1 //===-- Double-precision 10^x function ------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/exp10.h"
10 #include "common_constants.h" // Lookup tables EXP2_MID1 and EXP_M2.
11 #include "explogxf.h" // ziv_test_denorm.
12 #include "src/__support/CPP/bit.h"
13 #include "src/__support/CPP/optional.h"
14 #include "src/__support/FPUtil/FEnvImpl.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/FPUtil/PolyEval.h"
17 #include "src/__support/FPUtil/double_double.h"
18 #include "src/__support/FPUtil/dyadic_float.h"
19 #include "src/__support/FPUtil/multiply_add.h"
20 #include "src/__support/FPUtil/nearest_integer.h"
21 #include "src/__support/FPUtil/rounding_mode.h"
22 #include "src/__support/FPUtil/triple_double.h"
23 #include "src/__support/common.h"
24 #include "src/__support/integer_literals.h"
25 #include "src/__support/macros/config.h"
26 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
28 namespace LIBC_NAMESPACE_DECL
{
30 using fputil::DoubleDouble
;
31 using fputil::TripleDouble
;
32 using Float128
= typename
fputil::DyadicFloat
<128>;
34 using LIBC_NAMESPACE::operator""_u128
;
37 constexpr double LOG2_10
= 0x1.a934f0979a371p
+1;
40 // > a = -2^-12 * log10(2);
41 // > b = round(a, 32, RN);
42 // > c = round(a - b, 32, RN);
43 // > d = round(a - b - c, D, RN);
44 // Errors < 1.5 * 2^-144
45 constexpr double MLOG10_2_EXP2_M12_HI
= -0x1.3441350ap
-14;
46 constexpr double MLOG10_2_EXP2_M12_MID
= 0x1.0c0219dc1da99p
-51;
47 constexpr double MLOG10_2_EXP2_M12_MID_32
= 0x1.0c0219dcp
-51;
48 constexpr double MLOG10_2_EXP2_M12_LO
= 0x1.da994fd20dba2p
-87;
51 // Errors when using double precision.
52 constexpr double ERR_D
= 0x1.8p
-63;
54 // Errors when using double-double precision.
55 constexpr double ERR_DD
= 0x1.8p
-99;
59 // Polynomial approximations with double precision. Generated by Sollya with:
60 // > P = fpminimax((10^x - 1)/x, 3, [|D...|], [-2^-14, 2^-14]);
63 // | output - (10^dx - 1) / dx | < 2^-52.
64 LIBC_INLINE
double poly_approx_d(double dx
) {
68 fputil::multiply_add(dx
, 0x1.53524c73cea6ap
+1, 0x1.26bb1bbb55516p
+1);
70 fputil::multiply_add(dx
, 0x1.2bd75cc6afc65p
+0, 0x1.0470587aa264cp
+1);
71 double p
= fputil::multiply_add(dx2
, c1
, c0
);
75 // Polynomial approximation with double-double precision. Generated by Solya
77 // > P = fpminimax((10^x - 1)/x, 5, [|DD...|], [-2^-14, 2^-14]);
79 // | output - 10^(dx) | < 2^-101
80 DoubleDouble
poly_approx_dd(const DoubleDouble
&dx
) {
82 constexpr DoubleDouble COEFFS
[] = {
84 {-0x1.f48ad494e927bp
-53, 0x1.26bb1bbb55516p1
},
85 {-0x1.e2bfab3191cd2p
-53, 0x1.53524c73cea69p1
},
86 {0x1.80fb65ec3b503p
-53, 0x1.0470591de2ca4p1
},
87 {0x1.338fc05e21e55p
-54, 0x1.2bd7609fd98c4p0
},
88 {0x1.d4ea116818fbp
-56, 0x1.1429ffd519865p
-1},
89 {-0x1.872a8ff352077p
-57, 0x1.a7ed70847c8b3p
-3},
93 DoubleDouble p
= fputil::polyeval(dx
, COEFFS
[0], COEFFS
[1], COEFFS
[2],
94 COEFFS
[3], COEFFS
[4], COEFFS
[5], COEFFS
[6]);
98 // Polynomial approximation with 128-bit precision:
99 // Return exp(dx) ~ 1 + a0 * dx + a1 * dx^2 + ... + a6 * dx^7
101 // | output - 10^dx | < 1.5 * 2^-124.
102 Float128
poly_approx_f128(const Float128
&dx
) {
103 constexpr Float128 COEFFS_128
[]{
104 {Sign::POS
, -127, 0x80000000'00000000'00000000'00000000_u128
}, // 1.0
105 {Sign::POS
, -126, 0x935d8ddd'aaa8ac16'ea56d62b'82d30a2d_u
128},
106 {Sign::POS
, -126, 0xa9a92639'e753443a'80a99ce7'5f4d5bdb_u
128},
107 {Sign::POS
, -126, 0x82382c8e'f1652304'6a4f9d7d'bf6c9635_u
128},
108 {Sign::POS
, -124, 0x12bd7609'fd98c44c'34578701'9216c7af_u
128},
109 {Sign::POS
, -127, 0x450a7ff4'7535d889'cc41ed7e'0d27aee5_u
128},
110 {Sign::POS
, -130, 0xd3f6b844'702d636b'8326bb91'a6e7601d_u
128},
111 {Sign::POS
, -130, 0x45b937f0'd05bb1cd'fa7b46df'314112a9_u
128},
114 Float128 p
= fputil::polyeval(dx
, COEFFS_128
[0], COEFFS_128
[1], COEFFS_128
[2],
115 COEFFS_128
[3], COEFFS_128
[4], COEFFS_128
[5],
116 COEFFS_128
[6], COEFFS_128
[7]);
120 // Compute 10^(x) using 128-bit precision.
121 // TODO(lntue): investigate triple-double precision implementation for this
123 Float128
exp10_f128(double x
, double kd
, int idx1
, int idx2
) {
124 double t1
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_HI
, x
); // exact
125 double t2
= kd
* MLOG10_2_EXP2_M12_MID_32
; // exact
126 double t3
= kd
* MLOG10_2_EXP2_M12_LO
; // Error < 2^-144
128 Float128 dx
= fputil::quick_add(
129 Float128(t1
), fputil::quick_add(Float128(t2
), Float128(t3
)));
131 // TODO: Skip recalculating exp_mid1 and exp_mid2.
133 fputil::quick_add(Float128(EXP2_MID1
[idx1
].hi
),
134 fputil::quick_add(Float128(EXP2_MID1
[idx1
].mid
),
135 Float128(EXP2_MID1
[idx1
].lo
)));
138 fputil::quick_add(Float128(EXP2_MID2
[idx2
].hi
),
139 fputil::quick_add(Float128(EXP2_MID2
[idx2
].mid
),
140 Float128(EXP2_MID2
[idx2
].lo
)));
142 Float128 exp_mid
= fputil::quick_mul(exp_mid1
, exp_mid2
);
144 Float128 p
= poly_approx_f128(dx
);
146 Float128 r
= fputil::quick_mul(exp_mid
, p
);
148 r
.exponent
+= static_cast<int>(kd
) >> 12;
153 // Compute 10^x with double-double precision.
154 DoubleDouble
exp10_double_double(double x
, double kd
,
155 const DoubleDouble
&exp_mid
) {
157 // dx = x - k * 2^-12 * log10(2)
158 double t1
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_HI
, x
); // exact
159 double t2
= kd
* MLOG10_2_EXP2_M12_MID_32
; // exact
160 double t3
= kd
* MLOG10_2_EXP2_M12_LO
; // Error < 2^-140
162 DoubleDouble dx
= fputil::exact_add(t1
, t2
);
165 // Degree-6 polynomial approximation in double-double precision.
166 // | p - 10^x | < 2^-103.
167 DoubleDouble p
= poly_approx_dd(dx
);
169 // Error bounds: 2^-102.
170 DoubleDouble r
= fputil::quick_mult(exp_mid
, p
);
175 // When output is denormal.
176 double exp10_denorm(double x
) {
178 double tmp
= fputil::multiply_add(x
, LOG2_10
, 0x1.8000'0000'4p21
);
179 int k
= static_cast<int>(cpp::bit_cast
<uint64_t>(tmp
) >> 19);
180 double kd
= static_cast<double>(k
);
182 uint32_t idx1
= (k
>> 6) & 0x3f;
183 uint32_t idx2
= k
& 0x3f;
187 DoubleDouble exp_mid1
{EXP2_MID1
[idx1
].mid
, EXP2_MID1
[idx1
].hi
};
188 DoubleDouble exp_mid2
{EXP2_MID2
[idx2
].mid
, EXP2_MID2
[idx2
].hi
};
189 DoubleDouble exp_mid
= fputil::quick_mult(exp_mid1
, exp_mid2
);
191 // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
192 double lo_h
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_HI
, x
); // exact
193 double dx
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_MID
, lo_h
);
195 double mid_lo
= dx
* exp_mid
.hi
;
197 // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
198 double p
= poly_approx_d(dx
);
200 double lo
= fputil::multiply_add(p
, mid_lo
, exp_mid
.lo
);
202 if (auto r
= ziv_test_denorm(hi
, exp_mid
.hi
, lo
, ERR_D
);
203 LIBC_LIKELY(r
.has_value()))
207 DoubleDouble r_dd
= exp10_double_double(x
, kd
, exp_mid
);
209 if (auto r
= ziv_test_denorm(hi
, r_dd
.hi
, r_dd
.lo
, ERR_DD
);
210 LIBC_LIKELY(r
.has_value()))
213 // Use 128-bit precision
214 Float128 r_f128
= exp10_f128(x
, kd
, idx1
, idx2
);
216 return static_cast<double>(r_f128
);
219 // Check for exceptional cases when:
220 // * log10(1 - 2^-54) < x < log10(1 + 2^-53)
221 // * x >= log10(2^1024)
222 // * x <= log10(2^-1022)
224 double set_exceptional(double x
) {
225 using FPBits
= typename
fputil::FPBits
<double>;
228 uint64_t x_u
= xbits
.uintval();
229 uint64_t x_abs
= xbits
.abs().uintval();
231 // |x| < log10(1 + 2^-53)
232 if (x_abs
<= 0x3c8bcb7b1526e50e) {
234 return fputil::multiply_add(x
, 0.5, 1.0);
237 // x <= log10(2^-1022) || x >= log10(2^1024) or inf/nan.
238 if (x_u
>= 0xc0733a7146f72a42) {
239 // x <= log10(2^-1075) or -inf/nan
240 if (x_u
> 0xc07439b746e36b52) {
249 if (fputil::quick_get_round() == FE_UPWARD
)
250 return FPBits::min_subnormal().get_val();
251 fputil::set_errno_if_required(ERANGE
);
252 fputil::raise_except_if_required(FE_UNDERFLOW
);
256 return exp10_denorm(x
);
259 // x >= log10(2^1024) or +inf/nan
261 if (x_u
< 0x7ff0'0000'0000'0000ULL
) {
262 int rounding
= fputil::quick_get_round();
263 if (rounding
== FE_DOWNWARD
|| rounding
== FE_TOWARDZERO
)
264 return FPBits::max_normal().get_val();
266 fputil::set_errno_if_required(ERANGE
);
267 fputil::raise_except_if_required(FE_OVERFLOW
);
270 return x
+ FPBits::inf().get_val();
275 LLVM_LIBC_FUNCTION(double, exp10
, (double x
)) {
276 using FPBits
= typename
fputil::FPBits
<double>;
279 uint64_t x_u
= xbits
.uintval();
281 // x <= log10(2^-1022) or x >= log10(2^1024) or
282 // log10(1 - 2^-54) < x < log10(1 + 2^-53).
283 if (LIBC_UNLIKELY(x_u
>= 0xc0733a7146f72a42 ||
284 (x_u
<= 0xbc7bcb7b1526e50e && x_u
>= 0x40734413509f79ff) ||
285 x_u
< 0x3c8bcb7b1526e50e)) {
286 return set_exceptional(x
);
289 // Now log10(2^-1075) < x <= log10(1 - 2^-54) or
290 // log10(1 + 2^-53) < x < log10(2^1024)
293 // Let x = log10(2) * (hi + mid1 + mid2) + lo
296 // mid1 * 2^6 is an integer
297 // mid2 * 2^12 is an integer
299 // 10^(x) = 2^hi * 2^(mid1) * 2^(mid2) * 10^(lo).
300 // With this formula:
301 // - multiplying by 2^hi is exact and cheap, simply by adding the exponent
303 // - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
304 // - 10^(lo) ~ 1 + a0*lo + a1 * lo^2 + ...
306 // We compute (hi + mid1 + mid2) together by perform the rounding on
307 // x * log2(10) * 2^12.
308 // Since |x| < |log10(2^-1075)| < 2^9,
309 // |x * 2^12| < 2^9 * 2^12 < 2^21,
310 // So we can fit the rounded result round(x * 2^12) in int32_t.
311 // Thus, the goal is to be able to use an additional addition and fixed width
312 // shift to get an int32_t representing round(x * 2^12).
314 // Assuming int32_t using 2-complement representation, since the mantissa part
315 // of a double precision is unsigned with the leading bit hidden, if we add an
316 // extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^23 to the product, the
317 // part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
318 // considered as a proper 2-complement representations of x*2^12.
320 // One small problem with this approach is that the sum (x*2^12 + C) in
321 // double precision is rounded to the least significant bit of the dorminant
322 // factor C. In order to minimize the rounding errors from this addition, we
323 // want to minimize e1. Another constraint that we want is that after
324 // shifting the mantissa so that the least significant bit of int32_t
325 // corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
326 // any adjustment. So combining these 2 requirements, we can choose
327 // C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
328 // after right shifting the mantissa, the resulting int32_t has correct sign.
329 // With this choice of C, the number of mantissa bits we need to shift to the
330 // right is: 52 - 33 = 19.
332 // Moreover, since the integer right shifts are equivalent to rounding down,
333 // we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
334 // +infinity. So in particular, we can compute:
335 // hmm = x * 2^12 + C,
336 // where C = 2^33 + 2^32 + 2^-1, then if
337 // k = int32_t(lower 51 bits of double(x * 2^12 + C) >> 19),
338 // the reduced argument:
339 // lo = x - log10(2) * 2^-12 * k is bounded by:
340 // |lo| = |x - log10(2) * 2^-12 * k|
341 // = log10(2) * 2^-12 * | x * log2(10) * 2^12 - k |
342 // <= log10(2) * 2^-12 * (2^-1 + 2^-19)
343 // < 1.5 * 2^-2 * (2^-13 + 2^-31)
344 // = 1.5 * (2^-15 * 2^-31)
346 // Finally, notice that k only uses the mantissa of x * 2^12, so the
347 // exponent 2^12 is not needed. So we can simply define
348 // C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
349 // k = int32_t(lower 51 bits of double(x + C) >> 19).
351 // Rounding errors <= 2^-31.
352 double tmp
= fputil::multiply_add(x
, LOG2_10
, 0x1.8000'0000'4p21
);
353 int k
= static_cast<int>(cpp::bit_cast
<uint64_t>(tmp
) >> 19);
354 double kd
= static_cast<double>(k
);
356 uint32_t idx1
= (k
>> 6) & 0x3f;
357 uint32_t idx2
= k
& 0x3f;
361 DoubleDouble exp_mid1
{EXP2_MID1
[idx1
].mid
, EXP2_MID1
[idx1
].hi
};
362 DoubleDouble exp_mid2
{EXP2_MID2
[idx2
].mid
, EXP2_MID2
[idx2
].hi
};
363 DoubleDouble exp_mid
= fputil::quick_mult(exp_mid1
, exp_mid2
);
365 // |dx| < 1.5 * 2^-15 + 2^-31 < 2^-14
366 double lo_h
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_HI
, x
); // exact
367 double dx
= fputil::multiply_add(kd
, MLOG10_2_EXP2_M12_MID
, lo_h
);
369 // We use the degree-4 polynomial to approximate 10^(lo):
370 // 10^(lo) ~ 1 + a0 * lo + a1 * lo^2 + a2 * lo^3 + a3 * lo^4
372 // So that the errors are bounded by:
373 // |P(lo) - (10^lo - 1)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
374 // Let P_ be an evaluation of P where all intermediate computations are in
375 // double precision. Using either Horner's or Estrin's schemes, the evaluated
376 // errors can be bounded by:
377 // |P_(lo) - P(lo)| < 2^-51
378 // => |lo * P_(lo) - (2^lo - 1) | < 2^-65
379 // => 2^(mid1 + mid2) * |lo * P_(lo) - expm1(lo)| < 2^-64.
380 // Since we approximate
381 // 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
382 // We use the expression:
383 // (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
384 // ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
385 // with errors bounded by 2^-64.
387 double mid_lo
= dx
* exp_mid
.hi
;
389 // Approximate (10^dx - 1)/dx ~ 1 + a0*dx + a1*dx^2 + a2*dx^3 + a3*dx^4.
390 double p
= poly_approx_d(dx
);
392 double lo
= fputil::multiply_add(p
, mid_lo
, exp_mid
.lo
);
394 double upper
= exp_mid
.hi
+ (lo
+ ERR_D
);
395 double lower
= exp_mid
.hi
+ (lo
- ERR_D
);
397 if (LIBC_LIKELY(upper
== lower
)) {
398 // To multiply by 2^hi, a fast way is to simply add hi to the exponent
400 int64_t exp_hi
= static_cast<int64_t>(hi
) << FPBits::FRACTION_LEN
;
401 double r
= cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(upper
));
405 // Exact outputs when x = 1, 2, ..., 22 + hard to round with x = 23.
406 // Quick check mask: 0x800f'ffffU = ~(bits of 1.0 | ... | bits of 23.0)
407 if (LIBC_UNLIKELY((x_u
& 0x8000'ffff'ffff'ffffULL
) == 0ULL)) {
409 case 0x3ff0000000000000: // x = 1.0
411 case 0x4000000000000000: // x = 2.0
413 case 0x4008000000000000: // x = 3.0
415 case 0x4010000000000000: // x = 4.0
417 case 0x4014000000000000: // x = 5.0
419 case 0x4018000000000000: // x = 6.0
421 case 0x401c000000000000: // x = 7.0
423 case 0x4020000000000000: // x = 8.0
424 return 100'000'000.0;
425 case 0x4022000000000000: // x = 9.0
426 return 1'000'000'000.0;
427 case 0x4024000000000000: // x = 10.0
428 return 10'000'000'000.0;
429 case 0x4026000000000000: // x = 11.0
430 return 100'000'000'000.0;
431 case 0x4028000000000000: // x = 12.0
432 return 1'000'000'000'000.0;
433 case 0x402a000000000000: // x = 13.0
434 return 10'000'000'000'000.0;
435 case 0x402c000000000000: // x = 14.0
436 return 100'000'000'000'000.0;
437 case 0x402e000000000000: // x = 15.0
438 return 1'000'000'000'000'000.0;
439 case 0x4030000000000000: // x = 16.0
440 return 10'000'000'000'000'000.0;
441 case 0x4031000000000000: // x = 17.0
442 return 100'000'000'000'000'000.0;
443 case 0x4032000000000000: // x = 18.0
444 return 1'000'000'000'000'000'000.0;
445 case 0x4033000000000000: // x = 19.0
446 return 10'000'000'000'000'000'000.0;
447 case 0x4034000000000000: // x = 20.0
448 return 100'000'000'000'000'000'000.0;
449 case 0x4035000000000000: // x = 21.0
450 return 1'000'000'000'000'000'000'000.0;
451 case 0x4036000000000000: // x = 22.0
452 return 10'000'000'000'000'000'000'000.0;
453 case 0x4037000000000000: // x = 23.0
454 return 0x1.52d02c7e14af6p76
+ x
;
459 DoubleDouble r_dd
= exp10_double_double(x
, kd
, exp_mid
);
461 double upper_dd
= r_dd
.hi
+ (r_dd
.lo
+ ERR_DD
);
462 double lower_dd
= r_dd
.hi
+ (r_dd
.lo
- ERR_DD
);
464 if (LIBC_LIKELY(upper_dd
== lower_dd
)) {
465 // To multiply by 2^hi, a fast way is to simply add hi to the exponent
467 int64_t exp_hi
= static_cast<int64_t>(hi
) << FPBits::FRACTION_LEN
;
468 double r
= cpp::bit_cast
<double>(exp_hi
+ cpp::bit_cast
<int64_t>(upper_dd
));
472 // Use 128-bit precision
473 Float128 r_f128
= exp10_f128(x
, kd
, idx1
, idx2
);
475 return static_cast<double>(r_f128
);
478 } // namespace LIBC_NAMESPACE_DECL