DAG: Fix assuming f16 is the only 16-bit fp type in concat vector combine (#121637)
[llvm-project.git] / flang / lib / Optimizer / Transforms / LoopVersioning.cpp
blobb534ec160ce2151b7009b59e741ef596e5817ead
1 //===- LoopVersioning.cpp -------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 //===----------------------------------------------------------------------===//
10 /// \file
11 /// This pass looks for loops iterating over assumed-shape arrays, that can
12 /// be optimized by "guessing" that the stride is element-sized.
13 ///
14 /// This is done by creating two versions of the same loop: one which assumes
15 /// that the elements are contiguous (stride == size of element), and one that
16 /// is the original generic loop.
17 ///
18 /// As a side-effect of the assumed element size stride, the array is also
19 /// flattened to make it a 1D array - this is because the internal array
20 /// structure must be either 1D or have known sizes in all dimensions - and at
21 /// least one of the dimensions here is already unknown.
22 ///
23 /// There are two distinct benefits here:
24 /// 1. The loop that iterates over the elements is somewhat simplified by the
25 /// constant stride calculation.
26 /// 2. Since the compiler can understand the size of the stride, it can use
27 /// vector instructions, where an unknown (at compile time) stride does often
28 /// prevent vector operations from being used.
29 ///
30 /// A known drawback is that the code-size is increased, in some cases that can
31 /// be quite substantial - 3-4x is quite plausible (this includes that the loop
32 /// gets vectorized, which in itself often more than doubles the size of the
33 /// code, because unless the loop size is known, there will be a modulo
34 /// vector-size remainder to deal with.
35 ///
36 /// TODO: Do we need some size limit where loops no longer get duplicated?
37 // Maybe some sort of cost analysis.
38 /// TODO: Should some loop content - for example calls to functions and
39 /// subroutines inhibit the versioning of the loops. Plausibly, this
40 /// could be part of the cost analysis above.
41 //===----------------------------------------------------------------------===//
43 #include "flang/ISO_Fortran_binding_wrapper.h"
44 #include "flang/Optimizer/Builder/BoxValue.h"
45 #include "flang/Optimizer/Builder/FIRBuilder.h"
46 #include "flang/Optimizer/Builder/Runtime/Inquiry.h"
47 #include "flang/Optimizer/Dialect/FIRDialect.h"
48 #include "flang/Optimizer/Dialect/FIROps.h"
49 #include "flang/Optimizer/Dialect/FIRType.h"
50 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
51 #include "flang/Optimizer/Dialect/Support/KindMapping.h"
52 #include "flang/Optimizer/Support/DataLayout.h"
53 #include "flang/Optimizer/Transforms/Passes.h"
54 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
55 #include "mlir/IR/Dominance.h"
56 #include "mlir/IR/Matchers.h"
57 #include "mlir/IR/TypeUtilities.h"
58 #include "mlir/Pass/Pass.h"
59 #include "mlir/Transforms/DialectConversion.h"
60 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
61 #include "mlir/Transforms/RegionUtils.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
65 #include <algorithm>
67 namespace fir {
68 #define GEN_PASS_DEF_LOOPVERSIONING
69 #include "flang/Optimizer/Transforms/Passes.h.inc"
70 } // namespace fir
72 #define DEBUG_TYPE "flang-loop-versioning"
74 namespace {
76 class LoopVersioningPass
77 : public fir::impl::LoopVersioningBase<LoopVersioningPass> {
78 public:
79 void runOnOperation() override;
82 /// @struct ArgInfo
83 /// A structure to hold an argument, the size of the argument and dimension
84 /// information.
85 struct ArgInfo {
86 mlir::Value arg;
87 size_t size;
88 unsigned rank;
89 fir::BoxDimsOp dims[CFI_MAX_RANK];
92 /// @struct ArgsUsageInLoop
93 /// A structure providing information about the function arguments
94 /// usage by the instructions immediately nested in a loop.
95 struct ArgsUsageInLoop {
96 /// Mapping between the memref operand of an array indexing
97 /// operation (e.g. fir.coordinate_of) and the argument information.
98 llvm::DenseMap<mlir::Value, ArgInfo> usageInfo;
99 /// Some array indexing operations inside a loop cannot be transformed.
100 /// This vector holds the memref operands of such operations.
101 /// The vector is used to make sure that we do not try to transform
102 /// any outer loop, since this will imply the operation rewrite
103 /// in this loop.
104 llvm::SetVector<mlir::Value> cannotTransform;
106 // Debug dump of the structure members assuming that
107 // the information has been collected for the given loop.
108 void dump(fir::DoLoopOp loop) const {
109 LLVM_DEBUG({
110 mlir::OpPrintingFlags printFlags;
111 printFlags.skipRegions();
112 llvm::dbgs() << "Arguments usage info for loop:\n";
113 loop.print(llvm::dbgs(), printFlags);
114 llvm::dbgs() << "\nUsed args:\n";
115 for (auto &use : usageInfo) {
116 mlir::Value v = use.first;
117 v.print(llvm::dbgs(), printFlags);
118 llvm::dbgs() << "\n";
120 llvm::dbgs() << "\nCannot transform args:\n";
121 for (mlir::Value arg : cannotTransform) {
122 arg.print(llvm::dbgs(), printFlags);
123 llvm::dbgs() << "\n";
125 llvm::dbgs() << "====\n";
129 // Erase usageInfo and cannotTransform entries for a set
130 // of given arguments.
131 void eraseUsage(const llvm::SetVector<mlir::Value> &args) {
132 for (auto &arg : args)
133 usageInfo.erase(arg);
134 cannotTransform.set_subtract(args);
137 // Erase usageInfo and cannotTransform entries for a set
138 // of given arguments provided in the form of usageInfo map.
139 void eraseUsage(const llvm::DenseMap<mlir::Value, ArgInfo> &args) {
140 for (auto &arg : args) {
141 usageInfo.erase(arg.first);
142 cannotTransform.remove(arg.first);
146 } // namespace
148 static fir::SequenceType getAsSequenceType(mlir::Value v) {
149 mlir::Type argTy = fir::unwrapPassByRefType(fir::unwrapRefType(v.getType()));
150 return mlir::dyn_cast<fir::SequenceType>(argTy);
153 /// Return the rank and the element size (in bytes) of the given
154 /// value \p v. If it is not an array or the element type is not
155 /// supported, then return <0, 0>. Only trivial data types
156 /// are currently supported.
157 /// When \p isArgument is true, \p v is assumed to be a function
158 /// argument. If \p v's type does not look like a type of an assumed
159 /// shape array, then the function returns <0, 0>.
160 /// When \p isArgument is false, array types with known innermost
161 /// dimension are allowed to proceed.
162 static std::pair<unsigned, size_t>
163 getRankAndElementSize(const fir::KindMapping &kindMap,
164 const mlir::DataLayout &dl, mlir::Value v,
165 bool isArgument = false) {
166 if (auto seqTy = getAsSequenceType(v)) {
167 unsigned rank = seqTy.getDimension();
168 if (rank > 0 &&
169 (!isArgument ||
170 seqTy.getShape()[0] == fir::SequenceType::getUnknownExtent())) {
171 size_t typeSize = 0;
172 mlir::Type elementType = fir::unwrapSeqOrBoxedSeqType(v.getType());
173 if (fir::isa_trivial(elementType)) {
174 auto [eleSize, eleAlign] = fir::getTypeSizeAndAlignmentOrCrash(
175 v.getLoc(), elementType, dl, kindMap);
176 typeSize = llvm::alignTo(eleSize, eleAlign);
178 if (typeSize)
179 return {rank, typeSize};
183 LLVM_DEBUG(llvm::dbgs() << "Unsupported rank/type: " << v << '\n');
184 return {0, 0};
187 /// if a value comes from a fir.declare, follow it to the original source,
188 /// otherwise return the value
189 static mlir::Value unwrapFirDeclare(mlir::Value val) {
190 // fir.declare is for source code variables. We don't have declares of
191 // declares
192 if (fir::DeclareOp declare = val.getDefiningOp<fir::DeclareOp>())
193 return declare.getMemref();
194 return val;
197 /// Return true, if \p rebox operation keeps the input array
198 /// continuous in the innermost dimension, if it is initially continuous
199 /// in the innermost dimension.
200 static bool reboxPreservesContinuity(fir::ReboxOp rebox) {
201 // If slicing is not involved, then the rebox does not affect
202 // the continuity of the array.
203 auto sliceArg = rebox.getSlice();
204 if (!sliceArg)
205 return true;
207 // A slice with step=1 in the innermost dimension preserves
208 // the continuity of the array in the innermost dimension.
209 if (auto sliceOp =
210 mlir::dyn_cast_or_null<fir::SliceOp>(sliceArg.getDefiningOp())) {
211 if (sliceOp.getFields().empty() && sliceOp.getSubstr().empty()) {
212 auto triples = sliceOp.getTriples();
213 if (triples.size() > 2)
214 if (auto innermostStep = fir::getIntIfConstant(triples[2]))
215 if (*innermostStep == 1)
216 return true;
219 LLVM_DEBUG(llvm::dbgs()
220 << "REBOX with slicing may produce non-contiguous array: "
221 << sliceOp << '\n'
222 << rebox << '\n');
223 return false;
226 LLVM_DEBUG(llvm::dbgs() << "REBOX with unknown slice" << sliceArg << '\n'
227 << rebox << '\n');
228 return false;
231 /// if a value comes from a fir.rebox, follow the rebox to the original source,
232 /// of the value, otherwise return the value
233 static mlir::Value unwrapReboxOp(mlir::Value val) {
234 while (fir::ReboxOp rebox = val.getDefiningOp<fir::ReboxOp>()) {
235 if (!reboxPreservesContinuity(rebox))
236 break;
237 val = rebox.getBox();
239 return val;
242 /// normalize a value (removing fir.declare and fir.rebox) so that we can
243 /// more conveniently spot values which came from function arguments
244 static mlir::Value normaliseVal(mlir::Value val) {
245 return unwrapFirDeclare(unwrapReboxOp(val));
248 /// some FIR operations accept a fir.shape, a fir.shift or a fir.shapeshift.
249 /// fir.shift and fir.shapeshift allow us to extract lower bounds
250 /// if lowerbounds cannot be found, return nullptr
251 static mlir::Value tryGetLowerBoundsFromShapeLike(mlir::Value shapeLike,
252 unsigned dim) {
253 mlir::Value lowerBound{nullptr};
254 if (auto shift = shapeLike.getDefiningOp<fir::ShiftOp>())
255 lowerBound = shift.getOrigins()[dim];
256 if (auto shapeShift = shapeLike.getDefiningOp<fir::ShapeShiftOp>())
257 lowerBound = shapeShift.getOrigins()[dim];
258 return lowerBound;
261 /// attempt to get the array lower bounds of dimension dim of the memref
262 /// argument to a fir.array_coor op
263 /// 0 <= dim < rank
264 /// May return nullptr if no lower bounds can be determined
265 static mlir::Value getLowerBound(fir::ArrayCoorOp coop, unsigned dim) {
266 // 1) try to get from the shape argument to fir.array_coor
267 if (mlir::Value shapeLike = coop.getShape())
268 if (mlir::Value lb = tryGetLowerBoundsFromShapeLike(shapeLike, dim))
269 return lb;
271 // It is important not to try to read the lower bound from the box, because
272 // in the FIR lowering, boxes will sometimes contain incorrect lower bound
273 // information
275 // out of ideas
276 return {};
279 /// gets the i'th index from array coordinate operation op
280 /// dim should range between 0 and rank - 1
281 static mlir::Value getIndex(fir::FirOpBuilder &builder, mlir::Operation *op,
282 unsigned dim) {
283 if (fir::CoordinateOp coop = mlir::dyn_cast<fir::CoordinateOp>(op))
284 return coop.getCoor()[dim];
286 fir::ArrayCoorOp coop = mlir::dyn_cast<fir::ArrayCoorOp>(op);
287 assert(coop &&
288 "operation must be either fir.coordiante_of or fir.array_coor");
290 // fir.coordinate_of indices start at 0: adjust these indices to match by
291 // subtracting the lower bound
292 mlir::Value index = coop.getIndices()[dim];
293 mlir::Value lb = getLowerBound(coop, dim);
294 if (!lb)
295 // assume a default lower bound of one
296 lb = builder.createIntegerConstant(coop.getLoc(), index.getType(), 1);
298 // index_0 = index - lb;
299 if (lb.getType() != index.getType())
300 lb = builder.createConvert(coop.getLoc(), index.getType(), lb);
301 return builder.create<mlir::arith::SubIOp>(coop.getLoc(), index, lb);
304 void LoopVersioningPass::runOnOperation() {
305 LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
306 mlir::func::FuncOp func = getOperation();
308 // First look for arguments with assumed shape = unknown extent in the lowest
309 // dimension.
310 LLVM_DEBUG(llvm::dbgs() << "Func-name:" << func.getSymName() << "\n");
311 mlir::Block::BlockArgListType args = func.getArguments();
312 mlir::ModuleOp module = func->getParentOfType<mlir::ModuleOp>();
313 fir::KindMapping kindMap = fir::getKindMapping(module);
314 mlir::SmallVector<ArgInfo, 4> argsOfInterest;
315 std::optional<mlir::DataLayout> dl =
316 fir::support::getOrSetDataLayout(module, /*allowDefaultLayout=*/false);
317 if (!dl)
318 mlir::emitError(module.getLoc(),
319 "data layout attribute is required to perform " DEBUG_TYPE
320 "pass");
321 for (auto &arg : args) {
322 // Optional arguments must be checked for IsPresent before
323 // looking for the bounds. They are unsupported for the time being.
324 if (func.getArgAttrOfType<mlir::UnitAttr>(arg.getArgNumber(),
325 fir::getOptionalAttrName())) {
326 LLVM_DEBUG(llvm::dbgs() << "OPTIONAL is not supported\n");
327 continue;
330 auto [rank, typeSize] =
331 getRankAndElementSize(kindMap, *dl, arg, /*isArgument=*/true);
332 if (rank != 0 && typeSize != 0)
333 argsOfInterest.push_back({arg, typeSize, rank, {}});
336 if (argsOfInterest.empty()) {
337 LLVM_DEBUG(llvm::dbgs()
338 << "No suitable arguments.\n=== End " DEBUG_TYPE " ===\n");
339 return;
342 // A list of all loops in the function in post-order.
343 mlir::SmallVector<fir::DoLoopOp> originalLoops;
344 // Information about the arguments usage by the instructions
345 // immediately nested in a loop.
346 llvm::DenseMap<fir::DoLoopOp, ArgsUsageInLoop> argsInLoops;
348 auto &domInfo = getAnalysis<mlir::DominanceInfo>();
350 // Traverse the loops in post-order and see
351 // if those arguments are used inside any loop.
352 func.walk([&](fir::DoLoopOp loop) {
353 mlir::Block &body = *loop.getBody();
354 auto &argsInLoop = argsInLoops[loop];
355 originalLoops.push_back(loop);
356 body.walk([&](mlir::Operation *op) {
357 // Support either fir.array_coor or fir.coordinate_of.
358 if (!mlir::isa<fir::ArrayCoorOp, fir::CoordinateOp>(op))
359 return;
360 // Process only operations immediately nested in the current loop.
361 if (op->getParentOfType<fir::DoLoopOp>() != loop)
362 return;
363 mlir::Value operand = op->getOperand(0);
364 for (auto a : argsOfInterest) {
365 if (a.arg == normaliseVal(operand)) {
366 // Use the reboxed value, not the block arg when re-creating the loop.
367 a.arg = operand;
369 // Check that the operand dominates the loop?
370 // If this is the case, record such operands in argsInLoop.cannot-
371 // Transform, so that they disable the transformation for the parent
372 /// loops as well.
373 if (!domInfo.dominates(a.arg, loop))
374 argsInLoop.cannotTransform.insert(a.arg);
376 // No support currently for sliced arrays.
377 // This means that we cannot transform properly
378 // instructions referencing a.arg in the whole loop
379 // nest this loop is located in.
380 if (auto arrayCoor = mlir::dyn_cast<fir::ArrayCoorOp>(op))
381 if (arrayCoor.getSlice())
382 argsInLoop.cannotTransform.insert(a.arg);
384 // We need to compute the rank and element size
385 // based on the operand, not the original argument,
386 // because array slicing may affect it.
387 std::tie(a.rank, a.size) = getRankAndElementSize(kindMap, *dl, a.arg);
388 if (a.rank == 0 || a.size == 0)
389 argsInLoop.cannotTransform.insert(a.arg);
391 if (argsInLoop.cannotTransform.contains(a.arg)) {
392 // Remove any previously recorded usage, if any.
393 argsInLoop.usageInfo.erase(a.arg);
394 break;
397 // Record the a.arg usage, if not recorded yet.
398 argsInLoop.usageInfo.try_emplace(a.arg, a);
399 break;
405 // Dump loops info after initial collection.
406 LLVM_DEBUG({
407 llvm::dbgs() << "Initial usage info:\n";
408 for (fir::DoLoopOp loop : originalLoops) {
409 auto &argsInLoop = argsInLoops[loop];
410 argsInLoop.dump(loop);
414 // Clear argument usage for parent loops if an inner loop
415 // contains a non-transformable usage.
416 for (fir::DoLoopOp loop : originalLoops) {
417 auto &argsInLoop = argsInLoops[loop];
418 if (argsInLoop.cannotTransform.empty())
419 continue;
421 fir::DoLoopOp parent = loop;
422 while ((parent = parent->getParentOfType<fir::DoLoopOp>()))
423 argsInLoops[parent].eraseUsage(argsInLoop.cannotTransform);
426 // If an argument access can be optimized in a loop and
427 // its descendant loop, then it does not make sense to
428 // generate the contiguity check for the descendant loop.
429 // The check will be produced as part of the ancestor
430 // loop's transformation. So we can clear the argument
431 // usage for all descendant loops.
432 for (fir::DoLoopOp loop : originalLoops) {
433 auto &argsInLoop = argsInLoops[loop];
434 if (argsInLoop.usageInfo.empty())
435 continue;
437 loop.getBody()->walk([&](fir::DoLoopOp dloop) {
438 argsInLoops[dloop].eraseUsage(argsInLoop.usageInfo);
442 LLVM_DEBUG({
443 llvm::dbgs() << "Final usage info:\n";
444 for (fir::DoLoopOp loop : originalLoops) {
445 auto &argsInLoop = argsInLoops[loop];
446 argsInLoop.dump(loop);
450 // Reduce the collected information to a list of loops
451 // with attached arguments usage information.
452 // The list must hold the loops in post order, so that
453 // the inner loops are transformed before the outer loops.
454 struct OpsWithArgs {
455 mlir::Operation *op;
456 mlir::SmallVector<ArgInfo, 4> argsAndDims;
458 mlir::SmallVector<OpsWithArgs, 4> loopsOfInterest;
459 for (fir::DoLoopOp loop : originalLoops) {
460 auto &argsInLoop = argsInLoops[loop];
461 if (argsInLoop.usageInfo.empty())
462 continue;
463 OpsWithArgs info;
464 info.op = loop;
465 for (auto &arg : argsInLoop.usageInfo)
466 info.argsAndDims.push_back(arg.second);
467 loopsOfInterest.emplace_back(std::move(info));
470 if (loopsOfInterest.empty()) {
471 LLVM_DEBUG(llvm::dbgs()
472 << "No loops to transform.\n=== End " DEBUG_TYPE " ===\n");
473 return;
476 // If we get here, there are loops to process.
477 fir::FirOpBuilder builder{module, std::move(kindMap)};
478 mlir::Location loc = builder.getUnknownLoc();
479 mlir::IndexType idxTy = builder.getIndexType();
481 LLVM_DEBUG(llvm::dbgs() << "Func Before transformation:\n");
482 LLVM_DEBUG(func->dump());
484 LLVM_DEBUG(llvm::dbgs() << "loopsOfInterest: " << loopsOfInterest.size()
485 << "\n");
486 for (auto op : loopsOfInterest) {
487 LLVM_DEBUG(op.op->dump());
488 builder.setInsertionPoint(op.op);
490 mlir::Value allCompares = nullptr;
491 // Ensure all of the arrays are unit-stride.
492 for (auto &arg : op.argsAndDims) {
493 // Fetch all the dimensions of the array, except the last dimension.
494 // Always fetch the first dimension, however, so set ndims = 1 if
495 // we have one dim
496 unsigned ndims = arg.rank;
497 for (unsigned i = 0; i < ndims; i++) {
498 mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
499 arg.dims[i] = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
500 arg.arg, dimIdx);
502 // We only care about lowest order dimension, here.
503 mlir::Value elemSize =
504 builder.createIntegerConstant(loc, idxTy, arg.size);
505 mlir::Value cmp = builder.create<mlir::arith::CmpIOp>(
506 loc, mlir::arith::CmpIPredicate::eq, arg.dims[0].getResult(2),
507 elemSize);
508 if (!allCompares) {
509 allCompares = cmp;
510 } else {
511 allCompares =
512 builder.create<mlir::arith::AndIOp>(loc, cmp, allCompares);
516 auto ifOp =
517 builder.create<fir::IfOp>(loc, op.op->getResultTypes(), allCompares,
518 /*withElse=*/true);
519 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
521 LLVM_DEBUG(llvm::dbgs() << "Creating cloned loop\n");
522 mlir::Operation *clonedLoop = op.op->clone();
523 bool changed = false;
524 for (auto &arg : op.argsAndDims) {
525 fir::SequenceType::Shape newShape;
526 newShape.push_back(fir::SequenceType::getUnknownExtent());
527 auto elementType = fir::unwrapSeqOrBoxedSeqType(arg.arg.getType());
528 mlir::Type arrTy = fir::SequenceType::get(newShape, elementType);
529 mlir::Type boxArrTy = fir::BoxType::get(arrTy);
530 mlir::Type refArrTy = builder.getRefType(arrTy);
531 auto carg = builder.create<fir::ConvertOp>(loc, boxArrTy, arg.arg);
532 auto caddr = builder.create<fir::BoxAddrOp>(loc, refArrTy, carg);
533 auto insPt = builder.saveInsertionPoint();
534 // Use caddr instead of arg.
535 clonedLoop->walk([&](mlir::Operation *coop) {
536 if (!mlir::isa<fir::CoordinateOp, fir::ArrayCoorOp>(coop))
537 return;
538 // Reduce the multi-dimensioned index to a single index.
539 // This is required becase fir arrays do not support multiple dimensions
540 // with unknown dimensions at compile time.
541 // We then calculate the multidimensional array like this:
542 // arr(x, y, z) bedcomes arr(z * stride(2) + y * stride(1) + x)
543 // where stride is the distance between elements in the dimensions
544 // 0, 1 and 2 or x, y and z.
545 if (coop->getOperand(0) == arg.arg && coop->getOperands().size() >= 2) {
546 builder.setInsertionPoint(coop);
547 mlir::Value totalIndex;
548 for (unsigned i = arg.rank - 1; i > 0; i--) {
549 mlir::Value curIndex =
550 builder.createConvert(loc, idxTy, getIndex(builder, coop, i));
551 // Multiply by the stride of this array. Later we'll divide by the
552 // element size.
553 mlir::Value scale =
554 builder.createConvert(loc, idxTy, arg.dims[i].getResult(2));
555 curIndex =
556 builder.create<mlir::arith::MulIOp>(loc, scale, curIndex);
557 totalIndex = (totalIndex) ? builder.create<mlir::arith::AddIOp>(
558 loc, curIndex, totalIndex)
559 : curIndex;
561 // This is the lowest dimension - which doesn't need scaling
562 mlir::Value finalIndex =
563 builder.createConvert(loc, idxTy, getIndex(builder, coop, 0));
564 if (totalIndex) {
565 assert(llvm::isPowerOf2_32(arg.size) &&
566 "Expected power of two here");
567 unsigned bits = llvm::Log2_32(arg.size);
568 mlir::Value elemShift =
569 builder.createIntegerConstant(loc, idxTy, bits);
570 totalIndex = builder.create<mlir::arith::AddIOp>(
571 loc,
572 builder.create<mlir::arith::ShRSIOp>(loc, totalIndex,
573 elemShift),
574 finalIndex);
575 } else {
576 totalIndex = finalIndex;
578 auto newOp = builder.create<fir::CoordinateOp>(
579 loc, builder.getRefType(elementType), caddr,
580 mlir::ValueRange{totalIndex});
581 LLVM_DEBUG(newOp->dump());
582 coop->getResult(0).replaceAllUsesWith(newOp->getResult(0));
583 coop->erase();
584 changed = true;
588 builder.restoreInsertionPoint(insPt);
590 assert(changed && "Expected operations to have changed");
592 builder.insert(clonedLoop);
593 // Forward the result(s), if any, from the loop operation to the
595 mlir::ResultRange results = clonedLoop->getResults();
596 bool hasResults = (results.size() > 0);
597 if (hasResults)
598 builder.create<fir::ResultOp>(loc, results);
600 // Add the original loop in the else-side of the if operation.
601 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
602 op.op->replaceAllUsesWith(ifOp);
603 op.op->remove();
604 builder.insert(op.op);
605 // Rely on "cloned loop has results, so original loop also has results".
606 if (hasResults) {
607 builder.create<fir::ResultOp>(loc, op.op->getResults());
608 } else {
609 // Use an assert to check this.
610 assert(op.op->getResults().size() == 0 &&
611 "Weird, the cloned loop doesn't have results, but the original "
612 "does?");
616 LLVM_DEBUG(llvm::dbgs() << "Func After transform:\n");
617 LLVM_DEBUG(func->dump());
619 LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");