[libc] Deprecate LLVM_ENABLE_PROJECTS in favor of LLVM_ENABLE_RUNTIMES. (#117265)
[llvm-project.git] / libc / src / stdio / printf_core / float_hex_converter.h
blob0b3ff3dd1cbfdce24fb2d253f535621db38860cc
1 //===-- Hexadecimal Converter for printf ------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_STDIO_PRINTF_CORE_FLOAT_HEX_CONVERTER_H
10 #define LLVM_LIBC_SRC_STDIO_PRINTF_CORE_FLOAT_HEX_CONVERTER_H
12 #include "src/__support/CPP/string_view.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/rounding_mode.h"
15 #include "src/__support/macros/config.h"
16 #include "src/stdio/printf_core/converter_utils.h"
17 #include "src/stdio/printf_core/core_structs.h"
18 #include "src/stdio/printf_core/float_inf_nan_converter.h"
19 #include "src/stdio/printf_core/writer.h"
21 #include <inttypes.h>
22 #include <stddef.h>
24 namespace LIBC_NAMESPACE_DECL {
25 namespace printf_core {
27 LIBC_INLINE int convert_float_hex_exp(Writer *writer,
28 const FormatSection &to_conv) {
29 using LDBits = fputil::FPBits<long double>;
30 using StorageType = LDBits::StorageType;
31 // All of the letters will be defined relative to variable a, which will be
32 // the appropriate case based on the name of the conversion. This converts any
33 // conversion name into the letter 'a' with the appropriate case.
34 const char a = (to_conv.conv_name & 32) | 'A';
36 bool is_negative;
37 int exponent;
38 StorageType mantissa;
39 bool is_inf_or_nan;
40 uint32_t fraction_bits;
41 if (to_conv.length_modifier == LengthModifier::L) {
42 fraction_bits = LDBits::FRACTION_LEN;
43 LDBits::StorageType float_raw = to_conv.conv_val_raw;
44 LDBits float_bits(float_raw);
45 is_negative = float_bits.is_neg();
46 exponent = float_bits.get_explicit_exponent();
47 mantissa = float_bits.get_explicit_mantissa();
48 is_inf_or_nan = float_bits.is_inf_or_nan();
49 } else {
50 using LBits = fputil::FPBits<double>;
51 fraction_bits = LBits::FRACTION_LEN;
52 LBits::StorageType float_raw =
53 static_cast<LBits::StorageType>(to_conv.conv_val_raw);
54 LBits float_bits(float_raw);
55 is_negative = float_bits.is_neg();
56 exponent = float_bits.get_explicit_exponent();
57 mantissa = float_bits.get_explicit_mantissa();
58 is_inf_or_nan = float_bits.is_inf_or_nan();
61 if (is_inf_or_nan)
62 return convert_inf_nan(writer, to_conv);
64 char sign_char = 0;
66 if (is_negative)
67 sign_char = '-';
68 else if ((to_conv.flags & FormatFlags::FORCE_SIGN) == FormatFlags::FORCE_SIGN)
69 sign_char = '+'; // FORCE_SIGN has precedence over SPACE_PREFIX
70 else if ((to_conv.flags & FormatFlags::SPACE_PREFIX) ==
71 FormatFlags::SPACE_PREFIX)
72 sign_char = ' ';
74 constexpr size_t BITS_IN_HEX_DIGIT = 4;
76 // This is to handle situations where the mantissa isn't an even number of hex
77 // digits. This is primarily relevant for x86 80 bit long doubles, which have
78 // 63 bit mantissas. In the case where the mantissa is 0, however, the
79 // exponent should stay as 0.
80 if (fraction_bits % BITS_IN_HEX_DIGIT != 0 && mantissa > 0) {
81 exponent -= fraction_bits % BITS_IN_HEX_DIGIT;
84 // This is the max number of digits it can take to represent the mantissa.
85 // Since the number is in bits, we divide by 4, and then add one to account
86 // for the extra implicit bit. We use the larger of the two possible values
87 // since the size must be constant.
88 constexpr size_t MANT_BUFF_LEN =
89 (LDBits::FRACTION_LEN / BITS_IN_HEX_DIGIT) + 1;
90 char mant_buffer[MANT_BUFF_LEN];
92 size_t mant_len = (fraction_bits / BITS_IN_HEX_DIGIT) + 1;
94 // Precision only tracks the number of digits after the hexadecimal point, so
95 // we have to add one to account for the digit before the hexadecimal point.
96 if (to_conv.precision + 1 < static_cast<int>(mant_len) &&
97 to_conv.precision + 1 > 0) {
98 const size_t intended_digits = to_conv.precision + 1;
99 const size_t shift_amount =
100 (mant_len - intended_digits) * BITS_IN_HEX_DIGIT;
102 const StorageType truncated_bits =
103 mantissa & ((StorageType(1) << shift_amount) - 1);
104 const StorageType halfway_const = StorageType(1) << (shift_amount - 1);
106 mantissa >>= shift_amount;
108 switch (fputil::quick_get_round()) {
109 case FE_TONEAREST:
110 // Round to nearest, if it's exactly halfway then round to even.
111 if (truncated_bits > halfway_const)
112 ++mantissa;
113 else if (truncated_bits == halfway_const)
114 mantissa = mantissa + (mantissa & 1);
115 break;
116 case FE_DOWNWARD:
117 if (truncated_bits > 0 && is_negative)
118 ++mantissa;
119 break;
120 case FE_UPWARD:
121 if (truncated_bits > 0 && !is_negative)
122 ++mantissa;
123 break;
124 case FE_TOWARDZERO:
125 break;
128 // If the rounding caused an overflow, shift the mantissa and adjust the
129 // exponent to match.
130 if (mantissa >= (StorageType(1) << (intended_digits * BITS_IN_HEX_DIGIT))) {
131 mantissa >>= BITS_IN_HEX_DIGIT;
132 exponent += BITS_IN_HEX_DIGIT;
135 mant_len = intended_digits;
138 size_t mant_cur = mant_len;
139 size_t first_non_zero = 1;
140 for (; mant_cur > 0; --mant_cur, mantissa >>= 4) {
141 char mant_mod_16 = static_cast<char>(mantissa) & 15;
142 char new_digit = static_cast<char>(
143 (mant_mod_16 > 9) ? (mant_mod_16 - 10 + a) : (mant_mod_16 + '0'));
144 mant_buffer[mant_cur - 1] = new_digit;
145 if (new_digit != '0' && first_non_zero < mant_cur)
146 first_non_zero = mant_cur;
149 size_t mant_digits = first_non_zero;
150 if (to_conv.precision >= 0)
151 mant_digits = mant_len;
153 // This approximates the number of digits it will take to represent the
154 // exponent. The calculation is ceil((bits * 5) / 16). Floor also works, but
155 // only on exact multiples of 16. We add 1 for the sign.
156 // Relevant sizes:
157 // 15 -> 5
158 // 11 -> 4
159 // 8 -> 3
160 constexpr size_t EXP_LEN = (((LDBits::EXP_LEN * 5) + 15) / 16) + 1;
161 char exp_buffer[EXP_LEN];
163 bool exp_is_negative = false;
164 if (exponent < 0) {
165 exp_is_negative = true;
166 exponent = -exponent;
169 size_t exp_cur = EXP_LEN;
170 for (; exponent > 0; --exp_cur, exponent /= 10) {
171 exp_buffer[exp_cur - 1] = static_cast<char>((exponent % 10) + '0');
173 if (exp_cur == EXP_LEN) { // if nothing else was written, write a 0.
174 exp_buffer[EXP_LEN - 1] = '0';
175 exp_cur = EXP_LEN - 1;
178 exp_buffer[exp_cur - 1] = exp_is_negative ? '-' : '+';
179 --exp_cur;
181 // these are signed to prevent underflow due to negative values. The eventual
182 // values will always be non-negative.
183 size_t trailing_zeroes = 0;
184 int padding;
186 // prefix is "0x", and always appears.
187 constexpr size_t PREFIX_LEN = 2;
188 char prefix[PREFIX_LEN];
189 prefix[0] = '0';
190 prefix[1] = a + ('x' - 'a');
191 const cpp::string_view prefix_str(prefix, PREFIX_LEN);
193 // If the precision is greater than the actual result, pad with 0s
194 if (to_conv.precision > static_cast<int>(mant_digits - 1))
195 trailing_zeroes = to_conv.precision - (mant_digits - 1);
197 bool has_hexadecimal_point =
198 (mant_digits > 1) || ((to_conv.flags & FormatFlags::ALTERNATE_FORM) ==
199 FormatFlags::ALTERNATE_FORM);
200 constexpr cpp::string_view HEXADECIMAL_POINT(".");
202 // This is for the letter 'p' before the exponent.
203 const char exp_separator = a + ('p' - 'a');
204 constexpr int EXP_SEPARATOR_LEN = 1;
206 padding = static_cast<int>(to_conv.min_width - (sign_char > 0 ? 1 : 0) -
207 PREFIX_LEN - mant_digits - trailing_zeroes -
208 static_cast<int>(has_hexadecimal_point) -
209 EXP_SEPARATOR_LEN - (EXP_LEN - exp_cur));
210 if (padding < 0)
211 padding = 0;
213 if ((to_conv.flags & FormatFlags::LEFT_JUSTIFIED) ==
214 FormatFlags::LEFT_JUSTIFIED) {
215 // The pattern is (sign), 0x, digit, (.), (other digits), (zeroes), p,
216 // exponent, (spaces)
217 if (sign_char > 0)
218 RET_IF_RESULT_NEGATIVE(writer->write(sign_char));
219 RET_IF_RESULT_NEGATIVE(writer->write(prefix_str));
220 RET_IF_RESULT_NEGATIVE(writer->write(mant_buffer[0]));
221 if (has_hexadecimal_point)
222 RET_IF_RESULT_NEGATIVE(writer->write(HEXADECIMAL_POINT));
223 if (mant_digits > 1)
224 RET_IF_RESULT_NEGATIVE(writer->write({mant_buffer + 1, mant_digits - 1}));
225 if (trailing_zeroes > 0)
226 RET_IF_RESULT_NEGATIVE(writer->write('0', trailing_zeroes));
227 RET_IF_RESULT_NEGATIVE(writer->write(exp_separator));
228 RET_IF_RESULT_NEGATIVE(
229 writer->write({exp_buffer + exp_cur, EXP_LEN - exp_cur}));
230 if (padding > 0)
231 RET_IF_RESULT_NEGATIVE(writer->write(' ', padding));
232 } else {
233 // The pattern is (spaces), (sign), 0x, (zeroes), digit, (.), (other
234 // digits), (zeroes), p, exponent
235 if ((padding > 0) && ((to_conv.flags & FormatFlags::LEADING_ZEROES) !=
236 FormatFlags::LEADING_ZEROES))
237 RET_IF_RESULT_NEGATIVE(writer->write(' ', padding));
238 if (sign_char > 0)
239 RET_IF_RESULT_NEGATIVE(writer->write(sign_char));
240 RET_IF_RESULT_NEGATIVE(writer->write(prefix_str));
241 if ((padding > 0) && ((to_conv.flags & FormatFlags::LEADING_ZEROES) ==
242 FormatFlags::LEADING_ZEROES))
243 RET_IF_RESULT_NEGATIVE(writer->write('0', padding));
244 RET_IF_RESULT_NEGATIVE(writer->write(mant_buffer[0]));
245 if (has_hexadecimal_point)
246 RET_IF_RESULT_NEGATIVE(writer->write(HEXADECIMAL_POINT));
247 if (mant_digits > 1)
248 RET_IF_RESULT_NEGATIVE(writer->write({mant_buffer + 1, mant_digits - 1}));
249 if (trailing_zeroes > 0)
250 RET_IF_RESULT_NEGATIVE(writer->write('0', trailing_zeroes));
251 RET_IF_RESULT_NEGATIVE(writer->write(exp_separator));
252 RET_IF_RESULT_NEGATIVE(
253 writer->write({exp_buffer + exp_cur, EXP_LEN - exp_cur}));
255 return WRITE_OK;
258 } // namespace printf_core
259 } // namespace LIBC_NAMESPACE_DECL
261 #endif // LLVM_LIBC_SRC_STDIO_PRINTF_CORE_FLOAT_HEX_CONVERTER_H