1 //===-- Common header for fmod implementations ------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
10 #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/limits.h"
14 #include "src/__support/CPP/type_traits.h"
15 #include "src/__support/FPUtil/FEnvImpl.h"
16 #include "src/__support/FPUtil/FPBits.h"
17 #include "src/__support/macros/config.h"
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
20 namespace LIBC_NAMESPACE_DECL
{
25 // The algorithm uses integer arithmetic (max uint64_t) for general case.
26 // Some common cases, like abs(x) < abs(y) or abs(x) < 1000 * abs(y) are
27 // treated specially to increase performance. The part of checking special
28 // cases, numbers NaN, INF etc. treated separately.
31 // 1) FMod definition (https://cplusplus.com/reference/cmath/fmod/):
32 // fmod = numer - tquot * denom, where tquot is the truncated
33 // (i.e., rounded towards zero) result of: numer/denom.
34 // 2) FMod with negative x and/or y can be trivially converted to fmod for
35 // positive x and y. Therefore the algorithm below works only with
37 // 3) All positive floating point numbers can be represented as m * 2^e,
38 // where "m" is positive integer and "e" is signed.
39 // 4) FMod function can be calculated in integer numbers (x > y):
40 // fmod = m_x * 2^e_x - tquot * m_y * 2^e_y
41 // = 2^e_y * (m_x * 2^(e_x - e^y) - tquot * m_y).
42 // All variables in parentheses are unsigned integers.
44 // Mathematical background:
45 // Input x,y in the algorithm is represented (mathematically) like m_x*2^e_x
46 // and m_y*2^e_y. This is an ambiguous number representation. For example:
47 // m * 2^e = (2 * m) * 2^(e-1)
48 // The algorithm uses the facts that
49 // r = a % b = (a % (N * b)) % b,
50 // (a * c) % (b * c) = (a % b) * c
51 // where N is positive integer number. a, b and c - positive. Let's adopt
52 // the formula for representation above.
53 // a = m_x * 2^e_x, b = m_y * 2^e_y, N = 2^k
54 // r(k) = a % b = (m_x * 2^e_x) % (2^k * m_y * 2^e_y)
55 // = 2^(e_y + k) * (m_x * 2^(e_x - e_y - k) % m_y)
56 // r(k) = m_r * 2^e_r = (m_x % m_y) * 2^(m_y + k)
57 // = (2^p * (m_x % m_y) * 2^(e_y + k - p))
58 // m_r = 2^p * (m_x % m_y), e_r = m_y + k - p
60 // Algorithm description:
61 // First, let write x = m_x * 2^e_x and y = m_y * 2^e_y with m_x, m_y, e_x, e_y
62 // are integers (m_x amd m_y positive).
63 // Then the naive implementation of the fmod function with a simple
65 // while (e_x > e_y) {
66 // m_x *= 2; --e_x; // m_x * 2^e_x == 2 * m_x * 2^(e_x - 1)
69 // On the other hand, the algorithm exploits the fact that m_x, m_y are the
70 // mantissas of floating point numbers, which use less bits than the storage
71 // integers: 24 / 32 for floats and 53 / 64 for doubles, so if in each step of
72 // the iteration, we can left shift m_x as many bits as the storage integer
73 // type can hold, the exponent reduction per step will be at least 32 - 24 = 8
74 // for floats and 64 - 53 = 11 for doubles (double example below):
75 // while (e_x > e_y) {
76 // m_x <<= 11; e_x -= 11; // m_x * 2^e_x == 2^11 * m_x * 2^(e_x - 11)
79 // Some extra improvements are done:
80 // 1) Shift m_y maximum to the right, which can significantly improve
81 // performance for small integer numbers (y = 3 for example).
82 // The m_x shift in the loop can be 62 instead of 11 for double.
83 // 2) For some architectures with very slow division, it can be better to
84 // calculate inverse value ones, and after do multiplication in the loop.
85 // 3) "likely" special cases are treated specially to improve performance.
88 // The examples below use byte for simplicity.
89 // 1) Shift hy maximum to right without losing bits and increase iy value
90 // m_y = 0b00101100 e_y = 20 after shift m_y = 0b00001011 e_y = 22.
91 // 2) m_x = m_x % m_y.
92 // 3) Move m_x maximum to left. Note that after (m_x = m_x % m_y) CLZ in m_x
93 // is not lower than CLZ in m_y. m_x=0b00001001 e_x = 100, m_x=0b10010000,
95 // 4) Repeat (2) until e_x == e_y.
97 // Complexity analysis (double):
98 // Converting x,y to (m_x,e_x),(m_y, e_y): CTZ/shift/AND/OR/if. Loop count:
99 // (m_x - m_y) / (64 - "length of m_y").
100 // max("length of m_y") = 53,
101 // max(e_x - e_y) = 2048
102 // Maximum operation is 186. For rare "unrealistic" cases.
104 // Special cases (double):
105 // Supposing that case where |y| > 1e-292 and |x/y|<2000 is very common
106 // special processing is implemented. No m_y alignment, no loop:
107 // result = (m_x * 2^(e_x - e_y)) % m_y.
108 // When x and y are both subnormal (rare case but...) the
109 // result = m_x % m_y.
110 // Simplified conversion back to double.
112 // Exceptional cases handler according to cppreference.com
113 // https://en.cppreference.com/w/cpp/numeric/math/fmod
114 // and POSIX standard described in Linux man
115 // https://man7.org/linux/man-pages/man3/fmod.3p.html
116 // C standard for the function is not full, so not by default (although it can
117 // be implemented in another handler.
118 // Signaling NaN converted to quiet NaN with FE_INVALID exception.
119 // https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1011.htm
120 template <typename T
> struct FModDivisionSimpleHelper
{
121 LIBC_INLINE
constexpr static T
execute(int exp_diff
, int sides_zeroes_count
,
123 while (exp_diff
> sides_zeroes_count
) {
124 exp_diff
-= sides_zeroes_count
;
125 m_x
<<= sides_zeroes_count
;
134 template <typename T
> struct FModDivisionInvMultHelper
{
135 LIBC_INLINE
constexpr static T
execute(int exp_diff
, int sides_zeroes_count
,
137 constexpr int LENGTH
= sizeof(T
) * CHAR_BIT
;
138 if (exp_diff
> sides_zeroes_count
) {
139 T inv_hy
= (cpp::numeric_limits
<T
>::max() / m_y
);
140 while (exp_diff
> sides_zeroes_count
) {
141 exp_diff
-= sides_zeroes_count
;
142 T hd
= (m_x
* inv_hy
) >> (LENGTH
- sides_zeroes_count
);
143 m_x
<<= sides_zeroes_count
;
145 while (LIBC_UNLIKELY(m_x
> m_y
))
148 T hd
= (m_x
* inv_hy
) >> (LENGTH
- exp_diff
);
151 while (LIBC_UNLIKELY(m_x
> m_y
))
161 template <typename T
, typename U
= typename FPBits
<T
>::StorageType
,
162 typename DivisionHelper
= FModDivisionSimpleHelper
<U
>>
164 static_assert(cpp::is_floating_point_v
<T
> &&
165 is_unsigned_integral_or_big_int_v
<U
> &&
166 (sizeof(U
) * CHAR_BIT
> FPBits
<T
>::FRACTION_LEN
),
167 "FMod instantiated with invalid type.");
170 using FPB
= FPBits
<T
>;
171 using StorageType
= typename
FPB::StorageType
;
173 LIBC_INLINE
static bool pre_check(T x
, T y
, T
&out
) {
174 using FPB
= fputil::FPBits
<T
>;
175 const T quiet_nan
= FPB::quiet_nan().get_val();
177 if (LIBC_LIKELY(!sy
.is_zero() && !sy
.is_inf_or_nan() &&
178 !sx
.is_inf_or_nan()))
181 if (sx
.is_nan() || sy
.is_nan()) {
182 if (sx
.is_signaling_nan() || sy
.is_signaling_nan())
183 fputil::raise_except_if_required(FE_INVALID
);
188 if (sx
.is_inf() || sy
.is_zero()) {
189 fputil::raise_except_if_required(FE_INVALID
);
190 fputil::set_errno_if_required(EDOM
);
199 LIBC_INLINE
static constexpr FPB
eval_internal(FPB sx
, FPB sy
) {
201 if (LIBC_LIKELY(sx
.uintval() <= sy
.uintval())) {
202 if (sx
.uintval() < sy
.uintval())
203 return sx
; // |x|<|y| return x
204 return FPB::zero(); // |x|=|y| return 0.0
207 int e_x
= sx
.get_biased_exponent();
208 int e_y
= sy
.get_biased_exponent();
210 // Most common case where |y| is "very normal" and |x/y| < 2^EXP_LEN
211 if (LIBC_LIKELY(e_y
> int(FPB::FRACTION_LEN
) &&
212 e_x
- e_y
<= int(FPB::EXP_LEN
))) {
213 StorageType m_x
= sx
.get_explicit_mantissa();
214 StorageType m_y
= sy
.get_explicit_mantissa();
215 StorageType d
= (e_x
== e_y
)
217 : static_cast<StorageType
>(m_x
<< (e_x
- e_y
)) % m_y
;
220 // iy - 1 because of "zero power" for number with power 1
221 return FPB::make_value(d
, e_y
- 1);
223 // Both subnormal special case.
224 if (LIBC_UNLIKELY(e_x
== 0 && e_y
== 0)) {
226 d
.set_mantissa(sx
.uintval() % sy
.uintval());
230 // Note that hx is not subnormal by conditions above.
231 U m_x
= static_cast<U
>(sx
.get_explicit_mantissa());
234 U m_y
= static_cast<U
>(sy
.get_explicit_mantissa());
235 constexpr int DEFAULT_LEAD_ZEROS
=
236 sizeof(U
) * CHAR_BIT
- FPB::FRACTION_LEN
- 1;
237 int lead_zeros_m_y
= DEFAULT_LEAD_ZEROS
;
238 if (LIBC_LIKELY(e_y
> 0)) {
241 m_y
= static_cast<U
>(sy
.get_mantissa());
242 lead_zeros_m_y
= cpp::countl_zero(m_y
);
246 int tail_zeros_m_y
= cpp::countr_zero(m_y
);
247 int sides_zeroes_count
= lead_zeros_m_y
+ tail_zeros_m_y
;
248 // n > 0 by conditions above
249 int exp_diff
= e_x
- e_y
;
251 // Shift hy right until the end or n = 0
252 int right_shift
= exp_diff
< tail_zeros_m_y
? exp_diff
: tail_zeros_m_y
;
254 exp_diff
-= right_shift
;
259 // Shift hx left until the end or n = 0
261 exp_diff
< DEFAULT_LEAD_ZEROS
? exp_diff
: DEFAULT_LEAD_ZEROS
;
263 exp_diff
-= left_shift
;
267 if (LIBC_UNLIKELY(m_x
== 0))
271 return FPB::make_value(static_cast<StorageType
>(m_x
), e_y
);
273 // hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0
274 m_x
= DivisionHelper::execute(exp_diff
, sides_zeroes_count
, m_x
, m_y
);
275 return FPB::make_value(static_cast<StorageType
>(m_x
), e_y
);
279 LIBC_INLINE
static T
eval(T x
, T y
) {
280 if (T out
; LIBC_UNLIKELY(pre_check(x
, y
, out
)))
283 Sign sign
= sx
.sign();
284 sx
.set_sign(Sign::POS
);
285 sy
.set_sign(Sign::POS
);
286 FPB result
= eval_internal(sx
, sy
);
287 result
.set_sign(sign
);
288 return result
.get_val();
292 } // namespace generic
293 } // namespace fputil
294 } // namespace LIBC_NAMESPACE_DECL
296 #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H