Reland [OffloadBundler] Compress bundles over 4GB (#122307)
[llvm-project.git] / libc / src / __support / FPUtil / generic / FMod.h
blob30d6472085f6f3319d14733cb0b538b5bb30cd27
1 //===-- Common header for fmod implementations ------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
10 #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/limits.h"
14 #include "src/__support/CPP/type_traits.h"
15 #include "src/__support/FPUtil/FEnvImpl.h"
16 #include "src/__support/FPUtil/FPBits.h"
17 #include "src/__support/macros/config.h"
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
20 namespace LIBC_NAMESPACE_DECL {
21 namespace fputil {
22 namespace generic {
24 // Objective:
25 // The algorithm uses integer arithmetic (max uint64_t) for general case.
26 // Some common cases, like abs(x) < abs(y) or abs(x) < 1000 * abs(y) are
27 // treated specially to increase performance. The part of checking special
28 // cases, numbers NaN, INF etc. treated separately.
30 // Objective:
31 // 1) FMod definition (https://cplusplus.com/reference/cmath/fmod/):
32 // fmod = numer - tquot * denom, where tquot is the truncated
33 // (i.e., rounded towards zero) result of: numer/denom.
34 // 2) FMod with negative x and/or y can be trivially converted to fmod for
35 // positive x and y. Therefore the algorithm below works only with
36 // positive numbers.
37 // 3) All positive floating point numbers can be represented as m * 2^e,
38 // where "m" is positive integer and "e" is signed.
39 // 4) FMod function can be calculated in integer numbers (x > y):
40 // fmod = m_x * 2^e_x - tquot * m_y * 2^e_y
41 // = 2^e_y * (m_x * 2^(e_x - e^y) - tquot * m_y).
42 // All variables in parentheses are unsigned integers.
44 // Mathematical background:
45 // Input x,y in the algorithm is represented (mathematically) like m_x*2^e_x
46 // and m_y*2^e_y. This is an ambiguous number representation. For example:
47 // m * 2^e = (2 * m) * 2^(e-1)
48 // The algorithm uses the facts that
49 // r = a % b = (a % (N * b)) % b,
50 // (a * c) % (b * c) = (a % b) * c
51 // where N is positive integer number. a, b and c - positive. Let's adopt
52 // the formula for representation above.
53 // a = m_x * 2^e_x, b = m_y * 2^e_y, N = 2^k
54 // r(k) = a % b = (m_x * 2^e_x) % (2^k * m_y * 2^e_y)
55 // = 2^(e_y + k) * (m_x * 2^(e_x - e_y - k) % m_y)
56 // r(k) = m_r * 2^e_r = (m_x % m_y) * 2^(m_y + k)
57 // = (2^p * (m_x % m_y) * 2^(e_y + k - p))
58 // m_r = 2^p * (m_x % m_y), e_r = m_y + k - p
60 // Algorithm description:
61 // First, let write x = m_x * 2^e_x and y = m_y * 2^e_y with m_x, m_y, e_x, e_y
62 // are integers (m_x amd m_y positive).
63 // Then the naive implementation of the fmod function with a simple
64 // for/while loop:
65 // while (e_x > e_y) {
66 // m_x *= 2; --e_x; // m_x * 2^e_x == 2 * m_x * 2^(e_x - 1)
67 // m_x %= m_y;
68 // }
69 // On the other hand, the algorithm exploits the fact that m_x, m_y are the
70 // mantissas of floating point numbers, which use less bits than the storage
71 // integers: 24 / 32 for floats and 53 / 64 for doubles, so if in each step of
72 // the iteration, we can left shift m_x as many bits as the storage integer
73 // type can hold, the exponent reduction per step will be at least 32 - 24 = 8
74 // for floats and 64 - 53 = 11 for doubles (double example below):
75 // while (e_x > e_y) {
76 // m_x <<= 11; e_x -= 11; // m_x * 2^e_x == 2^11 * m_x * 2^(e_x - 11)
77 // m_x %= m_y;
78 // }
79 // Some extra improvements are done:
80 // 1) Shift m_y maximum to the right, which can significantly improve
81 // performance for small integer numbers (y = 3 for example).
82 // The m_x shift in the loop can be 62 instead of 11 for double.
83 // 2) For some architectures with very slow division, it can be better to
84 // calculate inverse value ones, and after do multiplication in the loop.
85 // 3) "likely" special cases are treated specially to improve performance.
87 // Simple example:
88 // The examples below use byte for simplicity.
89 // 1) Shift hy maximum to right without losing bits and increase iy value
90 // m_y = 0b00101100 e_y = 20 after shift m_y = 0b00001011 e_y = 22.
91 // 2) m_x = m_x % m_y.
92 // 3) Move m_x maximum to left. Note that after (m_x = m_x % m_y) CLZ in m_x
93 // is not lower than CLZ in m_y. m_x=0b00001001 e_x = 100, m_x=0b10010000,
94 // e_x = 100-4 = 96.
95 // 4) Repeat (2) until e_x == e_y.
97 // Complexity analysis (double):
98 // Converting x,y to (m_x,e_x),(m_y, e_y): CTZ/shift/AND/OR/if. Loop count:
99 // (m_x - m_y) / (64 - "length of m_y").
100 // max("length of m_y") = 53,
101 // max(e_x - e_y) = 2048
102 // Maximum operation is 186. For rare "unrealistic" cases.
104 // Special cases (double):
105 // Supposing that case where |y| > 1e-292 and |x/y|<2000 is very common
106 // special processing is implemented. No m_y alignment, no loop:
107 // result = (m_x * 2^(e_x - e_y)) % m_y.
108 // When x and y are both subnormal (rare case but...) the
109 // result = m_x % m_y.
110 // Simplified conversion back to double.
112 // Exceptional cases handler according to cppreference.com
113 // https://en.cppreference.com/w/cpp/numeric/math/fmod
114 // and POSIX standard described in Linux man
115 // https://man7.org/linux/man-pages/man3/fmod.3p.html
116 // C standard for the function is not full, so not by default (although it can
117 // be implemented in another handler.
118 // Signaling NaN converted to quiet NaN with FE_INVALID exception.
119 // https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1011.htm
120 template <typename T> struct FModDivisionSimpleHelper {
121 LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count,
122 T m_x, T m_y) {
123 while (exp_diff > sides_zeroes_count) {
124 exp_diff -= sides_zeroes_count;
125 m_x <<= sides_zeroes_count;
126 m_x %= m_y;
128 m_x <<= exp_diff;
129 m_x %= m_y;
130 return m_x;
134 template <typename T> struct FModDivisionInvMultHelper {
135 LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count,
136 T m_x, T m_y) {
137 constexpr int LENGTH = sizeof(T) * CHAR_BIT;
138 if (exp_diff > sides_zeroes_count) {
139 T inv_hy = (cpp::numeric_limits<T>::max() / m_y);
140 while (exp_diff > sides_zeroes_count) {
141 exp_diff -= sides_zeroes_count;
142 T hd = (m_x * inv_hy) >> (LENGTH - sides_zeroes_count);
143 m_x <<= sides_zeroes_count;
144 m_x -= hd * m_y;
145 while (LIBC_UNLIKELY(m_x > m_y))
146 m_x -= m_y;
148 T hd = (m_x * inv_hy) >> (LENGTH - exp_diff);
149 m_x <<= exp_diff;
150 m_x -= hd * m_y;
151 while (LIBC_UNLIKELY(m_x > m_y))
152 m_x -= m_y;
153 } else {
154 m_x <<= exp_diff;
155 m_x %= m_y;
157 return m_x;
161 template <typename T, typename U = typename FPBits<T>::StorageType,
162 typename DivisionHelper = FModDivisionSimpleHelper<U>>
163 class FMod {
164 static_assert(cpp::is_floating_point_v<T> &&
165 is_unsigned_integral_or_big_int_v<U> &&
166 (sizeof(U) * CHAR_BIT > FPBits<T>::FRACTION_LEN),
167 "FMod instantiated with invalid type.");
169 private:
170 using FPB = FPBits<T>;
171 using StorageType = typename FPB::StorageType;
173 LIBC_INLINE static bool pre_check(T x, T y, T &out) {
174 using FPB = fputil::FPBits<T>;
175 const T quiet_nan = FPB::quiet_nan().get_val();
176 FPB sx(x), sy(y);
177 if (LIBC_LIKELY(!sy.is_zero() && !sy.is_inf_or_nan() &&
178 !sx.is_inf_or_nan()))
179 return false;
181 if (sx.is_nan() || sy.is_nan()) {
182 if (sx.is_signaling_nan() || sy.is_signaling_nan())
183 fputil::raise_except_if_required(FE_INVALID);
184 out = quiet_nan;
185 return true;
188 if (sx.is_inf() || sy.is_zero()) {
189 fputil::raise_except_if_required(FE_INVALID);
190 fputil::set_errno_if_required(EDOM);
191 out = quiet_nan;
192 return true;
195 out = x;
196 return true;
199 LIBC_INLINE static constexpr FPB eval_internal(FPB sx, FPB sy) {
201 if (LIBC_LIKELY(sx.uintval() <= sy.uintval())) {
202 if (sx.uintval() < sy.uintval())
203 return sx; // |x|<|y| return x
204 return FPB::zero(); // |x|=|y| return 0.0
207 int e_x = sx.get_biased_exponent();
208 int e_y = sy.get_biased_exponent();
210 // Most common case where |y| is "very normal" and |x/y| < 2^EXP_LEN
211 if (LIBC_LIKELY(e_y > int(FPB::FRACTION_LEN) &&
212 e_x - e_y <= int(FPB::EXP_LEN))) {
213 StorageType m_x = sx.get_explicit_mantissa();
214 StorageType m_y = sy.get_explicit_mantissa();
215 StorageType d = (e_x == e_y)
216 ? (m_x - m_y)
217 : static_cast<StorageType>(m_x << (e_x - e_y)) % m_y;
218 if (d == 0)
219 return FPB::zero();
220 // iy - 1 because of "zero power" for number with power 1
221 return FPB::make_value(d, e_y - 1);
223 // Both subnormal special case.
224 if (LIBC_UNLIKELY(e_x == 0 && e_y == 0)) {
225 FPB d;
226 d.set_mantissa(sx.uintval() % sy.uintval());
227 return d;
230 // Note that hx is not subnormal by conditions above.
231 U m_x = static_cast<U>(sx.get_explicit_mantissa());
232 e_x--;
234 U m_y = static_cast<U>(sy.get_explicit_mantissa());
235 constexpr int DEFAULT_LEAD_ZEROS =
236 sizeof(U) * CHAR_BIT - FPB::FRACTION_LEN - 1;
237 int lead_zeros_m_y = DEFAULT_LEAD_ZEROS;
238 if (LIBC_LIKELY(e_y > 0)) {
239 e_y--;
240 } else {
241 m_y = static_cast<U>(sy.get_mantissa());
242 lead_zeros_m_y = cpp::countl_zero(m_y);
245 // Assume hy != 0
246 int tail_zeros_m_y = cpp::countr_zero(m_y);
247 int sides_zeroes_count = lead_zeros_m_y + tail_zeros_m_y;
248 // n > 0 by conditions above
249 int exp_diff = e_x - e_y;
251 // Shift hy right until the end or n = 0
252 int right_shift = exp_diff < tail_zeros_m_y ? exp_diff : tail_zeros_m_y;
253 m_y >>= right_shift;
254 exp_diff -= right_shift;
255 e_y += right_shift;
259 // Shift hx left until the end or n = 0
260 int left_shift =
261 exp_diff < DEFAULT_LEAD_ZEROS ? exp_diff : DEFAULT_LEAD_ZEROS;
262 m_x <<= left_shift;
263 exp_diff -= left_shift;
266 m_x %= m_y;
267 if (LIBC_UNLIKELY(m_x == 0))
268 return FPB::zero();
270 if (exp_diff == 0)
271 return FPB::make_value(static_cast<StorageType>(m_x), e_y);
273 // hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0
274 m_x = DivisionHelper::execute(exp_diff, sides_zeroes_count, m_x, m_y);
275 return FPB::make_value(static_cast<StorageType>(m_x), e_y);
278 public:
279 LIBC_INLINE static T eval(T x, T y) {
280 if (T out; LIBC_UNLIKELY(pre_check(x, y, out)))
281 return out;
282 FPB sx(x), sy(y);
283 Sign sign = sx.sign();
284 sx.set_sign(Sign::POS);
285 sy.set_sign(Sign::POS);
286 FPB result = eval_internal(sx, sy);
287 result.set_sign(sign);
288 return result.get_val();
292 } // namespace generic
293 } // namespace fputil
294 } // namespace LIBC_NAMESPACE_DECL
296 #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H