[AMDGPU][True16][CodeGen] true16 codegen pattern for v_med3_u/i16 (#121850)
[llvm-project.git] / compiler-rt / lib / hwasan / hwasan_thread_list.h
blob369a1c3d6f5fd7f8d0ab51bd34494047e912c510
1 //===-- hwasan_thread_list.h ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
11 //===----------------------------------------------------------------------===//
13 // HwasanThreadList is a registry for live threads, as well as an allocator for
14 // HwasanThread objects and their stack history ring buffers. There are
15 // constraints on memory layout of the shadow region and CompactRingBuffer that
16 // are part of the ABI contract between compiler-rt and llvm.
18 // * Start of the shadow memory region is aligned to 2**kShadowBaseAlignment.
19 // * All stack ring buffers are located within (2**kShadowBaseAlignment)
20 // sized region below and adjacent to the shadow region.
21 // * Each ring buffer has a size of (2**N)*4096 where N is in [0, 7), and is
22 // aligned to twice its size. The value of N can be different for each buffer.
24 // These constrains guarantee that, given an address A of any element of the
25 // ring buffer,
26 // A_next = (A + sizeof(uptr)) & ~((1 << (N + 13)) - 1)
27 // is the address of the next element of that ring buffer (with wrap-around).
28 // And, with K = kShadowBaseAlignment,
29 // S = (A | ((1 << K) - 1)) + 1
30 // (align up to kShadowBaseAlignment) is the start of the shadow region.
32 // These calculations are used in compiler instrumentation to update the ring
33 // buffer and obtain the base address of shadow using only two inputs: address
34 // of the current element of the ring buffer, and N (i.e. size of the ring
35 // buffer). Since the value of N is very limited, we pack both inputs into a
36 // single thread-local word as
37 // (1 << (N + 56)) | A
38 // See the implementation of class CompactRingBuffer, which is what is stored in
39 // said thread-local word.
41 // Note the unusual way of aligning up the address of the shadow:
42 // (A | ((1 << K) - 1)) + 1
43 // It is only correct if A is not already equal to the shadow base address, but
44 // it saves 2 instructions on AArch64.
46 #include "hwasan.h"
47 #include "hwasan_allocator.h"
48 #include "hwasan_flags.h"
49 #include "hwasan_thread.h"
50 #include "sanitizer_common/sanitizer_thread_arg_retval.h"
52 namespace __hwasan {
54 static uptr RingBufferSize() {
55 uptr desired_bytes = flags()->stack_history_size * sizeof(uptr);
56 // FIXME: increase the limit to 8 once this bug is fixed:
57 // https://bugs.llvm.org/show_bug.cgi?id=39030
58 // Note that we *cannot* do that on Android, as the runtime will indefinitely
59 // have to support code that is compiled with ashr, which only works with
60 // shifts up to 6.
61 for (int shift = 0; shift < 7; ++shift) {
62 uptr size = 4096 * (1ULL << shift);
63 if (size >= desired_bytes)
64 return size;
66 Printf("stack history size too large: %d\n", flags()->stack_history_size);
67 CHECK(0);
68 return 0;
71 struct ThreadStats {
72 uptr n_live_threads;
73 uptr total_stack_size;
76 class SANITIZER_MUTEX HwasanThreadList {
77 public:
78 HwasanThreadList(uptr storage, uptr size)
79 : free_space_(storage), free_space_end_(storage + size) {
80 // [storage, storage + size) is used as a vector of
81 // thread_alloc_size_-sized, ring_buffer_size_*2-aligned elements.
82 // Each element contains
83 // * a ring buffer at offset 0,
84 // * a Thread object at offset ring_buffer_size_.
85 ring_buffer_size_ = RingBufferSize();
86 thread_alloc_size_ =
87 RoundUpTo(ring_buffer_size_ + sizeof(Thread), ring_buffer_size_ * 2);
90 Thread *CreateCurrentThread(const Thread::InitState *state = nullptr)
91 SANITIZER_EXCLUDES(free_list_mutex_, live_list_mutex_) {
92 Thread *t = nullptr;
94 SpinMutexLock l(&free_list_mutex_);
95 if (!free_list_.empty()) {
96 t = free_list_.back();
97 free_list_.pop_back();
100 if (t) {
101 uptr start = (uptr)t - ring_buffer_size_;
102 internal_memset((void *)start, 0, ring_buffer_size_ + sizeof(Thread));
103 } else {
104 t = AllocThread();
107 SpinMutexLock l(&live_list_mutex_);
108 live_list_.push_back(t);
110 t->Init((uptr)t - ring_buffer_size_, ring_buffer_size_, state);
111 AddThreadStats(t);
112 return t;
115 void DontNeedThread(Thread *t) {
116 uptr start = (uptr)t - ring_buffer_size_;
117 ReleaseMemoryPagesToOS(start, start + thread_alloc_size_);
120 void RemoveThreadFromLiveList(Thread *t)
121 SANITIZER_EXCLUDES(live_list_mutex_) {
122 SpinMutexLock l(&live_list_mutex_);
123 for (Thread *&t2 : live_list_)
124 if (t2 == t) {
125 // To remove t2, copy the last element of the list in t2's position, and
126 // pop_back(). This works even if t2 is itself the last element.
127 t2 = live_list_.back();
128 live_list_.pop_back();
129 return;
131 CHECK(0 && "thread not found in live list");
134 void ReleaseThread(Thread *t) SANITIZER_EXCLUDES(free_list_mutex_) {
135 RemoveThreadStats(t);
136 RemoveThreadFromLiveList(t);
137 t->Destroy();
138 DontNeedThread(t);
139 SpinMutexLock l(&free_list_mutex_);
140 free_list_.push_back(t);
143 Thread *GetThreadByBufferAddress(uptr p) {
144 return (Thread *)(RoundDownTo(p, ring_buffer_size_ * 2) +
145 ring_buffer_size_);
148 uptr MemoryUsedPerThread() {
149 uptr res = sizeof(Thread) + ring_buffer_size_;
150 if (auto sz = flags()->heap_history_size)
151 res += HeapAllocationsRingBuffer::SizeInBytes(sz);
152 return res;
155 template <class CB>
156 void VisitAllLiveThreads(CB cb) SANITIZER_EXCLUDES(live_list_mutex_) {
157 SpinMutexLock l(&live_list_mutex_);
158 for (Thread *t : live_list_) cb(t);
161 template <class CB>
162 Thread *FindThreadLocked(CB cb) SANITIZER_CHECK_LOCKED(live_list_mutex_) {
163 CheckLocked();
164 for (Thread *t : live_list_)
165 if (cb(t))
166 return t;
167 return nullptr;
170 void AddThreadStats(Thread *t) SANITIZER_EXCLUDES(stats_mutex_) {
171 SpinMutexLock l(&stats_mutex_);
172 stats_.n_live_threads++;
173 stats_.total_stack_size += t->stack_size();
176 void RemoveThreadStats(Thread *t) SANITIZER_EXCLUDES(stats_mutex_) {
177 SpinMutexLock l(&stats_mutex_);
178 stats_.n_live_threads--;
179 stats_.total_stack_size -= t->stack_size();
182 ThreadStats GetThreadStats() SANITIZER_EXCLUDES(stats_mutex_) {
183 SpinMutexLock l(&stats_mutex_);
184 return stats_;
187 uptr GetRingBufferSize() const { return ring_buffer_size_; }
189 void Lock() SANITIZER_ACQUIRE(live_list_mutex_) { live_list_mutex_.Lock(); }
190 void CheckLocked() const SANITIZER_CHECK_LOCKED(live_list_mutex_) {
191 live_list_mutex_.CheckLocked();
193 void Unlock() SANITIZER_RELEASE(live_list_mutex_) {
194 live_list_mutex_.Unlock();
197 private:
198 Thread *AllocThread() {
199 SpinMutexLock l(&free_space_mutex_);
200 uptr align = ring_buffer_size_ * 2;
201 CHECK(IsAligned(free_space_, align));
202 Thread *t = (Thread *)(free_space_ + ring_buffer_size_);
203 free_space_ += thread_alloc_size_;
204 CHECK_LE(free_space_, free_space_end_);
205 return t;
208 SpinMutex free_space_mutex_;
209 uptr free_space_;
210 uptr free_space_end_;
211 uptr ring_buffer_size_;
212 uptr thread_alloc_size_;
214 SpinMutex free_list_mutex_;
215 InternalMmapVector<Thread *> free_list_
216 SANITIZER_GUARDED_BY(free_list_mutex_);
217 SpinMutex live_list_mutex_;
218 InternalMmapVector<Thread *> live_list_
219 SANITIZER_GUARDED_BY(live_list_mutex_);
221 SpinMutex stats_mutex_;
222 ThreadStats stats_ SANITIZER_GUARDED_BY(stats_mutex_);
225 void InitThreadList(uptr storage, uptr size);
226 HwasanThreadList &hwasanThreadList();
227 ThreadArgRetval &hwasanThreadArgRetval();
229 } // namespace __hwasan