[ELF] Reorder SectionBase/InputSectionBase members
[llvm-project.git] / compiler-rt / lib / hwasan / hwasan_linux.cpp
blob68651d3d39d03ec37bcb23d6110a5da459a2e831
1 //===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
11 /// FreeBSD-specific code.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_platform.h"
16 #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
18 # include <dlfcn.h>
19 # include <elf.h>
20 # include <errno.h>
21 # include <link.h>
22 # include <pthread.h>
23 # include <signal.h>
24 # include <stdio.h>
25 # include <stdlib.h>
26 # include <sys/prctl.h>
27 # include <sys/resource.h>
28 # include <sys/time.h>
29 # include <unistd.h>
30 # include <unwind.h>
32 # include "hwasan.h"
33 # include "hwasan_dynamic_shadow.h"
34 # include "hwasan_interface_internal.h"
35 # include "hwasan_mapping.h"
36 # include "hwasan_report.h"
37 # include "hwasan_thread.h"
38 # include "hwasan_thread_list.h"
39 # include "sanitizer_common/sanitizer_common.h"
40 # include "sanitizer_common/sanitizer_procmaps.h"
41 # include "sanitizer_common/sanitizer_stackdepot.h"
43 // Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
45 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
46 // Not currently tested.
47 // HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
48 // Integration tests downstream exist.
49 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
50 // Tested with check-hwasan on x86_64-linux.
51 // HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
52 // Tested with check-hwasan on aarch64-linux-android.
53 # if !SANITIZER_ANDROID
54 SANITIZER_INTERFACE_ATTRIBUTE
55 THREADLOCAL uptr __hwasan_tls;
56 # endif
58 namespace __hwasan {
60 // With the zero shadow base we can not actually map pages starting from 0.
61 // This constant is somewhat arbitrary.
62 constexpr uptr kZeroBaseShadowStart = 0;
63 constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
65 static void ProtectGap(uptr addr, uptr size) {
66 __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
67 kZeroBaseMaxShadowStart);
70 uptr kLowMemStart;
71 uptr kLowMemEnd;
72 uptr kHighMemStart;
73 uptr kHighMemEnd;
75 static void PrintRange(uptr start, uptr end, const char *name) {
76 Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
79 static void PrintAddressSpaceLayout() {
80 PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
81 if (kHighShadowEnd + 1 < kHighMemStart)
82 PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
83 else
84 CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
85 PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
86 if (kLowShadowEnd + 1 < kHighShadowStart)
87 PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
88 else
89 CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
90 PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
91 if (kLowMemEnd + 1 < kLowShadowStart)
92 PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
93 else
94 CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
95 PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
96 CHECK_EQ(0, kLowMemStart);
99 static uptr GetHighMemEnd() {
100 // HighMem covers the upper part of the address space.
101 uptr max_address = GetMaxUserVirtualAddress();
102 // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
103 // properly aligned:
104 max_address |= (GetMmapGranularity() << kShadowScale) - 1;
105 return max_address;
108 static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
109 // FIXME: Android should init flags before shadow.
110 if (!SANITIZER_ANDROID && flags()->fixed_shadow_base != (uptr)-1) {
111 __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
112 uptr beg = __hwasan_shadow_memory_dynamic_address;
113 uptr end = beg + shadow_size_bytes;
114 if (!MemoryRangeIsAvailable(beg, end)) {
115 Report(
116 "FATAL: HWAddressSanitizer: Shadow range %p-%p is not available.\n",
117 (void *)beg, (void *)end);
118 DumpProcessMap();
119 CHECK(MemoryRangeIsAvailable(beg, end));
121 } else {
122 __hwasan_shadow_memory_dynamic_address =
123 FindDynamicShadowStart(shadow_size_bytes);
127 static void MaybeDieIfNoTaggingAbi(const char *message) {
128 if (!flags()->fail_without_syscall_abi)
129 return;
130 Printf("FATAL: %s\n", message);
131 Die();
134 # define PR_SET_TAGGED_ADDR_CTRL 55
135 # define PR_GET_TAGGED_ADDR_CTRL 56
136 # define PR_TAGGED_ADDR_ENABLE (1UL << 0)
137 # define ARCH_GET_UNTAG_MASK 0x4001
138 # define ARCH_ENABLE_TAGGED_ADDR 0x4002
139 # define ARCH_GET_MAX_TAG_BITS 0x4003
141 static bool CanUseTaggingAbi() {
142 # if defined(__x86_64__)
143 unsigned long num_bits = 0;
144 // Check for x86 LAM support. This API is based on a currently unsubmitted
145 // patch to the Linux kernel (as of August 2022) and is thus subject to
146 // change. The patch is here:
147 // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
149 // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
150 // bits the user can request, or zero if LAM is not supported by the hardware.
151 if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
152 reinterpret_cast<uptr>(&num_bits))))
153 return false;
154 // The platform must provide enough bits for HWASan tags.
155 if (num_bits < kTagBits)
156 return false;
157 return true;
158 # else
159 // Check for ARM TBI support.
160 return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
161 # endif // __x86_64__
164 static bool EnableTaggingAbi() {
165 # if defined(__x86_64__)
166 // Enable x86 LAM tagging for the process.
168 // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
169 // tag bits requested by the user does not exceed that provided by the system.
170 // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
171 // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
172 // is not supported by the hardware.
173 if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
174 return false;
175 unsigned long mask = 0;
176 // Make sure the tag bits are where we expect them to be.
177 if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
178 reinterpret_cast<uptr>(&mask))))
179 return false;
180 // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
181 // bits. Therefore these masks must not overlap.
182 if (mask & kAddressTagMask)
183 return false;
184 return true;
185 # else
186 // Enable ARM TBI tagging for the process. If for some reason tagging is not
187 // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
188 // -EINVAL.
189 if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
190 PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
191 return false;
192 // Ensure that TBI is enabled.
193 if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
194 PR_TAGGED_ADDR_ENABLE)
195 return false;
196 return true;
197 # endif // __x86_64__
200 void InitializeOsSupport() {
201 // Check we're running on a kernel that can use the tagged address ABI.
202 bool has_abi = CanUseTaggingAbi();
204 if (!has_abi) {
205 # if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
206 // Some older Android kernels have the tagged pointer ABI on
207 // unconditionally, and hence don't have the tagged-addr prctl while still
208 // allow the ABI.
209 // If targeting Android and the prctl is not around we assume this is the
210 // case.
211 return;
212 # else
213 MaybeDieIfNoTaggingAbi(
214 "HWAddressSanitizer requires a kernel with tagged address ABI.");
215 # endif
218 if (EnableTaggingAbi())
219 return;
221 # if SANITIZER_ANDROID
222 MaybeDieIfNoTaggingAbi(
223 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
224 "Check the `sysctl abi.tagged_addr_disabled` configuration.");
225 # else
226 MaybeDieIfNoTaggingAbi(
227 "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
228 # endif
231 bool InitShadow() {
232 // Define the entire memory range.
233 kHighMemEnd = GetHighMemEnd();
235 // Determine shadow memory base offset.
236 InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
238 // Place the low memory first.
239 kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
240 kLowMemStart = 0;
242 // Define the low shadow based on the already placed low memory.
243 kLowShadowEnd = MemToShadow(kLowMemEnd);
244 kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
246 // High shadow takes whatever memory is left up there (making sure it is not
247 // interfering with low memory in the fixed case).
248 kHighShadowEnd = MemToShadow(kHighMemEnd);
249 kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
251 // High memory starts where allocated shadow allows.
252 kHighMemStart = ShadowToMem(kHighShadowStart);
254 // Check the sanity of the defined memory ranges (there might be gaps).
255 CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
256 CHECK_GT(kHighMemStart, kHighShadowEnd);
257 CHECK_GT(kHighShadowEnd, kHighShadowStart);
258 CHECK_GT(kHighShadowStart, kLowMemEnd);
259 CHECK_GT(kLowMemEnd, kLowMemStart);
260 CHECK_GT(kLowShadowEnd, kLowShadowStart);
261 CHECK_GT(kLowShadowStart, kLowMemEnd);
263 // Reserve shadow memory.
264 ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
265 ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
267 // Protect all the gaps.
268 ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
269 if (kLowMemEnd + 1 < kLowShadowStart)
270 ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
271 if (kLowShadowEnd + 1 < kHighShadowStart)
272 ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
273 if (kHighShadowEnd + 1 < kHighMemStart)
274 ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
276 if (Verbosity())
277 PrintAddressSpaceLayout();
279 return true;
282 void InitThreads() {
283 CHECK(__hwasan_shadow_memory_dynamic_address);
284 uptr guard_page_size = GetMmapGranularity();
285 uptr thread_space_start =
286 __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
287 uptr thread_space_end =
288 __hwasan_shadow_memory_dynamic_address - guard_page_size;
289 ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
290 "hwasan threads", /*madvise_shadow*/ false);
291 ProtectGap(thread_space_end,
292 __hwasan_shadow_memory_dynamic_address - thread_space_end);
293 InitThreadList(thread_space_start, thread_space_end - thread_space_start);
294 hwasanThreadList().CreateCurrentThread();
297 bool MemIsApp(uptr p) {
298 // Memory outside the alias range has non-zero tags.
299 # if !defined(HWASAN_ALIASING_MODE)
300 CHECK_EQ(GetTagFromPointer(p), 0);
301 # endif
303 return (p >= kHighMemStart && p <= kHighMemEnd) ||
304 (p >= kLowMemStart && p <= kLowMemEnd);
307 void InstallAtExitHandler() { atexit(HwasanAtExit); }
309 // ---------------------- TSD ---------------- {{{1
311 # if HWASAN_WITH_INTERCEPTORS
312 static pthread_key_t tsd_key;
313 static bool tsd_key_inited = false;
315 void HwasanTSDThreadInit() {
316 if (tsd_key_inited)
317 CHECK_EQ(0, pthread_setspecific(tsd_key,
318 (void *)GetPthreadDestructorIterations()));
321 void HwasanTSDDtor(void *tsd) {
322 uptr iterations = (uptr)tsd;
323 if (iterations > 1) {
324 CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
325 return;
327 __hwasan_thread_exit();
330 void HwasanTSDInit() {
331 CHECK(!tsd_key_inited);
332 tsd_key_inited = true;
333 CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
335 # else
336 void HwasanTSDInit() {}
337 void HwasanTSDThreadInit() {}
338 # endif
340 # if SANITIZER_ANDROID
341 uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
342 # else
343 uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
344 # endif
346 # if SANITIZER_ANDROID
347 void AndroidTestTlsSlot() {
348 uptr kMagicValue = 0x010203040A0B0C0D;
349 uptr *tls_ptr = GetCurrentThreadLongPtr();
350 uptr old_value = *tls_ptr;
351 *tls_ptr = kMagicValue;
352 dlerror();
353 if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
354 Printf(
355 "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
356 "for dlerror().\n");
357 Die();
359 *tls_ptr = old_value;
361 # else
362 void AndroidTestTlsSlot() {}
363 # endif
365 static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
366 // Access type is passed in a platform dependent way (see below) and encoded
367 // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
368 // recoverable. Valid values of Y are 0 to 4, which are interpreted as
369 // log2(access_size), and 0xF, which means that access size is passed via
370 // platform dependent register (see below).
371 # if defined(__aarch64__)
372 // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
373 // access size is stored in X1 register. Access address is always in X0
374 // register.
375 uptr pc = (uptr)info->si_addr;
376 const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
377 if ((code & 0xff00) != 0x900)
378 return AccessInfo{}; // Not ours.
380 const bool is_store = code & 0x10;
381 const bool recover = code & 0x20;
382 const uptr addr = uc->uc_mcontext.regs[0];
383 const unsigned size_log = code & 0xf;
384 if (size_log > 4 && size_log != 0xf)
385 return AccessInfo{}; // Not ours.
386 const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
388 # elif defined(__x86_64__)
389 // Access type is encoded in the instruction following INT3 as
390 // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
391 // RSI register. Access address is always in RDI register.
392 uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
393 uint8_t *nop = (uint8_t *)pc;
394 if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
395 *(nop + 3) < 0x40)
396 return AccessInfo{}; // Not ours.
397 const unsigned code = *(nop + 3);
399 const bool is_store = code & 0x10;
400 const bool recover = code & 0x20;
401 const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
402 const unsigned size_log = code & 0xf;
403 if (size_log > 4 && size_log != 0xf)
404 return AccessInfo{}; // Not ours.
405 const uptr size =
406 size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
408 # elif SANITIZER_RISCV64
409 // Access type is encoded in the instruction following EBREAK as
410 // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
411 // X11 register. Access address is always in X10 register.
412 uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
413 uint8_t byte1 = *((u8 *)(pc + 0));
414 uint8_t byte2 = *((u8 *)(pc + 1));
415 uint8_t byte3 = *((u8 *)(pc + 2));
416 uint8_t byte4 = *((u8 *)(pc + 3));
417 uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
418 bool isFaultShort = false;
419 bool isEbreak = (ebreak == 0x100073);
420 bool isShortEbreak = false;
421 # if defined(__riscv_compressed)
422 isFaultShort = ((ebreak & 0x3) != 0x3);
423 isShortEbreak = ((ebreak & 0xffff) == 0x9002);
424 # endif
425 // faulted insn is not ebreak, not our case
426 if (!(isEbreak || isShortEbreak))
427 return AccessInfo{};
428 // advance pc to point after ebreak and reconstruct addi instruction
429 pc += isFaultShort ? 2 : 4;
430 byte1 = *((u8 *)(pc + 0));
431 byte2 = *((u8 *)(pc + 1));
432 byte3 = *((u8 *)(pc + 2));
433 byte4 = *((u8 *)(pc + 3));
434 // reconstruct instruction
435 uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
436 // check if this is really 32 bit instruction
437 // code is encoded in top 12 bits, since instruction is supposed to be with
438 // imm
439 const unsigned code = (instr >> 20) & 0xffff;
440 const uptr addr = uc->uc_mcontext.__gregs[10];
441 const bool is_store = code & 0x10;
442 const bool recover = code & 0x20;
443 const unsigned size_log = code & 0xf;
444 if (size_log > 4 && size_log != 0xf)
445 return AccessInfo{}; // Not our case
446 const uptr size =
447 size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
449 # else
450 # error Unsupported architecture
451 # endif
453 return AccessInfo{addr, size, is_store, !is_store, recover};
456 static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
457 AccessInfo ai = GetAccessInfo(info, uc);
458 if (!ai.is_store && !ai.is_load)
459 return false;
461 SignalContext sig{info, uc};
462 HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
464 # if defined(__aarch64__)
465 uc->uc_mcontext.pc += 4;
466 # elif defined(__x86_64__)
467 # elif SANITIZER_RISCV64
468 // pc points to EBREAK which is 2 bytes long
469 uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
470 uint8_t byte1 = (uint8_t)(*(exception_source + 0));
471 uint8_t byte2 = (uint8_t)(*(exception_source + 1));
472 uint8_t byte3 = (uint8_t)(*(exception_source + 2));
473 uint8_t byte4 = (uint8_t)(*(exception_source + 3));
474 uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
475 bool isFaultShort = false;
476 # if defined(__riscv_compressed)
477 isFaultShort = ((faulted & 0x3) != 0x3);
478 # endif
479 uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
480 # else
481 # error Unsupported architecture
482 # endif
483 return true;
486 static void OnStackUnwind(const SignalContext &sig, const void *,
487 BufferedStackTrace *stack) {
488 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
489 common_flags()->fast_unwind_on_fatal);
492 void HwasanOnDeadlySignal(int signo, void *info, void *context) {
493 // Probably a tag mismatch.
494 if (signo == SIGTRAP)
495 if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
496 return;
498 HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
501 void Thread::InitStackAndTls(const InitState *) {
502 GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_top_, &tls_begin_,
503 &tls_end_);
506 uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
507 CHECK(IsAligned(p, kShadowAlignment));
508 CHECK(IsAligned(size, kShadowAlignment));
509 uptr shadow_start = MemToShadow(p);
510 uptr shadow_size = MemToShadowSize(size);
512 uptr page_size = GetPageSizeCached();
513 uptr page_start = RoundUpTo(shadow_start, page_size);
514 uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
515 uptr threshold = common_flags()->clear_shadow_mmap_threshold;
516 if (SANITIZER_LINUX &&
517 UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
518 internal_memset((void *)shadow_start, tag, page_start - shadow_start);
519 internal_memset((void *)page_end, tag,
520 shadow_start + shadow_size - page_end);
521 // For an anonymous private mapping MADV_DONTNEED will return a zero page on
522 // Linux.
523 ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
524 } else {
525 internal_memset((void *)shadow_start, tag, shadow_size);
527 return AddTagToPointer(p, tag);
530 static void BeforeFork() {
531 VReport(2, "BeforeFork tid: %llu\n", GetTid());
532 if (CAN_SANITIZE_LEAKS) {
533 __lsan::LockGlobal();
535 // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
536 // stuff we need.
537 __lsan::LockThreads();
538 __lsan::LockAllocator();
539 StackDepotLockBeforeFork();
542 static void AfterFork(bool fork_child) {
543 StackDepotUnlockAfterFork(fork_child);
544 // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
545 // the stuff we need.
546 __lsan::UnlockAllocator();
547 __lsan::UnlockThreads();
548 if (CAN_SANITIZE_LEAKS) {
549 __lsan::UnlockGlobal();
551 VReport(2, "AfterFork tid: %llu\n", GetTid());
554 void HwasanInstallAtForkHandler() {
555 pthread_atfork(
556 &BeforeFork, []() { AfterFork(/* fork_child= */ false); },
557 []() { AfterFork(/* fork_child= */ true); });
560 void InstallAtExitCheckLeaks() {
561 if (CAN_SANITIZE_LEAKS) {
562 if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
563 if (flags()->halt_on_error)
564 Atexit(__lsan::DoLeakCheck);
565 else
566 Atexit(__lsan::DoRecoverableLeakCheckVoid);
571 } // namespace __hwasan
573 using namespace __hwasan;
575 extern "C" void __hwasan_thread_enter() {
576 hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
579 extern "C" void __hwasan_thread_exit() {
580 Thread *t = GetCurrentThread();
581 // Make sure that signal handler can not see a stale current thread pointer.
582 atomic_signal_fence(memory_order_seq_cst);
583 if (t) {
584 // Block async signals on the thread as the handler can be instrumented.
585 // After this point instrumented code can't access essential data from TLS
586 // and will crash.
587 // Bionic already calls __hwasan_thread_exit with blocked signals.
588 if (SANITIZER_GLIBC)
589 BlockSignals();
590 hwasanThreadList().ReleaseThread(t);
594 #endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD