Revert "[InstCombine] Support gep nuw in icmp folds" (#118698)
[llvm-project.git] / compiler-rt / lib / scudo / standalone / primary32.h
blob654b129d9f54715b9e473686b7391276521c8231
1 //===-- primary32.h ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef SCUDO_PRIMARY32_H_
10 #define SCUDO_PRIMARY32_H_
12 #include "allocator_common.h"
13 #include "bytemap.h"
14 #include "common.h"
15 #include "list.h"
16 #include "local_cache.h"
17 #include "options.h"
18 #include "release.h"
19 #include "report.h"
20 #include "stats.h"
21 #include "string_utils.h"
22 #include "thread_annotations.h"
24 namespace scudo {
26 // SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
28 // It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
29 // boundary, and keeps a bytemap of the mappable address space to track the size
30 // class they are associated with.
32 // Mapped regions are split into equally sized Blocks according to the size
33 // class they belong to, and the associated pointers are shuffled to prevent any
34 // predictable address pattern (the predictability increases with the block
35 // size).
37 // Regions for size class 0 are special and used to hold TransferBatches, which
38 // allow to transfer arrays of pointers from the global size class freelist to
39 // the thread specific freelist for said class, and back.
41 // Memory used by this allocator is never unmapped but can be partially
42 // reclaimed if the platform allows for it.
44 template <typename Config> class SizeClassAllocator32 {
45 public:
46 typedef typename Config::CompactPtrT CompactPtrT;
47 typedef typename Config::SizeClassMap SizeClassMap;
48 static const uptr GroupSizeLog = Config::getGroupSizeLog();
49 // The bytemap can only track UINT8_MAX - 1 classes.
50 static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
51 // Regions should be large enough to hold the largest Block.
52 static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize,
53 "");
54 typedef SizeClassAllocator32<Config> ThisT;
55 typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
56 typedef TransferBatch<ThisT> TransferBatchT;
57 typedef BatchGroup<ThisT> BatchGroupT;
59 static uptr getSizeByClassId(uptr ClassId) {
60 return (ClassId == SizeClassMap::BatchClassId)
61 ? Max(sizeof(BatchGroupT), sizeof(TransferBatchT))
62 : SizeClassMap::getSizeByClassId(ClassId);
65 static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
67 void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
68 if (SCUDO_FUCHSIA)
69 reportError("SizeClassAllocator32 is not supported on Fuchsia");
71 if (SCUDO_TRUSTY)
72 reportError("SizeClassAllocator32 is not supported on Trusty");
74 DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
75 PossibleRegions.init();
76 u32 Seed;
77 const u64 Time = getMonotonicTimeFast();
78 if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
79 Seed = static_cast<u32>(
80 Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
81 for (uptr I = 0; I < NumClasses; I++) {
82 SizeClassInfo *Sci = getSizeClassInfo(I);
83 Sci->RandState = getRandomU32(&Seed);
84 // Sci->MaxRegionIndex is already initialized to 0.
85 Sci->MinRegionIndex = NumRegions;
86 Sci->ReleaseInfo.LastReleaseAtNs = Time;
89 // The default value in the primary config has the higher priority.
90 if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN)
91 ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs();
92 setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
95 void unmapTestOnly() {
97 ScopedLock L(RegionsStashMutex);
98 while (NumberOfStashedRegions > 0) {
99 unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
100 RegionSize);
104 uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
105 for (uptr I = 0; I < NumClasses; I++) {
106 SizeClassInfo *Sci = getSizeClassInfo(I);
107 ScopedLock L(Sci->Mutex);
108 if (Sci->MinRegionIndex < MinRegionIndex)
109 MinRegionIndex = Sci->MinRegionIndex;
110 if (Sci->MaxRegionIndex > MaxRegionIndex)
111 MaxRegionIndex = Sci->MaxRegionIndex;
112 *Sci = {};
115 ScopedLock L(ByteMapMutex);
116 for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
117 if (PossibleRegions[I])
118 unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
119 PossibleRegions.unmapTestOnly();
122 // When all blocks are freed, it has to be the same size as `AllocatedUser`.
123 void verifyAllBlocksAreReleasedTestOnly() {
124 // `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
125 uptr BatchClassUsedInFreeLists = 0;
126 for (uptr I = 0; I < NumClasses; I++) {
127 // We have to count BatchClassUsedInFreeLists in other regions first.
128 if (I == SizeClassMap::BatchClassId)
129 continue;
130 SizeClassInfo *Sci = getSizeClassInfo(I);
131 ScopedLock L1(Sci->Mutex);
132 uptr TotalBlocks = 0;
133 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
134 // `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
135 BatchClassUsedInFreeLists += BG.Batches.size() + 1;
136 for (const auto &It : BG.Batches)
137 TotalBlocks += It.getCount();
140 const uptr BlockSize = getSizeByClassId(I);
141 DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
142 DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
145 SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
146 ScopedLock L1(Sci->Mutex);
147 uptr TotalBlocks = 0;
148 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
149 if (LIKELY(!BG.Batches.empty())) {
150 for (const auto &It : BG.Batches)
151 TotalBlocks += It.getCount();
152 } else {
153 // `BatchGroup` with empty freelist doesn't have `TransferBatch` record
154 // itself.
155 ++TotalBlocks;
159 const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
160 DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
161 Sci->AllocatedUser / BlockSize);
162 const uptr BlocksInUse =
163 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
164 DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
167 CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
168 return static_cast<CompactPtrT>(Ptr);
171 void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
172 return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
175 uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
176 const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
177 return CompactPtr & ~Mask;
180 uptr decompactGroupBase(uptr CompactPtrGroupBase) {
181 return CompactPtrGroupBase;
184 ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
185 const uptr PageSize = getPageSizeCached();
186 return BlockSize < PageSize / 16U;
189 ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
190 const uptr PageSize = getPageSizeCached();
191 return BlockSize > PageSize;
194 u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
195 const u16 MaxBlockCount) {
196 DCHECK_LT(ClassId, NumClasses);
197 SizeClassInfo *Sci = getSizeClassInfo(ClassId);
198 ScopedLock L(Sci->Mutex);
200 u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
201 if (UNLIKELY(PopCount == 0)) {
202 if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
203 return 0U;
204 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
205 DCHECK_NE(PopCount, 0U);
208 return PopCount;
211 // Push the array of free blocks to the designated batch group.
212 void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
213 DCHECK_LT(ClassId, NumClasses);
214 DCHECK_GT(Size, 0);
216 SizeClassInfo *Sci = getSizeClassInfo(ClassId);
217 if (ClassId == SizeClassMap::BatchClassId) {
218 ScopedLock L(Sci->Mutex);
219 pushBatchClassBlocks(Sci, Array, Size);
220 return;
223 // TODO(chiahungduan): Consider not doing grouping if the group size is not
224 // greater than the block size with a certain scale.
226 // Sort the blocks so that blocks belonging to the same group can be pushed
227 // together.
228 bool SameGroup = true;
229 for (u32 I = 1; I < Size; ++I) {
230 if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
231 SameGroup = false;
232 CompactPtrT Cur = Array[I];
233 u32 J = I;
234 while (J > 0 &&
235 compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
236 Array[J] = Array[J - 1];
237 --J;
239 Array[J] = Cur;
242 ScopedLock L(Sci->Mutex);
243 pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
246 void disable() NO_THREAD_SAFETY_ANALYSIS {
247 // The BatchClassId must be locked last since other classes can use it.
248 for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
249 if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
250 continue;
251 getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
253 getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
254 RegionsStashMutex.lock();
255 ByteMapMutex.lock();
258 void enable() NO_THREAD_SAFETY_ANALYSIS {
259 ByteMapMutex.unlock();
260 RegionsStashMutex.unlock();
261 getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
262 for (uptr I = 0; I < NumClasses; I++) {
263 if (I == SizeClassMap::BatchClassId)
264 continue;
265 getSizeClassInfo(I)->Mutex.unlock();
269 template <typename F> void iterateOverBlocks(F Callback) {
270 uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
271 for (uptr I = 0; I < NumClasses; I++) {
272 SizeClassInfo *Sci = getSizeClassInfo(I);
273 // TODO: The call of `iterateOverBlocks` requires disabling
274 // SizeClassAllocator32. We may consider locking each region on demand
275 // only.
276 Sci->Mutex.assertHeld();
277 if (Sci->MinRegionIndex < MinRegionIndex)
278 MinRegionIndex = Sci->MinRegionIndex;
279 if (Sci->MaxRegionIndex > MaxRegionIndex)
280 MaxRegionIndex = Sci->MaxRegionIndex;
283 // SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
284 ByteMapMutex.assertHeld();
286 for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
287 if (PossibleRegions[I] &&
288 (PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
289 const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
290 const uptr From = I * RegionSize;
291 const uptr To = From + (RegionSize / BlockSize) * BlockSize;
292 for (uptr Block = From; Block < To; Block += BlockSize)
293 Callback(Block);
298 void getStats(ScopedString *Str) {
299 // TODO(kostyak): get the RSS per region.
300 uptr TotalMapped = 0;
301 uptr PoppedBlocks = 0;
302 uptr PushedBlocks = 0;
303 for (uptr I = 0; I < NumClasses; I++) {
304 SizeClassInfo *Sci = getSizeClassInfo(I);
305 ScopedLock L(Sci->Mutex);
306 TotalMapped += Sci->AllocatedUser;
307 PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
308 PushedBlocks += Sci->FreeListInfo.PushedBlocks;
310 Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
311 "remains %zu\n",
312 TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
313 for (uptr I = 0; I < NumClasses; I++) {
314 SizeClassInfo *Sci = getSizeClassInfo(I);
315 ScopedLock L(Sci->Mutex);
316 getStats(Str, I, Sci);
320 void getFragmentationInfo(ScopedString *Str) {
321 Str->append(
322 "Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
323 getPageSizeCached());
325 for (uptr I = 1; I < NumClasses; I++) {
326 SizeClassInfo *Sci = getSizeClassInfo(I);
327 ScopedLock L(Sci->Mutex);
328 getSizeClassFragmentationInfo(Sci, I, Str);
332 void getMemoryGroupFragmentationInfo(ScopedString *Str) {
333 // Each region is also a memory group because region size is the same as
334 // group size.
335 getFragmentationInfo(Str);
338 bool setOption(Option O, sptr Value) {
339 if (O == Option::ReleaseInterval) {
340 const s32 Interval = Max(
341 Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
342 Config::getMinReleaseToOsIntervalMs());
343 atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
344 return true;
346 // Not supported by the Primary, but not an error either.
347 return true;
350 uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
351 SizeClassInfo *Sci = getSizeClassInfo(ClassId);
352 // TODO: Once we have separate locks like primary64, we may consider using
353 // tryLock() as well.
354 ScopedLock L(Sci->Mutex);
355 return releaseToOSMaybe(Sci, ClassId, ReleaseType);
358 uptr releaseToOS(ReleaseToOS ReleaseType) {
359 uptr TotalReleasedBytes = 0;
360 for (uptr I = 0; I < NumClasses; I++) {
361 if (I == SizeClassMap::BatchClassId)
362 continue;
363 SizeClassInfo *Sci = getSizeClassInfo(I);
364 ScopedLock L(Sci->Mutex);
365 TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
367 return TotalReleasedBytes;
370 const char *getRegionInfoArrayAddress() const { return nullptr; }
371 static uptr getRegionInfoArraySize() { return 0; }
373 static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
374 UNUSED uptr Ptr) {
375 return {};
378 AtomicOptions Options;
380 private:
381 static const uptr NumClasses = SizeClassMap::NumClasses;
382 static const uptr RegionSize = 1UL << Config::getRegionSizeLog();
383 static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >>
384 Config::getRegionSizeLog();
385 static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
386 typedef FlatByteMap<NumRegions> ByteMap;
388 struct ReleaseToOsInfo {
389 uptr BytesInFreeListAtLastCheckpoint;
390 uptr RangesReleased;
391 uptr LastReleasedBytes;
392 u64 LastReleaseAtNs;
395 struct BlocksInfo {
396 SinglyLinkedList<BatchGroupT> BlockList = {};
397 uptr PoppedBlocks = 0;
398 uptr PushedBlocks = 0;
401 struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
402 HybridMutex Mutex;
403 BlocksInfo FreeListInfo GUARDED_BY(Mutex);
404 uptr CurrentRegion GUARDED_BY(Mutex);
405 uptr CurrentRegionAllocated GUARDED_BY(Mutex);
406 u32 RandState;
407 uptr AllocatedUser GUARDED_BY(Mutex);
408 // Lowest & highest region index allocated for this size class, to avoid
409 // looping through the whole NumRegions.
410 uptr MinRegionIndex GUARDED_BY(Mutex);
411 uptr MaxRegionIndex GUARDED_BY(Mutex);
412 ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
414 static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
416 uptr computeRegionId(uptr Mem) {
417 const uptr Id = Mem >> Config::getRegionSizeLog();
418 CHECK_LT(Id, NumRegions);
419 return Id;
422 uptr allocateRegionSlow() {
423 uptr MapSize = 2 * RegionSize;
424 const uptr MapBase = reinterpret_cast<uptr>(
425 map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
426 if (!MapBase)
427 return 0;
428 const uptr MapEnd = MapBase + MapSize;
429 uptr Region = MapBase;
430 if (isAligned(Region, RegionSize)) {
431 ScopedLock L(RegionsStashMutex);
432 if (NumberOfStashedRegions < MaxStashedRegions)
433 RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
434 else
435 MapSize = RegionSize;
436 } else {
437 Region = roundUp(MapBase, RegionSize);
438 unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
439 MapSize = RegionSize;
441 const uptr End = Region + MapSize;
442 if (End != MapEnd)
443 unmap(reinterpret_cast<void *>(End), MapEnd - End);
445 DCHECK_EQ(Region % RegionSize, 0U);
446 static_assert(Config::getRegionSizeLog() == GroupSizeLog,
447 "Memory group should be the same size as Region");
449 return Region;
452 uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
453 DCHECK_LT(ClassId, NumClasses);
454 uptr Region = 0;
456 ScopedLock L(RegionsStashMutex);
457 if (NumberOfStashedRegions > 0)
458 Region = RegionsStash[--NumberOfStashedRegions];
460 if (!Region)
461 Region = allocateRegionSlow();
462 if (LIKELY(Region)) {
463 // Sci->Mutex is held by the caller, updating the Min/Max is safe.
464 const uptr RegionIndex = computeRegionId(Region);
465 if (RegionIndex < Sci->MinRegionIndex)
466 Sci->MinRegionIndex = RegionIndex;
467 if (RegionIndex > Sci->MaxRegionIndex)
468 Sci->MaxRegionIndex = RegionIndex;
469 ScopedLock L(ByteMapMutex);
470 PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
472 return Region;
475 SizeClassInfo *getSizeClassInfo(uptr ClassId) {
476 DCHECK_LT(ClassId, NumClasses);
477 return &SizeClassInfoArray[ClassId];
480 void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
481 REQUIRES(Sci->Mutex) {
482 DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
484 // Free blocks are recorded by TransferBatch in freelist for all
485 // size-classes. In addition, TransferBatch is allocated from BatchClassId.
486 // In order not to use additional block to record the free blocks in
487 // BatchClassId, they are self-contained. I.e., A TransferBatch records the
488 // block address of itself. See the figure below:
490 // TransferBatch at 0xABCD
491 // +----------------------------+
492 // | Free blocks' addr |
493 // | +------+------+------+ |
494 // | |0xABCD|... |... | |
495 // | +------+------+------+ |
496 // +----------------------------+
498 // When we allocate all the free blocks in the TransferBatch, the block used
499 // by TransferBatch is also free for use. We don't need to recycle the
500 // TransferBatch. Note that the correctness is maintained by the invariant,
502 // Each popBlocks() request returns the entire TransferBatch. Returning
503 // part of the blocks in a TransferBatch is invalid.
505 // This ensures that TransferBatch won't leak the address itself while it's
506 // still holding other valid data.
508 // Besides, BatchGroup is also allocated from BatchClassId and has its
509 // address recorded in the TransferBatch too. To maintain the correctness,
511 // The address of BatchGroup is always recorded in the last TransferBatch
512 // in the freelist (also imply that the freelist should only be
513 // updated with push_front). Once the last TransferBatch is popped,
514 // the block used by BatchGroup is also free for use.
516 // With this approach, the blocks used by BatchGroup and TransferBatch are
517 // reusable and don't need additional space for them.
519 Sci->FreeListInfo.PushedBlocks += Size;
520 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
522 if (BG == nullptr) {
523 // Construct `BatchGroup` on the last element.
524 BG = reinterpret_cast<BatchGroupT *>(
525 decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
526 --Size;
527 BG->Batches.clear();
528 // BatchClass hasn't enabled memory group. Use `0` to indicate there's no
529 // memory group here.
530 BG->CompactPtrGroupBase = 0;
531 BG->BytesInBGAtLastCheckpoint = 0;
532 BG->MaxCachedPerBatch =
533 CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
535 Sci->FreeListInfo.BlockList.push_front(BG);
538 if (UNLIKELY(Size == 0))
539 return;
541 // This happens under 2 cases.
542 // 1. just allocated a new `BatchGroup`.
543 // 2. Only 1 block is pushed when the freelist is empty.
544 if (BG->Batches.empty()) {
545 // Construct the `TransferBatch` on the last element.
546 TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
547 decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
548 TB->clear();
549 // As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
550 // recorded in the TransferBatch.
551 TB->add(Array[Size - 1]);
552 TB->add(
553 compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
554 --Size;
555 BG->Batches.push_front(TB);
558 TransferBatchT *CurBatch = BG->Batches.front();
559 DCHECK_NE(CurBatch, nullptr);
561 for (u32 I = 0; I < Size;) {
562 u16 UnusedSlots =
563 static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
564 if (UnusedSlots == 0) {
565 CurBatch = reinterpret_cast<TransferBatchT *>(
566 decompactPtr(SizeClassMap::BatchClassId, Array[I]));
567 CurBatch->clear();
568 // Self-contained
569 CurBatch->add(Array[I]);
570 ++I;
571 // TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
572 // BatchClassId.
573 BG->Batches.push_front(CurBatch);
574 UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
576 // `UnusedSlots` is u16 so the result will be also fit in u16.
577 const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
578 CurBatch->appendFromArray(&Array[I], AppendSize);
579 I += AppendSize;
582 // Push the blocks to their batch group. The layout will be like,
584 // FreeListInfo.BlockList - > BG -> BG -> BG
585 // | | |
586 // v v v
587 // TB TB TB
588 // |
589 // v
590 // TB
592 // Each BlockGroup(BG) will associate with unique group id and the free blocks
593 // are managed by a list of TransferBatch(TB). To reduce the time of inserting
594 // blocks, BGs are sorted and the input `Array` are supposed to be sorted so
595 // that we can get better performance of maintaining sorted property.
596 // Use `SameGroup=true` to indicate that all blocks in the array are from the
597 // same group then we will skip checking the group id of each block.
599 // The region mutex needs to be held while calling this method.
600 void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
601 CompactPtrT *Array, u32 Size, bool SameGroup = false)
602 REQUIRES(Sci->Mutex) {
603 DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
604 DCHECK_GT(Size, 0U);
606 auto CreateGroup = [&](uptr CompactPtrGroupBase) {
607 BatchGroupT *BG =
608 reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
609 BG->Batches.clear();
610 TransferBatchT *TB =
611 reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
612 TB->clear();
614 BG->CompactPtrGroupBase = CompactPtrGroupBase;
615 BG->Batches.push_front(TB);
616 BG->BytesInBGAtLastCheckpoint = 0;
617 BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
619 return BG;
622 auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
623 SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
624 TransferBatchT *CurBatch = Batches.front();
625 DCHECK_NE(CurBatch, nullptr);
627 for (u32 I = 0; I < Size;) {
628 DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
629 u16 UnusedSlots =
630 static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
631 if (UnusedSlots == 0) {
632 CurBatch =
633 reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
634 CurBatch->clear();
635 Batches.push_front(CurBatch);
636 UnusedSlots = BG->MaxCachedPerBatch;
638 // `UnusedSlots` is u16 so the result will be also fit in u16.
639 u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
640 CurBatch->appendFromArray(&Array[I], AppendSize);
641 I += AppendSize;
645 Sci->FreeListInfo.PushedBlocks += Size;
646 BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
648 // In the following, `Cur` always points to the BatchGroup for blocks that
649 // will be pushed next. `Prev` is the element right before `Cur`.
650 BatchGroupT *Prev = nullptr;
652 while (Cur != nullptr &&
653 compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
654 Prev = Cur;
655 Cur = Cur->Next;
658 if (Cur == nullptr ||
659 compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
660 Cur = CreateGroup(compactPtrGroupBase(Array[0]));
661 if (Prev == nullptr)
662 Sci->FreeListInfo.BlockList.push_front(Cur);
663 else
664 Sci->FreeListInfo.BlockList.insert(Prev, Cur);
667 // All the blocks are from the same group, just push without checking group
668 // id.
669 if (SameGroup) {
670 for (u32 I = 0; I < Size; ++I)
671 DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
673 InsertBlocks(Cur, Array, Size);
674 return;
677 // The blocks are sorted by group id. Determine the segment of group and
678 // push them to their group together.
679 u32 Count = 1;
680 for (u32 I = 1; I < Size; ++I) {
681 if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
682 DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
683 InsertBlocks(Cur, Array + I - Count, Count);
685 while (Cur != nullptr &&
686 compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
687 Prev = Cur;
688 Cur = Cur->Next;
691 if (Cur == nullptr ||
692 compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
693 Cur = CreateGroup(compactPtrGroupBase(Array[I]));
694 DCHECK_NE(Prev, nullptr);
695 Sci->FreeListInfo.BlockList.insert(Prev, Cur);
698 Count = 1;
699 } else {
700 ++Count;
704 InsertBlocks(Cur, Array + Size - Count, Count);
707 u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
708 CompactPtrT *ToArray, const u16 MaxBlockCount)
709 REQUIRES(Sci->Mutex) {
710 if (Sci->FreeListInfo.BlockList.empty())
711 return 0U;
713 SinglyLinkedList<TransferBatchT> &Batches =
714 Sci->FreeListInfo.BlockList.front()->Batches;
716 if (Batches.empty()) {
717 DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
718 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
719 Sci->FreeListInfo.BlockList.pop_front();
721 // Block used by `BatchGroup` is from BatchClassId. Turn the block into
722 // `TransferBatch` with single block.
723 TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
724 ToArray[0] =
725 compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
726 Sci->FreeListInfo.PoppedBlocks += 1;
727 return 1U;
730 // So far, instead of always filling the blocks to `MaxBlockCount`, we only
731 // examine single `TransferBatch` to minimize the time spent on the primary
732 // allocator. Besides, the sizes of `TransferBatch` and
733 // `CacheT::getMaxCached()` may also impact the time spent on accessing the
734 // primary allocator.
735 // TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
736 // blocks and/or adjust the size of `TransferBatch` according to
737 // `CacheT::getMaxCached()`.
738 TransferBatchT *B = Batches.front();
739 DCHECK_NE(B, nullptr);
740 DCHECK_GT(B->getCount(), 0U);
742 // BachClassId should always take all blocks in the TransferBatch. Read the
743 // comment in `pushBatchClassBlocks()` for more details.
744 const u16 PopCount = ClassId == SizeClassMap::BatchClassId
745 ? B->getCount()
746 : Min(MaxBlockCount, B->getCount());
747 B->moveNToArray(ToArray, PopCount);
749 // TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
750 // done without holding `Mutex`.
751 if (B->empty()) {
752 Batches.pop_front();
753 // `TransferBatch` of BatchClassId is self-contained, no need to
754 // deallocate. Read the comment in `pushBatchClassBlocks()` for more
755 // details.
756 if (ClassId != SizeClassMap::BatchClassId)
757 C->deallocate(SizeClassMap::BatchClassId, B);
759 if (Batches.empty()) {
760 BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
761 Sci->FreeListInfo.BlockList.pop_front();
763 // We don't keep BatchGroup with zero blocks to avoid empty-checking
764 // while allocating. Note that block used for constructing BatchGroup is
765 // recorded as free blocks in the last element of BatchGroup::Batches.
766 // Which means, once we pop the last TransferBatch, the block is
767 // implicitly deallocated.
768 if (ClassId != SizeClassMap::BatchClassId)
769 C->deallocate(SizeClassMap::BatchClassId, BG);
773 Sci->FreeListInfo.PoppedBlocks += PopCount;
774 return PopCount;
777 NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
778 REQUIRES(Sci->Mutex) {
779 uptr Region;
780 uptr Offset;
781 // If the size-class currently has a region associated to it, use it. The
782 // newly created blocks will be located after the currently allocated memory
783 // for that region (up to RegionSize). Otherwise, create a new region, where
784 // the new blocks will be carved from the beginning.
785 if (Sci->CurrentRegion) {
786 Region = Sci->CurrentRegion;
787 DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
788 Offset = Sci->CurrentRegionAllocated;
789 } else {
790 DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
791 Region = allocateRegion(Sci, ClassId);
792 if (UNLIKELY(!Region))
793 return false;
794 C->getStats().add(StatMapped, RegionSize);
795 Sci->CurrentRegion = Region;
796 Offset = 0;
799 const uptr Size = getSizeByClassId(ClassId);
800 const u16 MaxCount = CacheT::getMaxCached(Size);
801 DCHECK_GT(MaxCount, 0U);
802 // The maximum number of blocks we should carve in the region is dictated
803 // by the maximum number of batches we want to fill, and the amount of
804 // memory left in the current region (we use the lowest of the two). This
805 // will not be 0 as we ensure that a region can at least hold one block (via
806 // static_assert and at the end of this function).
807 const u32 NumberOfBlocks =
808 Min(MaxNumBatches * MaxCount,
809 static_cast<u32>((RegionSize - Offset) / Size));
810 DCHECK_GT(NumberOfBlocks, 0U);
812 constexpr u32 ShuffleArraySize =
813 MaxNumBatches * TransferBatchT::MaxNumCached;
814 // Fill the transfer batches and put them in the size-class freelist. We
815 // need to randomize the blocks for security purposes, so we first fill a
816 // local array that we then shuffle before populating the batches.
817 CompactPtrT ShuffleArray[ShuffleArraySize];
818 DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
820 uptr P = Region + Offset;
821 for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
822 ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
824 if (ClassId != SizeClassMap::BatchClassId) {
825 u32 N = 1;
826 uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
827 for (u32 I = 1; I < NumberOfBlocks; I++) {
828 if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
829 shuffle(ShuffleArray + I - N, N, &Sci->RandState);
830 pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
831 /*SameGroup=*/true);
832 N = 1;
833 CurGroup = compactPtrGroupBase(ShuffleArray[I]);
834 } else {
835 ++N;
839 shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
840 pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
841 /*SameGroup=*/true);
842 } else {
843 pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
846 // Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
847 // the requests from `PushBlocks` and `PopBatch` which are external
848 // interfaces. `populateFreeList` is the internal interface so we should set
849 // the values back to avoid incorrectly setting the stats.
850 Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
852 const uptr AllocatedUser = Size * NumberOfBlocks;
853 C->getStats().add(StatFree, AllocatedUser);
854 DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
855 // If there is not enough room in the region currently associated to fit
856 // more blocks, we deassociate the region by resetting CurrentRegion and
857 // CurrentRegionAllocated. Otherwise, update the allocated amount.
858 if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
859 Sci->CurrentRegion = 0;
860 Sci->CurrentRegionAllocated = 0;
861 } else {
862 Sci->CurrentRegionAllocated += AllocatedUser;
864 Sci->AllocatedUser += AllocatedUser;
866 return true;
869 void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
870 REQUIRES(Sci->Mutex) {
871 if (Sci->AllocatedUser == 0)
872 return;
873 const uptr BlockSize = getSizeByClassId(ClassId);
874 const uptr InUse =
875 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
876 const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
877 uptr PushedBytesDelta = 0;
878 if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
879 PushedBytesDelta =
880 BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
882 const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
883 Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
884 "inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
885 "latest pushed bytes: %6zuK\n",
886 ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
887 Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
888 InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
889 Sci->ReleaseInfo.LastReleasedBytes >> 10,
890 PushedBytesDelta >> 10);
893 void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
894 ScopedString *Str) REQUIRES(Sci->Mutex) {
895 const uptr BlockSize = getSizeByClassId(ClassId);
896 const uptr First = Sci->MinRegionIndex;
897 const uptr Last = Sci->MaxRegionIndex;
898 const uptr Base = First * RegionSize;
899 const uptr NumberOfRegions = Last - First + 1U;
900 auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
901 ScopedLock L(ByteMapMutex);
902 return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
905 FragmentationRecorder Recorder;
906 if (!Sci->FreeListInfo.BlockList.empty()) {
907 PageReleaseContext Context =
908 markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
909 ReleaseToOS::ForceAll);
910 releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
913 const uptr PageSize = getPageSizeCached();
914 const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
915 const uptr InUseBlocks =
916 Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
917 uptr AllocatedPagesCount = 0;
918 if (TotalBlocks != 0U) {
919 for (uptr I = 0; I < NumberOfRegions; ++I) {
920 if (SkipRegion(I))
921 continue;
922 AllocatedPagesCount += RegionSize / PageSize;
925 DCHECK_NE(AllocatedPagesCount, 0U);
928 DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
929 const uptr InUsePages =
930 AllocatedPagesCount - Recorder.getReleasedPagesCount();
931 const uptr InUseBytes = InUsePages * PageSize;
933 uptr Integral;
934 uptr Fractional;
935 computePercentage(BlockSize * InUseBlocks, InUseBytes, &Integral,
936 &Fractional);
937 Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
938 "pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
939 ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
940 AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
943 NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
944 ReleaseToOS ReleaseType = ReleaseToOS::Normal)
945 REQUIRES(Sci->Mutex) {
946 const uptr BlockSize = getSizeByClassId(ClassId);
948 DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
949 const uptr BytesInFreeList =
950 Sci->AllocatedUser -
951 (Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
952 BlockSize;
954 if (UNLIKELY(BytesInFreeList == 0))
955 return 0;
957 // ====================================================================== //
958 // 1. Check if we have enough free blocks and if it's worth doing a page
959 // release.
960 // ====================================================================== //
961 if (ReleaseType != ReleaseToOS::ForceAll &&
962 !hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
963 ReleaseType)) {
964 return 0;
967 const uptr First = Sci->MinRegionIndex;
968 const uptr Last = Sci->MaxRegionIndex;
969 DCHECK_NE(Last, 0U);
970 DCHECK_LE(First, Last);
971 uptr TotalReleasedBytes = 0;
972 const uptr Base = First * RegionSize;
973 const uptr NumberOfRegions = Last - First + 1U;
975 // ==================================================================== //
976 // 2. Mark the free blocks and we can tell which pages are in-use by
977 // querying `PageReleaseContext`.
978 // ==================================================================== //
979 PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
980 NumberOfRegions, ReleaseType);
981 if (!Context.hasBlockMarked())
982 return 0;
984 // ==================================================================== //
985 // 3. Release the unused physical pages back to the OS.
986 // ==================================================================== //
987 ReleaseRecorder Recorder(Base);
988 auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
989 ScopedLock L(ByteMapMutex);
990 return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
992 releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
994 if (Recorder.getReleasedRangesCount() > 0) {
995 Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
996 Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
997 Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
998 TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
1000 Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
1002 return TotalReleasedBytes;
1005 bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
1006 uptr BytesInFreeList, ReleaseToOS ReleaseType)
1007 REQUIRES(Sci->Mutex) {
1008 DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
1009 const uptr PageSize = getPageSizeCached();
1011 if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
1012 Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1014 // Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
1015 // so that we won't underestimate the releasable pages. For example, the
1016 // following is the region usage,
1018 // BytesInFreeListAtLastCheckpoint AllocatedUser
1019 // v v
1020 // |--------------------------------------->
1021 // ^ ^
1022 // BytesInFreeList ReleaseThreshold
1024 // In general, if we have collected enough bytes and the amount of free
1025 // bytes meets the ReleaseThreshold, we will try to do page release. If we
1026 // don't update `BytesInFreeListAtLastCheckpoint` when the current
1027 // `BytesInFreeList` is smaller, we may take longer time to wait for enough
1028 // freed blocks because we miss the bytes between
1029 // (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
1030 const uptr PushedBytesDelta =
1031 BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
1032 if (PushedBytesDelta < PageSize)
1033 return false;
1035 // Releasing smaller blocks is expensive, so we want to make sure that a
1036 // significant amount of bytes are free, and that there has been a good
1037 // amount of batches pushed to the freelist before attempting to release.
1038 if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
1039 if (PushedBytesDelta < Sci->AllocatedUser / 16U)
1040 return false;
1042 if (ReleaseType == ReleaseToOS::Normal) {
1043 const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
1044 if (IntervalMs < 0)
1045 return false;
1047 // The constant 8 here is selected from profiling some apps and the number
1048 // of unreleased pages in the large size classes is around 16 pages or
1049 // more. Choose half of it as a heuristic and which also avoids page
1050 // release every time for every pushBlocks() attempt by large blocks.
1051 const bool ByPassReleaseInterval =
1052 isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
1053 if (!ByPassReleaseInterval) {
1054 if (Sci->ReleaseInfo.LastReleaseAtNs +
1055 static_cast<u64>(IntervalMs) * 1000000 >
1056 getMonotonicTimeFast()) {
1057 // Memory was returned recently.
1058 return false;
1061 } // if (ReleaseType == ReleaseToOS::Normal)
1063 return true;
1066 PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
1067 const uptr BlockSize, const uptr Base,
1068 const uptr NumberOfRegions,
1069 ReleaseToOS ReleaseType)
1070 REQUIRES(Sci->Mutex) {
1071 const uptr PageSize = getPageSizeCached();
1072 const uptr GroupSize = (1UL << GroupSizeLog);
1073 const uptr CurGroupBase =
1074 compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
1076 PageReleaseContext Context(BlockSize, NumberOfRegions,
1077 /*ReleaseSize=*/RegionSize);
1079 auto DecompactPtr = [](CompactPtrT CompactPtr) {
1080 return reinterpret_cast<uptr>(CompactPtr);
1082 for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
1083 const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
1084 // The `GroupSize` may not be divided by `BlockSize`, which means there is
1085 // an unused space at the end of Region. Exclude that space to avoid
1086 // unused page map entry.
1087 uptr AllocatedGroupSize = GroupBase == CurGroupBase
1088 ? Sci->CurrentRegionAllocated
1089 : roundDownSlow(GroupSize, BlockSize);
1090 if (AllocatedGroupSize == 0)
1091 continue;
1093 // TransferBatches are pushed in front of BG.Batches. The first one may
1094 // not have all caches used.
1095 const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
1096 BG.Batches.front()->getCount();
1097 const uptr BytesInBG = NumBlocks * BlockSize;
1099 if (ReleaseType != ReleaseToOS::ForceAll) {
1100 if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
1101 BG.BytesInBGAtLastCheckpoint = BytesInBG;
1102 continue;
1105 const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
1106 if (PushedBytesDelta < PageSize)
1107 continue;
1109 // Given the randomness property, we try to release the pages only if
1110 // the bytes used by free blocks exceed certain proportion of allocated
1111 // spaces.
1112 if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
1113 (100U - 1U - BlockSize / 16U)) {
1114 continue;
1118 // TODO: Consider updating this after page release if `ReleaseRecorder`
1119 // can tell the released bytes in each group.
1120 BG.BytesInBGAtLastCheckpoint = BytesInBG;
1122 const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
1123 const uptr RegionIndex = (GroupBase - Base) / RegionSize;
1125 if (NumBlocks == MaxContainedBlocks) {
1126 for (const auto &It : BG.Batches)
1127 for (u16 I = 0; I < It.getCount(); ++I)
1128 DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
1130 const uptr To = GroupBase + AllocatedGroupSize;
1131 Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
1132 AllocatedGroupSize);
1133 } else {
1134 DCHECK_LT(NumBlocks, MaxContainedBlocks);
1136 // Note that we don't always visit blocks in each BatchGroup so that we
1137 // may miss the chance of releasing certain pages that cross
1138 // BatchGroups.
1139 Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
1140 RegionIndex, AllocatedGroupSize,
1141 /*MayContainLastBlockInRegion=*/true);
1144 // We may not be able to do the page release In a rare case that we may
1145 // fail on PageMap allocation.
1146 if (UNLIKELY(!Context.hasBlockMarked()))
1147 break;
1150 return Context;
1153 SizeClassInfo SizeClassInfoArray[NumClasses] = {};
1155 HybridMutex ByteMapMutex;
1156 // Track the regions in use, 0 is unused, otherwise store ClassId + 1.
1157 ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
1158 atomic_s32 ReleaseToOsIntervalMs = {};
1159 // Unless several threads request regions simultaneously from different size
1160 // classes, the stash rarely contains more than 1 entry.
1161 static constexpr uptr MaxStashedRegions = 4;
1162 HybridMutex RegionsStashMutex;
1163 uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
1164 uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
1167 } // namespace scudo
1169 #endif // SCUDO_PRIMARY32_H_