[lldb-dap] Ensure the IO forwarding threads are managed by the DAP object lifecycle...
[llvm-project.git] / compiler-rt / lib / tsan / rtl / tsan_platform_linux.cpp
blob3e08a1bece98f01fdf5a7ebb2347bea07630f093
1 //===-- tsan_platform_linux.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // Linux- and BSD-specific code.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_platform.h"
15 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_libc.h"
19 #include "sanitizer_common/sanitizer_linux.h"
20 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
21 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_procmaps.h"
24 #include "sanitizer_common/sanitizer_stackdepot.h"
25 #include "sanitizer_common/sanitizer_stoptheworld.h"
26 #include "tsan_flags.h"
27 #include "tsan_platform.h"
28 #include "tsan_rtl.h"
30 #include <fcntl.h>
31 #include <pthread.h>
32 #include <signal.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <stdarg.h>
37 #include <sys/mman.h>
38 #if SANITIZER_LINUX
39 #include <sys/personality.h>
40 #include <setjmp.h>
41 #endif
42 #include <sys/syscall.h>
43 #include <sys/socket.h>
44 #include <sys/time.h>
45 #include <sys/types.h>
46 #include <sys/resource.h>
47 #include <sys/stat.h>
48 #include <unistd.h>
49 #include <sched.h>
50 #include <dlfcn.h>
51 #if SANITIZER_LINUX
52 #define __need_res_state
53 #include <resolv.h>
54 #endif
56 #ifdef sa_handler
57 # undef sa_handler
58 #endif
60 #ifdef sa_sigaction
61 # undef sa_sigaction
62 #endif
64 #if SANITIZER_FREEBSD
65 extern "C" void *__libc_stack_end;
66 void *__libc_stack_end = 0;
67 #endif
69 #if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64)) && \
70 !SANITIZER_GO
71 # define INIT_LONGJMP_XOR_KEY 1
72 #else
73 # define INIT_LONGJMP_XOR_KEY 0
74 #endif
76 #if INIT_LONGJMP_XOR_KEY
77 #include "interception/interception.h"
78 // Must be declared outside of other namespaces.
79 DECLARE_REAL(int, _setjmp, void *env)
80 #endif
82 namespace __tsan {
84 #if INIT_LONGJMP_XOR_KEY
85 static void InitializeLongjmpXorKey();
86 static uptr longjmp_xor_key;
87 #endif
89 // Runtime detected VMA size.
90 uptr vmaSize;
92 enum {
93 MemTotal,
94 MemShadow,
95 MemMeta,
96 MemFile,
97 MemMmap,
98 MemHeap,
99 MemOther,
100 MemCount,
103 void FillProfileCallback(uptr p, uptr rss, bool file, uptr *mem) {
104 mem[MemTotal] += rss;
105 if (p >= ShadowBeg() && p < ShadowEnd())
106 mem[MemShadow] += rss;
107 else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
108 mem[MemMeta] += rss;
109 else if ((p >= LoAppMemBeg() && p < LoAppMemEnd()) ||
110 (p >= MidAppMemBeg() && p < MidAppMemEnd()) ||
111 (p >= HiAppMemBeg() && p < HiAppMemEnd()))
112 mem[file ? MemFile : MemMmap] += rss;
113 else if (p >= HeapMemBeg() && p < HeapMemEnd())
114 mem[MemHeap] += rss;
115 else
116 mem[MemOther] += rss;
119 void WriteMemoryProfile(char *buf, uptr buf_size, u64 uptime_ns) {
120 uptr mem[MemCount];
121 internal_memset(mem, 0, sizeof(mem));
122 GetMemoryProfile(FillProfileCallback, mem);
123 auto meta = ctx->metamap.GetMemoryStats();
124 StackDepotStats stacks = StackDepotGetStats();
125 uptr nthread, nlive;
126 ctx->thread_registry.GetNumberOfThreads(&nthread, &nlive);
127 uptr trace_mem;
129 Lock l(&ctx->slot_mtx);
130 trace_mem = ctx->trace_part_total_allocated * sizeof(TracePart);
132 uptr internal_stats[AllocatorStatCount];
133 internal_allocator()->GetStats(internal_stats);
134 // All these are allocated from the common mmap region.
135 mem[MemMmap] -= meta.mem_block + meta.sync_obj + trace_mem +
136 stacks.allocated + internal_stats[AllocatorStatMapped];
137 if (s64(mem[MemMmap]) < 0)
138 mem[MemMmap] = 0;
139 internal_snprintf(
140 buf, buf_size,
141 "==%zu== %llus [%zu]: RSS %zd MB: shadow:%zd meta:%zd file:%zd"
142 " mmap:%zd heap:%zd other:%zd intalloc:%zd memblocks:%zd syncobj:%zu"
143 " trace:%zu stacks=%zd threads=%zu/%zu\n",
144 internal_getpid(), uptime_ns / (1000 * 1000 * 1000), ctx->global_epoch,
145 mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
146 mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemHeap] >> 20,
147 mem[MemOther] >> 20, internal_stats[AllocatorStatMapped] >> 20,
148 meta.mem_block >> 20, meta.sync_obj >> 20, trace_mem >> 20,
149 stacks.allocated >> 20, nlive, nthread);
152 #if !SANITIZER_GO
153 // Mark shadow for .rodata sections with the special Shadow::kRodata marker.
154 // Accesses to .rodata can't race, so this saves time, memory and trace space.
155 static NOINLINE void MapRodata(char* buffer, uptr size) {
156 // First create temp file.
157 const char *tmpdir = GetEnv("TMPDIR");
158 if (tmpdir == 0)
159 tmpdir = GetEnv("TEST_TMPDIR");
160 #ifdef P_tmpdir
161 if (tmpdir == 0)
162 tmpdir = P_tmpdir;
163 #endif
164 if (tmpdir == 0)
165 return;
166 internal_snprintf(buffer, size, "%s/tsan.rodata.%d",
167 tmpdir, (int)internal_getpid());
168 uptr openrv = internal_open(buffer, O_RDWR | O_CREAT | O_EXCL, 0600);
169 if (internal_iserror(openrv))
170 return;
171 internal_unlink(buffer); // Unlink it now, so that we can reuse the buffer.
172 fd_t fd = openrv;
173 // Fill the file with Shadow::kRodata.
174 const uptr kMarkerSize = 512 * 1024 / sizeof(RawShadow);
175 InternalMmapVector<RawShadow> marker(kMarkerSize);
176 // volatile to prevent insertion of memset
177 for (volatile RawShadow *p = marker.data(); p < marker.data() + kMarkerSize;
178 p++)
179 *p = Shadow::kRodata;
180 internal_write(fd, marker.data(), marker.size() * sizeof(RawShadow));
181 // Map the file into memory.
182 uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
183 MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
184 if (internal_iserror(page)) {
185 internal_close(fd);
186 return;
188 // Map the file into shadow of .rodata sections.
189 MemoryMappingLayout proc_maps(/*cache_enabled*/true);
190 // Reusing the buffer 'buffer'.
191 MemoryMappedSegment segment(buffer, size);
192 while (proc_maps.Next(&segment)) {
193 if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
194 segment.IsReadable() && segment.IsExecutable() &&
195 !segment.IsWritable() && IsAppMem(segment.start)) {
196 // Assume it's .rodata
197 char *shadow_start = (char *)MemToShadow(segment.start);
198 char *shadow_end = (char *)MemToShadow(segment.end);
199 for (char *p = shadow_start; p < shadow_end;
200 p += marker.size() * sizeof(RawShadow)) {
201 internal_mmap(
202 p, Min<uptr>(marker.size() * sizeof(RawShadow), shadow_end - p),
203 PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
207 internal_close(fd);
210 void InitializeShadowMemoryPlatform() {
211 char buffer[256]; // Keep in a different frame.
212 MapRodata(buffer, sizeof(buffer));
215 #endif // #if !SANITIZER_GO
217 # if !SANITIZER_GO
218 static void ReExecIfNeeded(bool ignore_heap) {
219 // Go maps shadow memory lazily and works fine with limited address space.
220 // Unlimited stack is not a problem as well, because the executable
221 // is not compiled with -pie.
222 bool reexec = false;
223 // TSan doesn't play well with unlimited stack size (as stack
224 // overlaps with shadow memory). If we detect unlimited stack size,
225 // we re-exec the program with limited stack size as a best effort.
226 if (StackSizeIsUnlimited()) {
227 const uptr kMaxStackSize = 32 * 1024 * 1024;
228 VReport(1,
229 "Program is run with unlimited stack size, which wouldn't "
230 "work with ThreadSanitizer.\n"
231 "Re-execing with stack size limited to %zd bytes.\n",
232 kMaxStackSize);
233 SetStackSizeLimitInBytes(kMaxStackSize);
234 reexec = true;
237 if (!AddressSpaceIsUnlimited()) {
238 Report(
239 "WARNING: Program is run with limited virtual address space,"
240 " which wouldn't work with ThreadSanitizer.\n");
241 Report("Re-execing with unlimited virtual address space.\n");
242 SetAddressSpaceUnlimited();
243 reexec = true;
246 # if SANITIZER_LINUX
247 # if SANITIZER_ANDROID && (defined(__aarch64__) || defined(__x86_64__))
248 // ASLR personality check.
249 int old_personality = personality(0xffffffff);
250 bool aslr_on =
251 (old_personality != -1) && ((old_personality & ADDR_NO_RANDOMIZE) == 0);
253 // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
254 // linux kernel, the random gap between stack and mapped area is increased
255 // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
256 // this big range, we should disable randomized virtual space on aarch64.
257 if (aslr_on) {
258 VReport(1,
259 "WARNING: Program is run with randomized virtual address "
260 "space, which wouldn't work with ThreadSanitizer on Android.\n"
261 "Re-execing with fixed virtual address space.\n");
262 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
263 reexec = true;
265 # endif
267 if (reexec) {
268 // Don't check the address space since we're going to re-exec anyway.
269 } else if (!CheckAndProtect(false, ignore_heap, false)) {
270 // ASLR personality check.
271 // N.B. 'personality' is sometimes forbidden by sandboxes, so we only call
272 // this as a last resort (when the memory mapping is incompatible and TSan
273 // would fail anyway).
274 int old_personality = personality(0xffffffff);
275 bool aslr_on =
276 (old_personality != -1) && ((old_personality & ADDR_NO_RANDOMIZE) == 0);
278 if (aslr_on) {
279 // Disable ASLR if the memory layout was incompatible.
280 // Alternatively, we could just keep re-execing until we get lucky
281 // with a compatible randomized layout, but the risk is that if it's
282 // not an ASLR-related issue, we will be stuck in an infinite loop of
283 // re-execing (unless we change ReExec to pass a parameter of the
284 // number of retries allowed.)
285 VReport(1,
286 "WARNING: ThreadSanitizer: memory layout is incompatible, "
287 "possibly due to high-entropy ASLR.\n"
288 "Re-execing with fixed virtual address space.\n"
289 "N.B. reducing ASLR entropy is preferable.\n");
290 CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
291 reexec = true;
292 } else {
293 Printf(
294 "FATAL: ThreadSanitizer: memory layout is incompatible, "
295 "even though ASLR is disabled.\n"
296 "Please file a bug.\n");
297 DumpProcessMap();
298 Die();
301 # endif // SANITIZER_LINUX
303 if (reexec)
304 ReExec();
306 # endif
308 void InitializePlatformEarly() {
309 vmaSize =
310 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
311 #if defined(__aarch64__)
312 # if !SANITIZER_GO
313 if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
314 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
315 Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
316 Die();
318 #else
319 if (vmaSize != 48) {
320 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
321 Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
322 Die();
324 #endif
325 #elif SANITIZER_LOONGARCH64
326 # if !SANITIZER_GO
327 if (vmaSize != 47) {
328 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
329 Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
330 Die();
332 # else
333 if (vmaSize != 47) {
334 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
335 Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
336 Die();
338 # endif
339 #elif defined(__powerpc64__)
340 # if !SANITIZER_GO
341 if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
342 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
343 Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
344 Die();
346 # else
347 if (vmaSize != 46 && vmaSize != 47) {
348 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
349 Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
350 Die();
352 # endif
353 #elif defined(__mips64)
354 # if !SANITIZER_GO
355 if (vmaSize != 40) {
356 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
357 Printf("FATAL: Found %zd - Supported 40\n", vmaSize);
358 Die();
360 # else
361 if (vmaSize != 47) {
362 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
363 Printf("FATAL: Found %zd - Supported 47\n", vmaSize);
364 Die();
366 # endif
367 # elif SANITIZER_RISCV64
368 // the bottom half of vma is allocated for userspace
369 vmaSize = vmaSize + 1;
370 # if !SANITIZER_GO
371 if (vmaSize != 39 && vmaSize != 48) {
372 Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
373 Printf("FATAL: Found %zd - Supported 39 and 48\n", vmaSize);
374 Die();
376 # endif
377 # endif
379 # if !SANITIZER_GO
380 // Heap has not been allocated yet
381 ReExecIfNeeded(false);
382 # endif
385 void InitializePlatform() {
386 DisableCoreDumperIfNecessary();
388 // Go maps shadow memory lazily and works fine with limited address space.
389 // Unlimited stack is not a problem as well, because the executable
390 // is not compiled with -pie.
391 #if !SANITIZER_GO
393 # if SANITIZER_LINUX && (defined(__aarch64__) || defined(__loongarch_lp64))
394 // Initialize the xor key used in {sig}{set,long}jump.
395 InitializeLongjmpXorKey();
396 # endif
399 // We called ReExecIfNeeded() in InitializePlatformEarly(), but there are
400 // intervening allocations that result in an edge case:
401 // 1) InitializePlatformEarly(): memory layout is compatible
402 // 2) Intervening allocations happen
403 // 3) InitializePlatform(): memory layout is incompatible and fails
404 // CheckAndProtect()
405 # if !SANITIZER_GO
406 // Heap has already been allocated
407 ReExecIfNeeded(true);
408 # endif
410 // Earlier initialization steps already re-exec'ed until we got a compatible
411 // memory layout, so we don't expect any more issues here.
412 if (!CheckAndProtect(true, true, true)) {
413 Printf(
414 "FATAL: ThreadSanitizer: unexpectedly found incompatible memory "
415 "layout.\n");
416 Printf("FATAL: Please file a bug.\n");
417 DumpProcessMap();
418 Die();
421 #endif // !SANITIZER_GO
424 #if !SANITIZER_GO
425 // Extract file descriptors passed to glibc internal __res_iclose function.
426 // This is required to properly "close" the fds, because we do not see internal
427 // closes within glibc. The code is a pure hack.
428 int ExtractResolvFDs(void *state, int *fds, int nfd) {
429 #if SANITIZER_LINUX && !SANITIZER_ANDROID
430 int cnt = 0;
431 struct __res_state *statp = (struct __res_state*)state;
432 for (int i = 0; i < MAXNS && cnt < nfd; i++) {
433 if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
434 fds[cnt++] = statp->_u._ext.nssocks[i];
436 return cnt;
437 #else
438 return 0;
439 #endif
442 // Extract file descriptors passed via UNIX domain sockets.
443 // This is required to properly handle "open" of these fds.
444 // see 'man recvmsg' and 'man 3 cmsg'.
445 int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
446 int res = 0;
447 msghdr *msg = (msghdr*)msgp;
448 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
449 for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
450 if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
451 continue;
452 int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
453 for (int i = 0; i < n; i++) {
454 fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
455 if (res == nfd)
456 return res;
459 return res;
462 // Reverse operation of libc stack pointer mangling
463 static uptr UnmangleLongJmpSp(uptr mangled_sp) {
464 #if defined(__x86_64__)
465 # if SANITIZER_LINUX
466 // Reverse of:
467 // xor %fs:0x30, %rsi
468 // rol $0x11, %rsi
469 uptr sp;
470 asm("ror $0x11, %0 \n"
471 "xor %%fs:0x30, %0 \n"
472 : "=r" (sp)
473 : "0" (mangled_sp));
474 return sp;
475 # else
476 return mangled_sp;
477 # endif
478 #elif defined(__aarch64__)
479 # if SANITIZER_LINUX
480 return mangled_sp ^ longjmp_xor_key;
481 # else
482 return mangled_sp;
483 # endif
484 #elif defined(__loongarch_lp64)
485 return mangled_sp ^ longjmp_xor_key;
486 #elif defined(__powerpc64__)
487 // Reverse of:
488 // ld r4, -28696(r13)
489 // xor r4, r3, r4
490 uptr xor_key;
491 asm("ld %0, -28696(%%r13)" : "=r" (xor_key));
492 return mangled_sp ^ xor_key;
493 #elif defined(__mips__)
494 return mangled_sp;
495 # elif SANITIZER_RISCV64
496 return mangled_sp;
497 # elif defined(__s390x__)
498 // tcbhead_t.stack_guard
499 uptr xor_key = ((uptr *)__builtin_thread_pointer())[5];
500 return mangled_sp ^ xor_key;
501 # else
502 # error "Unknown platform"
503 # endif
506 #if SANITIZER_NETBSD
507 # ifdef __x86_64__
508 # define LONG_JMP_SP_ENV_SLOT 6
509 # else
510 # error unsupported
511 # endif
512 #elif defined(__powerpc__)
513 # define LONG_JMP_SP_ENV_SLOT 0
514 #elif SANITIZER_FREEBSD
515 # ifdef __aarch64__
516 # define LONG_JMP_SP_ENV_SLOT 1
517 # else
518 # define LONG_JMP_SP_ENV_SLOT 2
519 # endif
520 #elif SANITIZER_LINUX
521 # ifdef __aarch64__
522 # define LONG_JMP_SP_ENV_SLOT 13
523 # elif defined(__loongarch__)
524 # define LONG_JMP_SP_ENV_SLOT 1
525 # elif defined(__mips64)
526 # define LONG_JMP_SP_ENV_SLOT 1
527 # elif SANITIZER_RISCV64
528 # define LONG_JMP_SP_ENV_SLOT 13
529 # elif defined(__s390x__)
530 # define LONG_JMP_SP_ENV_SLOT 9
531 # else
532 # define LONG_JMP_SP_ENV_SLOT 6
533 # endif
534 #endif
536 uptr ExtractLongJmpSp(uptr *env) {
537 uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
538 return UnmangleLongJmpSp(mangled_sp);
541 #if INIT_LONGJMP_XOR_KEY
542 // GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
543 // functions) by XORing them with a random key. For AArch64 it is a global
544 // variable rather than a TCB one (as for x86_64/powerpc). We obtain the key by
545 // issuing a setjmp and XORing the SP pointer values to derive the key.
546 static void InitializeLongjmpXorKey() {
547 // 1. Call REAL(setjmp), which stores the mangled SP in env.
548 jmp_buf env;
549 REAL(_setjmp)(env);
551 // 2. Retrieve vanilla/mangled SP.
552 uptr sp;
553 #ifdef __loongarch__
554 asm("move %0, $sp" : "=r" (sp));
555 #else
556 asm("mov %0, sp" : "=r" (sp));
557 #endif
558 uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];
560 // 3. xor SPs to obtain key.
561 longjmp_xor_key = mangled_sp ^ sp;
563 #endif
565 extern "C" void __tsan_tls_initialization() {}
567 void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
568 // Check that the thr object is in tls;
569 const uptr thr_beg = (uptr)thr;
570 const uptr thr_end = (uptr)thr + sizeof(*thr);
571 CHECK_GE(thr_beg, tls_addr);
572 CHECK_LE(thr_beg, tls_addr + tls_size);
573 CHECK_GE(thr_end, tls_addr);
574 CHECK_LE(thr_end, tls_addr + tls_size);
575 // Since the thr object is huge, skip it.
576 const uptr pc = StackTrace::GetNextInstructionPc(
577 reinterpret_cast<uptr>(__tsan_tls_initialization));
578 MemoryRangeImitateWrite(thr, pc, tls_addr, thr_beg - tls_addr);
579 MemoryRangeImitateWrite(thr, pc, thr_end, tls_addr + tls_size - thr_end);
582 // Note: this function runs with async signals enabled,
583 // so it must not touch any tsan state.
584 int call_pthread_cancel_with_cleanup(int (*fn)(void *arg),
585 void (*cleanup)(void *arg), void *arg) {
586 // pthread_cleanup_push/pop are hardcore macros mess.
587 // We can't intercept nor call them w/o including pthread.h.
588 int res;
589 pthread_cleanup_push(cleanup, arg);
590 res = fn(arg);
591 pthread_cleanup_pop(0);
592 return res;
594 #endif // !SANITIZER_GO
596 #if !SANITIZER_GO
597 void ReplaceSystemMalloc() { }
598 #endif
600 #if !SANITIZER_GO
601 #if SANITIZER_ANDROID
602 // On Android, one thread can call intercepted functions after
603 // DestroyThreadState(), so add a fake thread state for "dead" threads.
604 static ThreadState *dead_thread_state = nullptr;
606 ThreadState *cur_thread() {
607 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
608 if (thr == nullptr) {
609 __sanitizer_sigset_t emptyset;
610 internal_sigfillset(&emptyset);
611 __sanitizer_sigset_t oldset;
612 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
613 thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
614 if (thr == nullptr) {
615 thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
616 "ThreadState"));
617 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
618 if (dead_thread_state == nullptr) {
619 dead_thread_state = reinterpret_cast<ThreadState*>(
620 MmapOrDie(sizeof(ThreadState), "ThreadState"));
621 dead_thread_state->fast_state.SetIgnoreBit();
622 dead_thread_state->ignore_interceptors = 1;
623 dead_thread_state->is_dead = true;
624 *const_cast<u32*>(&dead_thread_state->tid) = -1;
625 CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
626 PROT_READ));
629 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
631 return thr;
634 void set_cur_thread(ThreadState *thr) {
635 *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
638 void cur_thread_finalize() {
639 __sanitizer_sigset_t emptyset;
640 internal_sigfillset(&emptyset);
641 __sanitizer_sigset_t oldset;
642 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
643 ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
644 if (thr != dead_thread_state) {
645 *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
646 UnmapOrDie(thr, sizeof(ThreadState));
648 CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
650 #endif // SANITIZER_ANDROID
651 #endif // if !SANITIZER_GO
653 } // namespace __tsan
655 #endif // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD