1 //===-- Single-precision e^x - 1 function ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/expm1f.h"
10 #include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
11 #include "src/__support/FPUtil/BasicOperations.h"
12 #include "src/__support/FPUtil/FEnvImpl.h"
13 #include "src/__support/FPUtil/FMA.h"
14 #include "src/__support/FPUtil/FPBits.h"
15 #include "src/__support/FPUtil/PolyEval.h"
16 #include "src/__support/FPUtil/multiply_add.h"
17 #include "src/__support/FPUtil/nearest_integer.h"
18 #include "src/__support/FPUtil/rounding_mode.h"
19 #include "src/__support/common.h"
20 #include "src/__support/macros/config.h"
21 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
22 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
24 namespace LIBC_NAMESPACE_DECL
{
26 LLVM_LIBC_FUNCTION(float, expm1f
, (float x
)) {
27 using FPBits
= typename
fputil::FPBits
<float>;
30 uint32_t x_u
= xbits
.uintval();
31 uint32_t x_abs
= x_u
& 0x7fff'ffffU
;
34 if (LIBC_UNLIKELY(x_u
== 0x3e35'bec5U
)) { // x = 0x1.6b7d8ap-3f
35 int round_mode
= fputil::quick_get_round();
36 if (round_mode
== FE_TONEAREST
|| round_mode
== FE_UPWARD
)
37 return 0x1.8dbe64p
-3f
;
38 return 0x1.8dbe62p
-3f
;
41 #if !defined(LIBC_TARGET_CPU_HAS_FMA)
42 if (LIBC_UNLIKELY(x_u
== 0xbdc1'c6cbU
)) { // x = -0x1.838d96p-4f
43 int round_mode
= fputil::quick_get_round();
44 if (round_mode
== FE_TONEAREST
|| round_mode
== FE_DOWNWARD
)
45 return -0x1.71c884p
-4f
;
46 return -0x1.71c882p
-4f
;
48 #endif // LIBC_TARGET_CPU_HAS_FMA
50 // When |x| > 25*log(2), or nan
51 if (LIBC_UNLIKELY(x_abs
>= 0x418a'a123U
)) {
60 int round_mode
= fputil::quick_get_round();
61 if (round_mode
== FE_UPWARD
|| round_mode
== FE_TOWARDZERO
)
62 return -0x1.ffff
'fep-1f; // -1.0f + 0x1.0p-24f
66 if (xbits.uintval() >= 0x42b2'0000) {
67 if (xbits.uintval() < 0x7f80'0000U) {
68 int rounding = fputil::quick_get_round();
69 if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
70 return FPBits::max_normal().get_val();
72 fputil::set_errno_if_required(ERANGE);
73 fputil::raise_except_if_required(FE_OVERFLOW);
75 return x + FPBits::inf().get_val();
81 if (x_abs < 0x3d80'0000U) {
83 if (x_abs < 0x3300'0000U) {
85 if (LIBC_UNLIKELY(xbits.uintval() == 0x8000'0000U))
87 // When |x| < 2^-25, the relative error of the approximation e^x - 1 ~ x
89 // |(e^x - 1) - x| / |e^x - 1| < |x^2| / |x|
93 // So the correctly rounded values of expm1(x) are:
94 // = x + eps(x) if rounding mode = FE_UPWARD,
95 // or (rounding mode = FE_TOWARDZERO and x is
98 // To simplify the rounding decision and make it more efficient, we use
99 // fma(x, x, x) ~ x + x^2 instead.
100 // Note: to use the formula x + x^2 to decide the correct rounding, we
101 // do need fma(x, x, x) to prevent underflow caused by x*x when |x| <
102 // 2^-76. For targets without FMA instructions, we simply use double for
103 // intermediate results as it is more efficient than using an emulated
105 #if defined(LIBC_TARGET_CPU_HAS_FMA)
106 return fputil::fma<float>(x, x, x);
109 return static_cast<float>(fputil::multiply_add(xd, xd, xd));
110 #endif // LIBC_TARGET_CPU_HAS_FMA
113 constexpr double COEFFS[] = {0x1p-1,
114 0x1.55555555557ddp-3,
115 0x1.55555555552fap-5,
116 0x1.111110fcd58b7p-7,
117 0x1.6c16c1717660bp-10,
118 0x1.a0241f0006d62p-13,
119 0x1.a01e3f8d3c06p-16};
121 // 2^-25 <= |x| < 2^-4
122 double xd = static_cast<double>(x);
123 double xsq = xd * xd;
124 // Degree-8 minimax polynomial generated by Sollya with:
125 // > display = hexadecimal;
126 // > P = fpminimax((expm1(x) - x)/x^2, 6, [|D...|], [-2^-4, 2^-4]);
128 double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]);
129 double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]);
130 double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]);
132 double r = fputil::polyeval(xsq, c0, c1, c2, COEFFS[6]);
133 return static_cast<float>(fputil::multiply_add(r, xsq, xd));
136 // For -18 < x < 89, to compute expm1(x), we perform the following range
137 // reduction: find hi, mid, lo such that:
138 // x = hi + mid + lo, in which
140 // mid * 2^7 is an integer
141 // -2^(-8) <= lo < 2^-8.
143 // hi + mid = round(x * 2^7) * 2^(-7).
145 // expm1(x) = exp(hi + mid + lo) - 1 = exp(hi) * exp(mid) * exp(lo) - 1.
146 // We store exp(hi) and exp(mid) in the lookup tables EXP_M1 and EXP_M2
147 // respectively. exp(lo) is computed using a degree-4 minimax polynomial
148 // generated by Sollya.
151 float kf = fputil::nearest_integer(x * 0x1.0p7f);
152 int x_hi = static_cast<int>(kf);
153 // Subtract (hi + mid) from x to get lo.
154 double xd = static_cast<double>(fputil::multiply_add(kf, -0x1.0p-7f, x));
157 double exp_hi = EXP_M1[x_hi >> 7];
158 // lo = x_hi & 0x0000'007fU;
159 double exp_mid = EXP_M2[x_hi & 0x7f];
160 double exp_hi_mid = exp_hi * exp_mid;
161 // Degree-4 minimax polynomial generated by Sollya with the following
163 // > display = hexadecimal;
164 // > Q = fpminimax(expm1(x)/x, 3, [|D...|], [-2^-8, 2^-8]);
167 fputil::polyeval(xd, 0x1.0p0, 0x1.ffffffffff777p-1, 0x1.000000000071cp-1,
168 0x1.555566668e5e7p-3, 0x1.55555555ef243p-5);
169 return static_cast<float>(fputil::multiply_add(exp_hi_mid, exp_lo, -1.0));
172 } // namespace LIBC_NAMESPACE_DECL