1 //===-- Single-precision log(x) function ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/logf.h"
10 #include "common_constants.h" // Lookup table for (1/f) and log(f)
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/PolyEval.h"
14 #include "src/__support/FPUtil/except_value_utils.h"
15 #include "src/__support/FPUtil/multiply_add.h"
16 #include "src/__support/common.h"
17 #include "src/__support/macros/config.h"
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19 #include "src/__support/macros/properties/cpu_features.h"
21 // This is an algorithm for log(x) in single precision which is correctly
22 // rounded for all rounding modes, based on the implementation of log(x) from
23 // the RLIBM project at:
24 // https://people.cs.rutgers.edu/~sn349/rlibm
26 // Step 1 - Range reduction:
27 // For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m)
28 // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting
31 // Step 2 - Another range reduction:
32 // To compute log(1.mant), let f be the highest 8 bits including the hidden
33 // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the
34 // mantissa. Then we have the following approximation formula:
35 // log(1.mant) = log(f) + log(1.mant / f)
36 // = log(f) + log(1 + d/f)
38 // since d/f is sufficiently small.
39 // log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables.
41 // Step 3 - Polynomial approximation:
42 // To compute P(d/f), we use a single degree-5 polynomial in double precision
43 // which provides correct rounding for all but few exception values.
44 // For more detail about how this polynomial is obtained, please refer to the
46 // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce
47 // Correctly Rounded Results of an Elementary Function for Multiple
48 // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN
49 // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia,
50 // USA, January 16-22, 2022.
51 // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf
53 namespace LIBC_NAMESPACE_DECL
{
55 LLVM_LIBC_FUNCTION(float, logf
, (float x
)) {
56 constexpr double LOG_2
= 0x1.62e42fefa39efp
-1;
57 using FPBits
= typename
fputil::FPBits
<float>;
60 uint32_t x_u
= xbits
.uintval();
62 int m
= -FPBits::EXP_BIAS
;
64 using fputil::round_result_slightly_down
;
65 using fputil::round_result_slightly_up
;
68 if (x_u
< 0x4c5d65a5U
) {
69 // Hard-to-round cases.
71 case 0x3f7f4d6fU
: // x = 0x1.fe9adep-1f
72 return round_result_slightly_up(-0x1.659ec8p
-9f
);
73 case 0x41178febU
: // x = 0x1.2f1fd6p+3f
74 return round_result_slightly_up(0x1.1fcbcep
+1f
);
75 #ifdef LIBC_TARGET_CPU_HAS_FMA
76 case 0x3f800000U
: // x = 1.0f
79 case 0x1e88452dU
: // x = 0x1.108a5ap-66f
80 return round_result_slightly_up(-0x1.6d7b18p
+5f
);
81 #endif // LIBC_TARGET_CPU_HAS_FMA
84 if (LIBC_UNLIKELY(x_u
< FPBits::min_normal().uintval())) {
86 // Return -inf and raise FE_DIVBYZERO
87 fputil::set_errno_if_required(ERANGE
);
88 fputil::raise_except_if_required(FE_DIVBYZERO
);
89 return FPBits::inf(Sign::NEG
).get_val();
91 // Normalize denormal inputs.
92 xbits
= FPBits(xbits
.get_val() * 0x1.0p23f
);
94 x_u
= xbits
.uintval();
97 // Hard-to-round cases.
99 case 0x4c5d65a5U
: // x = 0x1.bacb4ap+25f
100 return round_result_slightly_down(0x1.1e0696p
+4f
);
101 case 0x65d890d3U
: // x = 0x1.b121a6p+76f
102 return round_result_slightly_down(0x1.a9a3f2p
+5f
);
103 case 0x6f31a8ecU
: // x = 0x1.6351d8p+95f
104 return round_result_slightly_down(0x1.08b512p
+6f
);
105 case 0x7a17f30aU
: // x = 0x1.2fe614p+117f
106 return round_result_slightly_up(0x1.451436p
+6f
);
107 #ifndef LIBC_TARGET_CPU_HAS_FMA
108 case 0x500ffb03U
: // x = 0x1.1ff606p+33f
109 return round_result_slightly_up(0x1.6fdd34p
+4f
);
110 case 0x5cd69e88U
: // x = 0x1.ad3d1p+58f
111 return round_result_slightly_up(0x1.45c146p
+5f
);
112 case 0x5ee8984eU
: // x = 0x1.d1309cp+62f;
113 return round_result_slightly_up(0x1.5c9442p
+5f
);
114 #endif // LIBC_TARGET_CPU_HAS_FMA
116 // Exceptional inputs.
117 if (LIBC_UNLIKELY(x_u
> FPBits::max_normal().uintval())) {
118 if (x_u
== 0x8000'0000U
) {
119 // Return -inf and raise FE_DIVBYZERO
120 fputil::set_errno_if_required(ERANGE
);
121 fputil::raise_except_if_required(FE_DIVBYZERO
);
122 return FPBits::inf(Sign::NEG
).get_val();
124 if (xbits
.is_neg() && !xbits
.is_nan()) {
125 // Return NaN and raise FE_INVALID
126 fputil::set_errno_if_required(EDOM
);
127 fputil::raise_except_if_required(FE_INVALID
);
128 return FPBits::quiet_nan().get_val();
135 #ifndef LIBC_TARGET_CPU_HAS_FMA
136 // Returning the correct +0 when x = 1.0 for non-FMA targets with FE_DOWNWARD
138 if (LIBC_UNLIKELY((x_u
& 0x007f'ffffU
) == 0))
139 return static_cast<float>(
140 static_cast<double>(m
+ xbits
.get_biased_exponent()) * LOG_2
);
141 #endif // LIBC_TARGET_CPU_HAS_FMA
143 uint32_t mant
= xbits
.get_mantissa();
144 // Extract 7 leading fractional bits of the mantissa
145 int index
= mant
>> 16;
146 // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are
148 m
+= static_cast<int>((x_u
+ (1 << 16)) >> 23);
151 xbits
.set_biased_exponent(0x7F);
153 float u
= xbits
.get_val();
155 #ifdef LIBC_TARGET_CPU_HAS_FMA
156 v
= static_cast<double>(fputil::multiply_add(u
, R
[index
], -1.0f
)); // Exact.
158 v
= fputil::multiply_add(static_cast<double>(u
), RD
[index
], -1.0); // Exact
159 #endif // LIBC_TARGET_CPU_HAS_FMA
161 // Degree-5 polynomial approximation of log generated by Sollya with:
162 // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]);
163 constexpr double COEFFS
[4] = {-0x1.000000000fe63p
-1, 0x1.555556e963c16p
-2,
164 -0x1.000028dedf986p
-2, 0x1.966681bfda7f7p
-3};
165 double v2
= v
* v
; // Exact
166 double p2
= fputil::multiply_add(v
, COEFFS
[3], COEFFS
[2]);
167 double p1
= fputil::multiply_add(v
, COEFFS
[1], COEFFS
[0]);
168 double p0
= LOG_R
[index
] + v
;
169 double r
= fputil::multiply_add(static_cast<double>(m
), LOG_2
,
170 fputil::polyeval(v2
, p0
, p1
, p2
));
171 return static_cast<float>(r
);
174 } // namespace LIBC_NAMESPACE_DECL