[CodeGen][Hexagon] Replace PointerType::getUnqual(Type) with opaque version (NFC...
[llvm-project.git] / flang / lib / Lower / HostAssociations.cpp
blob0f75a8a7c312e10aef3e333e246817114411b3d6
1 //===-- HostAssociations.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "flang/Lower/HostAssociations.h"
10 #include "flang/Evaluate/check-expression.h"
11 #include "flang/Lower/AbstractConverter.h"
12 #include "flang/Lower/Allocatable.h"
13 #include "flang/Lower/BoxAnalyzer.h"
14 #include "flang/Lower/CallInterface.h"
15 #include "flang/Lower/ConvertType.h"
16 #include "flang/Lower/ConvertVariable.h"
17 #include "flang/Lower/OpenMP.h"
18 #include "flang/Lower/PFTBuilder.h"
19 #include "flang/Lower/SymbolMap.h"
20 #include "flang/Optimizer/Builder/Character.h"
21 #include "flang/Optimizer/Builder/FIRBuilder.h"
22 #include "flang/Optimizer/Builder/Todo.h"
23 #include "flang/Optimizer/Support/FatalError.h"
24 #include "flang/Semantics/tools.h"
25 #include "llvm/ADT/TypeSwitch.h"
26 #include "llvm/Support/Debug.h"
27 #include <optional>
29 #define DEBUG_TYPE "flang-host-assoc"
31 // Host association inside internal procedures is implemented by allocating an
32 // mlir tuple (a struct) inside the host containing the addresses and properties
33 // of variables that are accessed by internal procedures. The address of this
34 // tuple is passed as an argument by the host when calling internal procedures.
35 // Internal procedures propagate a reference to this tuple when calling other
36 // internal procedures of the host.
38 // This file defines how the type of the host tuple is built, how the tuple
39 // value is created inside the host, and how the host associated variables are
40 // instantiated inside the internal procedures from the tuple value. The
41 // CapturedXXX classes define each of these three actions for a specific
42 // kind of variables by providing a `getType`, a `instantiateHostTuple`, and a
43 // `getFromTuple` method. These classes are structured as follow:
45 // class CapturedKindOfVar : public CapturedSymbols<CapturedKindOfVar> {
46 // // Return the type of the tuple element for a host associated
47 // // variable given its symbol inside the host. This is called when
48 // // building function interfaces.
49 // static mlir::Type getType();
50 // // Build the tuple element value for a host associated variable given its
51 // // value inside the host. This is called when lowering the host body.
52 // static void instantiateHostTuple();
53 // // Instantiate a host variable inside an internal procedure given its
54 // // tuple element value. This is called when lowering internal procedure
55 // // bodies.
56 // static void getFromTuple();
57 // };
59 // If a new kind of variable requires ad-hoc handling, a new CapturedXXX class
60 // should be added to handle it, and `walkCaptureCategories` should be updated
61 // to dispatch this new kind of variable to this new class.
63 /// Is \p sym a derived type entity with length parameters ?
64 static bool isDerivedWithLenParameters(const Fortran::semantics::Symbol &sym) {
65 if (const auto *declTy = sym.GetType())
66 if (const auto *derived = declTy->AsDerived())
67 return Fortran::semantics::CountLenParameters(*derived) != 0;
68 return false;
71 /// Map the extracted fir::ExtendedValue for a host associated variable inside
72 /// and internal procedure to its symbol. Generates an hlfir.declare in HLFIR.
73 static void bindCapturedSymbol(const Fortran::semantics::Symbol &sym,
74 fir::ExtendedValue val,
75 Fortran::lower::AbstractConverter &converter,
76 Fortran::lower::SymMap &symMap) {
77 if (converter.getLoweringOptions().getLowerToHighLevelFIR())
78 Fortran::lower::genDeclareSymbol(converter, symMap, sym, val,
79 fir::FortranVariableFlagsEnum::host_assoc);
80 else
81 symMap.addSymbol(sym, val);
84 namespace {
85 /// Struct to be used as argument in walkCaptureCategories when building the
86 /// tuple element type for a host associated variable.
87 struct GetTypeInTuple {
88 /// walkCaptureCategories must return a type.
89 using Result = mlir::Type;
92 /// Struct to be used as argument in walkCaptureCategories when building the
93 /// tuple element value for a host associated variable.
94 struct InstantiateHostTuple {
95 /// walkCaptureCategories returns nothing.
96 using Result = void;
97 /// Value of the variable inside the host procedure.
98 fir::ExtendedValue hostValue;
99 /// Address of the tuple element of the variable.
100 mlir::Value addrInTuple;
101 mlir::Location loc;
104 /// Struct to be used as argument in walkCaptureCategories when instantiating a
105 /// host associated variables from its tuple element value.
106 struct GetFromTuple {
107 /// walkCaptureCategories returns nothing.
108 using Result = void;
109 /// Symbol map inside the internal procedure.
110 Fortran::lower::SymMap &symMap;
111 /// Value of the tuple element for the host associated variable.
112 mlir::Value valueInTuple;
113 mlir::Location loc;
116 /// Base class that must be inherited with CRTP by classes defining
117 /// how host association is implemented for a type of symbol.
118 /// It simply dispatches visit() calls to the implementations according
119 /// to the argument type.
120 template <typename SymbolCategory>
121 class CapturedSymbols {
122 public:
123 template <typename T>
124 static void visit(const T &, Fortran::lower::AbstractConverter &,
125 const Fortran::semantics::Symbol &,
126 const Fortran::lower::BoxAnalyzer &) {
127 static_assert(!std::is_same_v<T, T> &&
128 "default visit must not be instantiated");
130 static mlir::Type visit(const GetTypeInTuple &,
131 Fortran::lower::AbstractConverter &converter,
132 const Fortran::semantics::Symbol &sym,
133 const Fortran::lower::BoxAnalyzer &) {
134 return SymbolCategory::getType(converter, sym);
136 static void visit(const InstantiateHostTuple &args,
137 Fortran::lower::AbstractConverter &converter,
138 const Fortran::semantics::Symbol &sym,
139 const Fortran::lower::BoxAnalyzer &) {
140 return SymbolCategory::instantiateHostTuple(args, converter, sym);
142 static void visit(const GetFromTuple &args,
143 Fortran::lower::AbstractConverter &converter,
144 const Fortran::semantics::Symbol &sym,
145 const Fortran::lower::BoxAnalyzer &ba) {
146 return SymbolCategory::getFromTuple(args, converter, sym, ba);
150 /// Class defining simple scalars are captured in internal procedures.
151 /// Simple scalars are non character intrinsic scalars. They are captured
152 /// as `!fir.ref<T>`, for example `!fir.ref<i32>` for `INTEGER*4`.
153 class CapturedSimpleScalars : public CapturedSymbols<CapturedSimpleScalars> {
154 public:
155 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
156 const Fortran::semantics::Symbol &sym) {
157 return fir::ReferenceType::get(converter.genType(sym));
160 static void instantiateHostTuple(const InstantiateHostTuple &args,
161 Fortran::lower::AbstractConverter &converter,
162 const Fortran::semantics::Symbol &) {
163 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
164 mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
165 assert(typeInTuple && "addrInTuple must be an address");
166 mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
167 fir::getBase(args.hostValue));
168 builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
171 static void getFromTuple(const GetFromTuple &args,
172 Fortran::lower::AbstractConverter &converter,
173 const Fortran::semantics::Symbol &sym,
174 const Fortran::lower::BoxAnalyzer &) {
175 bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
179 /// Class defining how dummy procedures and procedure pointers
180 /// are captured in internal procedures.
181 class CapturedProcedure : public CapturedSymbols<CapturedProcedure> {
182 public:
183 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
184 const Fortran::semantics::Symbol &sym) {
185 mlir::Type funTy = Fortran::lower::getDummyProcedureType(sym, converter);
186 if (Fortran::semantics::IsPointer(sym))
187 return fir::ReferenceType::get(funTy);
188 return funTy;
191 static void instantiateHostTuple(const InstantiateHostTuple &args,
192 Fortran::lower::AbstractConverter &converter,
193 const Fortran::semantics::Symbol &) {
194 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
195 mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
196 assert(typeInTuple && "addrInTuple must be an address");
197 mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
198 fir::getBase(args.hostValue));
199 builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
202 static void getFromTuple(const GetFromTuple &args,
203 Fortran::lower::AbstractConverter &converter,
204 const Fortran::semantics::Symbol &sym,
205 const Fortran::lower::BoxAnalyzer &) {
206 bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
210 /// Class defining how character scalars are captured in internal procedures.
211 /// Character scalars are passed as !fir.boxchar<kind> in the tuple.
212 class CapturedCharacterScalars
213 : public CapturedSymbols<CapturedCharacterScalars> {
214 public:
215 // Note: so far, do not specialize constant length characters. They can be
216 // implemented by only passing the address. This could be done later in
217 // lowering or a CapturedStaticLenCharacterScalars class could be added here.
219 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
220 const Fortran::semantics::Symbol &sym) {
221 fir::KindTy kind =
222 mlir::cast<fir::CharacterType>(converter.genType(sym)).getFKind();
223 return fir::BoxCharType::get(&converter.getMLIRContext(), kind);
226 static void instantiateHostTuple(const InstantiateHostTuple &args,
227 Fortran::lower::AbstractConverter &converter,
228 const Fortran::semantics::Symbol &) {
229 const fir::CharBoxValue *charBox = args.hostValue.getCharBox();
230 assert(charBox && "host value must be a fir::CharBoxValue");
231 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
232 mlir::Value boxchar = fir::factory::CharacterExprHelper(builder, args.loc)
233 .createEmbox(*charBox);
234 builder.create<fir::StoreOp>(args.loc, boxchar, args.addrInTuple);
237 static void getFromTuple(const GetFromTuple &args,
238 Fortran::lower::AbstractConverter &converter,
239 const Fortran::semantics::Symbol &sym,
240 const Fortran::lower::BoxAnalyzer &) {
241 fir::factory::CharacterExprHelper charHelp(converter.getFirOpBuilder(),
242 args.loc);
243 std::pair<mlir::Value, mlir::Value> unboxchar =
244 charHelp.createUnboxChar(args.valueInTuple);
245 bindCapturedSymbol(sym,
246 fir::CharBoxValue{unboxchar.first, unboxchar.second},
247 converter, args.symMap);
251 /// Class defining how polymorphic scalar entities are captured in internal
252 /// procedures. Polymorphic entities are always boxed as a fir.class box.
253 /// Polymorphic array can be handled in CapturedArrays directly
254 class CapturedPolymorphicScalar
255 : public CapturedSymbols<CapturedPolymorphicScalar> {
256 public:
257 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
258 const Fortran::semantics::Symbol &sym) {
259 return converter.genType(sym);
261 static void instantiateHostTuple(const InstantiateHostTuple &args,
262 Fortran::lower::AbstractConverter &converter,
263 const Fortran::semantics::Symbol &sym) {
264 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
265 mlir::Location loc = args.loc;
266 mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
267 assert(typeInTuple && "addrInTuple must be an address");
268 mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
269 fir::getBase(args.hostValue));
270 if (Fortran::semantics::IsOptional(sym)) {
271 auto isPresent =
272 builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), castBox);
273 builder.genIfThenElse(loc, isPresent)
274 .genThen([&]() {
275 builder.create<fir::StoreOp>(loc, castBox, args.addrInTuple);
277 .genElse([&]() {
278 mlir::Value null = fir::factory::createUnallocatedBox(
279 builder, loc, typeInTuple,
280 /*nonDeferredParams=*/mlir::ValueRange{});
281 builder.create<fir::StoreOp>(loc, null, args.addrInTuple);
283 .end();
284 } else {
285 builder.create<fir::StoreOp>(loc, castBox, args.addrInTuple);
288 static void getFromTuple(const GetFromTuple &args,
289 Fortran::lower::AbstractConverter &converter,
290 const Fortran::semantics::Symbol &sym,
291 const Fortran::lower::BoxAnalyzer &ba) {
292 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
293 mlir::Location loc = args.loc;
294 mlir::Value box = args.valueInTuple;
295 if (Fortran::semantics::IsOptional(sym)) {
296 auto boxTy = mlir::cast<fir::BaseBoxType>(box.getType());
297 auto eleTy = boxTy.getEleTy();
298 if (!fir::isa_ref_type(eleTy))
299 eleTy = builder.getRefType(eleTy);
300 auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box);
301 mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr);
302 auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy);
303 box =
304 builder.create<mlir::arith::SelectOp>(loc, isPresent, box, absentBox);
306 bindCapturedSymbol(sym, box, converter, args.symMap);
310 /// Class defining how allocatable and pointers entities are captured in
311 /// internal procedures. Allocatable and pointers are simply captured by placing
312 /// their !fir.ref<fir.box<>> address in the host tuple.
313 class CapturedAllocatableAndPointer
314 : public CapturedSymbols<CapturedAllocatableAndPointer> {
315 public:
316 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
317 const Fortran::semantics::Symbol &sym) {
318 mlir::Type baseType = converter.genType(sym);
319 if (sym.GetUltimate().test(Fortran::semantics::Symbol::Flag::CrayPointee))
320 return fir::ReferenceType::get(
321 Fortran::lower::getCrayPointeeBoxType(baseType));
322 return fir::ReferenceType::get(baseType);
324 static void instantiateHostTuple(const InstantiateHostTuple &args,
325 Fortran::lower::AbstractConverter &converter,
326 const Fortran::semantics::Symbol &) {
327 assert(args.hostValue.getBoxOf<fir::MutableBoxValue>() &&
328 "host value must be a fir::MutableBoxValue");
329 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
330 mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
331 assert(typeInTuple && "addrInTuple must be an address");
332 mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
333 fir::getBase(args.hostValue));
334 builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
336 static void getFromTuple(const GetFromTuple &args,
337 Fortran::lower::AbstractConverter &converter,
338 const Fortran::semantics::Symbol &sym,
339 const Fortran::lower::BoxAnalyzer &ba) {
340 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
341 mlir::Location loc = args.loc;
342 // Non deferred type parameters impact the semantics of some statements
343 // where allocatables/pointer can appear. For instance, assignment to a
344 // scalar character allocatable with has a different semantics in F2003 and
345 // later if the length is non deferred vs when it is deferred. So it is
346 // important to keep track of the non deferred parameters here.
347 llvm::SmallVector<mlir::Value> nonDeferredLenParams;
348 if (ba.isChar()) {
349 mlir::IndexType idxTy = builder.getIndexType();
350 if (std::optional<int64_t> len = ba.getCharLenConst()) {
351 nonDeferredLenParams.push_back(
352 builder.createIntegerConstant(loc, idxTy, *len));
353 } else if (Fortran::semantics::IsAssumedLengthCharacter(sym) ||
354 ba.getCharLenExpr()) {
355 nonDeferredLenParams.push_back(
356 Fortran::lower::getAssumedCharAllocatableOrPointerLen(
357 builder, loc, sym, args.valueInTuple));
359 } else if (isDerivedWithLenParameters(sym)) {
360 TODO(loc, "host associated derived type allocatable or pointer with "
361 "length parameters");
363 bindCapturedSymbol(
364 sym, fir::MutableBoxValue(args.valueInTuple, nonDeferredLenParams, {}),
365 converter, args.symMap);
369 /// Class defining how arrays, including assumed-ranks, are captured inside
370 /// internal procedures.
371 /// Array are captured via a `fir.box<fir.array<T>>` descriptor that belongs to
372 /// the host tuple. This allows capturing lower bounds, which can be done by
373 /// providing a ShapeShiftOp argument to the EmboxOp.
374 class CapturedArrays : public CapturedSymbols<CapturedArrays> {
376 // Note: Constant shape arrays are not specialized (their base address would
377 // be sufficient information inside the tuple). They could be specialized in
378 // a later FIR pass, or a CapturedStaticShapeArrays could be added to deal
379 // with them here.
380 public:
381 static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
382 const Fortran::semantics::Symbol &sym) {
383 mlir::Type type = converter.genType(sym);
384 bool isPolymorphic = Fortran::semantics::IsPolymorphic(sym);
385 assert((mlir::isa<fir::SequenceType>(type) ||
386 (isPolymorphic && mlir::isa<fir::ClassType>(type))) &&
387 "must be a sequence type");
388 if (isPolymorphic)
389 return type;
390 return fir::BoxType::get(type);
393 static void instantiateHostTuple(const InstantiateHostTuple &args,
394 Fortran::lower::AbstractConverter &converter,
395 const Fortran::semantics::Symbol &sym) {
396 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
397 mlir::Location loc = args.loc;
398 fir::MutableBoxValue boxInTuple(args.addrInTuple, {}, {});
399 if (args.hostValue.getBoxOf<fir::BoxValue>() &&
400 Fortran::semantics::IsOptional(sym)) {
401 // The assumed shape optional case need some care because it is illegal to
402 // read the incoming box if it is absent (this would cause segfaults).
403 // Pointer association requires reading the target box, so it can only be
404 // done on present optional. For absent optionals, simply create a
405 // disassociated pointer (it is illegal to inquire about lower bounds or
406 // lengths of optional according to 15.5.2.12 3 (9) and 10.1.11 2 (7)b).
407 auto isPresent = builder.create<fir::IsPresentOp>(
408 loc, builder.getI1Type(), fir::getBase(args.hostValue));
409 builder.genIfThenElse(loc, isPresent)
410 .genThen([&]() {
411 fir::factory::associateMutableBox(builder, loc, boxInTuple,
412 args.hostValue,
413 /*lbounds=*/std::nullopt);
415 .genElse([&]() {
416 fir::factory::disassociateMutableBox(builder, loc, boxInTuple);
418 .end();
419 } else {
420 fir::factory::associateMutableBox(
421 builder, loc, boxInTuple, args.hostValue, /*lbounds=*/std::nullopt);
425 static void getFromTuple(const GetFromTuple &args,
426 Fortran::lower::AbstractConverter &converter,
427 const Fortran::semantics::Symbol &sym,
428 const Fortran::lower::BoxAnalyzer &ba) {
429 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
430 mlir::Location loc = args.loc;
431 mlir::Value box = args.valueInTuple;
432 mlir::IndexType idxTy = builder.getIndexType();
433 llvm::SmallVector<mlir::Value> lbounds;
434 if (!ba.lboundIsAllOnes() && !Fortran::evaluate::IsAssumedRank(sym)) {
435 if (ba.isStaticArray()) {
436 for (std::int64_t lb : ba.staticLBound())
437 lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
438 } else {
439 // Cannot re-evaluate specification expressions here.
440 // Operands values may have changed. Get value from fir.box
441 const unsigned rank = sym.Rank();
442 for (unsigned dim = 0; dim < rank; ++dim) {
443 mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim);
444 auto dims = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
445 box, dimVal);
446 lbounds.emplace_back(dims.getResult(0));
451 if (canReadCapturedBoxValue(converter, sym)) {
452 fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
453 bindCapturedSymbol(sym,
454 fir::factory::readBoxValue(builder, loc, boxValue),
455 converter, args.symMap);
456 } else {
457 // Keep variable as a fir.box/fir.class.
458 // If this is an optional that is absent, the fir.box needs to be an
459 // AbsentOp result, otherwise it will not work properly with IsPresentOp
460 // (absent boxes are null descriptor addresses, not descriptors containing
461 // a null base address).
462 if (Fortran::semantics::IsOptional(sym)) {
463 auto boxTy = mlir::cast<fir::BaseBoxType>(box.getType());
464 auto eleTy = boxTy.getEleTy();
465 if (!fir::isa_ref_type(eleTy))
466 eleTy = builder.getRefType(eleTy);
467 auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box);
468 mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr);
469 auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy);
470 box = builder.create<mlir::arith::SelectOp>(loc, isPresent, box,
471 absentBox);
473 fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
474 bindCapturedSymbol(sym, boxValue, converter, args.symMap);
478 private:
479 /// Can the fir.box from the host link be read into simpler values ?
480 /// Later, without the symbol information, it might not be possible
481 /// to tell if the fir::BoxValue from the host link is contiguous.
482 static bool
483 canReadCapturedBoxValue(Fortran::lower::AbstractConverter &converter,
484 const Fortran::semantics::Symbol &sym) {
485 bool isScalarOrContiguous =
486 sym.Rank() == 0 || Fortran::evaluate::IsSimplyContiguous(
487 Fortran::evaluate::AsGenericExpr(sym).value(),
488 converter.getFoldingContext());
489 const Fortran::semantics::DeclTypeSpec *type = sym.GetType();
490 bool isPolymorphic = type && type->IsPolymorphic();
491 return isScalarOrContiguous && !isPolymorphic &&
492 !isDerivedWithLenParameters(sym) &&
493 !Fortran::evaluate::IsAssumedRank(sym);
496 } // namespace
498 /// Dispatch \p visitor to the CapturedSymbols which is handling how host
499 /// association is implemented for this kind of symbols. This ensures the same
500 /// dispatch decision is taken when building the tuple type, when creating the
501 /// tuple, and when instantiating host associated variables from it.
502 template <typename T>
503 static typename T::Result
504 walkCaptureCategories(T visitor, Fortran::lower::AbstractConverter &converter,
505 const Fortran::semantics::Symbol &sym) {
506 if (isDerivedWithLenParameters(sym))
507 // Should be boxed.
508 TODO(converter.genLocation(sym.name()),
509 "host associated derived type with length parameters");
510 Fortran::lower::BoxAnalyzer ba;
511 // Do not analyze procedures, they may be subroutines with no types that would
512 // crash the analysis.
513 if (Fortran::semantics::IsProcedure(sym))
514 return CapturedProcedure::visit(visitor, converter, sym, ba);
515 ba.analyze(sym);
516 if (Fortran::semantics::IsAllocatableOrPointer(sym) ||
517 sym.GetUltimate().test(Fortran::semantics::Symbol::Flag::CrayPointee))
518 return CapturedAllocatableAndPointer::visit(visitor, converter, sym, ba);
519 if (ba.isArray()) // include assumed-ranks.
520 return CapturedArrays::visit(visitor, converter, sym, ba);
521 if (Fortran::semantics::IsPolymorphic(sym))
522 return CapturedPolymorphicScalar::visit(visitor, converter, sym, ba);
523 if (ba.isChar())
524 return CapturedCharacterScalars::visit(visitor, converter, sym, ba);
525 assert(ba.isTrivial() && "must be trivial scalar");
526 return CapturedSimpleScalars::visit(visitor, converter, sym, ba);
529 // `t` should be the result of getArgumentType, which has a type of
530 // `!fir.ref<tuple<...>>`.
531 static mlir::TupleType unwrapTupleTy(mlir::Type t) {
532 return mlir::cast<mlir::TupleType>(fir::dyn_cast_ptrEleTy(t));
535 static mlir::Value genTupleCoor(fir::FirOpBuilder &builder, mlir::Location loc,
536 mlir::Type varTy, mlir::Value tupleArg,
537 mlir::Value offset) {
538 // fir.ref<fir.ref> and fir.ptr<fir.ref> are forbidden. Use
539 // fir.llvm_ptr if needed.
540 auto ty = mlir::isa<fir::ReferenceType>(varTy)
541 ? mlir::Type(fir::LLVMPointerType::get(varTy))
542 : mlir::Type(builder.getRefType(varTy));
543 return builder.create<fir::CoordinateOp>(loc, ty, tupleArg, offset);
546 void Fortran::lower::HostAssociations::addSymbolsToBind(
547 const llvm::SetVector<const Fortran::semantics::Symbol *> &symbols,
548 const Fortran::semantics::Scope &hostScope) {
549 assert(tupleSymbols.empty() && globalSymbols.empty() &&
550 "must be initially empty");
551 this->hostScope = &hostScope;
552 for (const auto *s : symbols)
553 // GlobalOp are created for non-global threadprivate variable,
554 // so considering them as globals.
555 if (Fortran::lower::symbolIsGlobal(*s) ||
556 (*s).test(Fortran::semantics::Symbol::Flag::OmpThreadprivate)) {
557 // The ultimate symbol is stored here so that global symbols from the
558 // host scope can later be searched in this set.
559 globalSymbols.insert(&s->GetUltimate());
560 } else {
561 tupleSymbols.insert(s);
565 void Fortran::lower::HostAssociations::hostProcedureBindings(
566 Fortran::lower::AbstractConverter &converter,
567 Fortran::lower::SymMap &symMap) {
568 if (tupleSymbols.empty())
569 return;
571 // Create the tuple variable.
572 mlir::TupleType tupTy = unwrapTupleTy(getArgumentType(converter));
573 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
574 mlir::Location loc = converter.getCurrentLocation();
575 auto hostTuple = builder.create<fir::AllocaOp>(loc, tupTy);
576 mlir::IntegerType offTy = builder.getIntegerType(32);
578 // Walk the list of tupleSymbols and update the pointers in the tuple.
579 for (auto s : llvm::enumerate(tupleSymbols)) {
580 auto indexInTuple = s.index();
581 mlir::Value off = builder.createIntegerConstant(loc, offTy, indexInTuple);
582 mlir::Type varTy = tupTy.getType(indexInTuple);
583 mlir::Value eleOff = genTupleCoor(builder, loc, varTy, hostTuple, off);
584 InstantiateHostTuple instantiateHostTuple{
585 converter.getSymbolExtendedValue(*s.value(), &symMap), eleOff, loc};
586 walkCaptureCategories(instantiateHostTuple, converter, *s.value());
589 converter.bindHostAssocTuple(hostTuple);
592 void Fortran::lower::HostAssociations::internalProcedureBindings(
593 Fortran::lower::AbstractConverter &converter,
594 Fortran::lower::SymMap &symMap) {
595 if (!globalSymbols.empty()) {
596 assert(hostScope && "host scope must have been set");
597 Fortran::lower::AggregateStoreMap storeMap;
598 // The host scope variable list is required to deal with host variables
599 // that are equivalenced and requires instantiating the right global
600 // AggregateStore.
601 for (auto &hostVariable : pft::getScopeVariableList(*hostScope))
602 if ((hostVariable.isAggregateStore() && hostVariable.isGlobal()) ||
603 (hostVariable.hasSymbol() &&
604 globalSymbols.contains(&hostVariable.getSymbol().GetUltimate()))) {
605 Fortran::lower::instantiateVariable(converter, hostVariable, symMap,
606 storeMap);
607 // Generate threadprivate Op for host associated variables.
608 if (hostVariable.hasSymbol() &&
609 hostVariable.getSymbol().test(
610 Fortran::semantics::Symbol::Flag::OmpThreadprivate))
611 Fortran::lower::genThreadprivateOp(converter, hostVariable);
614 if (tupleSymbols.empty())
615 return;
617 // Find the argument with the tuple type. The argument ought to be appended.
618 fir::FirOpBuilder &builder = converter.getFirOpBuilder();
619 mlir::Type argTy = getArgumentType(converter);
620 mlir::TupleType tupTy = unwrapTupleTy(argTy);
621 mlir::Location loc = converter.getCurrentLocation();
622 mlir::func::FuncOp func = builder.getFunction();
623 mlir::Value tupleArg;
624 for (auto [ty, arg] : llvm::reverse(llvm::zip(
625 func.getFunctionType().getInputs(), func.front().getArguments())))
626 if (ty == argTy) {
627 tupleArg = arg;
628 break;
630 if (!tupleArg)
631 fir::emitFatalError(loc, "no host association argument found");
633 converter.bindHostAssocTuple(tupleArg);
635 mlir::IntegerType offTy = builder.getIntegerType(32);
637 // Walk the list and add the bindings to the symbol table.
638 for (auto s : llvm::enumerate(tupleSymbols)) {
639 mlir::Value off = builder.createIntegerConstant(loc, offTy, s.index());
640 mlir::Type varTy = tupTy.getType(s.index());
641 mlir::Value eleOff = genTupleCoor(builder, loc, varTy, tupleArg, off);
642 mlir::Value valueInTuple = builder.create<fir::LoadOp>(loc, eleOff);
643 GetFromTuple getFromTuple{symMap, valueInTuple, loc};
644 walkCaptureCategories(getFromTuple, converter, *s.value());
648 mlir::Type Fortran::lower::HostAssociations::getArgumentType(
649 Fortran::lower::AbstractConverter &converter) {
650 if (tupleSymbols.empty())
651 return {};
652 if (argType)
653 return argType;
655 // Walk the list of Symbols and create their types. Wrap them in a reference
656 // to a tuple.
657 mlir::MLIRContext *ctxt = &converter.getMLIRContext();
658 llvm::SmallVector<mlir::Type> tupleTys;
659 for (const Fortran::semantics::Symbol *sym : tupleSymbols)
660 tupleTys.emplace_back(
661 walkCaptureCategories(GetTypeInTuple{}, converter, *sym));
662 argType = fir::ReferenceType::get(mlir::TupleType::get(ctxt, tupleTys));
663 return argType;