1 //=-- lsan_common.cpp -----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of LeakSanitizer.
10 // Implementation of common leak checking functionality.
12 //===----------------------------------------------------------------------===//
14 #include "lsan_common.h"
16 #include "sanitizer_common/sanitizer_common.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_procmaps.h"
21 #include "sanitizer_common/sanitizer_report_decorator.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_thread_registry.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
28 #if CAN_SANITIZE_LEAKS
31 // https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32 # if SANITIZER_IOS && !SANITIZER_IOSSIM
33 # define OBJC_DATA_MASK 0x0000007ffffffff8UL
35 # define OBJC_DATA_MASK 0x00007ffffffffff8UL
41 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42 // also to protect the global list of root regions.
43 static Mutex global_mutex
;
45 void LockGlobal() SANITIZER_ACQUIRE(global_mutex
) { global_mutex
.Lock(); }
46 void UnlockGlobal() SANITIZER_RELEASE(global_mutex
) { global_mutex
.Unlock(); }
50 void DisableCounterUnderflow() {
51 if (common_flags()->detect_leaks
) {
52 Report("Unmatched call to __lsan_enable().\n");
57 void Flags::SetDefaults() {
58 # define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
59 # include "lsan_flags.inc"
63 void RegisterLsanFlags(FlagParser
*parser
, Flags
*f
) {
64 # define LSAN_FLAG(Type, Name, DefaultValue, Description) \
65 RegisterFlag(parser, #Name, Description, &f->Name);
66 # include "lsan_flags.inc"
70 # define LOG_POINTERS(...) \
72 if (flags()->log_pointers) \
73 Report(__VA_ARGS__); \
76 # define LOG_THREADS(...) \
78 if (flags()->log_threads) \
79 Report(__VA_ARGS__); \
82 class LeakSuppressionContext
{
84 SuppressionContext context
;
85 bool suppressed_stacks_sorted
= true;
86 InternalMmapVector
<u32
> suppressed_stacks
;
87 const LoadedModule
*suppress_module
= nullptr;
90 Suppression
*GetSuppressionForAddr(uptr addr
);
91 bool SuppressInvalid(const StackTrace
&stack
);
92 bool SuppressByRule(const StackTrace
&stack
, uptr hit_count
, uptr total_size
);
95 LeakSuppressionContext(const char *supprression_types
[],
96 int suppression_types_num
)
97 : context(supprression_types
, suppression_types_num
) {}
99 bool Suppress(u32 stack_trace_id
, uptr hit_count
, uptr total_size
);
101 const InternalMmapVector
<u32
> &GetSortedSuppressedStacks() {
102 if (!suppressed_stacks_sorted
) {
103 suppressed_stacks_sorted
= true;
104 SortAndDedup(suppressed_stacks
);
106 return suppressed_stacks
;
108 void PrintMatchedSuppressions();
111 alignas(64) static char suppression_placeholder
[sizeof(LeakSuppressionContext
)];
112 static LeakSuppressionContext
*suppression_ctx
= nullptr;
113 static const char kSuppressionLeak
[] = "leak";
114 static const char *kSuppressionTypes
[] = {kSuppressionLeak
};
115 static const char kStdSuppressions
[] =
116 # if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117 // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
119 "leak:*pthread_exit*\n"
120 # endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
122 // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
125 // TLS leak in some glibc versions, described in
126 // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
127 "leak:*tls_get_addr*\n";
129 void InitializeSuppressions() {
130 CHECK_EQ(nullptr, suppression_ctx
);
131 suppression_ctx
= new (suppression_placeholder
)
132 LeakSuppressionContext(kSuppressionTypes
, ARRAY_SIZE(kSuppressionTypes
));
135 void LeakSuppressionContext::LazyInit() {
138 context
.ParseFromFile(flags()->suppressions
);
139 if (&__lsan_default_suppressions
)
140 context
.Parse(__lsan_default_suppressions());
141 context
.Parse(kStdSuppressions
);
142 if (flags()->use_tls
&& flags()->use_ld_allocations
)
143 suppress_module
= GetLinker();
147 Suppression
*LeakSuppressionContext::GetSuppressionForAddr(uptr addr
) {
148 Suppression
*s
= nullptr;
150 // Suppress by module name.
151 const char *module_name
= Symbolizer::GetOrInit()->GetModuleNameForPc(addr
);
153 module_name
= "<unknown module>";
154 if (context
.Match(module_name
, kSuppressionLeak
, &s
))
157 // Suppress by file or function name.
158 SymbolizedStackHolder
symbolized_stack(
159 Symbolizer::GetOrInit()->SymbolizePC(addr
));
160 const SymbolizedStack
*frames
= symbolized_stack
.get();
161 for (const SymbolizedStack
*cur
= frames
; cur
; cur
= cur
->next
) {
162 if (context
.Match(cur
->info
.function
, kSuppressionLeak
, &s
) ||
163 context
.Match(cur
->info
.file
, kSuppressionLeak
, &s
)) {
170 static uptr
GetCallerPC(const StackTrace
&stack
) {
171 // The top frame is our malloc/calloc/etc. The next frame is the caller.
173 return stack
.trace
[1];
178 // Several pointers in the Objective-C runtime (method cache and class_rw_t,
179 // for example) are tagged with additional bits we need to strip.
180 static inline void *TransformPointer(void *p
) {
181 uptr ptr
= reinterpret_cast<uptr
>(p
);
182 return reinterpret_cast<void *>(ptr
& OBJC_DATA_MASK
);
186 // On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187 // covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188 // modules accounting etc.
189 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190 // They are allocated with a __libc_memalign() call in allocate_and_init()
191 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192 // blocks, but we can make sure they come from our own allocator by intercepting
193 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
194 // addresses are stored in a dynamically allocated array (the DTV) which is
195 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196 // being reachable from the static TLS, and the dynamic TLS being reachable from
197 // the DTV. This is because the initial DTV is allocated before our interception
198 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
199 // can't special-case it either, since we don't know its size.
200 // Our solution is to include in the root set all allocations made from
201 // ld-linux.so (which is where allocate_and_init() is implemented). This is
202 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
203 // which we don't care about).
204 // On all other platforms, this simply checks to ensure that the caller pc is
205 // valid before reporting chunks as leaked.
206 bool LeakSuppressionContext::SuppressInvalid(const StackTrace
&stack
) {
207 uptr caller_pc
= GetCallerPC(stack
);
208 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209 // it as reachable, as we can't properly report its allocation stack anyway.
211 (suppress_module
&& suppress_module
->containsAddress(caller_pc
));
214 bool LeakSuppressionContext::SuppressByRule(const StackTrace
&stack
,
215 uptr hit_count
, uptr total_size
) {
216 for (uptr i
= 0; i
< stack
.size
; i
++) {
217 Suppression
*s
= GetSuppressionForAddr(
218 StackTrace::GetPreviousInstructionPc(stack
.trace
[i
]));
220 s
->weight
+= total_size
;
221 atomic_fetch_add(&s
->hit_count
, hit_count
, memory_order_relaxed
);
228 bool LeakSuppressionContext::Suppress(u32 stack_trace_id
, uptr hit_count
,
231 StackTrace stack
= StackDepotGet(stack_trace_id
);
232 if (!SuppressInvalid(stack
) && !SuppressByRule(stack
, hit_count
, total_size
))
234 suppressed_stacks_sorted
= false;
235 suppressed_stacks
.push_back(stack_trace_id
);
239 static LeakSuppressionContext
*GetSuppressionContext() {
240 CHECK(suppression_ctx
);
241 return suppression_ctx
;
244 void InitCommonLsan() {
245 if (common_flags()->detect_leaks
) {
246 // Initialization which can fail or print warnings should only be done if
247 // LSan is actually enabled.
248 InitializeSuppressions();
249 InitializePlatformSpecificModules();
253 class Decorator
: public __sanitizer::SanitizerCommonDecorator
{
255 Decorator() : SanitizerCommonDecorator() {}
256 const char *Error() { return Red(); }
257 const char *Leak() { return Blue(); }
260 static inline bool MaybeUserPointer(uptr p
) {
261 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
262 // bound on heap addresses.
263 const uptr kMinAddress
= 4 * 4096;
266 # if defined(__x86_64__)
267 // TODO: support LAM48 and 5 level page tables.
268 // LAM_U57 mask format
269 // * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
270 // * top-1 byte: 0xff because it should be 0
271 // * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
272 constexpr uptr kLAM_U57Mask
= 0x81ff80;
273 constexpr uptr kPointerMask
= kLAM_U57Mask
<< 40;
274 return ((p
& kPointerMask
) == 0);
275 # elif defined(__mips64)
276 return ((p
>> 40) == 0);
277 # elif defined(__aarch64__)
278 // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
279 // address translation and can be used to store a tag.
280 constexpr uptr kPointerMask
= 255ULL << 48;
281 // Accept up to 48 bit VMA.
282 return ((p
& kPointerMask
) == 0);
283 # elif defined(__loongarch_lp64)
284 // Allow 47-bit user-space VMA at current.
285 return ((p
>> 47) == 0);
292 struct DirectMemoryAccessor
{
293 void Init(uptr begin
, uptr end
) {};
294 void *LoadPtr(uptr p
) const { return *reinterpret_cast<void **>(p
); }
297 struct CopyMemoryAccessor
{
298 void Init(uptr begin
, uptr end
) {
301 buffer
.resize(end
- begin
);
302 MemCpyAccessible(buffer
.data(), reinterpret_cast<void *>(begin
),
306 void *LoadPtr(uptr p
) const {
307 uptr offset
= p
- begin
;
308 CHECK_LE(offset
+ sizeof(void *), reinterpret_cast<uptr
>(buffer
.size()));
309 return *reinterpret_cast<void **>(offset
+
310 reinterpret_cast<uptr
>(buffer
.data()));
315 InternalMmapVector
<char> buffer
;
319 // Scans the memory range, looking for byte patterns that point into allocator
320 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
321 // There are two usage modes for this function: finding reachable chunks
322 // (|tag| = kReachable) and finding indirectly leaked chunks
323 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
324 // so |frontier| = 0.
325 template <class Accessor
>
326 void ScanForPointers(uptr begin
, uptr end
, Frontier
*frontier
,
327 const char *region_type
, ChunkTag tag
,
328 Accessor
&accessor
) {
329 CHECK(tag
== kReachable
|| tag
== kIndirectlyLeaked
);
330 const uptr alignment
= flags()->pointer_alignment();
331 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type
, (void *)begin
,
333 accessor
.Init(begin
, end
);
336 pp
= pp
+ alignment
- pp
% alignment
;
337 for (; pp
+ sizeof(void *) <= end
; pp
+= alignment
) {
338 void *p
= accessor
.LoadPtr(pp
);
340 p
= TransformPointer(p
);
342 if (!MaybeUserPointer(reinterpret_cast<uptr
>(p
)))
344 uptr chunk
= PointsIntoChunk(p
);
347 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
350 LsanMetadata
m(chunk
);
351 if (m
.tag() == kReachable
|| m
.tag() == kIgnored
)
354 // Do this check relatively late so we can log only the interesting cases.
355 if (!flags()->use_poisoned
&& WordIsPoisoned(pp
)) {
357 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
359 (void *)pp
, p
, (void *)chunk
, (void *)(chunk
+ m
.requested_size()),
365 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
366 (void *)pp
, p
, (void *)chunk
,
367 (void *)(chunk
+ m
.requested_size()), m
.requested_size());
369 frontier
->push_back(chunk
);
373 void ScanRangeForPointers(uptr begin
, uptr end
, Frontier
*frontier
,
374 const char *region_type
, ChunkTag tag
) {
375 DirectMemoryAccessor accessor
;
376 ScanForPointers(begin
, end
, frontier
, region_type
, tag
, accessor
);
379 // Scans a global range for pointers
380 void ScanGlobalRange(uptr begin
, uptr end
, Frontier
*frontier
) {
381 uptr allocator_begin
= 0, allocator_end
= 0;
382 GetAllocatorGlobalRange(&allocator_begin
, &allocator_end
);
383 if (begin
<= allocator_begin
&& allocator_begin
< end
) {
384 CHECK_LE(allocator_begin
, allocator_end
);
385 CHECK_LE(allocator_end
, end
);
386 if (begin
< allocator_begin
)
387 ScanRangeForPointers(begin
, allocator_begin
, frontier
, "GLOBAL",
389 if (allocator_end
< end
)
390 ScanRangeForPointers(allocator_end
, end
, frontier
, "GLOBAL", kReachable
);
392 ScanRangeForPointers(begin
, end
, frontier
, "GLOBAL", kReachable
);
396 template <class Accessor
>
397 void ScanRanges(const InternalMmapVector
<Range
> &ranges
, Frontier
*frontier
,
398 const char *region_type
, Accessor
&accessor
) {
399 for (uptr i
= 0; i
< ranges
.size(); i
++) {
400 ScanForPointers(ranges
[i
].begin
, ranges
[i
].end
, frontier
, region_type
,
401 kReachable
, accessor
);
405 void ScanExtraStackRanges(const InternalMmapVector
<Range
> &ranges
,
406 Frontier
*frontier
) {
407 DirectMemoryAccessor accessor
;
408 ScanRanges(ranges
, frontier
, "FAKE STACK", accessor
);
411 # if SANITIZER_FUCHSIA
413 // Fuchsia handles all threads together with its own callback.
414 static void ProcessThreads(SuspendedThreadsList
const &, Frontier
*, tid_t
,
419 # if SANITIZER_ANDROID
420 // FIXME: Move this out into *libcdep.cpp
421 extern "C" SANITIZER_WEAK_ATTRIBUTE
void __libc_iterate_dynamic_tls(
422 pid_t
, void (*cb
)(void *, void *, uptr
, void *), void *);
425 static void ProcessThreadRegistry(Frontier
*frontier
) {
426 InternalMmapVector
<uptr
> ptrs
;
427 GetAdditionalThreadContextPtrsLocked(&ptrs
);
429 for (uptr i
= 0; i
< ptrs
.size(); ++i
) {
430 void *ptr
= reinterpret_cast<void *>(ptrs
[i
]);
431 uptr chunk
= PointsIntoChunk(ptr
);
434 LsanMetadata
m(chunk
);
438 // Mark as reachable and add to frontier.
439 LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr
);
440 m
.set_tag(kReachable
);
441 frontier
->push_back(chunk
);
445 // Scans thread data (stacks and TLS) for heap pointers.
446 template <class Accessor
>
447 static void ProcessThread(tid_t os_id
, uptr sp
,
448 const InternalMmapVector
<uptr
> ®isters
,
449 InternalMmapVector
<Range
> &extra_ranges
,
450 Frontier
*frontier
, Accessor
&accessor
) {
451 // `extra_ranges` is outside of the function and the loop to reused mapped
453 CHECK(extra_ranges
.empty());
454 LOG_THREADS("Processing thread %llu.\n", os_id
);
455 uptr stack_begin
, stack_end
, tls_begin
, tls_end
, cache_begin
, cache_end
;
458 GetThreadRangesLocked(os_id
, &stack_begin
, &stack_end
, &tls_begin
,
459 &tls_end
, &cache_begin
, &cache_end
, &dtls
);
461 // If a thread can't be found in the thread registry, it's probably in the
462 // process of destruction. Log this event and move on.
463 LOG_THREADS("Thread %llu not found in registry.\n", os_id
);
470 if (flags()->use_registers
) {
471 uptr registers_begin
= reinterpret_cast<uptr
>(registers
.data());
473 reinterpret_cast<uptr
>(registers
.data() + registers
.size());
474 ScanForPointers(registers_begin
, registers_end
, frontier
, "REGISTERS",
475 kReachable
, accessor
);
478 if (flags()->use_stacks
) {
479 LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin
,
480 (void *)stack_end
, (void *)sp
);
481 if (sp
< stack_begin
|| sp
>= stack_end
) {
482 // SP is outside the recorded stack range (e.g. the thread is running a
483 // signal handler on alternate stack, or swapcontext was used).
484 // Again, consider the entire stack range to be reachable.
485 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
486 uptr page_size
= GetPageSizeCached();
488 while (stack_begin
< stack_end
&&
489 !IsAccessibleMemoryRange(stack_begin
, 1)) {
491 stack_begin
+= page_size
;
493 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n", skipped
,
494 (void *)stack_begin
, (void *)stack_end
);
496 // Shrink the stack range to ignore out-of-scope values.
499 ScanForPointers(stack_begin
, stack_end
, frontier
, "STACK", kReachable
,
501 GetThreadExtraStackRangesLocked(os_id
, &extra_ranges
);
502 ScanRanges(extra_ranges
, frontier
, "FAKE STACK", accessor
);
505 if (flags()->use_tls
) {
507 LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin
, (void *)tls_end
);
508 // If the tls and cache ranges don't overlap, scan full tls range,
509 // otherwise, only scan the non-overlapping portions
510 if (cache_begin
== cache_end
|| tls_end
< cache_begin
||
511 tls_begin
> cache_end
) {
512 ScanForPointers(tls_begin
, tls_end
, frontier
, "TLS", kReachable
,
515 if (tls_begin
< cache_begin
)
516 ScanForPointers(tls_begin
, cache_begin
, frontier
, "TLS", kReachable
,
518 if (tls_end
> cache_end
)
519 ScanForPointers(cache_end
, tls_end
, frontier
, "TLS", kReachable
,
523 # if SANITIZER_ANDROID
524 extra_ranges
.clear();
525 auto *cb
= +[](void *dtls_begin
, void *dtls_end
, uptr
/*dso_idd*/,
527 reinterpret_cast<InternalMmapVector
<Range
> *>(arg
)->push_back(
528 {reinterpret_cast<uptr
>(dtls_begin
),
529 reinterpret_cast<uptr
>(dtls_end
)});
531 ScanRanges(extra_ranges
, frontier
, "DTLS", accessor
);
532 // FIXME: There might be a race-condition here (and in Bionic) if the
533 // thread is suspended in the middle of updating its DTLS. IOWs, we
534 // could scan already freed memory. (probably fine for now)
535 __libc_iterate_dynamic_tls(os_id
, cb
, frontier
);
537 if (dtls
&& !DTLSInDestruction(dtls
)) {
538 ForEachDVT(dtls
, [&](const DTLS::DTV
&dtv
, int id
) {
539 uptr dtls_beg
= dtv
.beg
;
540 uptr dtls_end
= dtls_beg
+ dtv
.size
;
541 if (dtls_beg
< dtls_end
) {
542 LOG_THREADS("DTLS %d at %p-%p.\n", id
, (void *)dtls_beg
,
544 ScanForPointers(dtls_beg
, dtls_end
, frontier
, "DTLS", kReachable
,
549 // We are handling a thread with DTLS under destruction. Log about
550 // this and continue.
551 LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id
);
557 static void ProcessThreads(SuspendedThreadsList
const &suspended_threads
,
558 Frontier
*frontier
, tid_t caller_tid
,
560 InternalMmapVector
<tid_t
> done_threads
;
561 InternalMmapVector
<uptr
> registers
;
562 InternalMmapVector
<Range
> extra_ranges
;
563 for (uptr i
= 0; i
< suspended_threads
.ThreadCount(); i
++) {
565 extra_ranges
.clear();
567 const tid_t os_id
= suspended_threads
.GetThreadID(i
);
569 PtraceRegistersStatus have_registers
=
570 suspended_threads
.GetRegistersAndSP(i
, ®isters
, &sp
);
571 if (have_registers
!= REGISTERS_AVAILABLE
) {
572 VReport(1, "Unable to get registers from thread %llu.\n", os_id
);
573 // If unable to get SP, consider the entire stack to be reachable unless
574 // GetRegistersAndSP failed with ESRCH.
575 if (have_registers
== REGISTERS_UNAVAILABLE_FATAL
)
580 if (os_id
== caller_tid
)
583 DirectMemoryAccessor accessor
;
584 ProcessThread(os_id
, sp
, registers
, extra_ranges
, frontier
, accessor
);
585 if (flags()->use_detached
)
586 done_threads
.push_back(os_id
);
589 if (flags()->use_detached
) {
590 CopyMemoryAccessor accessor
;
591 InternalMmapVector
<tid_t
> known_threads
;
592 GetRunningThreadsLocked(&known_threads
);
593 Sort(done_threads
.data(), done_threads
.size());
594 for (tid_t os_id
: known_threads
) {
596 extra_ranges
.clear();
598 uptr i
= InternalLowerBound(done_threads
, os_id
);
599 if (i
>= done_threads
.size() || done_threads
[i
] != os_id
) {
600 uptr sp
= (os_id
== caller_tid
) ? caller_sp
: 0;
601 ProcessThread(os_id
, sp
, registers
, extra_ranges
, frontier
, accessor
);
606 // Add pointers reachable from ThreadContexts
607 ProcessThreadRegistry(frontier
);
610 # endif // SANITIZER_FUCHSIA
612 // A map that contains [region_begin, region_end) pairs.
613 using RootRegions
= DenseMap
<detail::DenseMapPair
<uptr
, uptr
>, uptr
>;
615 static RootRegions
&GetRootRegionsLocked() {
616 global_mutex
.CheckLocked();
617 static RootRegions
*regions
= nullptr;
618 alignas(RootRegions
) static char placeholder
[sizeof(RootRegions
)];
620 regions
= new (placeholder
) RootRegions();
624 bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
626 void ScanRootRegions(Frontier
*frontier
,
627 const InternalMmapVectorNoCtor
<Region
> &mapped_regions
) {
628 if (!flags()->use_root_regions
)
631 InternalMmapVector
<Region
> regions
;
632 GetRootRegionsLocked().forEach([&](const auto &kv
) {
633 regions
.push_back({kv
.first
.first
, kv
.first
.second
});
637 InternalMmapVector
<Region
> intersection
;
638 Intersect(mapped_regions
, regions
, intersection
);
640 for (const Region
&r
: intersection
) {
641 LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
642 (void *)r
.begin
, (void *)r
.end
);
643 ScanRangeForPointers(r
.begin
, r
.end
, frontier
, "ROOT", kReachable
);
647 // Scans root regions for heap pointers.
648 static void ProcessRootRegions(Frontier
*frontier
) {
649 if (!flags()->use_root_regions
|| !HasRootRegions())
651 MemoryMappingLayout
proc_maps(/*cache_enabled*/ true);
652 MemoryMappedSegment segment
;
653 InternalMmapVector
<Region
> mapped_regions
;
654 while (proc_maps
.Next(&segment
))
655 if (segment
.IsReadable())
656 mapped_regions
.push_back({segment
.start
, segment
.end
});
657 ScanRootRegions(frontier
, mapped_regions
);
660 static void FloodFillTag(Frontier
*frontier
, ChunkTag tag
) {
661 while (frontier
->size()) {
662 uptr next_chunk
= frontier
->back();
663 frontier
->pop_back();
664 LsanMetadata
m(next_chunk
);
665 ScanRangeForPointers(next_chunk
, next_chunk
+ m
.requested_size(), frontier
,
670 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
671 // which are reachable from it as indirectly leaked.
672 static void MarkIndirectlyLeakedCb(uptr chunk
, void *arg
) {
673 chunk
= GetUserBegin(chunk
);
674 LsanMetadata
m(chunk
);
675 if (m
.allocated() && m
.tag() != kReachable
) {
676 ScanRangeForPointers(chunk
, chunk
+ m
.requested_size(),
677 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked
);
681 static void IgnoredSuppressedCb(uptr chunk
, void *arg
) {
683 chunk
= GetUserBegin(chunk
);
684 LsanMetadata
m(chunk
);
685 if (!m
.allocated() || m
.tag() == kIgnored
)
688 const InternalMmapVector
<u32
> &suppressed
=
689 *static_cast<const InternalMmapVector
<u32
> *>(arg
);
690 uptr idx
= InternalLowerBound(suppressed
, m
.stack_trace_id());
691 if (idx
>= suppressed
.size() || m
.stack_trace_id() != suppressed
[idx
])
694 LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk
,
695 (void *)(chunk
+ m
.requested_size()), m
.requested_size());
699 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
701 static void CollectIgnoredCb(uptr chunk
, void *arg
) {
703 chunk
= GetUserBegin(chunk
);
704 LsanMetadata
m(chunk
);
705 if (m
.allocated() && m
.tag() == kIgnored
) {
706 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk
,
707 (void *)(chunk
+ m
.requested_size()), m
.requested_size());
708 reinterpret_cast<Frontier
*>(arg
)->push_back(chunk
);
712 // Sets the appropriate tag on each chunk.
713 static void ClassifyAllChunks(SuspendedThreadsList
const &suspended_threads
,
714 Frontier
*frontier
, tid_t caller_tid
,
716 const InternalMmapVector
<u32
> &suppressed_stacks
=
717 GetSuppressionContext()->GetSortedSuppressedStacks();
718 if (!suppressed_stacks
.empty()) {
719 ForEachChunk(IgnoredSuppressedCb
,
720 const_cast<InternalMmapVector
<u32
> *>(&suppressed_stacks
));
722 ForEachChunk(CollectIgnoredCb
, frontier
);
723 ProcessGlobalRegions(frontier
);
724 ProcessThreads(suspended_threads
, frontier
, caller_tid
, caller_sp
);
725 ProcessRootRegions(frontier
);
726 FloodFillTag(frontier
, kReachable
);
728 // The check here is relatively expensive, so we do this in a separate flood
729 // fill. That way we can skip the check for chunks that are reachable
731 LOG_POINTERS("Processing platform-specific allocations.\n");
732 ProcessPlatformSpecificAllocations(frontier
);
733 FloodFillTag(frontier
, kReachable
);
735 // Iterate over leaked chunks and mark those that are reachable from other
737 LOG_POINTERS("Scanning leaked chunks.\n");
738 ForEachChunk(MarkIndirectlyLeakedCb
, nullptr);
741 // ForEachChunk callback. Resets the tags to pre-leak-check state.
742 static void ResetTagsCb(uptr chunk
, void *arg
) {
744 chunk
= GetUserBegin(chunk
);
745 LsanMetadata
m(chunk
);
746 if (m
.allocated() && m
.tag() != kIgnored
)
747 m
.set_tag(kDirectlyLeaked
);
750 // ForEachChunk callback. Aggregates information about unreachable chunks into
752 static void CollectLeaksCb(uptr chunk
, void *arg
) {
754 LeakedChunks
*leaks
= reinterpret_cast<LeakedChunks
*>(arg
);
755 chunk
= GetUserBegin(chunk
);
756 LsanMetadata
m(chunk
);
759 if (m
.tag() == kDirectlyLeaked
|| m
.tag() == kIndirectlyLeaked
)
760 leaks
->push_back({chunk
, m
.stack_trace_id(), m
.requested_size(), m
.tag()});
763 void LeakSuppressionContext::PrintMatchedSuppressions() {
764 InternalMmapVector
<Suppression
*> matched
;
765 context
.GetMatched(&matched
);
768 const char *line
= "-----------------------------------------------------";
769 Printf("%s\n", line
);
770 Printf("Suppressions used:\n");
771 Printf(" count bytes template\n");
772 for (uptr i
= 0; i
< matched
.size(); i
++) {
773 Printf("%7zu %10zu %s\n",
774 static_cast<uptr
>(atomic_load_relaxed(&matched
[i
]->hit_count
)),
775 matched
[i
]->weight
, matched
[i
]->templ
);
777 Printf("%s\n\n", line
);
780 # if SANITIZER_FUCHSIA
782 // Fuchsia provides a libc interface that guarantees all threads are
783 // covered, and SuspendedThreadList is never really used.
784 static bool ReportUnsuspendedThreads(const SuspendedThreadsList
&) {
788 # else // !SANITIZER_FUCHSIA
790 static bool ReportUnsuspendedThreads(
791 const SuspendedThreadsList
&suspended_threads
) {
792 InternalMmapVector
<tid_t
> threads(suspended_threads
.ThreadCount());
793 for (uptr i
= 0; i
< suspended_threads
.ThreadCount(); ++i
)
794 threads
[i
] = suspended_threads
.GetThreadID(i
);
796 Sort(threads
.data(), threads
.size());
798 InternalMmapVector
<tid_t
> known_threads
;
799 GetRunningThreadsLocked(&known_threads
);
801 bool succeded
= true;
802 for (auto os_id
: known_threads
) {
803 uptr i
= InternalLowerBound(threads
, os_id
);
804 if (i
>= threads
.size() || threads
[i
] != os_id
) {
807 "Running thread %zu was not suspended. False leaks are possible.\n",
814 # endif // !SANITIZER_FUCHSIA
816 static void CheckForLeaksCallback(const SuspendedThreadsList
&suspended_threads
,
818 CheckForLeaksParam
*param
= reinterpret_cast<CheckForLeaksParam
*>(arg
);
820 CHECK(!param
->success
);
821 if (!ReportUnsuspendedThreads(suspended_threads
)) {
822 switch (flags()->thread_suspend_fail
) {
824 param
->success
= true;
829 // Will crash on return.
833 ClassifyAllChunks(suspended_threads
, ¶m
->frontier
, param
->caller_tid
,
835 ForEachChunk(CollectLeaksCb
, ¶m
->leaks
);
836 // Clean up for subsequent leak checks. This assumes we did not overwrite any
838 ForEachChunk(ResetTagsCb
, nullptr);
839 param
->success
= true;
842 static bool PrintResults(LeakReport
&report
) {
843 uptr unsuppressed_count
= report
.UnsuppressedLeakCount();
844 if (unsuppressed_count
) {
848 "================================================================="
850 Printf("%s", d
.Error());
851 Report("ERROR: LeakSanitizer: detected memory leaks\n");
852 Printf("%s", d
.Default());
853 report
.ReportTopLeaks(flags()->max_leaks
);
855 if (common_flags()->print_suppressions
)
856 GetSuppressionContext()->PrintMatchedSuppressions();
857 if (unsuppressed_count
)
858 report
.PrintSummary();
859 if ((unsuppressed_count
&& common_flags()->verbosity
>= 2) ||
860 flags()->log_threads
)
862 return unsuppressed_count
;
865 static bool CheckForLeaksOnce() {
866 if (&__lsan_is_turned_off
&& __lsan_is_turned_off()) {
867 VReport(1, "LeakSanitizer is disabled\n");
870 VReport(1, "LeakSanitizer: checking for leaks\n");
871 // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
872 // suppressions. However if a stack id was previously suppressed, it should be
873 // suppressed in future checks as well.
874 for (int i
= 0;; ++i
) {
875 EnsureMainThreadIDIsCorrect();
876 CheckForLeaksParam param
;
877 // Capture calling thread's stack pointer early, to avoid false negatives.
878 // Old frame with dead pointers might be overlapped by new frame inside
879 // CheckForLeaks which does not use bytes with pointers before the
880 // threads are suspended and stack pointers captured.
881 param
.caller_tid
= GetTid();
882 param
.caller_sp
= reinterpret_cast<uptr
>(__builtin_frame_address(0));
883 LockStuffAndStopTheWorld(CheckForLeaksCallback
, ¶m
);
884 if (!param
.success
) {
885 Report("LeakSanitizer has encountered a fatal error.\n");
887 "HINT: For debugging, try setting environment variable "
888 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
890 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
894 LeakReport leak_report
;
895 leak_report
.AddLeakedChunks(param
.leaks
);
897 // No new suppressions stacks, so rerun will not help and we can report.
898 if (!leak_report
.ApplySuppressions())
899 return PrintResults(leak_report
);
901 // No indirect leaks to report, so we are done here.
902 if (!leak_report
.IndirectUnsuppressedLeakCount())
903 return PrintResults(leak_report
);
906 Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
907 return PrintResults(leak_report
);
910 // We found a new previously unseen suppressed call stack. Rerun to make
911 // sure it does not hold indirect leaks.
912 VReport(1, "Rerun with %zu suppressed stacks.",
913 GetSuppressionContext()->GetSortedSuppressedStacks().size());
917 static bool CheckForLeaks() {
918 int leaking_tries
= 0;
919 for (int i
= 0; i
< flags()->tries
; ++i
) leaking_tries
+= CheckForLeaksOnce();
920 return leaking_tries
== flags()->tries
;
923 static bool has_reported_leaks
= false;
924 bool HasReportedLeaks() { return has_reported_leaks
; }
927 Lock
l(&global_mutex
);
928 static bool already_done
;
932 has_reported_leaks
= CheckForLeaks();
933 if (has_reported_leaks
)
937 static int DoRecoverableLeakCheck() {
938 Lock
l(&global_mutex
);
939 bool have_leaks
= CheckForLeaks();
940 return have_leaks
? 1 : 0;
943 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
945 ///// LeakReport implementation. /////
947 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
948 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
949 // in real-world applications.
950 // FIXME: Get rid of this limit by moving logic into DedupLeaks.
951 const uptr kMaxLeaksConsidered
= 5000;
953 void LeakReport::AddLeakedChunks(const LeakedChunks
&chunks
) {
954 for (const LeakedChunk
&leak
: chunks
) {
955 uptr chunk
= leak
.chunk
;
956 u32 stack_trace_id
= leak
.stack_trace_id
;
957 uptr leaked_size
= leak
.leaked_size
;
958 ChunkTag tag
= leak
.tag
;
959 CHECK(tag
== kDirectlyLeaked
|| tag
== kIndirectlyLeaked
);
961 if (u32 resolution
= flags()->resolution
) {
962 StackTrace stack
= StackDepotGet(stack_trace_id
);
963 stack
.size
= Min(stack
.size
, resolution
);
964 stack_trace_id
= StackDepotPut(stack
);
967 bool is_directly_leaked
= (tag
== kDirectlyLeaked
);
969 for (i
= 0; i
< leaks_
.size(); i
++) {
970 if (leaks_
[i
].stack_trace_id
== stack_trace_id
&&
971 leaks_
[i
].is_directly_leaked
== is_directly_leaked
) {
972 leaks_
[i
].hit_count
++;
973 leaks_
[i
].total_size
+= leaked_size
;
977 if (i
== leaks_
.size()) {
978 if (leaks_
.size() == kMaxLeaksConsidered
)
980 Leak leak
= {next_id_
++, /* hit_count */ 1,
981 leaked_size
, stack_trace_id
,
982 is_directly_leaked
, /* is_suppressed */ false};
983 leaks_
.push_back(leak
);
985 if (flags()->report_objects
) {
986 LeakedObject obj
= {leaks_
[i
].id
, GetUserAddr(chunk
), leaked_size
};
987 leaked_objects_
.push_back(obj
);
992 static bool LeakComparator(const Leak
&leak1
, const Leak
&leak2
) {
993 if (leak1
.is_directly_leaked
== leak2
.is_directly_leaked
)
994 return leak1
.total_size
> leak2
.total_size
;
996 return leak1
.is_directly_leaked
;
999 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report
) {
1000 CHECK(leaks_
.size() <= kMaxLeaksConsidered
);
1002 if (leaks_
.size() == kMaxLeaksConsidered
)
1004 "Too many leaks! Only the first %zu leaks encountered will be "
1006 kMaxLeaksConsidered
);
1008 uptr unsuppressed_count
= UnsuppressedLeakCount();
1009 if (num_leaks_to_report
> 0 && num_leaks_to_report
< unsuppressed_count
)
1010 Printf("The %zu top leak(s):\n", num_leaks_to_report
);
1011 Sort(leaks_
.data(), leaks_
.size(), &LeakComparator
);
1012 uptr leaks_reported
= 0;
1013 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
1014 if (leaks_
[i
].is_suppressed
)
1016 PrintReportForLeak(i
);
1018 if (leaks_reported
== num_leaks_to_report
)
1021 if (leaks_reported
< unsuppressed_count
) {
1022 uptr remaining
= unsuppressed_count
- leaks_reported
;
1023 Printf("Omitting %zu more leak(s).\n", remaining
);
1027 void LeakReport::PrintReportForLeak(uptr index
) {
1029 Printf("%s", d
.Leak());
1030 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
1031 leaks_
[index
].is_directly_leaked
? "Direct" : "Indirect",
1032 leaks_
[index
].total_size
, leaks_
[index
].hit_count
);
1033 Printf("%s", d
.Default());
1035 CHECK(leaks_
[index
].stack_trace_id
);
1036 StackDepotGet(leaks_
[index
].stack_trace_id
).Print();
1038 if (flags()->report_objects
) {
1039 Printf("Objects leaked above:\n");
1040 PrintLeakedObjectsForLeak(index
);
1045 void LeakReport::PrintLeakedObjectsForLeak(uptr index
) {
1046 u32 leak_id
= leaks_
[index
].id
;
1047 for (uptr j
= 0; j
< leaked_objects_
.size(); j
++) {
1048 if (leaked_objects_
[j
].leak_id
== leak_id
)
1049 Printf("%p (%zu bytes)\n", (void *)leaked_objects_
[j
].addr
,
1050 leaked_objects_
[j
].size
);
1054 void LeakReport::PrintSummary() {
1055 CHECK(leaks_
.size() <= kMaxLeaksConsidered
);
1056 uptr bytes
= 0, allocations
= 0;
1057 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
1058 if (leaks_
[i
].is_suppressed
)
1060 bytes
+= leaks_
[i
].total_size
;
1061 allocations
+= leaks_
[i
].hit_count
;
1063 InternalScopedString summary
;
1064 summary
.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes
,
1066 ReportErrorSummary(summary
.data());
1069 uptr
LeakReport::ApplySuppressions() {
1070 LeakSuppressionContext
*suppressions
= GetSuppressionContext();
1071 uptr new_suppressions
= 0;
1072 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
1073 if (suppressions
->Suppress(leaks_
[i
].stack_trace_id
, leaks_
[i
].hit_count
,
1074 leaks_
[i
].total_size
)) {
1075 leaks_
[i
].is_suppressed
= true;
1079 return new_suppressions
;
1082 uptr
LeakReport::UnsuppressedLeakCount() {
1084 for (uptr i
= 0; i
< leaks_
.size(); i
++)
1085 if (!leaks_
[i
].is_suppressed
)
1090 uptr
LeakReport::IndirectUnsuppressedLeakCount() {
1092 for (uptr i
= 0; i
< leaks_
.size(); i
++)
1093 if (!leaks_
[i
].is_suppressed
&& !leaks_
[i
].is_directly_leaked
)
1098 } // namespace __lsan
1099 #else // CAN_SANITIZE_LEAKS
1101 void InitCommonLsan() {}
1102 void DoLeakCheck() {}
1103 void DoRecoverableLeakCheckVoid() {}
1104 void DisableInThisThread() {}
1105 void EnableInThisThread() {}
1106 } // namespace __lsan
1107 #endif // CAN_SANITIZE_LEAKS
1109 using namespace __lsan
;
1112 SANITIZER_INTERFACE_ATTRIBUTE
1113 void __lsan_ignore_object(const void *p
) {
1114 #if CAN_SANITIZE_LEAKS
1115 if (!common_flags()->detect_leaks
)
1117 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1119 Lock
l(&global_mutex
);
1120 IgnoreObjectResult res
= IgnoreObject(p
);
1121 if (res
== kIgnoreObjectInvalid
)
1122 VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p
);
1123 if (res
== kIgnoreObjectAlreadyIgnored
)
1125 "__lsan_ignore_object(): "
1126 "heap object at %p is already being ignored\n",
1128 if (res
== kIgnoreObjectSuccess
)
1129 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p
);
1130 #endif // CAN_SANITIZE_LEAKS
1133 SANITIZER_INTERFACE_ATTRIBUTE
1134 void __lsan_register_root_region(const void *begin
, uptr size
) {
1135 #if CAN_SANITIZE_LEAKS
1136 VReport(1, "Registered root region at %p of size %zu\n", begin
, size
);
1137 uptr b
= reinterpret_cast<uptr
>(begin
);
1141 Lock
l(&global_mutex
);
1142 ++GetRootRegionsLocked()[{b
, e
}];
1143 #endif // CAN_SANITIZE_LEAKS
1146 SANITIZER_INTERFACE_ATTRIBUTE
1147 void __lsan_unregister_root_region(const void *begin
, uptr size
) {
1148 #if CAN_SANITIZE_LEAKS
1149 uptr b
= reinterpret_cast<uptr
>(begin
);
1152 VReport(1, "Unregistered root region at %p of size %zu\n", begin
, size
);
1155 Lock
l(&global_mutex
);
1156 if (auto *f
= GetRootRegionsLocked().find({b
, e
})) {
1157 if (--(f
->second
) == 0)
1158 GetRootRegionsLocked().erase(f
);
1163 "__lsan_unregister_root_region(): region at %p of size %zu has not "
1164 "been registered.\n",
1167 #endif // CAN_SANITIZE_LEAKS
1170 SANITIZER_INTERFACE_ATTRIBUTE
1171 void __lsan_disable() {
1172 #if CAN_SANITIZE_LEAKS
1173 __lsan::DisableInThisThread();
1177 SANITIZER_INTERFACE_ATTRIBUTE
1178 void __lsan_enable() {
1179 #if CAN_SANITIZE_LEAKS
1180 __lsan::EnableInThisThread();
1184 SANITIZER_INTERFACE_ATTRIBUTE
1185 void __lsan_do_leak_check() {
1186 #if CAN_SANITIZE_LEAKS
1187 if (common_flags()->detect_leaks
)
1188 __lsan::DoLeakCheck();
1189 #endif // CAN_SANITIZE_LEAKS
1192 SANITIZER_INTERFACE_ATTRIBUTE
1193 int __lsan_do_recoverable_leak_check() {
1194 #if CAN_SANITIZE_LEAKS
1195 if (common_flags()->detect_leaks
)
1196 return __lsan::DoRecoverableLeakCheck();
1197 #endif // CAN_SANITIZE_LEAKS
1201 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options
, void) {
1205 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1206 SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off
, void) {
1210 SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions
, void) {