[RISCV] Change func to funct in RISCVInstrInfoXqci.td. NFC (#119669)
[llvm-project.git] / flang / lib / Optimizer / Transforms / PolymorphicOpConversion.cpp
blob070889a284f481ee1da968fad7a62121991692df
1 //===-- PolymorphicOpConversion.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "flang/Lower/BuiltinModules.h"
10 #include "flang/Optimizer/Builder/Todo.h"
11 #include "flang/Optimizer/Dialect/FIRDialect.h"
12 #include "flang/Optimizer/Dialect/FIROps.h"
13 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
14 #include "flang/Optimizer/Dialect/FIRType.h"
15 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
16 #include "flang/Optimizer/Dialect/Support/KindMapping.h"
17 #include "flang/Optimizer/Support/InternalNames.h"
18 #include "flang/Optimizer/Support/TypeCode.h"
19 #include "flang/Optimizer/Support/Utils.h"
20 #include "flang/Optimizer/Transforms/Passes.h"
21 #include "flang/Runtime/derived-api.h"
22 #include "flang/Semantics/runtime-type-info.h"
23 #include "mlir/Dialect/Affine/IR/AffineOps.h"
24 #include "mlir/Dialect/Arith/IR/Arith.h"
25 #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
26 #include "mlir/Dialect/Func/IR/FuncOps.h"
27 #include "mlir/IR/BuiltinOps.h"
28 #include "mlir/Pass/Pass.h"
29 #include "mlir/Transforms/DialectConversion.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/Support/CommandLine.h"
33 namespace fir {
34 #define GEN_PASS_DEF_POLYMORPHICOPCONVERSION
35 #include "flang/Optimizer/Transforms/Passes.h.inc"
36 } // namespace fir
38 using namespace fir;
39 using namespace mlir;
41 namespace {
43 /// SelectTypeOp converted to an if-then-else chain
44 ///
45 /// This lowers the test conditions to calls into the runtime.
46 class SelectTypeConv : public OpConversionPattern<fir::SelectTypeOp> {
47 public:
48 using OpConversionPattern<fir::SelectTypeOp>::OpConversionPattern;
50 SelectTypeConv(mlir::MLIRContext *ctx)
51 : mlir::OpConversionPattern<fir::SelectTypeOp>(ctx) {}
53 llvm::LogicalResult
54 matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor,
55 mlir::ConversionPatternRewriter &rewriter) const override;
57 private:
58 // Generate comparison of type descriptor addresses.
59 mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector,
60 mlir::Type ty, mlir::ModuleOp mod,
61 mlir::PatternRewriter &rewriter) const;
63 llvm::LogicalResult genTypeLadderStep(mlir::Location loc,
64 mlir::Value selector,
65 mlir::Attribute attr, mlir::Block *dest,
66 std::optional<mlir::ValueRange> destOps,
67 mlir::ModuleOp mod,
68 mlir::PatternRewriter &rewriter,
69 fir::KindMapping &kindMap) const;
71 llvm::SmallSet<llvm::StringRef, 4> collectAncestors(fir::TypeInfoOp dt,
72 mlir::ModuleOp mod) const;
75 /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch
76 /// table.
77 struct DispatchOpConv : public OpConversionPattern<fir::DispatchOp> {
78 using OpConversionPattern<fir::DispatchOp>::OpConversionPattern;
80 DispatchOpConv(mlir::MLIRContext *ctx, const BindingTables &bindingTables)
81 : mlir::OpConversionPattern<fir::DispatchOp>(ctx),
82 bindingTables(bindingTables) {}
84 llvm::LogicalResult
85 matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor,
86 mlir::ConversionPatternRewriter &rewriter) const override {
87 mlir::Location loc = dispatch.getLoc();
89 if (bindingTables.empty())
90 return emitError(loc) << "no binding tables found";
92 // Get derived type information.
93 mlir::Type declaredType =
94 fir::getDerivedType(dispatch.getObject().getType().getEleTy());
95 assert(mlir::isa<fir::RecordType>(declaredType) && "expecting fir.type");
96 auto recordType = mlir::dyn_cast<fir::RecordType>(declaredType);
98 // Lookup for the binding table.
99 auto bindingsIter = bindingTables.find(recordType.getName());
100 if (bindingsIter == bindingTables.end())
101 return emitError(loc)
102 << "cannot find binding table for " << recordType.getName();
104 // Lookup for the binding.
105 const BindingTable &bindingTable = bindingsIter->second;
106 auto bindingIter = bindingTable.find(dispatch.getMethod());
107 if (bindingIter == bindingTable.end())
108 return emitError(loc)
109 << "cannot find binding for " << dispatch.getMethod();
110 unsigned bindingIdx = bindingIter->second;
112 mlir::Value passedObject = dispatch.getObject();
114 auto module = dispatch.getOperation()->getParentOfType<mlir::ModuleOp>();
115 Type typeDescTy;
116 std::string typeDescName =
117 NameUniquer::getTypeDescriptorName(recordType.getName());
118 if (auto global = module.lookupSymbol<fir::GlobalOp>(typeDescName)) {
119 typeDescTy = global.getType();
122 // clang-format off
123 // Before:
124 // fir.dispatch "proc1"(%11 :
125 // !fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>)
127 // After:
128 // %12 = fir.box_tdesc %11 : (!fir.class<!fir.heap<!fir.type<_QMpolyTp1{a:i32,b:i32}>>>) -> !fir.tdesc<none>
129 // %13 = fir.convert %12 : (!fir.tdesc<none>) -> !fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>
130 // %14 = fir.field_index binding, !fir.type<_QM__fortran_type_infoTderivedtype>
131 // %15 = fir.coordinate_of %13, %14 : (!fir.ref<!fir.type<_QM__fortran_type_infoTderivedtype>>, !fir.field) -> !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
132 // %bindings = fir.load %15 : !fir.ref<!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>>
133 // %16 = fir.box_addr %bindings : (!fir.box<!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>>) -> !fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>
134 // %17 = fir.coordinate_of %16, %c0 : (!fir.ptr<!fir.array<?x!fir.type<_QM__fortran_type_infoTbinding>>>, index) -> !fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>
135 // %18 = fir.field_index proc, !fir.type<_QM__fortran_type_infoTbinding>
136 // %19 = fir.coordinate_of %17, %18 : (!fir.ref<!fir.type<_QM__fortran_type_infoTbinding>>, !fir.field) -> !fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>
137 // %20 = fir.field_index __address, !fir.type<_QM__fortran_builtinsT__builtin_c_funptr>
138 // %21 = fir.coordinate_of %19, %20 : (!fir.ref<!fir.type<_QM__fortran_builtinsT__builtin_c_funptr>>, !fir.field) -> !fir.ref<i64>
139 // %22 = fir.load %21 : !fir.ref<i64>
140 // %23 = fir.convert %22 : (i64) -> (() -> ())
141 // fir.call %23() : () -> ()
142 // clang-format on
144 // Load the descriptor.
145 mlir::Type fieldTy = fir::FieldType::get(rewriter.getContext());
146 mlir::Type tdescType =
147 fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
148 mlir::Value boxDesc =
149 rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, passedObject);
150 boxDesc = rewriter.create<fir::ConvertOp>(
151 loc, fir::ReferenceType::get(typeDescTy), boxDesc);
153 // Load the bindings descriptor.
154 auto bindingsCompName = Fortran::semantics::bindingDescCompName;
155 fir::RecordType typeDescRecTy = mlir::cast<fir::RecordType>(typeDescTy);
156 mlir::Value field = rewriter.create<fir::FieldIndexOp>(
157 loc, fieldTy, bindingsCompName, typeDescRecTy, mlir::ValueRange{});
158 mlir::Type coorTy =
159 fir::ReferenceType::get(typeDescRecTy.getType(bindingsCompName));
160 mlir::Value bindingBoxAddr =
161 rewriter.create<fir::CoordinateOp>(loc, coorTy, boxDesc, field);
162 mlir::Value bindingBox = rewriter.create<fir::LoadOp>(loc, bindingBoxAddr);
164 // Load the correct binding.
165 mlir::Value bindings = rewriter.create<fir::BoxAddrOp>(loc, bindingBox);
166 fir::RecordType bindingTy = fir::unwrapIfDerived(
167 mlir::cast<fir::BaseBoxType>(bindingBox.getType()));
168 mlir::Type bindingAddrTy = fir::ReferenceType::get(bindingTy);
169 mlir::Value bindingIdxVal = rewriter.create<mlir::arith::ConstantOp>(
170 loc, rewriter.getIndexType(), rewriter.getIndexAttr(bindingIdx));
171 mlir::Value bindingAddr = rewriter.create<fir::CoordinateOp>(
172 loc, bindingAddrTy, bindings, bindingIdxVal);
174 // Get the function pointer.
175 auto procCompName = Fortran::semantics::procCompName;
176 mlir::Value procField = rewriter.create<fir::FieldIndexOp>(
177 loc, fieldTy, procCompName, bindingTy, mlir::ValueRange{});
178 fir::RecordType procTy =
179 mlir::cast<fir::RecordType>(bindingTy.getType(procCompName));
180 mlir::Type procRefTy = fir::ReferenceType::get(procTy);
181 mlir::Value procRef = rewriter.create<fir::CoordinateOp>(
182 loc, procRefTy, bindingAddr, procField);
184 auto addressFieldName = Fortran::lower::builtin::cptrFieldName;
185 mlir::Value addressField = rewriter.create<fir::FieldIndexOp>(
186 loc, fieldTy, addressFieldName, procTy, mlir::ValueRange{});
187 mlir::Type addressTy = procTy.getType(addressFieldName);
188 mlir::Type addressRefTy = fir::ReferenceType::get(addressTy);
189 mlir::Value addressRef = rewriter.create<fir::CoordinateOp>(
190 loc, addressRefTy, procRef, addressField);
191 mlir::Value address = rewriter.create<fir::LoadOp>(loc, addressRef);
193 // Get the function type.
194 llvm::SmallVector<mlir::Type> argTypes;
195 for (mlir::Value operand : dispatch.getArgs())
196 argTypes.push_back(operand.getType());
197 llvm::SmallVector<mlir::Type> resTypes;
198 if (!dispatch.getResults().empty())
199 resTypes.push_back(dispatch.getResults()[0].getType());
201 mlir::Type funTy =
202 mlir::FunctionType::get(rewriter.getContext(), argTypes, resTypes);
203 mlir::Value funcPtr = rewriter.create<fir::ConvertOp>(loc, funTy, address);
205 // Make the call.
206 llvm::SmallVector<mlir::Value> args{funcPtr};
207 args.append(dispatch.getArgs().begin(), dispatch.getArgs().end());
208 rewriter.replaceOpWithNewOp<fir::CallOp>(dispatch, resTypes, nullptr, args,
209 dispatch.getProcedureAttrsAttr());
210 return mlir::success();
213 private:
214 BindingTables bindingTables;
217 /// Convert FIR structured control flow ops to CFG ops.
218 class PolymorphicOpConversion
219 : public fir::impl::PolymorphicOpConversionBase<PolymorphicOpConversion> {
220 public:
221 llvm::LogicalResult initialize(mlir::MLIRContext *ctx) override {
222 return mlir::success();
225 void runOnOperation() override {
226 auto *context = &getContext();
227 mlir::ModuleOp mod = getOperation();
228 mlir::RewritePatternSet patterns(context);
230 BindingTables bindingTables;
231 buildBindingTables(bindingTables, mod);
233 patterns.insert<SelectTypeConv>(context);
234 patterns.insert<DispatchOpConv>(context, bindingTables);
235 mlir::ConversionTarget target(*context);
236 target.addLegalDialect<mlir::affine::AffineDialect,
237 mlir::cf::ControlFlowDialect, FIROpsDialect,
238 mlir::func::FuncDialect>();
240 // apply the patterns
241 target.addIllegalOp<SelectTypeOp>();
242 target.addIllegalOp<DispatchOp>();
243 target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
244 if (mlir::failed(mlir::applyPartialConversion(getOperation(), target,
245 std::move(patterns)))) {
246 mlir::emitError(mlir::UnknownLoc::get(context),
247 "error in converting to CFG\n");
248 signalPassFailure();
252 } // namespace
254 llvm::LogicalResult SelectTypeConv::matchAndRewrite(
255 fir::SelectTypeOp selectType, OpAdaptor adaptor,
256 mlir::ConversionPatternRewriter &rewriter) const {
257 auto operands = adaptor.getOperands();
258 auto typeGuards = selectType.getCases();
259 unsigned typeGuardNum = typeGuards.size();
260 auto selector = selectType.getSelector();
261 auto loc = selectType.getLoc();
262 auto mod = selectType.getOperation()->getParentOfType<mlir::ModuleOp>();
263 fir::KindMapping kindMap = fir::getKindMapping(mod);
265 // Order type guards so the condition and branches are done to respect the
266 // Execution of SELECT TYPE construct as described in the Fortran 2018
267 // standard 11.1.11.2 point 4.
268 // 1. If a TYPE IS type guard statement matches the selector, the block
269 // following that statement is executed.
270 // 2. Otherwise, if exactly one CLASS IS type guard statement matches the
271 // selector, the block following that statement is executed.
272 // 3. Otherwise, if several CLASS IS type guard statements match the
273 // selector, one of these statements will inevitably specify a type that
274 // is an extension of all the types specified in the others; the block
275 // following that statement is executed.
276 // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block
277 // following that statement is executed.
278 // 5. Otherwise, no block is executed.
280 llvm::SmallVector<unsigned> orderedTypeGuards;
281 llvm::SmallVector<unsigned> orderedClassIsGuards;
282 unsigned defaultGuard = typeGuardNum - 1;
284 // The following loop go through the type guards in the fir.select_type
285 // operation and sort them into two lists.
286 // - All the TYPE IS type guard are added in order to the orderedTypeGuards
287 // list. This list is used at the end to generate the if-then-else ladder.
288 // - CLASS IS type guard are added in a separate list. If a CLASS IS type
289 // guard type extends a type already present, the type guard is inserted
290 // before in the list to respect point 3. above. Otherwise it is just
291 // added in order at the end.
292 for (unsigned t = 0; t < typeGuardNum; ++t) {
293 if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(typeGuards[t])) {
294 orderedTypeGuards.push_back(t);
295 continue;
298 if (auto a = mlir::dyn_cast<fir::SubclassAttr>(typeGuards[t])) {
299 if (auto recTy = mlir::dyn_cast<fir::RecordType>(a.getType())) {
300 auto dt = mod.lookupSymbol<fir::TypeInfoOp>(recTy.getName());
301 assert(dt && "dispatch table not found");
302 llvm::SmallSet<llvm::StringRef, 4> ancestors =
303 collectAncestors(dt, mod);
304 if (!ancestors.empty()) {
305 auto it = orderedClassIsGuards.begin();
306 while (it != orderedClassIsGuards.end()) {
307 fir::SubclassAttr sAttr =
308 mlir::dyn_cast<fir::SubclassAttr>(typeGuards[*it]);
309 if (auto ty = mlir::dyn_cast<fir::RecordType>(sAttr.getType())) {
310 if (ancestors.contains(ty.getName()))
311 break;
313 ++it;
315 if (it != orderedClassIsGuards.end()) {
316 // Parent type is present so place it before.
317 orderedClassIsGuards.insert(it, t);
318 continue;
322 orderedClassIsGuards.push_back(t);
325 orderedTypeGuards.append(orderedClassIsGuards);
326 orderedTypeGuards.push_back(defaultGuard);
327 assert(orderedTypeGuards.size() == typeGuardNum &&
328 "ordered type guard size doesn't match number of type guards");
330 for (unsigned idx : orderedTypeGuards) {
331 auto *dest = selectType.getSuccessor(idx);
332 std::optional<mlir::ValueRange> destOps =
333 selectType.getSuccessorOperands(operands, idx);
334 if (mlir::dyn_cast<mlir::UnitAttr>(typeGuards[idx]))
335 rewriter.replaceOpWithNewOp<mlir::cf::BranchOp>(
336 selectType, dest, destOps.value_or(mlir::ValueRange{}));
337 else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx],
338 dest, destOps, mod, rewriter,
339 kindMap)))
340 return mlir::failure();
342 return mlir::success();
345 llvm::LogicalResult SelectTypeConv::genTypeLadderStep(
346 mlir::Location loc, mlir::Value selector, mlir::Attribute attr,
347 mlir::Block *dest, std::optional<mlir::ValueRange> destOps,
348 mlir::ModuleOp mod, mlir::PatternRewriter &rewriter,
349 fir::KindMapping &kindMap) const {
350 mlir::Value cmp;
351 // TYPE IS type guard comparison are all done inlined.
352 if (auto a = mlir::dyn_cast<fir::ExactTypeAttr>(attr)) {
353 if (fir::isa_trivial(a.getType()) ||
354 mlir::isa<fir::CharacterType>(a.getType())) {
355 // For type guard statement with Intrinsic type spec the type code of
356 // the descriptor is compared.
357 int code = fir::getTypeCode(a.getType(), kindMap);
358 if (code == 0)
359 return mlir::emitError(loc)
360 << "type code unavailable for " << a.getType();
361 mlir::Value typeCode = rewriter.create<mlir::arith::ConstantOp>(
362 loc, rewriter.getI8IntegerAttr(code));
363 mlir::Value selectorTypeCode = rewriter.create<fir::BoxTypeCodeOp>(
364 loc, rewriter.getI8Type(), selector);
365 cmp = rewriter.create<mlir::arith::CmpIOp>(
366 loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode);
367 } else {
368 // Flang inline the kind parameter in the type descriptor so we can
369 // directly check if the type descriptor addresses are identical for
370 // the TYPE IS type guard statement.
371 mlir::Value res =
372 genTypeDescCompare(loc, selector, a.getType(), mod, rewriter);
373 if (!res)
374 return mlir::failure();
375 cmp = res;
377 // CLASS IS type guard statement is done with a runtime call.
378 } else if (auto a = mlir::dyn_cast<fir::SubclassAttr>(attr)) {
379 // Retrieve the type descriptor from the type guard statement record type.
380 assert(mlir::isa<fir::RecordType>(a.getType()) && "expect fir.record type");
381 fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(a.getType());
382 std::string typeDescName =
383 fir::NameUniquer::getTypeDescriptorName(recTy.getName());
384 auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
385 auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
386 loc, fir::ReferenceType::get(typeDescGlobal.getType()),
387 typeDescGlobal.getSymbol());
388 mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType());
389 mlir::Value typeDesc =
390 rewriter.create<ConvertOp>(loc, typeDescTy, typeDescAddr);
392 // Prepare the selector descriptor for the runtime call.
393 mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType());
394 mlir::Value descSelector =
395 rewriter.create<ConvertOp>(loc, descNoneTy, selector);
397 // Generate runtime call.
398 llvm::StringRef fctName = RTNAME_STRING(ClassIs);
399 mlir::func::FuncOp callee;
401 // Since conversion is done in parallel for each fir.select_type
402 // operation, the runtime function insertion must be threadsafe.
403 callee =
404 fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName,
405 rewriter.getFunctionType({descNoneTy, typeDescTy},
406 rewriter.getI1Type()));
408 cmp = rewriter
409 .create<fir::CallOp>(loc, callee,
410 mlir::ValueRange{descSelector, typeDesc})
411 .getResult(0);
414 auto *thisBlock = rewriter.getInsertionBlock();
415 auto *newBlock =
416 rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest));
417 rewriter.setInsertionPointToEnd(thisBlock);
418 if (destOps.has_value())
419 rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, destOps.value(),
420 newBlock, std::nullopt);
421 else
422 rewriter.create<mlir::cf::CondBranchOp>(loc, cmp, dest, newBlock);
423 rewriter.setInsertionPointToEnd(newBlock);
424 return mlir::success();
427 // Generate comparison of type descriptor addresses.
428 mlir::Value
429 SelectTypeConv::genTypeDescCompare(mlir::Location loc, mlir::Value selector,
430 mlir::Type ty, mlir::ModuleOp mod,
431 mlir::PatternRewriter &rewriter) const {
432 assert(mlir::isa<fir::RecordType>(ty) && "expect fir.record type");
433 fir::RecordType recTy = mlir::dyn_cast<fir::RecordType>(ty);
434 std::string typeDescName =
435 fir::NameUniquer::getTypeDescriptorName(recTy.getName());
436 auto typeDescGlobal = mod.lookupSymbol<fir::GlobalOp>(typeDescName);
437 if (!typeDescGlobal)
438 return {};
439 auto typeDescAddr = rewriter.create<fir::AddrOfOp>(
440 loc, fir::ReferenceType::get(typeDescGlobal.getType()),
441 typeDescGlobal.getSymbol());
442 auto intPtrTy = rewriter.getIndexType();
443 mlir::Type tdescType =
444 fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext()));
445 mlir::Value selectorTdescAddr =
446 rewriter.create<fir::BoxTypeDescOp>(loc, tdescType, selector);
447 auto typeDescInt =
448 rewriter.create<fir::ConvertOp>(loc, intPtrTy, typeDescAddr);
449 auto selectorTdescInt =
450 rewriter.create<fir::ConvertOp>(loc, intPtrTy, selectorTdescAddr);
451 return rewriter.create<mlir::arith::CmpIOp>(
452 loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt);
455 llvm::SmallSet<llvm::StringRef, 4>
456 SelectTypeConv::collectAncestors(fir::TypeInfoOp dt, mlir::ModuleOp mod) const {
457 llvm::SmallSet<llvm::StringRef, 4> ancestors;
458 while (auto parentName = dt.getIfParentName()) {
459 ancestors.insert(*parentName);
460 dt = mod.lookupSymbol<fir::TypeInfoOp>(*parentName);
461 assert(dt && "parent type info not generated");
463 return ancestors;