[NFC][AArch64] Explicitly define undefined bits for instructions (#122129)
[llvm-project.git] / compiler-rt / lib / scudo / standalone / tests / combined_test.cpp
blobff98eb3397ee0e305696737f0a70fa6d53e173d3
1 //===-- combined_test.cpp ---------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "memtag.h"
10 #include "stack_depot.h"
11 #include "tests/scudo_unit_test.h"
13 #include "allocator_config.h"
14 #include "chunk.h"
15 #include "combined.h"
16 #include "condition_variable.h"
17 #include "mem_map.h"
18 #include "size_class_map.h"
20 #include <algorithm>
21 #include <condition_variable>
22 #include <memory>
23 #include <mutex>
24 #include <set>
25 #include <stdlib.h>
26 #include <thread>
27 #include <vector>
29 static constexpr scudo::Chunk::Origin Origin = scudo::Chunk::Origin::Malloc;
30 static constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
32 // Fuchsia complains that the function is not used.
33 UNUSED static void disableDebuggerdMaybe() {
34 #if SCUDO_ANDROID
35 // Disable the debuggerd signal handler on Android, without this we can end
36 // up spending a significant amount of time creating tombstones.
37 signal(SIGSEGV, SIG_DFL);
38 #endif
41 template <class AllocatorT>
42 bool isPrimaryAllocation(scudo::uptr Size, scudo::uptr Alignment) {
43 const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
44 if (Alignment < MinAlignment)
45 Alignment = MinAlignment;
46 const scudo::uptr NeededSize =
47 scudo::roundUp(Size, MinAlignment) +
48 ((Alignment > MinAlignment) ? Alignment : scudo::Chunk::getHeaderSize());
49 return AllocatorT::PrimaryT::canAllocate(NeededSize);
52 template <class AllocatorT>
53 void checkMemoryTaggingMaybe(AllocatorT *Allocator, void *P, scudo::uptr Size,
54 scudo::uptr Alignment) {
55 const scudo::uptr MinAlignment = 1UL << SCUDO_MIN_ALIGNMENT_LOG;
56 Size = scudo::roundUp(Size, MinAlignment);
57 if (Allocator->useMemoryTaggingTestOnly())
58 EXPECT_DEATH(
60 disableDebuggerdMaybe();
61 reinterpret_cast<char *>(P)[-1] = 'A';
63 "");
64 if (isPrimaryAllocation<AllocatorT>(Size, Alignment)
65 ? Allocator->useMemoryTaggingTestOnly()
66 : Alignment == MinAlignment) {
67 EXPECT_DEATH(
69 disableDebuggerdMaybe();
70 reinterpret_cast<char *>(P)[Size] = 'A';
72 "");
76 template <typename Config> struct TestAllocator : scudo::Allocator<Config> {
77 TestAllocator() {
78 this->initThreadMaybe();
79 if (scudo::archSupportsMemoryTagging() &&
80 !scudo::systemDetectsMemoryTagFaultsTestOnly())
81 this->disableMemoryTagging();
83 ~TestAllocator() { this->unmapTestOnly(); }
85 void *operator new(size_t size);
86 void operator delete(void *ptr);
89 constexpr size_t kMaxAlign = std::max({
90 alignof(scudo::Allocator<scudo::DefaultConfig>),
91 #if SCUDO_CAN_USE_PRIMARY64
92 alignof(scudo::Allocator<scudo::FuchsiaConfig>),
93 #endif
94 alignof(scudo::Allocator<scudo::AndroidConfig>)
95 });
97 #if SCUDO_RISCV64
98 // The allocator is over 4MB large. Rather than creating an instance of this on
99 // the heap, keep it in a global storage to reduce fragmentation from having to
100 // mmap this at the start of every test.
101 struct TestAllocatorStorage {
102 static constexpr size_t kMaxSize = std::max({
103 sizeof(scudo::Allocator<scudo::DefaultConfig>),
104 #if SCUDO_CAN_USE_PRIMARY64
105 sizeof(scudo::Allocator<scudo::FuchsiaConfig>),
106 #endif
107 sizeof(scudo::Allocator<scudo::AndroidConfig>)
110 // To alleviate some problem, let's skip the thread safety analysis here.
111 static void *get(size_t size) NO_THREAD_SAFETY_ANALYSIS {
112 CHECK(size <= kMaxSize &&
113 "Allocation size doesn't fit in the allocator storage");
114 M.lock();
115 return AllocatorStorage;
118 static void release(void *ptr) NO_THREAD_SAFETY_ANALYSIS {
119 M.assertHeld();
120 M.unlock();
121 ASSERT_EQ(ptr, AllocatorStorage);
124 static scudo::HybridMutex M;
125 static uint8_t AllocatorStorage[kMaxSize];
127 scudo::HybridMutex TestAllocatorStorage::M;
128 alignas(kMaxAlign) uint8_t TestAllocatorStorage::AllocatorStorage[kMaxSize];
129 #else
130 struct TestAllocatorStorage {
131 static void *get(size_t size) NO_THREAD_SAFETY_ANALYSIS {
132 void *p = nullptr;
133 EXPECT_EQ(0, posix_memalign(&p, kMaxAlign, size));
134 return p;
136 static void release(void *ptr) NO_THREAD_SAFETY_ANALYSIS { free(ptr); }
138 #endif
140 template <typename Config>
141 void *TestAllocator<Config>::operator new(size_t size) {
142 return TestAllocatorStorage::get(size);
145 template <typename Config>
146 void TestAllocator<Config>::operator delete(void *ptr) {
147 TestAllocatorStorage::release(ptr);
150 template <class TypeParam> struct ScudoCombinedTest : public Test {
151 ScudoCombinedTest() {
152 UseQuarantine = std::is_same<TypeParam, scudo::AndroidConfig>::value;
153 Allocator = std::make_unique<AllocatorT>();
155 ~ScudoCombinedTest() {
156 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
157 UseQuarantine = true;
160 void RunTest();
162 void BasicTest(scudo::uptr SizeLog);
164 using AllocatorT = TestAllocator<TypeParam>;
165 std::unique_ptr<AllocatorT> Allocator;
168 template <typename T> using ScudoCombinedDeathTest = ScudoCombinedTest<T>;
170 namespace scudo {
171 struct TestConditionVariableConfig {
172 static const bool MaySupportMemoryTagging = true;
173 template <class A>
174 using TSDRegistryT =
175 scudo::TSDRegistrySharedT<A, 8U, 4U>; // Shared, max 8 TSDs.
177 struct Primary {
178 using SizeClassMap = scudo::AndroidSizeClassMap;
179 #if SCUDO_CAN_USE_PRIMARY64
180 static const scudo::uptr RegionSizeLog = 28U;
181 typedef scudo::u32 CompactPtrT;
182 static const scudo::uptr CompactPtrScale = SCUDO_MIN_ALIGNMENT_LOG;
183 static const scudo::uptr GroupSizeLog = 20U;
184 static const bool EnableRandomOffset = true;
185 static const scudo::uptr MapSizeIncrement = 1UL << 18;
186 #else
187 static const scudo::uptr RegionSizeLog = 18U;
188 static const scudo::uptr GroupSizeLog = 18U;
189 typedef scudo::uptr CompactPtrT;
190 #endif
191 static const scudo::s32 MinReleaseToOsIntervalMs = 1000;
192 static const scudo::s32 MaxReleaseToOsIntervalMs = 1000;
193 #if SCUDO_LINUX
194 using ConditionVariableT = scudo::ConditionVariableLinux;
195 #else
196 using ConditionVariableT = scudo::ConditionVariableDummy;
197 #endif
199 #if SCUDO_CAN_USE_PRIMARY64
200 template <typename Config>
201 using PrimaryT = scudo::SizeClassAllocator64<Config>;
202 #else
203 template <typename Config>
204 using PrimaryT = scudo::SizeClassAllocator32<Config>;
205 #endif
207 struct Secondary {
208 template <typename Config>
209 using CacheT = scudo::MapAllocatorNoCache<Config>;
211 template <typename Config> using SecondaryT = scudo::MapAllocator<Config>;
213 } // namespace scudo
215 #if SCUDO_FUCHSIA
216 #define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
217 SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, FuchsiaConfig)
218 #else
219 #define SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
220 SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, DefaultConfig) \
221 SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, AndroidConfig) \
222 SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TestConditionVariableConfig)
223 #endif
225 #define SCUDO_TYPED_TEST_TYPE(FIXTURE, NAME, TYPE) \
226 using FIXTURE##NAME##_##TYPE = FIXTURE##NAME<scudo::TYPE>; \
227 TEST_F(FIXTURE##NAME##_##TYPE, NAME) { FIXTURE##NAME<scudo::TYPE>::Run(); }
229 #define SCUDO_TYPED_TEST(FIXTURE, NAME) \
230 template <class TypeParam> \
231 struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
232 using BaseT = FIXTURE<TypeParam>; \
233 void Run(); \
234 }; \
235 SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
236 template <class TypeParam> void FIXTURE##NAME<TypeParam>::Run()
238 // Accessing `TSD->getCache()` requires `TSD::Mutex` which isn't easy to test
239 // using thread-safety analysis. Alternatively, we verify the thread safety
240 // through a runtime check in ScopedTSD and mark the test body with
241 // NO_THREAD_SAFETY_ANALYSIS.
242 #define SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(FIXTURE, NAME) \
243 template <class TypeParam> \
244 struct FIXTURE##NAME : public FIXTURE<TypeParam> { \
245 using BaseT = FIXTURE<TypeParam>; \
246 void Run() NO_THREAD_SAFETY_ANALYSIS; \
247 }; \
248 SCUDO_TYPED_TEST_ALL_TYPES(FIXTURE, NAME) \
249 template <class TypeParam> void FIXTURE##NAME<TypeParam>::Run()
251 SCUDO_TYPED_TEST(ScudoCombinedTest, IsOwned) {
252 auto *Allocator = this->Allocator.get();
253 static scudo::u8 StaticBuffer[scudo::Chunk::getHeaderSize() + 1];
254 EXPECT_FALSE(
255 Allocator->isOwned(&StaticBuffer[scudo::Chunk::getHeaderSize()]));
257 scudo::u8 StackBuffer[scudo::Chunk::getHeaderSize() + 1];
258 for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
259 StackBuffer[I] = 0x42U;
260 EXPECT_FALSE(Allocator->isOwned(&StackBuffer[scudo::Chunk::getHeaderSize()]));
261 for (scudo::uptr I = 0; I < sizeof(StackBuffer); I++)
262 EXPECT_EQ(StackBuffer[I], 0x42U);
265 template <class Config>
266 void ScudoCombinedTest<Config>::BasicTest(scudo::uptr SizeLog) {
267 auto *Allocator = this->Allocator.get();
269 // This allocates and deallocates a bunch of chunks, with a wide range of
270 // sizes and alignments, with a focus on sizes that could trigger weird
271 // behaviors (plus or minus a small delta of a power of two for example).
272 for (scudo::uptr AlignLog = MinAlignLog; AlignLog <= 16U; AlignLog++) {
273 const scudo::uptr Align = 1U << AlignLog;
274 for (scudo::sptr Delta = -32; Delta <= 32; Delta++) {
275 if ((1LL << SizeLog) + Delta < 0)
276 continue;
277 const scudo::uptr Size =
278 static_cast<scudo::uptr>((1LL << SizeLog) + Delta);
279 void *P = Allocator->allocate(Size, Origin, Align);
280 EXPECT_NE(P, nullptr);
281 EXPECT_TRUE(Allocator->isOwned(P));
282 EXPECT_TRUE(scudo::isAligned(reinterpret_cast<scudo::uptr>(P), Align));
283 EXPECT_LE(Size, Allocator->getUsableSize(P));
284 memset(P, 0xaa, Size);
285 checkMemoryTaggingMaybe(Allocator, P, Size, Align);
286 Allocator->deallocate(P, Origin, Size);
290 Allocator->printStats();
291 Allocator->printFragmentationInfo();
294 #define SCUDO_MAKE_BASIC_TEST(SizeLog) \
295 SCUDO_TYPED_TEST(ScudoCombinedDeathTest, BasicCombined##SizeLog) { \
296 this->BasicTest(SizeLog); \
299 SCUDO_MAKE_BASIC_TEST(0)
300 SCUDO_MAKE_BASIC_TEST(1)
301 SCUDO_MAKE_BASIC_TEST(2)
302 SCUDO_MAKE_BASIC_TEST(3)
303 SCUDO_MAKE_BASIC_TEST(4)
304 SCUDO_MAKE_BASIC_TEST(5)
305 SCUDO_MAKE_BASIC_TEST(6)
306 SCUDO_MAKE_BASIC_TEST(7)
307 SCUDO_MAKE_BASIC_TEST(8)
308 SCUDO_MAKE_BASIC_TEST(9)
309 SCUDO_MAKE_BASIC_TEST(10)
310 SCUDO_MAKE_BASIC_TEST(11)
311 SCUDO_MAKE_BASIC_TEST(12)
312 SCUDO_MAKE_BASIC_TEST(13)
313 SCUDO_MAKE_BASIC_TEST(14)
314 SCUDO_MAKE_BASIC_TEST(15)
315 SCUDO_MAKE_BASIC_TEST(16)
316 SCUDO_MAKE_BASIC_TEST(17)
317 SCUDO_MAKE_BASIC_TEST(18)
318 SCUDO_MAKE_BASIC_TEST(19)
319 SCUDO_MAKE_BASIC_TEST(20)
321 SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroContents) {
322 auto *Allocator = this->Allocator.get();
324 // Ensure that specifying ZeroContents returns a zero'd out block.
325 for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
326 for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
327 const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
328 void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
329 EXPECT_NE(P, nullptr);
330 for (scudo::uptr I = 0; I < Size; I++)
331 ASSERT_EQ((reinterpret_cast<char *>(P))[I], '\0');
332 memset(P, 0xaa, Size);
333 Allocator->deallocate(P, Origin, Size);
338 SCUDO_TYPED_TEST(ScudoCombinedTest, ZeroFill) {
339 auto *Allocator = this->Allocator.get();
341 // Ensure that specifying ZeroFill returns a zero'd out block.
342 Allocator->setFillContents(scudo::ZeroFill);
343 for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
344 for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
345 const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
346 void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
347 EXPECT_NE(P, nullptr);
348 for (scudo::uptr I = 0; I < Size; I++)
349 ASSERT_EQ((reinterpret_cast<char *>(P))[I], '\0');
350 memset(P, 0xaa, Size);
351 Allocator->deallocate(P, Origin, Size);
356 SCUDO_TYPED_TEST(ScudoCombinedTest, PatternOrZeroFill) {
357 auto *Allocator = this->Allocator.get();
359 // Ensure that specifying PatternOrZeroFill returns a pattern or zero filled
360 // block. The primary allocator only produces pattern filled blocks if MTE
361 // is disabled, so we only require pattern filled blocks in that case.
362 Allocator->setFillContents(scudo::PatternOrZeroFill);
363 for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
364 for (scudo::uptr Delta = 0U; Delta <= 4U; Delta++) {
365 const scudo::uptr Size = (1U << SizeLog) + Delta * 128U;
366 void *P = Allocator->allocate(Size, Origin, 1U << MinAlignLog, false);
367 EXPECT_NE(P, nullptr);
368 for (scudo::uptr I = 0; I < Size; I++) {
369 unsigned char V = (reinterpret_cast<unsigned char *>(P))[I];
370 if (isPrimaryAllocation<TestAllocator<TypeParam>>(Size,
371 1U << MinAlignLog) &&
372 !Allocator->useMemoryTaggingTestOnly())
373 ASSERT_EQ(V, scudo::PatternFillByte);
374 else
375 ASSERT_TRUE(V == scudo::PatternFillByte || V == 0);
377 memset(P, 0xaa, Size);
378 Allocator->deallocate(P, Origin, Size);
383 SCUDO_TYPED_TEST(ScudoCombinedTest, BlockReuse) {
384 auto *Allocator = this->Allocator.get();
386 // Verify that a chunk will end up being reused, at some point.
387 const scudo::uptr NeedleSize = 1024U;
388 void *NeedleP = Allocator->allocate(NeedleSize, Origin);
389 Allocator->deallocate(NeedleP, Origin);
390 bool Found = false;
391 for (scudo::uptr I = 0; I < 1024U && !Found; I++) {
392 void *P = Allocator->allocate(NeedleSize, Origin);
393 if (Allocator->getHeaderTaggedPointer(P) ==
394 Allocator->getHeaderTaggedPointer(NeedleP))
395 Found = true;
396 Allocator->deallocate(P, Origin);
398 EXPECT_TRUE(Found);
401 SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateLargeIncreasing) {
402 auto *Allocator = this->Allocator.get();
404 // Reallocate a chunk all the way up to a secondary allocation, verifying that
405 // we preserve the data in the process.
406 scudo::uptr Size = 16;
407 void *P = Allocator->allocate(Size, Origin);
408 const char Marker = 'A';
409 memset(P, Marker, Size);
410 while (Size < TypeParam::Primary::SizeClassMap::MaxSize * 4) {
411 void *NewP = Allocator->reallocate(P, Size * 2);
412 EXPECT_NE(NewP, nullptr);
413 for (scudo::uptr J = 0; J < Size; J++)
414 EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
415 memset(reinterpret_cast<char *>(NewP) + Size, Marker, Size);
416 Size *= 2U;
417 P = NewP;
419 Allocator->deallocate(P, Origin);
422 SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateLargeDecreasing) {
423 auto *Allocator = this->Allocator.get();
425 // Reallocate a large chunk all the way down to a byte, verifying that we
426 // preserve the data in the process.
427 scudo::uptr Size = TypeParam::Primary::SizeClassMap::MaxSize * 2;
428 const scudo::uptr DataSize = 2048U;
429 void *P = Allocator->allocate(Size, Origin);
430 const char Marker = 'A';
431 memset(P, Marker, scudo::Min(Size, DataSize));
432 while (Size > 1U) {
433 Size /= 2U;
434 void *NewP = Allocator->reallocate(P, Size);
435 EXPECT_NE(NewP, nullptr);
436 for (scudo::uptr J = 0; J < scudo::Min(Size, DataSize); J++)
437 EXPECT_EQ((reinterpret_cast<char *>(NewP))[J], Marker);
438 P = NewP;
440 Allocator->deallocate(P, Origin);
443 SCUDO_TYPED_TEST(ScudoCombinedDeathTest, ReallocateSame) {
444 auto *Allocator = this->Allocator.get();
446 // Check that reallocating a chunk to a slightly smaller or larger size
447 // returns the same chunk. This requires that all the sizes we iterate on use
448 // the same block size, but that should be the case for MaxSize - 64 with our
449 // default class size maps.
450 constexpr scudo::uptr InitialSize =
451 TypeParam::Primary::SizeClassMap::MaxSize - 64;
452 const char Marker = 'A';
453 Allocator->setFillContents(scudo::PatternOrZeroFill);
455 void *P = Allocator->allocate(InitialSize, Origin);
456 scudo::uptr CurrentSize = InitialSize;
457 for (scudo::sptr Delta = -32; Delta < 32; Delta += 8) {
458 memset(P, Marker, CurrentSize);
459 const scudo::uptr NewSize =
460 static_cast<scudo::uptr>(static_cast<scudo::sptr>(InitialSize) + Delta);
461 void *NewP = Allocator->reallocate(P, NewSize);
462 EXPECT_EQ(NewP, P);
464 // Verify that existing contents have been preserved.
465 for (scudo::uptr I = 0; I < scudo::Min(CurrentSize, NewSize); I++)
466 EXPECT_EQ((reinterpret_cast<char *>(NewP))[I], Marker);
468 // Verify that new bytes are set according to FillContentsMode.
469 for (scudo::uptr I = CurrentSize; I < NewSize; I++) {
470 unsigned char V = (reinterpret_cast<unsigned char *>(NewP))[I];
471 EXPECT_TRUE(V == scudo::PatternFillByte || V == 0);
474 checkMemoryTaggingMaybe(Allocator, NewP, NewSize, 0);
475 CurrentSize = NewSize;
477 Allocator->deallocate(P, Origin);
480 SCUDO_TYPED_TEST(ScudoCombinedTest, IterateOverChunks) {
481 auto *Allocator = this->Allocator.get();
482 // Allocates a bunch of chunks, then iterate over all the chunks, ensuring
483 // they are the ones we allocated. This requires the allocator to not have any
484 // other allocated chunk at this point (eg: won't work with the Quarantine).
485 // FIXME: Make it work with UseQuarantine and tagging enabled. Internals of
486 // iterateOverChunks reads header by tagged and non-tagger pointers so one of
487 // them will fail.
488 if (!UseQuarantine) {
489 std::vector<void *> V;
490 for (scudo::uptr I = 0; I < 64U; I++)
491 V.push_back(Allocator->allocate(
492 static_cast<scudo::uptr>(std::rand()) %
493 (TypeParam::Primary::SizeClassMap::MaxSize / 2U),
494 Origin));
495 Allocator->disable();
496 Allocator->iterateOverChunks(
497 0U, static_cast<scudo::uptr>(SCUDO_MMAP_RANGE_SIZE - 1),
498 [](uintptr_t Base, UNUSED size_t Size, void *Arg) {
499 std::vector<void *> *V = reinterpret_cast<std::vector<void *> *>(Arg);
500 void *P = reinterpret_cast<void *>(Base);
501 EXPECT_NE(std::find(V->begin(), V->end(), P), V->end());
503 reinterpret_cast<void *>(&V));
504 Allocator->enable();
505 for (auto P : V)
506 Allocator->deallocate(P, Origin);
510 SCUDO_TYPED_TEST(ScudoCombinedDeathTest, UseAfterFree) {
511 auto *Allocator = this->Allocator.get();
513 // Check that use-after-free is detected.
514 for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
515 const scudo::uptr Size = 1U << SizeLog;
516 if (!Allocator->useMemoryTaggingTestOnly())
517 continue;
518 EXPECT_DEATH(
520 disableDebuggerdMaybe();
521 void *P = Allocator->allocate(Size, Origin);
522 Allocator->deallocate(P, Origin);
523 reinterpret_cast<char *>(P)[0] = 'A';
525 "");
526 EXPECT_DEATH(
528 disableDebuggerdMaybe();
529 void *P = Allocator->allocate(Size, Origin);
530 Allocator->deallocate(P, Origin);
531 reinterpret_cast<char *>(P)[Size - 1] = 'A';
533 "");
537 SCUDO_TYPED_TEST(ScudoCombinedDeathTest, DoubleFreeFromPrimary) {
538 auto *Allocator = this->Allocator.get();
540 for (scudo::uptr SizeLog = 0U; SizeLog <= 20U; SizeLog++) {
541 const scudo::uptr Size = 1U << SizeLog;
542 if (!isPrimaryAllocation<TestAllocator<TypeParam>>(Size, 0))
543 break;
545 // Verify that a double free results in a chunk state error.
546 EXPECT_DEATH(
548 // Allocate from primary
549 void *P = Allocator->allocate(Size, Origin);
550 ASSERT_TRUE(P != nullptr);
551 Allocator->deallocate(P, Origin);
552 Allocator->deallocate(P, Origin);
554 "invalid chunk state");
558 SCUDO_TYPED_TEST(ScudoCombinedDeathTest, DisableMemoryTagging) {
559 auto *Allocator = this->Allocator.get();
561 if (Allocator->useMemoryTaggingTestOnly()) {
562 // Check that disabling memory tagging works correctly.
563 void *P = Allocator->allocate(2048, Origin);
564 EXPECT_DEATH(reinterpret_cast<char *>(P)[2048] = 'A', "");
565 scudo::ScopedDisableMemoryTagChecks NoTagChecks;
566 Allocator->disableMemoryTagging();
567 reinterpret_cast<char *>(P)[2048] = 'A';
568 Allocator->deallocate(P, Origin);
570 P = Allocator->allocate(2048, Origin);
571 EXPECT_EQ(scudo::untagPointer(P), P);
572 reinterpret_cast<char *>(P)[2048] = 'A';
573 Allocator->deallocate(P, Origin);
575 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
579 SCUDO_TYPED_TEST(ScudoCombinedTest, Stats) {
580 auto *Allocator = this->Allocator.get();
582 scudo::uptr BufferSize = 8192;
583 std::vector<char> Buffer(BufferSize);
584 scudo::uptr ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
585 while (ActualSize > BufferSize) {
586 BufferSize = ActualSize + 1024;
587 Buffer.resize(BufferSize);
588 ActualSize = Allocator->getStats(Buffer.data(), BufferSize);
590 std::string Stats(Buffer.begin(), Buffer.end());
591 // Basic checks on the contents of the statistics output, which also allows us
592 // to verify that we got it all.
593 EXPECT_NE(Stats.find("Stats: SizeClassAllocator"), std::string::npos);
594 EXPECT_NE(Stats.find("Stats: MapAllocator"), std::string::npos);
595 EXPECT_NE(Stats.find("Stats: Quarantine"), std::string::npos);
598 SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(ScudoCombinedTest, CacheDrain) {
599 using AllocatorT = typename BaseT::AllocatorT;
600 auto *Allocator = this->Allocator.get();
602 std::vector<void *> V;
603 for (scudo::uptr I = 0; I < 64U; I++)
604 V.push_back(Allocator->allocate(
605 static_cast<scudo::uptr>(std::rand()) %
606 (TypeParam::Primary::SizeClassMap::MaxSize / 2U),
607 Origin));
608 for (auto P : V)
609 Allocator->deallocate(P, Origin);
611 typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
612 *Allocator->getTSDRegistry());
613 EXPECT_TRUE(!TSD->getCache().isEmpty());
614 TSD->getCache().drain();
615 EXPECT_TRUE(TSD->getCache().isEmpty());
618 SCUDO_TYPED_TEST_SKIP_THREAD_SAFETY(ScudoCombinedTest, ForceCacheDrain) {
619 using AllocatorT = typename BaseT::AllocatorT;
620 auto *Allocator = this->Allocator.get();
622 std::vector<void *> V;
623 for (scudo::uptr I = 0; I < 64U; I++)
624 V.push_back(Allocator->allocate(
625 static_cast<scudo::uptr>(std::rand()) %
626 (TypeParam::Primary::SizeClassMap::MaxSize / 2U),
627 Origin));
628 for (auto P : V)
629 Allocator->deallocate(P, Origin);
631 // `ForceAll` will also drain the caches.
632 Allocator->releaseToOS(scudo::ReleaseToOS::ForceAll);
634 typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
635 *Allocator->getTSDRegistry());
636 EXPECT_TRUE(TSD->getCache().isEmpty());
637 EXPECT_EQ(TSD->getQuarantineCache().getSize(), 0U);
638 EXPECT_TRUE(Allocator->getQuarantine()->isEmpty());
641 SCUDO_TYPED_TEST(ScudoCombinedTest, ThreadedCombined) {
642 std::mutex Mutex;
643 std::condition_variable Cv;
644 bool Ready = false;
645 auto *Allocator = this->Allocator.get();
646 std::thread Threads[32];
647 for (scudo::uptr I = 0; I < ARRAY_SIZE(Threads); I++)
648 Threads[I] = std::thread([&]() {
650 std::unique_lock<std::mutex> Lock(Mutex);
651 while (!Ready)
652 Cv.wait(Lock);
654 std::vector<std::pair<void *, scudo::uptr>> V;
655 for (scudo::uptr I = 0; I < 256U; I++) {
656 const scudo::uptr Size = static_cast<scudo::uptr>(std::rand()) % 4096U;
657 void *P = Allocator->allocate(Size, Origin);
658 // A region could have ran out of memory, resulting in a null P.
659 if (P)
660 V.push_back(std::make_pair(P, Size));
663 // Try to interleave pushBlocks(), popBatch() and releaseToOS().
664 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
666 while (!V.empty()) {
667 auto Pair = V.back();
668 Allocator->deallocate(Pair.first, Origin, Pair.second);
669 V.pop_back();
673 std::unique_lock<std::mutex> Lock(Mutex);
674 Ready = true;
675 Cv.notify_all();
677 for (auto &T : Threads)
678 T.join();
679 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
682 // Test that multiple instantiations of the allocator have not messed up the
683 // process's signal handlers (GWP-ASan used to do this).
684 TEST(ScudoCombinedDeathTest, SKIP_ON_FUCHSIA(testSEGV)) {
685 const scudo::uptr Size = 4 * scudo::getPageSizeCached();
686 scudo::ReservedMemoryT ReservedMemory;
687 ASSERT_TRUE(ReservedMemory.create(/*Addr=*/0U, Size, "testSEGV"));
688 void *P = reinterpret_cast<void *>(ReservedMemory.getBase());
689 ASSERT_NE(P, nullptr);
690 EXPECT_DEATH(memset(P, 0xaa, Size), "");
691 ReservedMemory.release();
694 struct DeathSizeClassConfig {
695 static const scudo::uptr NumBits = 1;
696 static const scudo::uptr MinSizeLog = 10;
697 static const scudo::uptr MidSizeLog = 10;
698 static const scudo::uptr MaxSizeLog = 13;
699 static const scudo::u16 MaxNumCachedHint = 8;
700 static const scudo::uptr MaxBytesCachedLog = 12;
701 static const scudo::uptr SizeDelta = 0;
704 static const scudo::uptr DeathRegionSizeLog = 21U;
705 struct DeathConfig {
706 static const bool MaySupportMemoryTagging = false;
707 template <class A> using TSDRegistryT = scudo::TSDRegistrySharedT<A, 1U, 1U>;
709 struct Primary {
710 // Tiny allocator, its Primary only serves chunks of four sizes.
711 using SizeClassMap = scudo::FixedSizeClassMap<DeathSizeClassConfig>;
712 static const scudo::uptr RegionSizeLog = DeathRegionSizeLog;
713 static const scudo::s32 MinReleaseToOsIntervalMs = INT32_MIN;
714 static const scudo::s32 MaxReleaseToOsIntervalMs = INT32_MAX;
715 typedef scudo::uptr CompactPtrT;
716 static const scudo::uptr CompactPtrScale = 0;
717 static const bool EnableRandomOffset = true;
718 static const scudo::uptr MapSizeIncrement = 1UL << 18;
719 static const scudo::uptr GroupSizeLog = 18;
721 template <typename Config>
722 using PrimaryT = scudo::SizeClassAllocator64<Config>;
724 struct Secondary {
725 template <typename Config>
726 using CacheT = scudo::MapAllocatorNoCache<Config>;
729 template <typename Config> using SecondaryT = scudo::MapAllocator<Config>;
732 TEST(ScudoCombinedDeathTest, DeathCombined) {
733 using AllocatorT = TestAllocator<DeathConfig>;
734 auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
736 const scudo::uptr Size = 1000U;
737 void *P = Allocator->allocate(Size, Origin);
738 EXPECT_NE(P, nullptr);
740 // Invalid sized deallocation.
741 EXPECT_DEATH(Allocator->deallocate(P, Origin, Size + 8U), "");
743 // Misaligned pointer. Potentially unused if EXPECT_DEATH isn't available.
744 UNUSED void *MisalignedP =
745 reinterpret_cast<void *>(reinterpret_cast<scudo::uptr>(P) | 1U);
746 EXPECT_DEATH(Allocator->deallocate(MisalignedP, Origin, Size), "");
747 EXPECT_DEATH(Allocator->reallocate(MisalignedP, Size * 2U), "");
749 // Header corruption.
750 scudo::u64 *H =
751 reinterpret_cast<scudo::u64 *>(scudo::Chunk::getAtomicHeader(P));
752 *H ^= 0x42U;
753 EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
754 *H ^= 0x420042U;
755 EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
756 *H ^= 0x420000U;
758 // Invalid chunk state.
759 Allocator->deallocate(P, Origin, Size);
760 EXPECT_DEATH(Allocator->deallocate(P, Origin, Size), "");
761 EXPECT_DEATH(Allocator->reallocate(P, Size * 2U), "");
762 EXPECT_DEATH(Allocator->getUsableSize(P), "");
765 // Verify that when a region gets full, the allocator will still manage to
766 // fulfill the allocation through a larger size class.
767 TEST(ScudoCombinedTest, FullRegion) {
768 using AllocatorT = TestAllocator<DeathConfig>;
769 auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
771 std::vector<void *> V;
772 scudo::uptr FailedAllocationsCount = 0;
773 for (scudo::uptr ClassId = 1U;
774 ClassId <= DeathConfig::Primary::SizeClassMap::LargestClassId;
775 ClassId++) {
776 const scudo::uptr Size =
777 DeathConfig::Primary::SizeClassMap::getSizeByClassId(ClassId);
778 // Allocate enough to fill all of the regions above this one.
779 const scudo::uptr MaxNumberOfChunks =
780 ((1U << DeathRegionSizeLog) / Size) *
781 (DeathConfig::Primary::SizeClassMap::LargestClassId - ClassId + 1);
782 void *P;
783 for (scudo::uptr I = 0; I <= MaxNumberOfChunks; I++) {
784 P = Allocator->allocate(Size - 64U, Origin);
785 if (!P)
786 FailedAllocationsCount++;
787 else
788 V.push_back(P);
790 while (!V.empty()) {
791 Allocator->deallocate(V.back(), Origin);
792 V.pop_back();
795 EXPECT_EQ(FailedAllocationsCount, 0U);
798 // Ensure that releaseToOS can be called prior to any other allocator
799 // operation without issue.
800 SCUDO_TYPED_TEST(ScudoCombinedTest, ReleaseToOS) {
801 auto *Allocator = this->Allocator.get();
802 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
805 SCUDO_TYPED_TEST(ScudoCombinedTest, OddEven) {
806 auto *Allocator = this->Allocator.get();
807 Allocator->setOption(scudo::Option::MemtagTuning, M_MEMTAG_TUNING_BUFFER_OVERFLOW);
809 if (!Allocator->useMemoryTaggingTestOnly())
810 return;
812 auto CheckOddEven = [](scudo::uptr P1, scudo::uptr P2) {
813 scudo::uptr Tag1 = scudo::extractTag(scudo::loadTag(P1));
814 scudo::uptr Tag2 = scudo::extractTag(scudo::loadTag(P2));
815 EXPECT_NE(Tag1 % 2, Tag2 % 2);
818 using SizeClassMap = typename TypeParam::Primary::SizeClassMap;
819 for (scudo::uptr ClassId = 1U; ClassId <= SizeClassMap::LargestClassId;
820 ClassId++) {
821 const scudo::uptr Size = SizeClassMap::getSizeByClassId(ClassId);
823 std::set<scudo::uptr> Ptrs;
824 bool Found = false;
825 for (unsigned I = 0; I != 65536; ++I) {
826 scudo::uptr P = scudo::untagPointer(reinterpret_cast<scudo::uptr>(
827 Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin)));
828 if (Ptrs.count(P - Size)) {
829 Found = true;
830 CheckOddEven(P, P - Size);
831 break;
833 if (Ptrs.count(P + Size)) {
834 Found = true;
835 CheckOddEven(P, P + Size);
836 break;
838 Ptrs.insert(P);
840 EXPECT_TRUE(Found);
844 SCUDO_TYPED_TEST(ScudoCombinedTest, DisableMemInit) {
845 auto *Allocator = this->Allocator.get();
847 std::vector<void *> Ptrs(65536);
849 Allocator->setOption(scudo::Option::ThreadDisableMemInit, 1);
851 constexpr scudo::uptr MinAlignLog = FIRST_32_SECOND_64(3U, 4U);
853 // Test that if mem-init is disabled on a thread, calloc should still work as
854 // expected. This is tricky to ensure when MTE is enabled, so this test tries
855 // to exercise the relevant code on our MTE path.
856 for (scudo::uptr ClassId = 1U; ClassId <= 8; ClassId++) {
857 using SizeClassMap = typename TypeParam::Primary::SizeClassMap;
858 const scudo::uptr Size =
859 SizeClassMap::getSizeByClassId(ClassId) - scudo::Chunk::getHeaderSize();
860 if (Size < 8)
861 continue;
862 for (unsigned I = 0; I != Ptrs.size(); ++I) {
863 Ptrs[I] = Allocator->allocate(Size, Origin);
864 memset(Ptrs[I], 0xaa, Size);
866 for (unsigned I = 0; I != Ptrs.size(); ++I)
867 Allocator->deallocate(Ptrs[I], Origin, Size);
868 for (unsigned I = 0; I != Ptrs.size(); ++I) {
869 Ptrs[I] = Allocator->allocate(Size - 8, Origin);
870 memset(Ptrs[I], 0xbb, Size - 8);
872 for (unsigned I = 0; I != Ptrs.size(); ++I)
873 Allocator->deallocate(Ptrs[I], Origin, Size - 8);
874 for (unsigned I = 0; I != Ptrs.size(); ++I) {
875 Ptrs[I] = Allocator->allocate(Size, Origin, 1U << MinAlignLog, true);
876 for (scudo::uptr J = 0; J < Size; ++J)
877 ASSERT_EQ((reinterpret_cast<char *>(Ptrs[I]))[J], '\0');
881 Allocator->setOption(scudo::Option::ThreadDisableMemInit, 0);
884 SCUDO_TYPED_TEST(ScudoCombinedTest, ReallocateInPlaceStress) {
885 auto *Allocator = this->Allocator.get();
887 // Regression test: make realloc-in-place happen at the very right end of a
888 // mapped region.
889 constexpr size_t nPtrs = 10000;
890 for (scudo::uptr i = 1; i < 32; ++i) {
891 scudo::uptr Size = 16 * i - 1;
892 std::vector<void *> Ptrs;
893 for (size_t i = 0; i < nPtrs; ++i) {
894 void *P = Allocator->allocate(Size, Origin);
895 P = Allocator->reallocate(P, Size + 1);
896 Ptrs.push_back(P);
899 for (size_t i = 0; i < nPtrs; ++i)
900 Allocator->deallocate(Ptrs[i], Origin);
904 SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferDefaultDisabled) {
905 // The RingBuffer is not initialized until tracking is enabled for the
906 // first time.
907 auto *Allocator = this->Allocator.get();
908 EXPECT_EQ(0u, Allocator->getRingBufferSize());
909 EXPECT_EQ(nullptr, Allocator->getRingBufferAddress());
912 SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferInitOnce) {
913 auto *Allocator = this->Allocator.get();
914 Allocator->setTrackAllocationStacks(true);
916 auto RingBufferSize = Allocator->getRingBufferSize();
917 ASSERT_GT(RingBufferSize, 0u);
918 auto *RingBufferAddress = Allocator->getRingBufferAddress();
919 EXPECT_NE(nullptr, RingBufferAddress);
921 // Enable tracking again to verify that the initialization only happens once.
922 Allocator->setTrackAllocationStacks(true);
923 ASSERT_EQ(RingBufferSize, Allocator->getRingBufferSize());
924 EXPECT_EQ(RingBufferAddress, Allocator->getRingBufferAddress());
927 SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferSize) {
928 auto *Allocator = this->Allocator.get();
929 Allocator->setTrackAllocationStacks(true);
931 auto RingBufferSize = Allocator->getRingBufferSize();
932 ASSERT_GT(RingBufferSize, 0u);
933 EXPECT_EQ(Allocator->getRingBufferAddress()[RingBufferSize - 1], '\0');
936 SCUDO_TYPED_TEST(ScudoCombinedTest, RingBufferAddress) {
937 auto *Allocator = this->Allocator.get();
938 Allocator->setTrackAllocationStacks(true);
940 auto *RingBufferAddress = Allocator->getRingBufferAddress();
941 EXPECT_NE(RingBufferAddress, nullptr);
942 EXPECT_EQ(RingBufferAddress, Allocator->getRingBufferAddress());
945 SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotDefaultDisabled) {
946 // The StackDepot is not initialized until tracking is enabled for the
947 // first time.
948 auto *Allocator = this->Allocator.get();
949 EXPECT_EQ(0u, Allocator->getStackDepotSize());
950 EXPECT_EQ(nullptr, Allocator->getStackDepotAddress());
953 SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotInitOnce) {
954 auto *Allocator = this->Allocator.get();
955 Allocator->setTrackAllocationStacks(true);
957 auto StackDepotSize = Allocator->getStackDepotSize();
958 EXPECT_GT(StackDepotSize, 0u);
959 auto *StackDepotAddress = Allocator->getStackDepotAddress();
960 EXPECT_NE(nullptr, StackDepotAddress);
962 // Enable tracking again to verify that the initialization only happens once.
963 Allocator->setTrackAllocationStacks(true);
964 EXPECT_EQ(StackDepotSize, Allocator->getStackDepotSize());
965 EXPECT_EQ(StackDepotAddress, Allocator->getStackDepotAddress());
968 SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotSize) {
969 auto *Allocator = this->Allocator.get();
970 Allocator->setTrackAllocationStacks(true);
972 auto StackDepotSize = Allocator->getStackDepotSize();
973 EXPECT_GT(StackDepotSize, 0u);
974 EXPECT_EQ(Allocator->getStackDepotAddress()[StackDepotSize - 1], '\0');
977 SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepotAddress) {
978 auto *Allocator = this->Allocator.get();
979 Allocator->setTrackAllocationStacks(true);
981 auto *StackDepotAddress = Allocator->getStackDepotAddress();
982 EXPECT_NE(StackDepotAddress, nullptr);
983 EXPECT_EQ(StackDepotAddress, Allocator->getStackDepotAddress());
986 SCUDO_TYPED_TEST(ScudoCombinedTest, StackDepot) {
987 alignas(scudo::StackDepot) char Buf[sizeof(scudo::StackDepot) +
988 1024 * sizeof(scudo::atomic_u64) +
989 1024 * sizeof(scudo::atomic_u32)] = {};
990 auto *Depot = reinterpret_cast<scudo::StackDepot *>(Buf);
991 Depot->init(1024, 1024);
992 ASSERT_TRUE(Depot->isValid(sizeof(Buf)));
993 ASSERT_FALSE(Depot->isValid(sizeof(Buf) - 1));
994 scudo::uptr Stack[] = {1, 2, 3};
995 scudo::u32 Elem = Depot->insert(&Stack[0], &Stack[3]);
996 scudo::uptr RingPosPtr = 0;
997 scudo::uptr SizePtr = 0;
998 ASSERT_TRUE(Depot->find(Elem, &RingPosPtr, &SizePtr));
999 ASSERT_EQ(SizePtr, 3u);
1000 EXPECT_EQ(Depot->at(RingPosPtr), 1u);
1001 EXPECT_EQ(Depot->at(RingPosPtr + 1), 2u);
1002 EXPECT_EQ(Depot->at(RingPosPtr + 2), 3u);
1005 #if SCUDO_CAN_USE_PRIMARY64
1006 #if SCUDO_TRUSTY
1008 // TrustyConfig is designed for a domain-specific allocator. Add a basic test
1009 // which covers only simple operations and ensure the configuration is able to
1010 // compile.
1011 TEST(ScudoCombinedTest, BasicTrustyConfig) {
1012 using AllocatorT = scudo::Allocator<scudo::TrustyConfig>;
1013 auto Allocator = std::unique_ptr<AllocatorT>(new AllocatorT());
1015 for (scudo::uptr ClassId = 1U;
1016 ClassId <= scudo::TrustyConfig::SizeClassMap::LargestClassId;
1017 ClassId++) {
1018 const scudo::uptr Size =
1019 scudo::TrustyConfig::SizeClassMap::getSizeByClassId(ClassId);
1020 void *p = Allocator->allocate(Size - scudo::Chunk::getHeaderSize(), Origin);
1021 ASSERT_NE(p, nullptr);
1022 free(p);
1025 bool UnlockRequired;
1026 typename AllocatorT::TSDRegistryT::ScopedTSD TSD(
1027 *Allocator->getTSDRegistry());
1028 TSD->getCache().drain();
1030 Allocator->releaseToOS(scudo::ReleaseToOS::Force);
1033 #endif
1034 #endif