[RISCV] Change func to funct in RISCVInstrInfoXqci.td. NFC (#119669)
[llvm-project.git] / flang / lib / Optimizer / Transforms / SimplifyIntrinsics.cpp
blobd3567f453fceb343921e1c55277f8342e9da4dfa
1 //===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 //===----------------------------------------------------------------------===//
10 /// \file
11 /// This pass looks for suitable calls to runtime library for intrinsics that
12 /// can be simplified/specialized and replaces with a specialized function.
13 ///
14 /// For example, SUM(arr) can be specialized as a simple function with one loop,
15 /// compared to the three arguments (plus file & line info) that the runtime
16 /// call has - when the argument is a 1D-array (multiple loops may be needed
17 // for higher dimension arrays, of course)
18 ///
19 /// The general idea is that besides making the call simpler, it can also be
20 /// inlined by other passes that run after this pass, which further improves
21 /// performance, particularly when the work done in the function is trivial
22 /// and small in size.
23 //===----------------------------------------------------------------------===//
25 #include "flang/Common/Fortran.h"
26 #include "flang/Optimizer/Builder/BoxValue.h"
27 #include "flang/Optimizer/Builder/FIRBuilder.h"
28 #include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
29 #include "flang/Optimizer/Builder/Todo.h"
30 #include "flang/Optimizer/Dialect/FIROps.h"
31 #include "flang/Optimizer/Dialect/FIRType.h"
32 #include "flang/Optimizer/Dialect/Support/FIRContext.h"
33 #include "flang/Optimizer/HLFIR/HLFIRDialect.h"
34 #include "flang/Optimizer/Transforms/CUFCommon.h"
35 #include "flang/Optimizer/Transforms/Passes.h"
36 #include "flang/Optimizer/Transforms/Utils.h"
37 #include "flang/Runtime/entry-names.h"
38 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
39 #include "mlir/IR/Matchers.h"
40 #include "mlir/IR/Operation.h"
41 #include "mlir/Pass/Pass.h"
42 #include "mlir/Transforms/DialectConversion.h"
43 #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
44 #include "mlir/Transforms/RegionUtils.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <llvm/Support/ErrorHandling.h>
48 #include <mlir/Dialect/Arith/IR/Arith.h>
49 #include <mlir/IR/BuiltinTypes.h>
50 #include <mlir/IR/Location.h>
51 #include <mlir/IR/MLIRContext.h>
52 #include <mlir/IR/Value.h>
53 #include <mlir/Support/LLVM.h>
54 #include <optional>
56 namespace fir {
57 #define GEN_PASS_DEF_SIMPLIFYINTRINSICS
58 #include "flang/Optimizer/Transforms/Passes.h.inc"
59 } // namespace fir
61 #define DEBUG_TYPE "flang-simplify-intrinsics"
63 namespace {
65 class SimplifyIntrinsicsPass
66 : public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
67 using FunctionTypeGeneratorTy =
68 llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
69 using FunctionBodyGeneratorTy =
70 llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
71 using GenReductionBodyTy = llvm::function_ref<void(
72 fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank,
73 mlir::Type elementType)>;
75 public:
76 using fir::impl::SimplifyIntrinsicsBase<
77 SimplifyIntrinsicsPass>::SimplifyIntrinsicsBase;
79 /// Generate a new function implementing a simplified version
80 /// of a Fortran runtime function defined by \p basename name.
81 /// \p typeGenerator is a callback that generates the new function's type.
82 /// \p bodyGenerator is a callback that generates the new function's body.
83 /// The new function is created in the \p builder's Module.
84 mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
85 const mlir::StringRef &basename,
86 FunctionTypeGeneratorTy typeGenerator,
87 FunctionBodyGeneratorTy bodyGenerator);
88 void runOnOperation() override;
89 void getDependentDialects(mlir::DialectRegistry &registry) const override;
91 private:
92 /// Helper functions to replace a reduction type of call with its
93 /// simplified form. The actual function is generated using a callback
94 /// function.
95 /// \p call is the call to be replaced
96 /// \p kindMap is used to create FIROpBuilder
97 /// \p genBodyFunc is the callback that builds the replacement function
98 void simplifyIntOrFloatReduction(fir::CallOp call,
99 const fir::KindMapping &kindMap,
100 GenReductionBodyTy genBodyFunc);
101 void simplifyLogicalDim0Reduction(fir::CallOp call,
102 const fir::KindMapping &kindMap,
103 GenReductionBodyTy genBodyFunc);
104 void simplifyLogicalDim1Reduction(fir::CallOp call,
105 const fir::KindMapping &kindMap,
106 GenReductionBodyTy genBodyFunc);
107 void simplifyMinMaxlocReduction(fir::CallOp call,
108 const fir::KindMapping &kindMap, bool isMax);
109 void simplifyReductionBody(fir::CallOp call, const fir::KindMapping &kindMap,
110 GenReductionBodyTy genBodyFunc,
111 fir::FirOpBuilder &builder,
112 const mlir::StringRef &basename,
113 mlir::Type elementType);
116 } // namespace
118 /// Create FirOpBuilder with the provided \p op insertion point
119 /// and \p kindMap additionally inheriting FastMathFlags from \p op.
120 static fir::FirOpBuilder
121 getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
122 fir::FirOpBuilder builder{op, kindMap};
123 auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
124 if (!fmi)
125 return builder;
127 // Regardless of what default FastMathFlags are used by FirOpBuilder,
128 // override them with FastMathFlags attached to the operation.
129 builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
130 return builder;
133 /// Generate function type for the simplified version of RTNAME(Sum) and
134 /// similar functions with a fir.box<none> type returning \p elementType.
135 static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
136 const mlir::Type &elementType) {
137 mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
138 return mlir::FunctionType::get(builder.getContext(), {boxType},
139 {elementType});
142 template <typename Op>
143 Op expectOp(mlir::Value val) {
144 if (Op op = mlir::dyn_cast_or_null<Op>(val.getDefiningOp()))
145 return op;
146 LLVM_DEBUG(llvm::dbgs() << "Didn't find expected " << Op::getOperationName()
147 << '\n');
148 return nullptr;
151 template <typename Op>
152 static mlir::Value findDefSingle(fir::ConvertOp op) {
153 if (auto defOp = expectOp<Op>(op->getOperand(0))) {
154 return defOp.getResult();
156 return {};
159 template <typename... Ops>
160 static mlir::Value findDef(fir::ConvertOp op) {
161 mlir::Value defOp;
162 // Loop over the operation types given to see if any match, exiting once
163 // a match is found. Cast to void is needed to avoid compiler complaining
164 // that the result of expression is unused
165 (void)((defOp = findDefSingle<Ops>(op), (defOp)) || ...);
166 return defOp;
169 static bool isOperandAbsent(mlir::Value val) {
170 if (auto op = expectOp<fir::ConvertOp>(val)) {
171 assert(op->getOperands().size() != 0);
172 return mlir::isa_and_nonnull<fir::AbsentOp>(
173 op->getOperand(0).getDefiningOp());
175 return false;
178 static bool isTrueOrNotConstant(mlir::Value val) {
179 if (auto op = expectOp<mlir::arith::ConstantOp>(val)) {
180 return !mlir::matchPattern(val, mlir::m_Zero());
182 return true;
185 static bool isZero(mlir::Value val) {
186 if (auto op = expectOp<fir::ConvertOp>(val)) {
187 assert(op->getOperands().size() != 0);
188 if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
189 return mlir::matchPattern(defOp, mlir::m_Zero());
191 return false;
194 static mlir::Value findBoxDef(mlir::Value val) {
195 if (auto op = expectOp<fir::ConvertOp>(val)) {
196 assert(op->getOperands().size() != 0);
197 return findDef<fir::EmboxOp, fir::ReboxOp>(op);
199 return {};
202 static mlir::Value findMaskDef(mlir::Value val) {
203 if (auto op = expectOp<fir::ConvertOp>(val)) {
204 assert(op->getOperands().size() != 0);
205 return findDef<fir::EmboxOp, fir::ReboxOp, fir::AbsentOp>(op);
207 return {};
210 static unsigned getDimCount(mlir::Value val) {
211 // In order to find the dimensions count, we look for EmboxOp/ReboxOp
212 // and take the count from its *result* type. Note that in case
213 // of sliced emboxing the operand and the result of EmboxOp/ReboxOp
214 // have different types.
215 // Actually, we can take the box type from the operand of
216 // the first ConvertOp that has non-opaque box type that we meet
217 // going through the ConvertOp chain.
218 if (mlir::Value emboxVal = findBoxDef(val))
219 if (auto boxTy = mlir::dyn_cast<fir::BoxType>(emboxVal.getType()))
220 if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(boxTy.getEleTy()))
221 return seqTy.getDimension();
222 return 0;
225 /// Given the call operation's box argument \p val, discover
226 /// the element type of the underlying array object.
227 /// \returns the element type or std::nullopt if the type cannot
228 /// be reliably found.
229 /// We expect that the argument is a result of fir.convert
230 /// with the destination type of !fir.box<none>.
231 static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
232 mlir::Operation *defOp;
233 do {
234 defOp = val.getDefiningOp();
235 // Analyze only sequences of convert operations.
236 if (!mlir::isa<fir::ConvertOp>(defOp))
237 return std::nullopt;
238 val = defOp->getOperand(0);
239 // The convert operation is expected to convert from one
240 // box type to another box type.
241 auto boxType = mlir::cast<fir::BoxType>(val.getType());
242 auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
243 if (!mlir::isa<mlir::NoneType>(elementType))
244 return elementType;
245 } while (true);
248 using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
249 fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
250 mlir::Value)>;
251 using ContinueLoopGenTy = llvm::function_ref<llvm::SmallVector<mlir::Value>(
252 fir::FirOpBuilder &, mlir::Location, mlir::Value)>;
254 /// Generate the reduction loop into \p funcOp.
256 /// \p initVal is a function, called to get the initial value for
257 /// the reduction value
258 /// \p genBody is called to fill in the actual reduciton operation
259 /// for example add for SUM, MAX for MAXVAL, etc.
260 /// \p rank is the rank of the input argument.
261 /// \p elementType is the type of the elements in the input array,
262 /// which may be different to the return type.
263 /// \p loopCond is called to generate the condition to continue or
264 /// not for IterWhile loops
265 /// \p unorderedOrInitalLoopCond contains either a boolean or bool
266 /// mlir constant, and controls the inital value for while loops
267 /// or if DoLoop is ordered/unordered.
269 template <typename OP, typename T, int resultIndex>
270 static void
271 genReductionLoop(fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp,
272 fir::InitValGeneratorTy initVal, ContinueLoopGenTy loopCond,
273 T unorderedOrInitialLoopCond, BodyOpGeneratorTy genBody,
274 unsigned rank, mlir::Type elementType, mlir::Location loc) {
276 mlir::IndexType idxTy = builder.getIndexType();
278 mlir::Block::BlockArgListType args = funcOp.front().getArguments();
279 mlir::Value arg = args[0];
281 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
283 fir::SequenceType::Shape flatShape(rank,
284 fir::SequenceType::getUnknownExtent());
285 mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
286 mlir::Type boxArrTy = fir::BoxType::get(arrTy);
287 mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
288 mlir::Type resultType = funcOp.getResultTypes()[0];
289 mlir::Value init = initVal(builder, loc, resultType);
291 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
293 assert(rank > 0 && "rank cannot be zero");
294 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
296 // Compute all the upper bounds before the loop nest.
297 // It is not strictly necessary for performance, since the loop nest
298 // does not have any store operations and any LICM optimization
299 // should be able to optimize the redundancy.
300 for (unsigned i = 0; i < rank; ++i) {
301 mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
302 auto dims =
303 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
304 mlir::Value len = dims.getResult(1);
305 // We use C indexing here, so len-1 as loopcount
306 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
307 bounds.push_back(loopCount);
309 // Create a loop nest consisting of OP operations.
310 // Collect the loops' induction variables into indices array,
311 // which will be used in the innermost loop to load the input
312 // array's element.
313 // The loops are generated such that the innermost loop processes
314 // the 0 dimension.
315 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
316 for (unsigned i = rank; 0 < i; --i) {
317 mlir::Value step = one;
318 mlir::Value loopCount = bounds[i - 1];
319 auto loop = builder.create<OP>(loc, zeroIdx, loopCount, step,
320 unorderedOrInitialLoopCond,
321 /*finalCountValue=*/false, init);
322 init = loop.getRegionIterArgs()[resultIndex];
323 indices.push_back(loop.getInductionVar());
324 // Set insertion point to the loop body so that the next loop
325 // is inserted inside the current one.
326 builder.setInsertionPointToStart(loop.getBody());
329 // Reverse the indices such that they are ordered as:
330 // <dim-0-idx, dim-1-idx, ...>
331 std::reverse(indices.begin(), indices.end());
332 // We are in the innermost loop: generate the reduction body.
333 mlir::Type eleRefTy = builder.getRefType(elementType);
334 mlir::Value addr =
335 builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
336 mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
337 mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
338 // Generate vector with condition to continue while loop at [0] and result
339 // from current loop at [1] for IterWhileOp loops, just result at [0] for
340 // DoLoopOp loops.
341 llvm::SmallVector<mlir::Value> results = loopCond(builder, loc, reductionVal);
343 // Unwind the loop nest and insert ResultOp on each level
344 // to return the updated value of the reduction to the enclosing
345 // loops.
346 for (unsigned i = 0; i < rank; ++i) {
347 auto result = builder.create<fir::ResultOp>(loc, results);
348 // Proceed to the outer loop.
349 auto loop = mlir::cast<OP>(result->getParentOp());
350 results = loop.getResults();
351 // Set insertion point after the loop operation that we have
352 // just processed.
353 builder.setInsertionPointAfter(loop.getOperation());
355 // End of loop nest. The insertion point is after the outermost loop.
356 // Return the reduction value from the function.
357 builder.create<mlir::func::ReturnOp>(loc, results[resultIndex]);
360 static llvm::SmallVector<mlir::Value> nopLoopCond(fir::FirOpBuilder &builder,
361 mlir::Location loc,
362 mlir::Value reductionVal) {
363 return {reductionVal};
366 /// Generate function body of the simplified version of RTNAME(Sum)
367 /// with signature provided by \p funcOp. The caller is responsible
368 /// for saving/restoring the original insertion point of \p builder.
369 /// \p funcOp is expected to be empty on entry to this function.
370 /// \p rank specifies the rank of the input argument.
371 static void genRuntimeSumBody(fir::FirOpBuilder &builder,
372 mlir::func::FuncOp &funcOp, unsigned rank,
373 mlir::Type elementType) {
374 // function RTNAME(Sum)<T>x<rank>_simplified(arr)
375 // T, dimension(:) :: arr
376 // T sum = 0
377 // integer iter
378 // do iter = 0, extent(arr)
379 // sum = sum + arr[iter]
380 // end do
381 // RTNAME(Sum)<T>x<rank>_simplified = sum
382 // end function RTNAME(Sum)<T>x<rank>_simplified
383 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
384 mlir::Type elementType) {
385 if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
386 const llvm::fltSemantics &sem = ty.getFloatSemantics();
387 return builder.createRealConstant(loc, elementType,
388 llvm::APFloat::getZero(sem));
390 return builder.createIntegerConstant(loc, elementType, 0);
393 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
394 mlir::Type elementType, mlir::Value elem1,
395 mlir::Value elem2) -> mlir::Value {
396 if (mlir::isa<mlir::FloatType>(elementType))
397 return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
398 if (mlir::isa<mlir::IntegerType>(elementType))
399 return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
401 llvm_unreachable("unsupported type");
402 return {};
405 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
406 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
408 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
409 false, genBodyOp, rank, elementType,
410 loc);
413 static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
414 mlir::func::FuncOp &funcOp, unsigned rank,
415 mlir::Type elementType) {
416 auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
417 mlir::Type elementType) {
418 if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
419 const llvm::fltSemantics &sem = ty.getFloatSemantics();
420 return builder.createRealConstant(
421 loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
423 unsigned bits = elementType.getIntOrFloatBitWidth();
424 int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
425 return builder.createIntegerConstant(loc, elementType, minInt);
428 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
429 mlir::Type elementType, mlir::Value elem1,
430 mlir::Value elem2) -> mlir::Value {
431 if (mlir::isa<mlir::FloatType>(elementType)) {
432 // arith.maxf later converted to llvm.intr.maxnum does not work
433 // correctly for NaNs and -0.0 (see maxnum/minnum pattern matching
434 // in LLVM's InstCombine pass). Moreover, llvm.intr.maxnum
435 // for F128 operands is lowered into fmaxl call by LLVM.
436 // This libm function may not work properly for F128 arguments
437 // on targets where long double is not F128. It is an LLVM issue,
438 // but we just use normal select here to resolve all the cases.
439 auto compare = builder.create<mlir::arith::CmpFOp>(
440 loc, mlir::arith::CmpFPredicate::OGT, elem1, elem2);
441 return builder.create<mlir::arith::SelectOp>(loc, compare, elem1, elem2);
443 if (mlir::isa<mlir::IntegerType>(elementType))
444 return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
446 llvm_unreachable("unsupported type");
447 return {};
450 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
451 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
453 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, init, nopLoopCond,
454 false, genBodyOp, rank, elementType,
455 loc);
458 static void genRuntimeCountBody(fir::FirOpBuilder &builder,
459 mlir::func::FuncOp &funcOp, unsigned rank,
460 mlir::Type elementType) {
461 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
462 mlir::Type elementType) {
463 unsigned bits = elementType.getIntOrFloatBitWidth();
464 int64_t zeroInt = llvm::APInt::getZero(bits).getSExtValue();
465 return builder.createIntegerConstant(loc, elementType, zeroInt);
468 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
469 mlir::Type elementType, mlir::Value elem1,
470 mlir::Value elem2) -> mlir::Value {
471 auto zero32 = builder.createIntegerConstant(loc, elementType, 0);
472 auto zero64 = builder.createIntegerConstant(loc, builder.getI64Type(), 0);
473 auto one64 = builder.createIntegerConstant(loc, builder.getI64Type(), 1);
475 auto compare = builder.create<mlir::arith::CmpIOp>(
476 loc, mlir::arith::CmpIPredicate::eq, elem1, zero32);
477 auto select =
478 builder.create<mlir::arith::SelectOp>(loc, compare, zero64, one64);
479 return builder.create<mlir::arith::AddIOp>(loc, select, elem2);
482 // Count always gets I32 for elementType as it converts logical input to
483 // logical<4> before passing to the function.
484 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
485 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
487 genReductionLoop<fir::DoLoopOp, bool, 0>(builder, funcOp, zero, nopLoopCond,
488 false, genBodyOp, rank, elementType,
489 loc);
492 static void genRuntimeAnyBody(fir::FirOpBuilder &builder,
493 mlir::func::FuncOp &funcOp, unsigned rank,
494 mlir::Type elementType) {
495 auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
496 mlir::Type elementType) {
497 return builder.createIntegerConstant(loc, elementType, 0);
500 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
501 mlir::Type elementType, mlir::Value elem1,
502 mlir::Value elem2) -> mlir::Value {
503 auto zero = builder.createIntegerConstant(loc, elementType, 0);
504 return builder.create<mlir::arith::CmpIOp>(
505 loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
508 auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
509 mlir::Value reductionVal) {
510 auto one1 = builder.createIntegerConstant(loc, builder.getI1Type(), 1);
511 auto eor = builder.create<mlir::arith::XOrIOp>(loc, reductionVal, one1);
512 llvm::SmallVector<mlir::Value> results = {eor, reductionVal};
513 return results;
516 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
517 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
518 mlir::Value ok = builder.createBool(loc, true);
520 genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
521 builder, funcOp, zero, continueCond, ok, genBodyOp, rank, elementType,
522 loc);
525 static void genRuntimeAllBody(fir::FirOpBuilder &builder,
526 mlir::func::FuncOp &funcOp, unsigned rank,
527 mlir::Type elementType) {
528 auto one = [](fir::FirOpBuilder builder, mlir::Location loc,
529 mlir::Type elementType) {
530 return builder.createIntegerConstant(loc, elementType, 1);
533 auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
534 mlir::Type elementType, mlir::Value elem1,
535 mlir::Value elem2) -> mlir::Value {
536 auto zero = builder.createIntegerConstant(loc, elementType, 0);
537 return builder.create<mlir::arith::CmpIOp>(
538 loc, mlir::arith::CmpIPredicate::ne, elem1, zero);
541 auto continueCond = [](fir::FirOpBuilder builder, mlir::Location loc,
542 mlir::Value reductionVal) {
543 llvm::SmallVector<mlir::Value> results = {reductionVal, reductionVal};
544 return results;
547 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
548 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
549 mlir::Value ok = builder.createBool(loc, true);
551 genReductionLoop<fir::IterWhileOp, mlir::Value, 1>(
552 builder, funcOp, one, continueCond, ok, genBodyOp, rank, elementType,
553 loc);
556 static mlir::FunctionType genRuntimeMinlocType(fir::FirOpBuilder &builder,
557 unsigned int rank) {
558 mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
559 mlir::Type boxRefType = builder.getRefType(boxType);
561 return mlir::FunctionType::get(builder.getContext(),
562 {boxRefType, boxType, boxType}, {});
565 // Produces a loop nest for a Minloc intrinsic.
566 void fir::genMinMaxlocReductionLoop(
567 fir::FirOpBuilder &builder, mlir::Value array,
568 fir::InitValGeneratorTy initVal, fir::MinlocBodyOpGeneratorTy genBody,
569 fir::AddrGeneratorTy getAddrFn, unsigned rank, mlir::Type elementType,
570 mlir::Location loc, mlir::Type maskElemType, mlir::Value resultArr,
571 bool maskMayBeLogicalScalar) {
572 mlir::IndexType idxTy = builder.getIndexType();
574 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
576 fir::SequenceType::Shape flatShape(rank,
577 fir::SequenceType::getUnknownExtent());
578 mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
579 mlir::Type boxArrTy = fir::BoxType::get(arrTy);
580 array = builder.create<fir::ConvertOp>(loc, boxArrTy, array);
582 mlir::Type resultElemType = hlfir::getFortranElementType(resultArr.getType());
583 mlir::Value flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
584 mlir::Value zero = builder.createIntegerConstant(loc, resultElemType, 0);
585 mlir::Value flagRef = builder.createTemporary(loc, resultElemType);
586 builder.create<fir::StoreOp>(loc, zero, flagRef);
588 mlir::Value init = initVal(builder, loc, elementType);
589 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> bounds;
591 assert(rank > 0 && "rank cannot be zero");
592 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
594 // Compute all the upper bounds before the loop nest.
595 // It is not strictly necessary for performance, since the loop nest
596 // does not have any store operations and any LICM optimization
597 // should be able to optimize the redundancy.
598 for (unsigned i = 0; i < rank; ++i) {
599 mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
600 auto dims =
601 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
602 mlir::Value len = dims.getResult(1);
603 // We use C indexing here, so len-1 as loopcount
604 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
605 bounds.push_back(loopCount);
607 // Create a loop nest consisting of OP operations.
608 // Collect the loops' induction variables into indices array,
609 // which will be used in the innermost loop to load the input
610 // array's element.
611 // The loops are generated such that the innermost loop processes
612 // the 0 dimension.
613 llvm::SmallVector<mlir::Value, Fortran::common::maxRank> indices;
614 for (unsigned i = rank; 0 < i; --i) {
615 mlir::Value step = one;
616 mlir::Value loopCount = bounds[i - 1];
617 auto loop =
618 builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step, false,
619 /*finalCountValue=*/false, init);
620 init = loop.getRegionIterArgs()[0];
621 indices.push_back(loop.getInductionVar());
622 // Set insertion point to the loop body so that the next loop
623 // is inserted inside the current one.
624 builder.setInsertionPointToStart(loop.getBody());
627 // Reverse the indices such that they are ordered as:
628 // <dim-0-idx, dim-1-idx, ...>
629 std::reverse(indices.begin(), indices.end());
630 mlir::Value reductionVal =
631 genBody(builder, loc, elementType, array, flagRef, init, indices);
633 // Unwind the loop nest and insert ResultOp on each level
634 // to return the updated value of the reduction to the enclosing
635 // loops.
636 for (unsigned i = 0; i < rank; ++i) {
637 auto result = builder.create<fir::ResultOp>(loc, reductionVal);
638 // Proceed to the outer loop.
639 auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
640 reductionVal = loop.getResult(0);
641 // Set insertion point after the loop operation that we have
642 // just processed.
643 builder.setInsertionPointAfter(loop.getOperation());
645 // End of loop nest. The insertion point is after the outermost loop.
646 if (maskMayBeLogicalScalar) {
647 if (fir::IfOp ifOp =
648 mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp())) {
649 builder.create<fir::ResultOp>(loc, reductionVal);
650 builder.setInsertionPointAfter(ifOp);
651 // Redefine flagSet to escape scope of ifOp
652 flagSet = builder.createIntegerConstant(loc, resultElemType, 1);
653 reductionVal = ifOp.getResult(0);
658 static void genRuntimeMinMaxlocBody(fir::FirOpBuilder &builder,
659 mlir::func::FuncOp &funcOp, bool isMax,
660 unsigned rank, int maskRank,
661 mlir::Type elementType,
662 mlir::Type maskElemType,
663 mlir::Type resultElemTy, bool isDim) {
664 auto init = [isMax](fir::FirOpBuilder builder, mlir::Location loc,
665 mlir::Type elementType) {
666 if (auto ty = mlir::dyn_cast<mlir::FloatType>(elementType)) {
667 const llvm::fltSemantics &sem = ty.getFloatSemantics();
668 llvm::APFloat limit = llvm::APFloat::getInf(sem, /*Negative=*/isMax);
669 return builder.createRealConstant(loc, elementType, limit);
671 unsigned bits = elementType.getIntOrFloatBitWidth();
672 int64_t initValue = (isMax ? llvm::APInt::getSignedMinValue(bits)
673 : llvm::APInt::getSignedMaxValue(bits))
674 .getSExtValue();
675 return builder.createIntegerConstant(loc, elementType, initValue);
678 mlir::Location loc = mlir::UnknownLoc::get(builder.getContext());
679 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
681 mlir::Value mask = funcOp.front().getArgument(2);
683 // Set up result array in case of early exit / 0 length array
684 mlir::IndexType idxTy = builder.getIndexType();
685 mlir::Type resultTy = fir::SequenceType::get(rank, resultElemTy);
686 mlir::Type resultHeapTy = fir::HeapType::get(resultTy);
687 mlir::Type resultBoxTy = fir::BoxType::get(resultHeapTy);
689 mlir::Value returnValue = builder.createIntegerConstant(loc, resultElemTy, 0);
690 mlir::Value resultArrSize = builder.createIntegerConstant(loc, idxTy, rank);
692 mlir::Value resultArrInit = builder.create<fir::AllocMemOp>(loc, resultTy);
693 mlir::Value resultArrShape = builder.create<fir::ShapeOp>(loc, resultArrSize);
694 mlir::Value resultArr = builder.create<fir::EmboxOp>(
695 loc, resultBoxTy, resultArrInit, resultArrShape);
697 mlir::Type resultRefTy = builder.getRefType(resultElemTy);
699 if (maskRank > 0) {
700 fir::SequenceType::Shape flatShape(rank,
701 fir::SequenceType::getUnknownExtent());
702 mlir::Type maskTy = fir::SequenceType::get(flatShape, maskElemType);
703 mlir::Type boxMaskTy = fir::BoxType::get(maskTy);
704 mask = builder.create<fir::ConvertOp>(loc, boxMaskTy, mask);
707 for (unsigned int i = 0; i < rank; ++i) {
708 mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
709 mlir::Value resultElemAddr =
710 builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr, index);
711 builder.create<fir::StoreOp>(loc, returnValue, resultElemAddr);
714 auto genBodyOp =
715 [&rank, &resultArr, isMax, &mask, &maskElemType, &maskRank](
716 fir::FirOpBuilder builder, mlir::Location loc, mlir::Type elementType,
717 mlir::Value array, mlir::Value flagRef, mlir::Value reduction,
718 const llvm::SmallVectorImpl<mlir::Value> &indices) -> mlir::Value {
719 // We are in the innermost loop: generate the reduction body.
720 if (maskRank > 0) {
721 mlir::Type logicalRef = builder.getRefType(maskElemType);
722 mlir::Value maskAddr =
723 builder.create<fir::CoordinateOp>(loc, logicalRef, mask, indices);
724 mlir::Value maskElem = builder.create<fir::LoadOp>(loc, maskAddr);
726 // fir::IfOp requires argument to be I1 - won't accept logical or any
727 // other Integer.
728 mlir::Type ifCompatType = builder.getI1Type();
729 mlir::Value ifCompatElem =
730 builder.create<fir::ConvertOp>(loc, ifCompatType, maskElem);
732 llvm::SmallVector<mlir::Type> resultsTy = {elementType, elementType};
733 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, ifCompatElem,
734 /*withElseRegion=*/true);
735 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
738 // Set flag that mask was true at some point
739 mlir::Value flagSet = builder.createIntegerConstant(
740 loc, mlir::cast<fir::ReferenceType>(flagRef.getType()).getEleTy(), 1);
741 mlir::Value isFirst = builder.create<fir::LoadOp>(loc, flagRef);
742 mlir::Type eleRefTy = builder.getRefType(elementType);
743 mlir::Value addr =
744 builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
745 mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
747 mlir::Value cmp;
748 if (mlir::isa<mlir::FloatType>(elementType)) {
749 // For FP reductions we want the first smallest value to be used, that
750 // is not NaN. A OGL/OLT condition will usually work for this unless all
751 // the values are Nan or Inf. This follows the same logic as
752 // NumericCompare for Minloc/Maxlox in extrema.cpp.
753 cmp = builder.create<mlir::arith::CmpFOp>(
754 loc,
755 isMax ? mlir::arith::CmpFPredicate::OGT
756 : mlir::arith::CmpFPredicate::OLT,
757 elem, reduction);
759 mlir::Value cmpNan = builder.create<mlir::arith::CmpFOp>(
760 loc, mlir::arith::CmpFPredicate::UNE, reduction, reduction);
761 mlir::Value cmpNan2 = builder.create<mlir::arith::CmpFOp>(
762 loc, mlir::arith::CmpFPredicate::OEQ, elem, elem);
763 cmpNan = builder.create<mlir::arith::AndIOp>(loc, cmpNan, cmpNan2);
764 cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, cmpNan);
765 } else if (mlir::isa<mlir::IntegerType>(elementType)) {
766 cmp = builder.create<mlir::arith::CmpIOp>(
767 loc,
768 isMax ? mlir::arith::CmpIPredicate::sgt
769 : mlir::arith::CmpIPredicate::slt,
770 elem, reduction);
771 } else {
772 llvm_unreachable("unsupported type");
775 // The condition used for the loop is isFirst || <the condition above>.
776 isFirst = builder.create<fir::ConvertOp>(loc, cmp.getType(), isFirst);
777 isFirst = builder.create<mlir::arith::XOrIOp>(
778 loc, isFirst, builder.createIntegerConstant(loc, cmp.getType(), 1));
779 cmp = builder.create<mlir::arith::OrIOp>(loc, cmp, isFirst);
780 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cmp,
781 /*withElseRegion*/ true);
783 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
784 builder.create<fir::StoreOp>(loc, flagSet, flagRef);
785 mlir::Type resultElemTy = hlfir::getFortranElementType(resultArr.getType());
786 mlir::Type returnRefTy = builder.getRefType(resultElemTy);
787 mlir::IndexType idxTy = builder.getIndexType();
789 mlir::Value one = builder.createIntegerConstant(loc, resultElemTy, 1);
791 for (unsigned int i = 0; i < rank; ++i) {
792 mlir::Value index = builder.createIntegerConstant(loc, idxTy, i);
793 mlir::Value resultElemAddr =
794 builder.create<fir::CoordinateOp>(loc, returnRefTy, resultArr, index);
795 mlir::Value convert =
796 builder.create<fir::ConvertOp>(loc, resultElemTy, indices[i]);
797 mlir::Value fortranIndex =
798 builder.create<mlir::arith::AddIOp>(loc, convert, one);
799 builder.create<fir::StoreOp>(loc, fortranIndex, resultElemAddr);
801 builder.create<fir::ResultOp>(loc, elem);
802 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
803 builder.create<fir::ResultOp>(loc, reduction);
804 builder.setInsertionPointAfter(ifOp);
805 mlir::Value reductionVal = ifOp.getResult(0);
807 // Close the mask if needed
808 if (maskRank > 0) {
809 fir::IfOp ifOp =
810 mlir::dyn_cast<fir::IfOp>(builder.getBlock()->getParentOp());
811 builder.create<fir::ResultOp>(loc, reductionVal);
812 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
813 builder.create<fir::ResultOp>(loc, reduction);
814 reductionVal = ifOp.getResult(0);
815 builder.setInsertionPointAfter(ifOp);
818 return reductionVal;
821 // if mask is a logical scalar, we can check its value before the main loop
822 // and either ignore the fact it is there or exit early.
823 if (maskRank == 0) {
824 mlir::Type logical = builder.getI1Type();
825 mlir::IndexType idxTy = builder.getIndexType();
827 fir::SequenceType::Shape singleElement(1, 1);
828 mlir::Type arrTy = fir::SequenceType::get(singleElement, logical);
829 mlir::Type boxArrTy = fir::BoxType::get(arrTy);
830 mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, mask);
832 mlir::Value indx = builder.createIntegerConstant(loc, idxTy, 0);
833 mlir::Type logicalRefTy = builder.getRefType(logical);
834 mlir::Value condAddr =
835 builder.create<fir::CoordinateOp>(loc, logicalRefTy, array, indx);
836 mlir::Value cond = builder.create<fir::LoadOp>(loc, condAddr);
838 fir::IfOp ifOp = builder.create<fir::IfOp>(loc, elementType, cond,
839 /*withElseRegion=*/true);
841 builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
842 mlir::Value basicValue;
843 if (mlir::isa<mlir::IntegerType>(elementType)) {
844 basicValue = builder.createIntegerConstant(loc, elementType, 0);
845 } else {
846 basicValue = builder.createRealConstant(loc, elementType, 0);
848 builder.create<fir::ResultOp>(loc, basicValue);
850 builder.setInsertionPointToStart(&ifOp.getThenRegion().front());
852 auto getAddrFn = [](fir::FirOpBuilder builder, mlir::Location loc,
853 const mlir::Type &resultElemType, mlir::Value resultArr,
854 mlir::Value index) {
855 mlir::Type resultRefTy = builder.getRefType(resultElemType);
856 return builder.create<fir::CoordinateOp>(loc, resultRefTy, resultArr,
857 index);
860 genMinMaxlocReductionLoop(builder, funcOp.front().getArgument(1), init,
861 genBodyOp, getAddrFn, rank, elementType, loc,
862 maskElemType, resultArr, maskRank == 0);
864 // Store newly created output array to the reference passed in
865 if (isDim) {
866 mlir::Type resultBoxTy =
867 fir::BoxType::get(fir::HeapType::get(resultElemTy));
868 mlir::Value outputArr = builder.create<fir::ConvertOp>(
869 loc, builder.getRefType(resultBoxTy), funcOp.front().getArgument(0));
870 mlir::Value resultArrScalar = builder.create<fir::ConvertOp>(
871 loc, fir::HeapType::get(resultElemTy), resultArrInit);
872 mlir::Value resultBox =
873 builder.create<fir::EmboxOp>(loc, resultBoxTy, resultArrScalar);
874 builder.create<fir::StoreOp>(loc, resultBox, outputArr);
875 } else {
876 fir::SequenceType::Shape resultShape(1, rank);
877 mlir::Type outputArrTy = fir::SequenceType::get(resultShape, resultElemTy);
878 mlir::Type outputHeapTy = fir::HeapType::get(outputArrTy);
879 mlir::Type outputBoxTy = fir::BoxType::get(outputHeapTy);
880 mlir::Type outputRefTy = builder.getRefType(outputBoxTy);
881 mlir::Value outputArr = builder.create<fir::ConvertOp>(
882 loc, outputRefTy, funcOp.front().getArgument(0));
883 builder.create<fir::StoreOp>(loc, resultArr, outputArr);
886 builder.create<mlir::func::ReturnOp>(loc);
889 /// Generate function type for the simplified version of RTNAME(DotProduct)
890 /// operating on the given \p elementType.
891 static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
892 const mlir::Type &elementType) {
893 mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
894 return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
895 {elementType});
898 /// Generate function body of the simplified version of RTNAME(DotProduct)
899 /// with signature provided by \p funcOp. The caller is responsible
900 /// for saving/restoring the original insertion point of \p builder.
901 /// \p funcOp is expected to be empty on entry to this function.
902 /// \p arg1ElementTy and \p arg2ElementTy specify elements types
903 /// of the underlying array objects - they are used to generate proper
904 /// element accesses.
905 static void genRuntimeDotBody(fir::FirOpBuilder &builder,
906 mlir::func::FuncOp &funcOp,
907 mlir::Type arg1ElementTy,
908 mlir::Type arg2ElementTy) {
909 // function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
910 // T, dimension(:) :: arr1, arr2
911 // T product = 0
912 // integer iter
913 // do iter = 0, extent(arr1)
914 // product = product + arr1[iter] * arr2[iter]
915 // end do
916 // RTNAME(ADotProduct)<T>_simplified = product
917 // end function RTNAME(DotProduct)<T>_simplified
918 auto loc = mlir::UnknownLoc::get(builder.getContext());
919 mlir::Type resultElementType = funcOp.getResultTypes()[0];
920 builder.setInsertionPointToEnd(funcOp.addEntryBlock());
922 mlir::IndexType idxTy = builder.getIndexType();
924 mlir::Value zero =
925 mlir::isa<mlir::FloatType>(resultElementType)
926 ? builder.createRealConstant(loc, resultElementType, 0.0)
927 : builder.createIntegerConstant(loc, resultElementType, 0);
929 mlir::Block::BlockArgListType args = funcOp.front().getArguments();
930 mlir::Value arg1 = args[0];
931 mlir::Value arg2 = args[1];
933 mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
935 fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
936 mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
937 mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
938 mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
939 mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
940 mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
941 mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
942 // This version takes the loop trip count from the first argument.
943 // If the first argument's box has unknown (at compilation time)
944 // extent, then it may be better to take the extent from the second
945 // argument - so that after inlining the loop may be better optimized, e.g.
946 // fully unrolled. This requires generating two versions of the simplified
947 // function and some analysis at the call site to choose which version
948 // is more profitable to call.
949 // Note that we can assume that both arguments have the same extent.
950 auto dims =
951 builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
952 mlir::Value len = dims.getResult(1);
953 mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
954 mlir::Value step = one;
956 // We use C indexing here, so len-1 as loopcount
957 mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
958 auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
959 /*unordered=*/false,
960 /*finalCountValue=*/false, zero);
961 mlir::Value sumVal = loop.getRegionIterArgs()[0];
963 // Begin loop code
964 mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
965 builder.setInsertionPointToStart(loop.getBody());
967 mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
968 mlir::Value index = loop.getInductionVar();
969 mlir::Value addr1 =
970 builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
971 mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
972 // Convert to the result type.
973 elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
975 mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
976 mlir::Value addr2 =
977 builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
978 mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
979 // Convert to the result type.
980 elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
982 if (mlir::isa<mlir::FloatType>(resultElementType))
983 sumVal = builder.create<mlir::arith::AddFOp>(
984 loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
985 else if (mlir::isa<mlir::IntegerType>(resultElementType))
986 sumVal = builder.create<mlir::arith::AddIOp>(
987 loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
988 else
989 llvm_unreachable("unsupported type");
991 builder.create<fir::ResultOp>(loc, sumVal);
992 // End of loop.
993 builder.restoreInsertionPoint(loopEndPt);
995 mlir::Value resultVal = loop.getResult(0);
996 builder.create<mlir::func::ReturnOp>(loc, resultVal);
999 mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
1000 fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
1001 FunctionTypeGeneratorTy typeGenerator,
1002 FunctionBodyGeneratorTy bodyGenerator) {
1003 // WARNING: if the function generated here changes its signature
1004 // or behavior (the body code), we should probably embed some
1005 // versioning information into its name, otherwise libraries
1006 // statically linked with older versions of Flang may stop
1007 // working with object files created with newer Flang.
1008 // We can also avoid this by using internal linkage, but
1009 // this may increase the size of final executable/shared library.
1010 std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
1011 // If we already have a function, just return it.
1012 mlir::func::FuncOp newFunc = builder.getNamedFunction(replacementName);
1013 mlir::FunctionType fType = typeGenerator(builder);
1014 if (newFunc) {
1015 assert(newFunc.getFunctionType() == fType &&
1016 "type mismatch for simplified function");
1017 return newFunc;
1020 // Need to build the function!
1021 auto loc = mlir::UnknownLoc::get(builder.getContext());
1022 newFunc = builder.createFunction(loc, replacementName, fType);
1023 auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
1024 auto linkage =
1025 mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
1026 newFunc->setAttr("llvm.linkage", linkage);
1028 // Save the position of the original call.
1029 mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
1031 bodyGenerator(builder, newFunc);
1033 // Now back to where we were adding code earlier...
1034 builder.restoreInsertionPoint(insertPt);
1036 return newFunc;
1039 void SimplifyIntrinsicsPass::simplifyIntOrFloatReduction(
1040 fir::CallOp call, const fir::KindMapping &kindMap,
1041 GenReductionBodyTy genBodyFunc) {
1042 // args[1] and args[2] are source filename and line number, ignored.
1043 mlir::Operation::operand_range args = call.getArgs();
1045 const mlir::Value &dim = args[3];
1046 const mlir::Value &mask = args[4];
1047 // dim is zero when it is absent, which is an implementation
1048 // detail in the runtime library.
1050 bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
1051 unsigned rank = getDimCount(args[0]);
1053 // Rank is set to 0 for assumed shape arrays, don't simplify
1054 // in these cases
1055 if (!(dimAndMaskAbsent && rank > 0))
1056 return;
1058 mlir::Type resultType = call.getResult(0).getType();
1060 if (!mlir::isa<mlir::FloatType>(resultType) &&
1061 !mlir::isa<mlir::IntegerType>(resultType))
1062 return;
1064 auto argType = getArgElementType(args[0]);
1065 if (!argType)
1066 return;
1067 assert(*argType == resultType &&
1068 "Argument/result types mismatch in reduction");
1070 mlir::SymbolRefAttr callee = call.getCalleeAttr();
1072 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
1073 std::string fmfString{builder.getFastMathFlagsString()};
1074 std::string funcName =
1075 (mlir::Twine{callee.getLeafReference().getValue(), "x"} +
1076 mlir::Twine{rank} +
1077 // We must mangle the generated function name with FastMathFlags
1078 // value.
1079 (fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
1080 .str();
1082 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
1083 resultType);
1086 void SimplifyIntrinsicsPass::simplifyLogicalDim0Reduction(
1087 fir::CallOp call, const fir::KindMapping &kindMap,
1088 GenReductionBodyTy genBodyFunc) {
1090 mlir::Operation::operand_range args = call.getArgs();
1091 const mlir::Value &dim = args[3];
1092 unsigned rank = getDimCount(args[0]);
1094 // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
1095 // these cases.
1096 if (!(isZero(dim) && rank > 0))
1097 return;
1099 mlir::Value inputBox = findBoxDef(args[0]);
1101 mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
1102 mlir::SymbolRefAttr callee = call.getCalleeAttr();
1104 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
1106 // Treating logicals as integers makes things a lot easier
1107 fir::LogicalType logicalType = {
1108 mlir::dyn_cast<fir::LogicalType>(elementType)};
1109 fir::KindTy kind = logicalType.getFKind();
1110 mlir::Type intElementType = builder.getIntegerType(kind * 8);
1112 // Mangle kind into function name as it is not done by default
1113 std::string funcName =
1114 (mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
1115 mlir::Twine{kind} + "x" + mlir::Twine{rank})
1116 .str();
1118 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
1119 intElementType);
1122 void SimplifyIntrinsicsPass::simplifyLogicalDim1Reduction(
1123 fir::CallOp call, const fir::KindMapping &kindMap,
1124 GenReductionBodyTy genBodyFunc) {
1126 mlir::Operation::operand_range args = call.getArgs();
1127 mlir::SymbolRefAttr callee = call.getCalleeAttr();
1128 mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
1129 unsigned rank = getDimCount(args[0]);
1131 // getDimCount returns a rank of 0 for assumed shape arrays, don't simplify in
1132 // these cases. We check for Dim at the end as some logical functions (Any,
1133 // All) set dim to 1 instead of 0 when the argument is not present.
1134 if (funcNameBase.ends_with("Dim") || !(rank > 0))
1135 return;
1137 mlir::Value inputBox = findBoxDef(args[0]);
1138 mlir::Type elementType = hlfir::getFortranElementType(inputBox.getType());
1140 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
1142 // Treating logicals as integers makes things a lot easier
1143 fir::LogicalType logicalType = {
1144 mlir::dyn_cast<fir::LogicalType>(elementType)};
1145 fir::KindTy kind = logicalType.getFKind();
1146 mlir::Type intElementType = builder.getIntegerType(kind * 8);
1148 // Mangle kind into function name as it is not done by default
1149 std::string funcName =
1150 (mlir::Twine{callee.getLeafReference().getValue(), "Logical"} +
1151 mlir::Twine{kind} + "x" + mlir::Twine{rank})
1152 .str();
1154 simplifyReductionBody(call, kindMap, genBodyFunc, builder, funcName,
1155 intElementType);
1158 void SimplifyIntrinsicsPass::simplifyMinMaxlocReduction(
1159 fir::CallOp call, const fir::KindMapping &kindMap, bool isMax) {
1161 mlir::Operation::operand_range args = call.getArgs();
1163 mlir::SymbolRefAttr callee = call.getCalleeAttr();
1164 mlir::StringRef funcNameBase = callee.getLeafReference().getValue();
1165 bool isDim = funcNameBase.ends_with("Dim");
1166 mlir::Value back = args[isDim ? 7 : 6];
1167 if (isTrueOrNotConstant(back))
1168 return;
1170 mlir::Value mask = args[isDim ? 6 : 5];
1171 mlir::Value maskDef = findMaskDef(mask);
1173 // maskDef is set to NULL when the defining op is not one we accept.
1174 // This tends to be because it is a selectOp, in which case let the
1175 // runtime deal with it.
1176 if (maskDef == NULL)
1177 return;
1179 unsigned rank = getDimCount(args[1]);
1180 if ((isDim && rank != 1) || !(rank > 0))
1181 return;
1183 fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
1184 mlir::Location loc = call.getLoc();
1185 auto inputBox = findBoxDef(args[1]);
1186 mlir::Type inputType = hlfir::getFortranElementType(inputBox.getType());
1188 if (mlir::isa<fir::CharacterType>(inputType))
1189 return;
1191 int maskRank;
1192 fir::KindTy kind = 0;
1193 mlir::Type logicalElemType = builder.getI1Type();
1194 if (isOperandAbsent(mask)) {
1195 maskRank = -1;
1196 } else {
1197 maskRank = getDimCount(mask);
1198 mlir::Type maskElemTy = hlfir::getFortranElementType(maskDef.getType());
1199 fir::LogicalType logicalFirType = {
1200 mlir::dyn_cast<fir::LogicalType>(maskElemTy)};
1201 kind = logicalFirType.getFKind();
1202 // Convert fir::LogicalType to mlir::Type
1203 logicalElemType = logicalFirType;
1206 mlir::Operation *outputDef = args[0].getDefiningOp();
1207 mlir::Value outputAlloc = outputDef->getOperand(0);
1208 mlir::Type outType = hlfir::getFortranElementType(outputAlloc.getType());
1210 std::string fmfString{builder.getFastMathFlagsString()};
1211 std::string funcName =
1212 (mlir::Twine{callee.getLeafReference().getValue(), "x"} +
1213 mlir::Twine{rank} +
1214 (maskRank >= 0
1215 ? "_Logical" + mlir::Twine{kind} + "x" + mlir::Twine{maskRank}
1216 : "") +
1217 "_")
1218 .str();
1220 llvm::raw_string_ostream nameOS(funcName);
1221 outType.print(nameOS);
1222 if (isDim)
1223 nameOS << '_' << inputType;
1224 nameOS << '_' << fmfString;
1226 auto typeGenerator = [rank](fir::FirOpBuilder &builder) {
1227 return genRuntimeMinlocType(builder, rank);
1229 auto bodyGenerator = [rank, maskRank, inputType, logicalElemType, outType,
1230 isMax, isDim](fir::FirOpBuilder &builder,
1231 mlir::func::FuncOp &funcOp) {
1232 genRuntimeMinMaxlocBody(builder, funcOp, isMax, rank, maskRank, inputType,
1233 logicalElemType, outType, isDim);
1236 mlir::func::FuncOp newFunc =
1237 getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
1238 builder.create<fir::CallOp>(loc, newFunc,
1239 mlir::ValueRange{args[0], args[1], mask});
1240 call->dropAllReferences();
1241 call->erase();
1244 void SimplifyIntrinsicsPass::simplifyReductionBody(
1245 fir::CallOp call, const fir::KindMapping &kindMap,
1246 GenReductionBodyTy genBodyFunc, fir::FirOpBuilder &builder,
1247 const mlir::StringRef &funcName, mlir::Type elementType) {
1249 mlir::Operation::operand_range args = call.getArgs();
1251 mlir::Type resultType = call.getResult(0).getType();
1252 unsigned rank = getDimCount(args[0]);
1254 mlir::Location loc = call.getLoc();
1256 auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
1257 return genNoneBoxType(builder, resultType);
1259 auto bodyGenerator = [&rank, &genBodyFunc,
1260 &elementType](fir::FirOpBuilder &builder,
1261 mlir::func::FuncOp &funcOp) {
1262 genBodyFunc(builder, funcOp, rank, elementType);
1264 // Mangle the function name with the rank value as "x<rank>".
1265 mlir::func::FuncOp newFunc =
1266 getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
1267 auto newCall =
1268 builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
1269 call->replaceAllUsesWith(newCall.getResults());
1270 call->dropAllReferences();
1271 call->erase();
1274 void SimplifyIntrinsicsPass::runOnOperation() {
1275 LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
1276 mlir::ModuleOp module = getOperation();
1277 fir::KindMapping kindMap = fir::getKindMapping(module);
1278 module.walk([&](mlir::Operation *op) {
1279 if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
1280 if (cuf::isInCUDADeviceContext(op))
1281 return;
1282 if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
1283 mlir::StringRef funcName = callee.getLeafReference().getValue();
1284 // Replace call to runtime function for SUM when it has single
1285 // argument (no dim or mask argument) for 1D arrays with either
1286 // Integer4 or Real8 types. Other forms are ignored.
1287 // The new function is added to the module.
1289 // Prototype for runtime call (from sum.cpp):
1290 // RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
1291 // int dim, const Descriptor *mask)
1293 if (funcName.starts_with(RTNAME_STRING(Sum))) {
1294 simplifyIntOrFloatReduction(call, kindMap, genRuntimeSumBody);
1295 return;
1297 if (funcName.starts_with(RTNAME_STRING(DotProduct))) {
1298 LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
1299 LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
1300 llvm::dbgs() << "\n");
1301 mlir::Operation::operand_range args = call.getArgs();
1302 const mlir::Value &v1 = args[0];
1303 const mlir::Value &v2 = args[1];
1304 mlir::Location loc = call.getLoc();
1305 fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
1306 // Stringize the builder's FastMathFlags flags for mangling
1307 // the generated function name.
1308 std::string fmfString{builder.getFastMathFlagsString()};
1310 mlir::Type type = call.getResult(0).getType();
1311 if (!mlir::isa<mlir::FloatType>(type) &&
1312 !mlir::isa<mlir::IntegerType>(type))
1313 return;
1315 // Try to find the element types of the boxed arguments.
1316 auto arg1Type = getArgElementType(v1);
1317 auto arg2Type = getArgElementType(v2);
1319 if (!arg1Type || !arg2Type)
1320 return;
1322 // Support only floating point and integer arguments
1323 // now (e.g. logical is skipped here).
1324 if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg1Type))
1325 return;
1326 if (!mlir::isa<mlir::FloatType, mlir::IntegerType>(*arg2Type))
1327 return;
1329 auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
1330 return genRuntimeDotType(builder, type);
1332 auto bodyGenerator = [&arg1Type,
1333 &arg2Type](fir::FirOpBuilder &builder,
1334 mlir::func::FuncOp &funcOp) {
1335 genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
1338 // Suffix the function name with the element types
1339 // of the arguments.
1340 std::string typedFuncName(funcName);
1341 llvm::raw_string_ostream nameOS(typedFuncName);
1342 // We must mangle the generated function name with FastMathFlags
1343 // value.
1344 if (!fmfString.empty())
1345 nameOS << '_' << fmfString;
1346 nameOS << '_';
1347 arg1Type->print(nameOS);
1348 nameOS << '_';
1349 arg2Type->print(nameOS);
1351 mlir::func::FuncOp newFunc = getOrCreateFunction(
1352 builder, typedFuncName, typeGenerator, bodyGenerator);
1353 auto newCall = builder.create<fir::CallOp>(loc, newFunc,
1354 mlir::ValueRange{v1, v2});
1355 call->replaceAllUsesWith(newCall.getResults());
1356 call->dropAllReferences();
1357 call->erase();
1359 LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
1360 llvm::dbgs() << "\n");
1361 return;
1363 if (funcName.starts_with(RTNAME_STRING(Maxval))) {
1364 simplifyIntOrFloatReduction(call, kindMap, genRuntimeMaxvalBody);
1365 return;
1367 if (funcName.starts_with(RTNAME_STRING(Count))) {
1368 simplifyLogicalDim0Reduction(call, kindMap, genRuntimeCountBody);
1369 return;
1371 if (funcName.starts_with(RTNAME_STRING(Any))) {
1372 simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAnyBody);
1373 return;
1375 if (funcName.ends_with(RTNAME_STRING(All))) {
1376 simplifyLogicalDim1Reduction(call, kindMap, genRuntimeAllBody);
1377 return;
1379 if (funcName.starts_with(RTNAME_STRING(Minloc))) {
1380 simplifyMinMaxlocReduction(call, kindMap, false);
1381 return;
1383 if (funcName.starts_with(RTNAME_STRING(Maxloc))) {
1384 simplifyMinMaxlocReduction(call, kindMap, true);
1385 return;
1390 LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
1393 void SimplifyIntrinsicsPass::getDependentDialects(
1394 mlir::DialectRegistry &registry) const {
1395 // LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
1396 registry.insert<mlir::LLVM::LLVMDialect>();