration attribute to a statement.
4275 if (!DeclSubjects.empty()) {
4276 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
4277 OS << "const Stmt *St) const override {\n";
4278 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
4279 OS << " << AL << AL.isRegularKeywordAttribute() << "
4280 "St->getBeginLoc();\n";
4281 OS << " return false;\n";
4282 OS << "}\n\n";
4284 } else {
4285 // Now, do the same for statements.
4286 OS << "bool diagAppertainsToStmt(Sema &S, ";
4287 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
4288 OS << " if (";
4289 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
4290 OS << "!isa<" << (*I)->getName() << ">(St)";
4291 if (I + 1 != E)
4292 OS << " && ";
4294 OS << ") {\n";
4295 OS << " S.Diag(Attr.getLoc(), diag::";
4296 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4297 : "err_attribute_wrong_decl_type_str");
4298 OS << ")\n";
4299 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4300 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4301 OS << " return false;\n";
4302 OS << " }\n";
4303 OS << " return true;\n";
4304 OS << "}\n\n";
4308 // Generates the mutual exclusion checks. The checks for parsed attributes are
4309 // written into OS and the checks for merging declaration attributes are
4310 // written into MergeOS.
4311 static void GenerateMutualExclusionsChecks(const Record &Attr,
4312 const RecordKeeper &Records,
4313 raw_ostream &OS,
4314 raw_ostream &MergeDeclOS,
4315 raw_ostream &MergeStmtOS) {
4316 // We don't do any of this magic for type attributes yet.
4317 if (Attr.isSubClassOf("TypeAttr"))
4318 return;
4320 // This means the attribute is either a statement attribute, a decl
4321 // attribute, or both; find out which.
4322 bool CurAttrIsStmtAttr = Attr.isSubClassOf("StmtAttr") ||
4323 Attr.isSubClassOf("DeclOrStmtAttr") ||
4324 Attr.isSubClassOf("InheritableParamOrStmtAttr");
4325 bool CurAttrIsDeclAttr = !CurAttrIsStmtAttr ||
4326 Attr.isSubClassOf("DeclOrStmtAttr") ||
4327 Attr.isSubClassOf("InheritableParamOrStmtAttr");
4329 std::vector<std::string> DeclAttrs, StmtAttrs;
4331 // Find all of the definitions that inherit from MutualExclusions and include
4332 // the given attribute in the list of exclusions to generate the
4333 // diagMutualExclusion() check.
4334 for (const Record *Exclusion :
4335 Records.getAllDerivedDefinitions("MutualExclusions")) {
4336 std::vector<const Record *> MutuallyExclusiveAttrs =
4337 Exclusion->getValueAsListOfDefs("Exclusions");
4338 auto IsCurAttr = [Attr](const Record *R) {
4339 return R->getName() == Attr.getName();
4341 if (any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
4342 // This list of exclusions includes the attribute we're looking for, so
4343 // add the exclusive attributes to the proper list for checking.
4344 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
4345 if (IsCurAttr(AttrToExclude))
4346 continue;
4348 if (CurAttrIsStmtAttr)
4349 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4350 if (CurAttrIsDeclAttr)
4351 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4356 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
4357 // warnings for them both.
4358 if (!DeclAttrs.empty() || !StmtAttrs.empty())
4359 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
4361 // If we discovered any decl or stmt attributes to test for, generate the
4362 // predicates for them now.
4363 if (!DeclAttrs.empty()) {
4364 // Generate the ParsedAttrInfo subclass logic for declarations.
4365 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
4366 << "const Decl *D) const override {\n";
4367 for (const std::string &A : DeclAttrs) {
4368 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
4369 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
4370 << " << AL << A << (AL.isRegularKeywordAttribute() ||"
4371 << " A->isRegularKeywordAttribute());\n";
4372 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
4373 OS << " \nreturn false;\n";
4374 OS << " }\n";
4376 OS << " return true;\n";
4377 OS << " }\n\n";
4379 // Also generate the declaration attribute merging logic if the current
4380 // attribute is one that can be inheritted on a declaration. It is assumed
4381 // this code will be executed in the context of a function with parameters:
4382 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
4383 // true on success).
4384 if (Attr.isSubClassOf("InheritableAttr")) {
4385 MergeDeclOS << " if (const auto *Second = dyn_cast<"
4386 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4387 for (const std::string &A : DeclAttrs) {
4388 MergeDeclOS << " if (const auto *First = D->getAttr<" << A
4389 << ">()) {\n";
4390 MergeDeclOS << " S.Diag(First->getLocation(), "
4391 << "diag::err_attributes_are_not_compatible) << First << "
4392 << "Second << (First->isRegularKeywordAttribute() || "
4393 << "Second->isRegularKeywordAttribute());\n";
4394 MergeDeclOS << " S.Diag(Second->getLocation(), "
4395 << "diag::note_conflicting_attribute);\n";
4396 MergeDeclOS << " return false;\n";
4397 MergeDeclOS << " }\n";
4399 MergeDeclOS << " return true;\n";
4400 MergeDeclOS << " }\n";
4404 // Statement attributes are a bit different from declarations. With
4405 // declarations, each attribute is added to the declaration as it is
4406 // processed, and so you can look on the Decl * itself to see if there is a
4407 // conflicting attribute. Statement attributes are processed as a group
4408 // because AttributedStmt needs to tail-allocate all of the attribute nodes
4409 // at once. This means we cannot check whether the statement already contains
4410 // an attribute to check for the conflict. Instead, we need to check whether
4411 // the given list of semantic attributes contain any conflicts. It is assumed
4412 // this code will be executed in the context of a function with parameters:
4413 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
4414 // loop which loops over the container C with a loop variable named A to
4415 // represent the current attribute to check for conflicts.
4417 // FIXME: it would be nice not to walk over the list of potential attributes
4418 // to apply to the statement more than once, but statements typically don't
4419 // have long lists of attributes on them, so re-walking the list should not
4420 // be an expensive operation.
4421 if (!StmtAttrs.empty()) {
4422 MergeStmtOS << " if (const auto *Second = dyn_cast<"
4423 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4424 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
4425 << "{ return isa<";
4426 interleave(
4427 StmtAttrs, [&](StringRef Name) { MergeStmtOS << Name; },
4428 [&] { MergeStmtOS << ", "; });
4429 MergeStmtOS << ">(Check); });\n";
4430 MergeStmtOS << " if (Iter != C.end()) {\n";
4431 MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
4432 << "diag::err_attributes_are_not_compatible) << *Iter << "
4433 << "Second << ((*Iter)->isRegularKeywordAttribute() || "
4434 << "Second->isRegularKeywordAttribute());\n";
4435 MergeStmtOS << " S.Diag(Second->getLocation(), "
4436 << "diag::note_conflicting_attribute);\n";
4437 MergeStmtOS << " return false;\n";
4438 MergeStmtOS << " }\n";
4439 MergeStmtOS << " }\n";
4443 static void
4444 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
4445 raw_ostream &OS) {
4446 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
4447 << AttributeSubjectMatchRule::EnumName << " rule) {\n";
4448 OS << " switch (rule) {\n";
4449 for (const auto &Rule : PragmaAttributeSupport.Rules) {
4450 if (Rule.isAbstractRule()) {
4451 OS << " case " << Rule.getEnumValue() << ":\n";
4452 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
4453 OS << " return false;\n";
4454 continue;
4456 std::vector<const Record *> Subjects = Rule.getSubjects();
4457 assert(!Subjects.empty() && "Missing subjects");
4458 OS << " case " << Rule.getEnumValue() << ":\n";
4459 OS << " return ";
4460 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
4461 // If the subject has custom code associated with it, use the function
4462 // that was generated for GenerateAppertainsTo to check if the declaration
4463 // is valid.
4464 if ((*I)->isSubClassOf("SubsetSubject"))
4465 OS << functionNameForCustomAppertainsTo(**I) << "(D)";
4466 else
4467 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4469 if (I + 1 != E)
4470 OS << " || ";
4472 OS << ";\n";
4474 OS << " }\n";
4475 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
4476 OS << "}\n\n";
4479 static void GenerateLangOptRequirements(const Record &R,
4480 raw_ostream &OS) {
4481 // If the attribute has an empty or unset list of language requirements,
4482 // use the default handler.
4483 std::vector<const Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
4484 if (LangOpts.empty())
4485 return;
4487 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
4488 OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
4489 OS << "}\n\n";
4492 static void GenerateTargetRequirements(const Record &Attr,
4493 const ParsedAttrMap &Dupes,
4494 raw_ostream &OS) {
4495 // If the attribute is not a target specific attribute, use the default
4496 // target handler.
4497 if (!Attr.isSubClassOf("TargetSpecificAttr"))
4498 return;
4500 // Get the list of architectures to be tested for.
4501 const Record *R = Attr.getValueAsDef("Target");
4502 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
4504 // If there are other attributes which share the same parsed attribute kind,
4505 // such as target-specific attributes with a shared spelling, collapse the
4506 // duplicate architectures. This is required because a shared target-specific
4507 // attribute has only one ParsedAttr::Kind enumeration value, but it
4508 // applies to multiple target architectures. In order for the attribute to be
4509 // considered valid, all of its architectures need to be included.
4510 if (!Attr.isValueUnset("ParseKind")) {
4511 const StringRef APK = Attr.getValueAsString("ParseKind");
4512 for (const auto &I : Dupes) {
4513 if (I.first == APK) {
4514 std::vector<StringRef> DA =
4515 I.second->getValueAsDef("Target")->getValueAsListOfStrings(
4516 "Arches");
4517 Arches.insert(Arches.end(), DA.begin(), DA.end());
4522 std::string FnName = "isTarget";
4523 std::string Test;
4524 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
4526 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
4527 if (UsesT)
4528 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4529 OS << " return " << Test << ";\n";
4530 OS << "}\n\n";
4533 static void
4534 GenerateSpellingTargetRequirements(const Record &Attr,
4535 ArrayRef<const Record *> TargetSpellings,
4536 raw_ostream &OS) {
4537 // If there are no target specific spellings, use the default target handler.
4538 if (TargetSpellings.empty())
4539 return;
4541 std::string Test;
4542 bool UsesT = false;
4543 const std::vector<FlattenedSpelling> SpellingList =
4544 GetFlattenedSpellings(Attr);
4545 for (unsigned TargetIndex = 0; TargetIndex < TargetSpellings.size();
4546 ++TargetIndex) {
4547 const auto &TargetSpelling = TargetSpellings[TargetIndex];
4548 std::vector<FlattenedSpelling> Spellings =
4549 GetFlattenedSpellings(*TargetSpelling);
4551 Test += "((SpellingListIndex == ";
4552 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
4553 Test += itostr(getSpellingListIndex(SpellingList, Spellings[Index]));
4554 if (Index != Spellings.size() - 1)
4555 Test += " ||\n SpellingListIndex == ";
4556 else
4557 Test += ") && ";
4560 const Record *Target = TargetSpelling->getValueAsDef("Target");
4561 std::vector<StringRef> Arches = Target->getValueAsListOfStrings("Arches");
4562 std::string FnName = "isTargetSpelling";
4563 UsesT |= GenerateTargetSpecificAttrChecks(Target, Arches, Test, &FnName);
4564 Test += ")";
4565 if (TargetIndex != TargetSpellings.size() - 1)
4566 Test += " || ";
4569 OS << "bool spellingExistsInTarget(const TargetInfo &Target,\n";
4570 OS << " const unsigned SpellingListIndex) const "
4571 "override {\n";
4572 if (UsesT)
4573 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4574 OS << " return " << Test << ";\n", OS << "}\n\n";
4577 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
4578 raw_ostream &OS) {
4579 // If the attribute does not have a semantic form, we can bail out early.
4580 if (!Attr.getValueAsBit("ASTNode"))
4581 return;
4583 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4585 // If there are zero or one spellings, or all of the spellings share the same
4586 // name, we can also bail out early.
4587 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
4588 return;
4590 // Generate the enumeration we will use for the mapping.
4591 SemanticSpellingMap SemanticToSyntacticMap;
4592 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
4593 std::string Name = Attr.getName().str() + "AttrSpellingMap";
4595 OS << "unsigned spellingIndexToSemanticSpelling(";
4596 OS << "const ParsedAttr &Attr) const override {\n";
4597 OS << Enum;
4598 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4599 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
4600 OS << "}\n\n";
4603 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
4604 // Only generate if Attr can be handled simply.
4605 if (!Attr.getValueAsBit("SimpleHandler"))
4606 return;
4608 // Generate a function which just converts from ParsedAttr to the Attr type.
4609 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4610 OS << "const ParsedAttr &Attr) const override {\n";
4611 OS << " D->addAttr(::new (S.Context) " << Attr.getName();
4612 OS << "Attr(S.Context, Attr));\n";
4613 OS << " return AttributeApplied;\n";
4614 OS << "}\n\n";
4617 static bool isParamExpr(const Record *Arg) {
4618 return !Arg->getSuperClasses().empty() &&
4619 StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
4620 .Case("ExprArgument", true)
4621 .Case("VariadicExprArgument", true)
4622 .Default(false);
4625 static void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
4626 OS << "bool isParamExpr(size_t N) const override {\n";
4627 OS << " return ";
4628 auto Args = Attr.getValueAsListOfDefs("Args");
4629 for (size_t I = 0; I < Args.size(); ++I)
4630 if (isParamExpr(Args[I]))
4631 OS << "(N == " << I << ") || ";
4632 OS << "false;\n";
4633 OS << "}\n\n";
4636 static void GenerateHandleAttrWithDelayedArgs(const RecordKeeper &Records,
4637 raw_ostream &OS) {
4638 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4639 OS << "const ParsedAttr &Attr) {\n";
4640 OS << " SmallVector<Expr *, 4> ArgExprs;\n";
4641 OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
4642 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4643 OS << " assert(!Attr.isArgIdent(I));\n";
4644 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4645 OS << " }\n";
4646 OS << " clang::Attr *CreatedAttr = nullptr;\n";
4647 OS << " switch (Attr.getKind()) {\n";
4648 OS << " default:\n";
4649 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4650 ParsedAttrMap Attrs = getParsedAttrList(Records);
4651 for (const auto &I : Attrs) {
4652 const Record &R = *I.second;
4653 if (!R.getValueAsBit("AcceptsExprPack"))
4654 continue;
4655 OS << " case ParsedAttr::AT_" << I.first << ": {\n";
4656 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
4657 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4658 OS << " break;\n";
4659 OS << " }\n";
4661 OS << " }\n";
4662 OS << " D->addAttr(CreatedAttr);\n";
4663 OS << "}\n\n";
4666 static bool IsKnownToGCC(const Record &Attr) {
4667 // Look at the spellings for this subject; if there are any spellings which
4668 // claim to be known to GCC, the attribute is known to GCC.
4669 return any_of(GetFlattenedSpellings(Attr),
4670 [](const FlattenedSpelling &S) { return S.knownToGCC(); });
4673 /// Emits the parsed attribute helpers
4674 void EmitClangAttrParsedAttrImpl(const RecordKeeper &Records, raw_ostream &OS) {
4675 emitSourceFileHeader("Parsed attribute helpers", OS, Records);
4677 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4678 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4679 PragmaClangAttributeSupport &PragmaAttributeSupport =
4680 getPragmaAttributeSupport(Records);
4682 // Get the list of parsed attributes, and accept the optional list of
4683 // duplicates due to the ParseKind.
4684 ParsedAttrMap Dupes;
4685 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
4687 // Generate all of the custom appertainsTo functions that the attributes
4688 // will be using.
4689 for (const auto &I : Attrs) {
4690 const Record &Attr = *I.second;
4691 if (Attr.isValueUnset("Subjects"))
4692 continue;
4693 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
4694 for (const Record *Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
4695 if (Subject->isSubClassOf("SubsetSubject"))
4696 GenerateCustomAppertainsTo(*Subject, OS);
4699 // This stream is used to collect all of the declaration attribute merging
4700 // logic for performing mutual exclusion checks. This gets emitted at the
4701 // end of the file in a helper function of its own.
4702 std::string DeclMergeChecks, StmtMergeChecks;
4703 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
4705 // Generate a ParsedAttrInfo struct for each of the attributes.
4706 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4707 // TODO: If the attribute's kind appears in the list of duplicates, that is
4708 // because it is a target-specific attribute that appears multiple times.
4709 // It would be beneficial to test whether the duplicates are "similar
4710 // enough" to each other to not cause problems. For instance, check that
4711 // the spellings are identical, and custom parsing rules match, etc.
4713 // We need to generate struct instances based off ParsedAttrInfo from
4714 // ParsedAttr.cpp.
4715 const std::string &AttrName = I->first;
4716 const Record &Attr = *I->second;
4717 auto Spellings = GetFlattenedSpellings(Attr);
4718 if (!Spellings.empty()) {
4719 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
4720 << "Spellings[] = {\n";
4721 for (const auto &S : Spellings) {
4722 StringRef RawSpelling = S.name();
4723 std::string Spelling;
4724 if (!S.nameSpace().empty())
4725 Spelling += S.nameSpace().str() + "::";
4726 if (S.variety() == "GNU")
4727 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4728 else
4729 Spelling += RawSpelling;
4730 OS << " {AttributeCommonInfo::AS_" << S.variety();
4731 OS << ", \"" << Spelling << "\"},\n";
4733 OS << "};\n";
4736 std::vector<std::string> ArgNames;
4737 for (const auto *Arg : Attr.getValueAsListOfDefs("Args")) {
4738 bool UnusedUnset;
4739 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
4740 continue;
4741 ArgNames.push_back(Arg->getValueAsString("Name").str());
4742 for (const auto &[Class, _] : Arg->getSuperClasses()) {
4743 if (Class->getName().starts_with("Variadic")) {
4744 ArgNames.back().append("...");
4745 break;
4749 if (!ArgNames.empty()) {
4750 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
4751 for (const auto &N : ArgNames)
4752 OS << '"' << N << "\",";
4753 OS << "};\n";
4756 OS << "struct ParsedAttrInfo" << I->first
4757 << " final : public ParsedAttrInfo {\n";
4758 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
4759 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
4760 emitArgInfo(Attr, OS);
4761 OS << " /*HasCustomParsing=*/";
4762 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n";
4763 OS << " /*AcceptsExprPack=*/";
4764 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n";
4765 OS << " /*IsTargetSpecific=*/";
4766 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n";
4767 OS << " /*IsType=*/";
4768 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr"))
4769 << ",\n";
4770 OS << " /*IsStmt=*/";
4771 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
4772 << ",\n";
4773 OS << " /*IsKnownToGCC=*/";
4774 OS << IsKnownToGCC(Attr) << ",\n";
4775 OS << " /*IsSupportedByPragmaAttribute=*/";
4776 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n";
4777 if (!Spellings.empty())
4778 OS << " /*Spellings=*/" << I->first << "Spellings,\n";
4779 else
4780 OS << " /*Spellings=*/{},\n";
4781 if (!ArgNames.empty())
4782 OS << " /*ArgNames=*/" << I->first << "ArgNames";
4783 else
4784 OS << " /*ArgNames=*/{}";
4785 OS << ") {}\n";
4786 GenerateAppertainsTo(Attr, OS);
4787 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4788 GenerateLangOptRequirements(Attr, OS);
4789 GenerateTargetRequirements(Attr, Dupes, OS);
4790 GenerateSpellingTargetRequirements(
4791 Attr, Attr.getValueAsListOfDefs("TargetSpecificSpellings"), OS);
4792 GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4793 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4794 GenerateHandleDeclAttribute(Attr, OS);
4795 GenerateIsParamExpr(Attr, OS);
4796 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4797 OS << "};\n";
4798 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4799 << "::Instance;\n";
4802 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4803 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4804 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4806 OS << "};\n\n";
4808 // Generate function for handling attributes with delayed arguments
4809 GenerateHandleAttrWithDelayedArgs(Records, OS);
4811 // Generate the attribute match rules.
4812 emitAttributeMatchRules(PragmaAttributeSupport, OS);
4814 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4816 // Write out the declaration merging check logic.
4817 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4818 << "const Attr *A) {\n";
4819 OS << DeclMergeChecks;
4820 OS << " return true;\n";
4821 OS << "}\n\n";
4823 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4825 // Write out the statement merging check logic.
4826 OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4827 << "const SmallVectorImpl<const Attr *> &C) {\n";
4828 OS << " for (const Attr *A : C) {\n";
4829 OS << StmtMergeChecks;
4830 OS << " }\n";
4831 OS << " return true;\n";
4832 OS << "}\n\n";
4834 OS << "#endif\n";
4837 // Emits the kind list of parsed attributes
4838 void EmitClangAttrParsedAttrKinds(const RecordKeeper &Records,
4839 raw_ostream &OS) {
4840 emitSourceFileHeader("Attribute name matcher", OS, Records);
4842 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4843 Keywords, Pragma, C23, HLSLAnnotation;
4844 std::set<StringRef> Seen;
4845 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
4846 const Record &Attr = *A;
4848 bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4849 bool Ignored = Attr.getValueAsBit("Ignored");
4850 if (SemaHandler || Ignored) {
4851 // Attribute spellings can be shared between target-specific attributes,
4852 // and can be shared between syntaxes for the same attribute. For
4853 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4854 // specific attribute, or MSP430-specific attribute. Additionally, an
4855 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4856 // for the same semantic attribute. Ultimately, we need to map each of
4857 // these to a single AttributeCommonInfo::Kind value, but the
4858 // StringMatcher class cannot handle duplicate match strings. So we
4859 // generate a list of string to match based on the syntax, and emit
4860 // multiple string matchers depending on the syntax used.
4861 std::string AttrName;
4862 if (Attr.isSubClassOf("TargetSpecificAttr") &&
4863 !Attr.isValueUnset("ParseKind")) {
4864 StringRef ParseKind = Attr.getValueAsString("ParseKind");
4865 if (!Seen.insert(ParseKind).second)
4866 continue;
4867 AttrName = ParseKind.str();
4868 } else {
4869 AttrName = NormalizeAttrName(Attr.getName()).str();
4872 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4873 for (const auto &S : Spellings) {
4874 StringRef RawSpelling = S.name();
4875 std::vector<StringMatcher::StringPair> *Matches = nullptr;
4876 std::string Spelling;
4877 StringRef Variety = S.variety();
4878 if (Variety == "CXX11") {
4879 Matches = &CXX11;
4880 if (!S.nameSpace().empty())
4881 Spelling += S.nameSpace().str() + "::";
4882 } else if (Variety == "C23") {
4883 Matches = &C23;
4884 if (!S.nameSpace().empty())
4885 Spelling += S.nameSpace().str() + "::";
4886 } else if (Variety == "GNU") {
4887 Matches = &GNU;
4888 } else if (Variety == "Declspec") {
4889 Matches = &Declspec;
4890 } else if (Variety == "Microsoft") {
4891 Matches = &Microsoft;
4892 } else if (Variety == "Keyword") {
4893 Matches = &Keywords;
4894 } else if (Variety == "Pragma") {
4895 Matches = &Pragma;
4896 } else if (Variety == "HLSLAnnotation") {
4897 Matches = &HLSLAnnotation;
4900 assert(Matches && "Unsupported spelling variety found");
4902 if (Variety == "GNU")
4903 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4904 else
4905 Spelling += RawSpelling;
4907 if (SemaHandler)
4908 Matches->push_back(StringMatcher::StringPair(
4909 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4910 else
4911 Matches->push_back(StringMatcher::StringPair(
4912 Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4917 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4918 OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4919 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4920 StringMatcher("Name", GNU, OS).Emit();
4921 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4922 StringMatcher("Name", Declspec, OS).Emit();
4923 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4924 StringMatcher("Name", Microsoft, OS).Emit();
4925 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4926 StringMatcher("Name", CXX11, OS).Emit();
4927 OS << " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
4928 StringMatcher("Name", C23, OS).Emit();
4929 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4930 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4931 StringMatcher("Name", Keywords, OS).Emit();
4932 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4933 StringMatcher("Name", Pragma, OS).Emit();
4934 OS << " } else if (AttributeCommonInfo::AS_HLSLAnnotation == Syntax) {\n";
4935 StringMatcher("Name", HLSLAnnotation, OS).Emit();
4936 OS << " }\n";
4937 OS << " return AttributeCommonInfo::UnknownAttribute;\n"
4938 << "}\n";
4941 // Emits the code to dump an attribute.
4942 void EmitClangAttrTextNodeDump(const RecordKeeper &Records, raw_ostream &OS) {
4943 emitSourceFileHeader("Attribute text node dumper", OS, Records);
4945 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
4946 const Record &R = *Attr;
4947 if (!R.getValueAsBit("ASTNode"))
4948 continue;
4950 // If the attribute has a semantically-meaningful name (which is determined
4951 // by whether there is a Spelling enumeration for it), then write out the
4952 // spelling used for the attribute.
4954 std::string FunctionContent;
4955 raw_string_ostream SS(FunctionContent);
4957 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4958 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4959 SS << " OS << \" \" << A->getSpelling();\n";
4961 std::vector<const Record *> Args = R.getValueAsListOfDefs("Args");
4962 for (const auto *Arg : Args)
4963 createArgument(*Arg, R.getName())->writeDump(SS);
4965 if (Attr->getValueAsBit("AcceptsExprPack"))
4966 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
4968 if (SS.tell()) {
4969 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4970 << "Attr *A) {\n";
4971 if (!Args.empty())
4972 OS << " const auto *SA = cast<" << R.getName()
4973 << "Attr>(A); (void)SA;\n";
4974 OS << FunctionContent;
4975 OS << " }\n";
4980 void EmitClangAttrNodeTraverse(const RecordKeeper &Records, raw_ostream &OS) {
4981 emitSourceFileHeader("Attribute text node traverser", OS, Records);
4983 for (const auto *Attr : Records.getAllDerivedDefinitions("Attr")) {
4984 const Record &R = *Attr;
4985 if (!R.getValueAsBit("ASTNode"))
4986 continue;
4988 std::string FunctionContent;
4989 raw_string_ostream SS(FunctionContent);
4991 std::vector<const Record *> Args = R.getValueAsListOfDefs("Args");
4992 for (const auto *Arg : Args)
4993 createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4994 if (Attr->getValueAsBit("AcceptsExprPack"))
4995 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS);
4996 if (SS.tell()) {
4997 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4998 << "Attr *A) {\n";
4999 if (!Args.empty())
5000 OS << " const auto *SA = cast<" << R.getName()
5001 << "Attr>(A); (void)SA;\n";
5002 OS << FunctionContent;
5003 OS << " }\n";
5008 void EmitClangAttrParserStringSwitches(const RecordKeeper &Records,
5009 raw_ostream &OS) {
5010 generateNameToAttrsMap(Records);
5011 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS, Records);
5012 emitClangAttrArgContextList(Records, OS);
5013 emitClangAttrIdentifierArgList(Records, OS);
5014 emitClangAttrUnevaluatedStringLiteralList(Records, OS);
5015 emitClangAttrVariadicIdentifierArgList(Records, OS);
5016 emitClangAttrThisIsaIdentifierArgList(Records, OS);
5017 emitClangAttrAcceptsExprPack(Records, OS);
5018 emitClangAttrTypeArgList(Records, OS);
5019 emitClangAttrLateParsedList(Records, OS);
5020 emitClangAttrLateParsedExperimentalList(Records, OS);
5021 emitClangAttrStrictIdentifierArgList(Records, OS);
5024 void EmitClangAttrSubjectMatchRulesParserStringSwitches(
5025 const RecordKeeper &Records, raw_ostream &OS) {
5026 getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
5029 void EmitClangAttrDocTable(const RecordKeeper &Records, raw_ostream &OS) {
5030 emitSourceFileHeader("Clang attribute documentation", OS, Records);
5032 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
5033 if (!A->getValueAsBit("ASTNode"))
5034 continue;
5035 std::vector<const Record *> Docs = A->getValueAsListOfDefs("Documentation");
5036 assert(!Docs.empty());
5037 // Only look at the first documentation if there are several.
5038 // (Currently there's only one such attr, revisit if this becomes common).
5039 StringRef Text =
5040 Docs.front()->getValueAsOptionalString("Content").value_or("");
5041 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
5042 << "R\"reST(" << Text.trim() << ")reST\";\n";
5046 enum class SpellingKind : size_t {
5047 GNU,
5048 CXX11,
5049 C23,
5050 Declspec,
5051 Microsoft,
5052 Keyword,
5053 Pragma,
5054 HLSLAnnotation,
5055 NumSpellingKinds
5057 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
5059 class SpellingList {
5060 std::vector<std::string> Spellings[NumSpellingKinds];
5062 public:
5063 ArrayRef<std::string> operator[](SpellingKind K) const {
5064 return Spellings[(size_t)K];
5067 void add(const Record &Attr, FlattenedSpelling Spelling) {
5068 SpellingKind Kind =
5069 StringSwitch<SpellingKind>(Spelling.variety())
5070 .Case("GNU", SpellingKind::GNU)
5071 .Case("CXX11", SpellingKind::CXX11)
5072 .Case("C23", SpellingKind::C23)
5073 .Case("Declspec", SpellingKind::Declspec)
5074 .Case("Microsoft", SpellingKind::Microsoft)
5075 .Case("Keyword", SpellingKind::Keyword)
5076 .Case("Pragma", SpellingKind::Pragma)
5077 .Case("HLSLAnnotation", SpellingKind::HLSLAnnotation);
5078 std::string Name;
5079 StringRef NameSpace = Spelling.nameSpace();
5080 if (!NameSpace.empty()) {
5081 Name = NameSpace;
5082 switch (Kind) {
5083 case SpellingKind::CXX11:
5084 case SpellingKind::C23:
5085 Name += "::";
5086 break;
5087 case SpellingKind::Pragma:
5088 Name = " ";
5089 break;
5090 default:
5091 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
5094 Name += Spelling.name();
5096 Spellings[(size_t)Kind].push_back(Name);
5100 class DocumentationData {
5101 public:
5102 const Record *Documentation;
5103 const Record *Attribute;
5104 std::string Heading;
5105 SpellingList SupportedSpellings;
5107 DocumentationData(const Record &Documentation, const Record &Attribute,
5108 std::pair<std::string, SpellingList> HeadingAndSpellings)
5109 : Documentation(&Documentation), Attribute(&Attribute),
5110 Heading(std::move(HeadingAndSpellings.first)),
5111 SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
5114 static void WriteCategoryHeader(const Record *DocCategory,
5115 raw_ostream &OS) {
5116 const StringRef Name = DocCategory->getValueAsString("Name");
5117 OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
5119 // If there is content, print that as well.
5120 const StringRef ContentStr = DocCategory->getValueAsString("Content");
5121 // Trim leading and trailing newlines and spaces.
5122 OS << ContentStr.trim();
5124 OS << "\n\n";
5127 static std::pair<std::string, SpellingList>
5128 GetAttributeHeadingAndSpellings(const Record &Documentation,
5129 const Record &Attribute,
5130 StringRef Cat) {
5131 // FIXME: there is no way to have a per-spelling category for the attribute
5132 // documentation. This may not be a limiting factor since the spellings
5133 // should generally be consistently applied across the category.
5135 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
5136 if (Spellings.empty())
5137 PrintFatalError(Attribute.getLoc(),
5138 "Attribute has no supported spellings; cannot be "
5139 "documented");
5141 // Determine the heading to be used for this attribute.
5142 std::string Heading = Documentation.getValueAsString("Heading").str();
5143 if (Heading.empty()) {
5144 // If there's only one spelling, we can simply use that.
5145 if (Spellings.size() == 1)
5146 Heading = Spellings.begin()->name();
5147 else {
5148 std::set<std::string> Uniques;
5149 for (auto I = Spellings.begin(), E = Spellings.end();
5150 I != E; ++I) {
5151 std::string Spelling =
5152 NormalizeNameForSpellingComparison(I->name()).str();
5153 Uniques.insert(Spelling);
5155 // If the semantic map has only one spelling, that is sufficient for our
5156 // needs.
5157 if (Uniques.size() == 1)
5158 Heading = *Uniques.begin();
5159 // If it's in the undocumented category, just construct a header by
5160 // concatenating all the spellings. Might not be great, but better than
5161 // nothing.
5162 else if (Cat == "Undocumented")
5163 Heading = join(Uniques.begin(), Uniques.end(), ", ");
5167 // If the heading is still empty, it is an error.
5168 if (Heading.empty())
5169 PrintFatalError(Attribute.getLoc(),
5170 "This attribute requires a heading to be specified");
5172 SpellingList SupportedSpellings;
5173 for (const auto &I : Spellings)
5174 SupportedSpellings.add(Attribute, I);
5176 return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
5179 static void WriteDocumentation(const RecordKeeper &Records,
5180 const DocumentationData &Doc, raw_ostream &OS) {
5181 if (StringRef Label = Doc.Documentation->getValueAsString("Label");
5182 !Label.empty())
5183 OS << ".. _" << Label << ":\n\n";
5184 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
5186 // List what spelling syntaxes the attribute supports.
5187 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop
5188 // so it must be last.
5189 OS << ".. csv-table:: Supported Syntaxes\n";
5190 OS << " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
5191 OS << " \"Keyword\", \"``#pragma``\", \"HLSL Annotation\", \"``#pragma "
5192 "clang ";
5193 OS << "attribute``\"\n\n \"";
5194 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
5195 SpellingKind K = (SpellingKind)Kind;
5196 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
5197 // support them.
5198 if (K == SpellingKind::Microsoft)
5199 continue;
5201 bool PrintedAny = false;
5202 for (StringRef Spelling : Doc.SupportedSpellings[K]) {
5203 if (PrintedAny)
5204 OS << " |br| ";
5205 OS << "``" << Spelling << "``";
5206 PrintedAny = true;
5209 OS << "\",\"";
5212 if (getPragmaAttributeSupport(Records).isAttributedSupported(
5213 *Doc.Attribute))
5214 OS << "Yes";
5215 OS << "\"\n\n";
5217 // If the attribute is deprecated, print a message about it, and possibly
5218 // provide a replacement attribute.
5219 if (!Doc.Documentation->isValueUnset("Deprecated")) {
5220 OS << "This attribute has been deprecated, and may be removed in a future "
5221 << "version of Clang.";
5222 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
5223 const StringRef Replacement = Deprecated.getValueAsString("Replacement");
5224 if (!Replacement.empty())
5225 OS << " This attribute has been superseded by ``" << Replacement
5226 << "``.";
5227 OS << "\n\n";
5230 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
5231 // Trim leading and trailing newlines and spaces.
5232 OS << ContentStr.trim();
5234 OS << "\n\n\n";
5237 void EmitClangAttrDocs(const RecordKeeper &Records, raw_ostream &OS) {
5238 // Get the documentation introduction paragraph.
5239 const Record *Documentation = Records.getDef("GlobalDocumentation");
5240 if (!Documentation) {
5241 PrintFatalError("The Documentation top-level definition is missing, "
5242 "no documentation will be generated.");
5243 return;
5246 OS << Documentation->getValueAsString("Intro") << "\n";
5248 // Gather the Documentation lists from each of the attributes, based on the
5249 // category provided.
5250 struct CategoryLess {
5251 bool operator()(const Record *L, const Record *R) const {
5252 return L->getValueAsString("Name") < R->getValueAsString("Name");
5255 std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
5256 SplitDocs;
5257 for (const auto *A : Records.getAllDerivedDefinitions("Attr")) {
5258 const Record &Attr = *A;
5259 std::vector<const Record *> Docs =
5260 Attr.getValueAsListOfDefs("Documentation");
5261 for (const auto *D : Docs) {
5262 const Record &Doc = *D;
5263 const Record *Category = Doc.getValueAsDef("Category");
5264 // If the category is "InternalOnly", then there cannot be any other
5265 // documentation categories (otherwise, the attribute would be
5266 // emitted into the docs).
5267 const StringRef Cat = Category->getValueAsString("Name");
5268 bool InternalOnly = Cat == "InternalOnly";
5269 if (InternalOnly && Docs.size() > 1)
5270 PrintFatalError(Doc.getLoc(),
5271 "Attribute is \"InternalOnly\", but has multiple "
5272 "documentation categories");
5274 if (!InternalOnly)
5275 SplitDocs[Category].push_back(DocumentationData(
5276 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat)));
5280 // Having split the attributes out based on what documentation goes where,
5281 // we can begin to generate sections of documentation.
5282 for (auto &I : SplitDocs) {
5283 WriteCategoryHeader(I.first, OS);
5285 sort(I.second,
5286 [](const DocumentationData &D1, const DocumentationData &D2) {
5287 return D1.Heading < D2.Heading;
5290 // Walk over each of the attributes in the category and write out their
5291 // documentation.
5292 for (const auto &Doc : I.second)
5293 WriteDocumentation(Records, Doc, OS);
5297 void EmitTestPragmaAttributeSupportedAttributes(const RecordKeeper &Records,
5298 raw_ostream &OS) {
5299 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
5300 ParsedAttrMap Attrs = getParsedAttrList(Records);
5301 OS << "#pragma clang attribute supports the following attributes:\n";
5302 for (const auto &I : Attrs) {
5303 if (!Support.isAttributedSupported(*I.second))
5304 continue;
5305 OS << I.first;
5306 if (I.second->isValueUnset("Subjects")) {
5307 OS << " ()\n";
5308 continue;
5310 const Record *SubjectObj = I.second->getValueAsDef("Subjects");
5311 OS << " (";
5312 bool PrintComma = false;
5313 for (const auto &Subject :
5314 enumerate(SubjectObj->getValueAsListOfDefs("Subjects"))) {
5315 if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
5316 continue;
5317 if (PrintComma)
5318 OS << ", ";
5319 PrintComma = true;
5320 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
5321 Support.SubjectsToRules.find(Subject.value())->getSecond();
5322 if (RuleSet.isRule()) {
5323 OS << RuleSet.getRule().getEnumValueName();
5324 continue;
5326 OS << "(";
5327 for (const auto &Rule : enumerate(RuleSet.getAggregateRuleSet())) {
5328 if (Rule.index())
5329 OS << ", ";
5330 OS << Rule.value().getEnumValueName();
5332 OS << ")";
5334 OS << ")\n";
5336 OS << "End of supported attributes.\n";
5339 } // end namespace clang