Revert "[lldb][test] Remove compiler version check and use regex" (#124101)
[llvm-project.git] / libc / test / src / __support / big_int_test.cpp
blob2666ed978dad7abab4b9224fa65d79f60aca84bb
1 //===-- Unittests for the UInt integer class ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "src/__support/CPP/optional.h"
10 #include "src/__support/big_int.h"
11 #include "src/__support/integer_literals.h" // parse_unsigned_bigint
12 #include "src/__support/macros/config.h"
13 #include "src/__support/macros/properties/types.h" // LIBC_TYPES_HAS_INT128
15 #include "hdr/math_macros.h" // HUGE_VALF, HUGE_VALF
16 #include "test/UnitTest/Test.h"
18 namespace LIBC_NAMESPACE_DECL {
20 enum Value { ZERO, ONE, TWO, MIN, MAX };
22 template <typename T> auto create(Value value) {
23 switch (value) {
24 case ZERO:
25 return T(0);
26 case ONE:
27 return T(1);
28 case TWO:
29 return T(2);
30 case MIN:
31 return T::min();
32 case MAX:
33 return T::max();
35 __builtin_unreachable();
38 using Types = testing::TypeList< //
39 #ifdef LIBC_TYPES_HAS_INT64
40 BigInt<64, false, uint64_t>, // 64-bits unsigned (1 x uint64_t)
41 BigInt<64, true, uint64_t>, // 64-bits signed (1 x uint64_t)
42 #endif
43 #ifdef LIBC_TYPES_HAS_INT128
44 BigInt<128, false, __uint128_t>, // 128-bits unsigned (1 x __uint128_t)
45 BigInt<128, true, __uint128_t>, // 128-bits signed (1 x __uint128_t)
46 #endif
47 BigInt<16, false, uint16_t>, // 16-bits unsigned (1 x uint16_t)
48 BigInt<16, true, uint16_t>, // 16-bits signed (1 x uint16_t)
49 BigInt<64, false, uint16_t>, // 64-bits unsigned (4 x uint16_t)
50 BigInt<64, true, uint16_t> // 64-bits signed (4 x uint16_t)
53 #define ASSERT_SAME(A, B) ASSERT_TRUE((A) == (B))
55 TYPED_TEST(LlvmLibcUIntClassTest, Additions, Types) {
56 ASSERT_SAME(create<T>(ZERO) + create<T>(ZERO), create<T>(ZERO));
57 ASSERT_SAME(create<T>(ONE) + create<T>(ZERO), create<T>(ONE));
58 ASSERT_SAME(create<T>(ZERO) + create<T>(ONE), create<T>(ONE));
59 ASSERT_SAME(create<T>(ONE) + create<T>(ONE), create<T>(TWO));
60 // 2's complement addition works for signed and unsigned types.
61 // - unsigned : 0xff + 0x01 = 0x00 (255 + 1 = 0)
62 // - signed : 0xef + 0x01 = 0xf0 (127 + 1 = -128)
63 ASSERT_SAME(create<T>(MAX) + create<T>(ONE), create<T>(MIN));
66 TYPED_TEST(LlvmLibcUIntClassTest, Subtraction, Types) {
67 ASSERT_SAME(create<T>(ZERO) - create<T>(ZERO), create<T>(ZERO));
68 ASSERT_SAME(create<T>(ONE) - create<T>(ONE), create<T>(ZERO));
69 ASSERT_SAME(create<T>(ONE) - create<T>(ZERO), create<T>(ONE));
70 // 2's complement subtraction works for signed and unsigned types.
71 // - unsigned : 0x00 - 0x01 = 0xff ( 0 - 1 = 255)
72 // - signed : 0xf0 - 0x01 = 0xef (-128 - 1 = 127)
73 ASSERT_SAME(create<T>(MIN) - create<T>(ONE), create<T>(MAX));
76 TYPED_TEST(LlvmLibcUIntClassTest, Multiplication, Types) {
77 ASSERT_SAME(create<T>(ZERO) * create<T>(ZERO), create<T>(ZERO));
78 ASSERT_SAME(create<T>(ZERO) * create<T>(ONE), create<T>(ZERO));
79 ASSERT_SAME(create<T>(ONE) * create<T>(ZERO), create<T>(ZERO));
80 ASSERT_SAME(create<T>(ONE) * create<T>(ONE), create<T>(ONE));
81 ASSERT_SAME(create<T>(ONE) * create<T>(TWO), create<T>(TWO));
82 ASSERT_SAME(create<T>(TWO) * create<T>(ONE), create<T>(TWO));
83 // - unsigned : 0xff x 0xff = 0x01 (mod 0xff)
84 // - signed : 0xef x 0xef = 0x01 (mod 0xff)
85 ASSERT_SAME(create<T>(MAX) * create<T>(MAX), create<T>(ONE));
88 template <typename T> void print(const char *msg, T value) {
89 testing::tlog << msg;
90 IntegerToString<T, radix::Hex> buffer(value);
91 testing::tlog << buffer.view() << "\n";
94 TEST(LlvmLibcUIntClassTest, SignedAddSub) {
95 // Computations performed by https://www.wolframalpha.com/
96 using T = BigInt<128, true, uint32_t>;
97 const T a = parse_bigint<T>("1927508279017230597");
98 const T b = parse_bigint<T>("278789278723478925");
99 const T s = parse_bigint<T>("2206297557740709522");
100 // Addition
101 ASSERT_SAME(a + b, s);
102 ASSERT_SAME(b + a, s); // commutative
103 // Subtraction
104 ASSERT_SAME(a - s, -b);
105 ASSERT_SAME(s - a, b);
108 TEST(LlvmLibcUIntClassTest, SignedMulDiv) {
109 // Computations performed by https://www.wolframalpha.com/
110 using T = BigInt<128, true, uint16_t>;
111 struct {
112 const char *a;
113 const char *b;
114 const char *mul;
115 } const test_cases[] = {{"-4", "3", "-12"},
116 {"-3", "-3", "9"},
117 {"1927508279017230597", "278789278723478925",
118 "537368642840747885329125014794668225"}};
119 for (auto tc : test_cases) {
120 const T a = parse_bigint<T>(tc.a);
121 const T b = parse_bigint<T>(tc.b);
122 const T mul = parse_bigint<T>(tc.mul);
123 // Multiplication
124 ASSERT_SAME(a * b, mul);
125 ASSERT_SAME(b * a, mul); // commutative
126 ASSERT_SAME(a * -b, -mul); // sign
127 ASSERT_SAME(-a * b, -mul); // sign
128 ASSERT_SAME(-a * -b, mul); // sign
129 // Division
130 ASSERT_SAME(mul / a, b);
131 ASSERT_SAME(mul / b, a);
132 ASSERT_SAME(-mul / a, -b); // sign
133 ASSERT_SAME(mul / -a, -b); // sign
134 ASSERT_SAME(-mul / -a, b); // sign
138 TYPED_TEST(LlvmLibcUIntClassTest, Division, Types) {
139 ASSERT_SAME(create<T>(ZERO) / create<T>(ONE), create<T>(ZERO));
140 ASSERT_SAME(create<T>(MAX) / create<T>(ONE), create<T>(MAX));
141 ASSERT_SAME(create<T>(MAX) / create<T>(MAX), create<T>(ONE));
142 ASSERT_SAME(create<T>(ONE) / create<T>(ONE), create<T>(ONE));
143 if constexpr (T::SIGNED) {
144 // Special case found by fuzzing.
145 ASSERT_SAME(create<T>(MIN) / create<T>(MIN), create<T>(ONE));
147 // - unsigned : 0xff / 0x02 = 0x7f
148 // - signed : 0xef / 0x02 = 0x77
149 ASSERT_SAME(create<T>(MAX) / create<T>(TWO), (create<T>(MAX) >> 1));
151 using word_type = typename T::word_type;
152 const T zero_one_repeated = T::all_ones() / T(0xff);
153 const word_type pattern = word_type(~0) / word_type(0xff);
154 for (const word_type part : zero_one_repeated.val) {
155 if constexpr (T::SIGNED == false) {
156 EXPECT_EQ(part, pattern);
161 TYPED_TEST(LlvmLibcUIntClassTest, is_neg, Types) {
162 EXPECT_FALSE(create<T>(ZERO).is_neg());
163 EXPECT_FALSE(create<T>(ONE).is_neg());
164 EXPECT_FALSE(create<T>(TWO).is_neg());
165 EXPECT_EQ(create<T>(MIN).is_neg(), T::SIGNED);
166 EXPECT_FALSE(create<T>(MAX).is_neg());
169 TYPED_TEST(LlvmLibcUIntClassTest, Masks, Types) {
170 if constexpr (!T::SIGNED) {
171 constexpr size_t BITS = T::BITS;
172 // mask_trailing_ones
173 ASSERT_SAME((mask_trailing_ones<T, 0>()), T::zero());
174 ASSERT_SAME((mask_trailing_ones<T, 1>()), T::one());
175 ASSERT_SAME((mask_trailing_ones<T, BITS - 1>()), T::all_ones() >> 1);
176 ASSERT_SAME((mask_trailing_ones<T, BITS>()), T::all_ones());
177 // mask_leading_ones
178 ASSERT_SAME((mask_leading_ones<T, 0>()), T::zero());
179 ASSERT_SAME((mask_leading_ones<T, 1>()), T::one() << (BITS - 1));
180 ASSERT_SAME((mask_leading_ones<T, BITS - 1>()), T::all_ones() - T::one());
181 ASSERT_SAME((mask_leading_ones<T, BITS>()), T::all_ones());
182 // mask_trailing_zeros
183 ASSERT_SAME((mask_trailing_zeros<T, 0>()), T::all_ones());
184 ASSERT_SAME((mask_trailing_zeros<T, 1>()), T::all_ones() - T::one());
185 ASSERT_SAME((mask_trailing_zeros<T, BITS - 1>()), T::one() << (BITS - 1));
186 ASSERT_SAME((mask_trailing_zeros<T, BITS>()), T::zero());
187 // mask_trailing_zeros
188 ASSERT_SAME((mask_leading_zeros<T, 0>()), T::all_ones());
189 ASSERT_SAME((mask_leading_zeros<T, 1>()), T::all_ones() >> 1);
190 ASSERT_SAME((mask_leading_zeros<T, BITS - 1>()), T::one());
191 ASSERT_SAME((mask_leading_zeros<T, BITS>()), T::zero());
195 TYPED_TEST(LlvmLibcUIntClassTest, CountBits, Types) {
196 if constexpr (!T::SIGNED) {
197 for (size_t i = 0; i < T::BITS; ++i) {
198 const auto l_one = T::all_ones() << i; // 0b111...000
199 const auto r_one = T::all_ones() >> i; // 0b000...111
200 const int zeros = i;
201 const int ones = T::BITS - zeros;
202 ASSERT_EQ(cpp::countr_one(r_one), ones);
203 ASSERT_EQ(cpp::countl_one(l_one), ones);
204 ASSERT_EQ(cpp::countr_zero(l_one), zeros);
205 ASSERT_EQ(cpp::countl_zero(r_one), zeros);
210 using LL_UInt16 = UInt<16>;
211 using LL_UInt32 = UInt<32>;
212 using LL_UInt64 = UInt<64>;
213 // We want to test UInt<128> explicitly. So, for
214 // convenience, we use a sugar which does not conflict with the UInt128 type
215 // which can resolve to __uint128_t if the platform has it.
216 using LL_UInt128 = UInt<128>;
217 using LL_UInt192 = UInt<192>;
218 using LL_UInt256 = UInt<256>;
219 using LL_UInt320 = UInt<320>;
220 using LL_UInt512 = UInt<512>;
221 using LL_UInt1024 = UInt<1024>;
223 using LL_Int128 = Int<128>;
224 using LL_Int192 = Int<192>;
226 TEST(LlvmLibcUIntClassTest, BitCastToFromDouble) {
227 static_assert(cpp::is_trivially_copyable<LL_UInt64>::value);
228 static_assert(sizeof(LL_UInt64) == sizeof(double));
229 const double inf = HUGE_VAL;
230 const double max = DBL_MAX;
231 const double array[] = {0.0, 0.1, 1.0, max, inf};
232 for (double value : array) {
233 LL_UInt64 back = cpp::bit_cast<LL_UInt64>(value);
234 double forth = cpp::bit_cast<double>(back);
235 EXPECT_TRUE(value == forth);
239 #ifdef LIBC_TYPES_HAS_INT128
240 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeUint128) {
241 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value);
242 static_assert(sizeof(LL_UInt128) == sizeof(__uint128_t));
243 const __uint128_t array[] = {0, 1, ~__uint128_t(0)};
244 for (__uint128_t value : array) {
245 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value);
246 __uint128_t forth = cpp::bit_cast<__uint128_t>(back);
247 EXPECT_TRUE(value == forth);
250 #endif // LIBC_TYPES_HAS_INT128
252 #ifdef LIBC_TYPES_HAS_FLOAT128
253 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat128) {
254 static_assert(cpp::is_trivially_copyable<LL_UInt128>::value);
255 static_assert(sizeof(LL_UInt128) == sizeof(float128));
256 const float128 array[] = {0, 0.1, 1};
257 for (float128 value : array) {
258 LL_UInt128 back = cpp::bit_cast<LL_UInt128>(value);
259 float128 forth = cpp::bit_cast<float128>(back);
260 EXPECT_TRUE(value == forth);
263 #endif // LIBC_TYPES_HAS_FLOAT128
265 #ifdef LIBC_TYPES_HAS_FLOAT16
266 TEST(LlvmLibcUIntClassTest, BitCastToFromNativeFloat16) {
267 static_assert(cpp::is_trivially_copyable<LL_UInt16>::value);
268 static_assert(sizeof(LL_UInt16) == sizeof(float16));
269 const float16 array[] = {
270 static_cast<float16>(0.0),
271 static_cast<float16>(0.1),
272 static_cast<float16>(1.0),
274 for (float16 value : array) {
275 LL_UInt16 back = cpp::bit_cast<LL_UInt16>(value);
276 float16 forth = cpp::bit_cast<float16>(back);
277 EXPECT_TRUE(value == forth);
280 #endif // LIBC_TYPES_HAS_FLOAT16
282 TEST(LlvmLibcUIntClassTest, BasicInit) {
283 LL_UInt128 half_val(12345);
284 LL_UInt128 full_val({12345, 67890});
285 ASSERT_TRUE(half_val != full_val);
288 TEST(LlvmLibcUIntClassTest, AdditionTests) {
289 LL_UInt128 val1(12345);
290 LL_UInt128 val2(54321);
291 LL_UInt128 result1(66666);
292 EXPECT_EQ(val1 + val2, result1);
293 EXPECT_EQ((val1 + val2), (val2 + val1)); // addition is commutative
295 // Test overflow
296 LL_UInt128 val3({0xf000000000000001, 0});
297 LL_UInt128 val4({0x100000000000000f, 0});
298 LL_UInt128 result2({0x10, 0x1});
299 EXPECT_EQ(val3 + val4, result2);
300 EXPECT_EQ(val3 + val4, val4 + val3);
302 // Test overflow
303 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210});
304 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd});
305 LL_UInt128 result3({0x12346789bcdf1233, 0xa987765443210fed});
306 EXPECT_EQ(val5 + val6, result3);
307 EXPECT_EQ(val5 + val6, val6 + val5);
309 // Test 192-bit addition
310 LL_UInt192 val7({0x0123456789abcdef, 0xfedcba9876543210, 0xfedcba9889abcdef});
311 LL_UInt192 val8({0x1111222233334444, 0xaaaabbbbccccdddd, 0xeeeeffffeeeeffff});
312 LL_UInt192 result4(
313 {0x12346789bcdf1233, 0xa987765443210fed, 0xedcbba98789acdef});
314 EXPECT_EQ(val7 + val8, result4);
315 EXPECT_EQ(val7 + val8, val8 + val7);
317 // Test 256-bit addition
318 LL_UInt256 val9({0x1f1e1d1c1b1a1918, 0xf1f2f3f4f5f6f7f8, 0x0123456789abcdef,
319 0xfedcba9876543210});
320 LL_UInt256 val10({0x1111222233334444, 0xaaaabbbbccccdddd, 0x1111222233334444,
321 0xaaaabbbbccccdddd});
322 LL_UInt256 result5({0x302f3f3e4e4d5d5c, 0x9c9dafb0c2c3d5d5,
323 0x12346789bcdf1234, 0xa987765443210fed});
324 EXPECT_EQ(val9 + val10, result5);
325 EXPECT_EQ(val9 + val10, val10 + val9);
328 TEST(LlvmLibcUIntClassTest, SubtractionTests) {
329 LL_UInt128 val1(12345);
330 LL_UInt128 val2(54321);
331 LL_UInt128 result1({0xffffffffffff5c08, 0xffffffffffffffff});
332 LL_UInt128 result2(0xa3f8);
333 EXPECT_EQ(val1 - val2, result1);
334 EXPECT_EQ(val1, val2 + result1);
335 EXPECT_EQ(val2 - val1, result2);
336 EXPECT_EQ(val2, val1 + result2);
338 LL_UInt128 val3({0xf000000000000001, 0});
339 LL_UInt128 val4({0x100000000000000f, 0});
340 LL_UInt128 result3(0xdffffffffffffff2);
341 LL_UInt128 result4({0x200000000000000e, 0xffffffffffffffff});
342 EXPECT_EQ(val3 - val4, result3);
343 EXPECT_EQ(val3, val4 + result3);
344 EXPECT_EQ(val4 - val3, result4);
345 EXPECT_EQ(val4, val3 + result4);
347 LL_UInt128 val5({0x0123456789abcdef, 0xfedcba9876543210});
348 LL_UInt128 val6({0x1111222233334444, 0xaaaabbbbccccdddd});
349 LL_UInt128 result5({0xf0122345567889ab, 0x5431fedca9875432});
350 LL_UInt128 result6({0x0feddcbaa9877655, 0xabce01235678abcd});
351 EXPECT_EQ(val5 - val6, result5);
352 EXPECT_EQ(val5, val6 + result5);
353 EXPECT_EQ(val6 - val5, result6);
354 EXPECT_EQ(val6, val5 + result6);
357 TEST(LlvmLibcUIntClassTest, MultiplicationTests) {
358 LL_UInt128 val1({5, 0});
359 LL_UInt128 val2({10, 0});
360 LL_UInt128 result1({50, 0});
361 EXPECT_EQ((val1 * val2), result1);
362 EXPECT_EQ((val1 * val2), (val2 * val1)); // multiplication is commutative
364 // Check that the multiplication works accross the whole number
365 LL_UInt128 val3({0xf, 0});
366 LL_UInt128 val4({0x1111111111111111, 0x1111111111111111});
367 LL_UInt128 result2({0xffffffffffffffff, 0xffffffffffffffff});
368 EXPECT_EQ((val3 * val4), result2);
369 EXPECT_EQ((val3 * val4), (val4 * val3));
371 // Check that multiplication doesn't reorder the bits.
372 LL_UInt128 val5({2, 0});
373 LL_UInt128 val6({0x1357024675316420, 0x0123456776543210});
374 LL_UInt128 result3({0x26ae048cea62c840, 0x02468aceeca86420});
376 EXPECT_EQ((val5 * val6), result3);
377 EXPECT_EQ((val5 * val6), (val6 * val5));
379 // Make sure that multiplication handles overflow correctly.
380 LL_UInt128 val7(2);
381 LL_UInt128 val8({0x8000800080008000, 0x8000800080008000});
382 LL_UInt128 result4({0x0001000100010000, 0x0001000100010001});
383 EXPECT_EQ((val7 * val8), result4);
384 EXPECT_EQ((val7 * val8), (val8 * val7));
386 // val9 is the 128 bit mantissa of 1e60 as a float, val10 is the mantissa for
387 // 1e-60. They almost cancel on the high bits, but the result we're looking
388 // for is just the low bits. The full result would be
389 // 0x7fffffffffffffffffffffffffffffff3a4f32d17f40d08f917cf11d1e039c50
390 LL_UInt128 val9({0x01D762422C946590, 0x9F4F2726179A2245});
391 LL_UInt128 val10({0x3792F412CB06794D, 0xCDB02555653131B6});
392 LL_UInt128 result5({0x917cf11d1e039c50, 0x3a4f32d17f40d08f});
393 EXPECT_EQ((val9 * val10), result5);
394 EXPECT_EQ((val9 * val10), (val10 * val9));
396 // Test 192-bit multiplication
397 LL_UInt192 val11(
398 {0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245});
399 LL_UInt192 val12(
400 {0xffffffffffffffff, 0x3792F412CB06794D, 0xCDB02555653131B6});
402 LL_UInt192 result6(
403 {0x0000000000000001, 0xc695a9ab08652121, 0x5de7faf698d32732});
404 EXPECT_EQ((val11 * val12), result6);
405 EXPECT_EQ((val11 * val12), (val12 * val11));
407 LL_UInt256 val13({0xffffffffffffffff, 0x01D762422C946590, 0x9F4F2726179A2245,
408 0xffffffffffffffff});
409 LL_UInt256 val14({0xffffffffffffffff, 0xffffffffffffffff, 0x3792F412CB06794D,
410 0xCDB02555653131B6});
411 LL_UInt256 result7({0x0000000000000001, 0xfe289dbdd36b9a6f,
412 0x291de4c71d5f646c, 0xfd37221cb06d4978});
413 EXPECT_EQ((val13 * val14), result7);
414 EXPECT_EQ((val13 * val14), (val14 * val13));
417 TEST(LlvmLibcUIntClassTest, DivisionTests) {
418 LL_UInt128 val1({10, 0});
419 LL_UInt128 val2({5, 0});
420 LL_UInt128 result1({2, 0});
421 EXPECT_EQ((val1 / val2), result1);
422 EXPECT_EQ((val1 / result1), val2);
424 // Check that the division works accross the whole number
425 LL_UInt128 val3({0xffffffffffffffff, 0xffffffffffffffff});
426 LL_UInt128 val4({0xf, 0});
427 LL_UInt128 result2({0x1111111111111111, 0x1111111111111111});
428 EXPECT_EQ((val3 / val4), result2);
429 EXPECT_EQ((val3 / result2), val4);
431 // Check that division doesn't reorder the bits.
432 LL_UInt128 val5({0x26ae048cea62c840, 0x02468aceeca86420});
433 LL_UInt128 val6({2, 0});
434 LL_UInt128 result3({0x1357024675316420, 0x0123456776543210});
435 EXPECT_EQ((val5 / val6), result3);
436 EXPECT_EQ((val5 / result3), val6);
438 // Make sure that division handles inexact results correctly.
439 LL_UInt128 val7({1001, 0});
440 LL_UInt128 val8({10, 0});
441 LL_UInt128 result4({100, 0});
442 EXPECT_EQ((val7 / val8), result4);
443 EXPECT_EQ((val7 / result4), val8);
445 // Make sure that division handles divisors of one correctly.
446 LL_UInt128 val9({0x1234567812345678, 0x9abcdef09abcdef0});
447 LL_UInt128 val10({1, 0});
448 LL_UInt128 result5({0x1234567812345678, 0x9abcdef09abcdef0});
449 EXPECT_EQ((val9 / val10), result5);
450 EXPECT_EQ((val9 / result5), val10);
452 // Make sure that division handles results of slightly more than 1 correctly.
453 LL_UInt128 val11({1050, 0});
454 LL_UInt128 val12({1030, 0});
455 LL_UInt128 result6({1, 0});
456 EXPECT_EQ((val11 / val12), result6);
458 // Make sure that division handles dividing by zero correctly.
459 LL_UInt128 val13({1234, 0});
460 LL_UInt128 val14({0, 0});
461 EXPECT_FALSE(val13.div(val14).has_value());
464 TEST(LlvmLibcUIntClassTest, ModuloTests) {
465 LL_UInt128 val1({10, 0});
466 LL_UInt128 val2({5, 0});
467 LL_UInt128 result1({0, 0});
468 EXPECT_EQ((val1 % val2), result1);
470 LL_UInt128 val3({101, 0});
471 LL_UInt128 val4({10, 0});
472 LL_UInt128 result2({1, 0});
473 EXPECT_EQ((val3 % val4), result2);
475 LL_UInt128 val5({10000001, 0});
476 LL_UInt128 val6({10, 0});
477 LL_UInt128 result3({1, 0});
478 EXPECT_EQ((val5 % val6), result3);
480 LL_UInt128 val7({12345, 10});
481 LL_UInt128 val8({0, 1});
482 LL_UInt128 result4({12345, 0});
483 EXPECT_EQ((val7 % val8), result4);
485 LL_UInt128 val9({12345, 10});
486 LL_UInt128 val10({0, 11});
487 LL_UInt128 result5({12345, 10});
488 EXPECT_EQ((val9 % val10), result5);
490 LL_UInt128 val11({10, 10});
491 LL_UInt128 val12({10, 10});
492 LL_UInt128 result6({0, 0});
493 EXPECT_EQ((val11 % val12), result6);
495 LL_UInt128 val13({12345, 0});
496 LL_UInt128 val14({1, 0});
497 LL_UInt128 result7({0, 0});
498 EXPECT_EQ((val13 % val14), result7);
500 LL_UInt128 val15({0xffffffffffffffff, 0xffffffffffffffff});
501 LL_UInt128 val16({0x1111111111111111, 0x111111111111111});
502 LL_UInt128 result8({0xf, 0});
503 EXPECT_EQ((val15 % val16), result8);
505 LL_UInt128 val17({5076944270305263619, 54210108624}); // (10 ^ 30) + 3
506 LL_UInt128 val18({10, 0});
507 LL_UInt128 result9({3, 0});
508 EXPECT_EQ((val17 % val18), result9);
511 TEST(LlvmLibcUIntClassTest, PowerTests) {
512 LL_UInt128 val1({10, 0});
513 val1.pow_n(30);
514 LL_UInt128 result1({5076944270305263616, 54210108624}); // (10 ^ 30)
515 EXPECT_EQ(val1, result1);
517 LL_UInt128 val2({1, 0});
518 val2.pow_n(10);
519 LL_UInt128 result2({1, 0});
520 EXPECT_EQ(val2, result2);
522 LL_UInt128 val3({0, 0});
523 val3.pow_n(10);
524 LL_UInt128 result3({0, 0});
525 EXPECT_EQ(val3, result3);
527 LL_UInt128 val4({10, 0});
528 val4.pow_n(0);
529 LL_UInt128 result4({1, 0});
530 EXPECT_EQ(val4, result4);
532 // Test zero to the zero. Currently it returns 1, since that's the easiest
533 // result.
534 LL_UInt128 val5({0, 0});
535 val5.pow_n(0);
536 LL_UInt128 result5({1, 0});
537 EXPECT_EQ(val5, result5);
539 // Test a number that overflows. 100 ^ 20 is larger than 2 ^ 128.
540 LL_UInt128 val6({100, 0});
541 val6.pow_n(20);
542 LL_UInt128 result6({0xb9f5610000000000, 0x6329f1c35ca4bfab});
543 EXPECT_EQ(val6, result6);
545 // Test that both halves of the number are being used.
546 LL_UInt128 val7({1, 1});
547 val7.pow_n(2);
548 LL_UInt128 result7({1, 2});
549 EXPECT_EQ(val7, result7);
551 LL_UInt128 val_pow_two;
552 LL_UInt128 result_pow_two;
553 for (size_t i = 0; i < 128; ++i) {
554 val_pow_two = 2;
555 val_pow_two.pow_n(i);
556 result_pow_two = 1;
557 result_pow_two = result_pow_two << i;
558 EXPECT_EQ(val_pow_two, result_pow_two);
562 TEST(LlvmLibcUIntClassTest, ShiftLeftTests) {
563 LL_UInt128 val1(0x0123456789abcdef);
564 LL_UInt128 result1(0x123456789abcdef0);
565 EXPECT_EQ((val1 << 4), result1);
567 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0});
568 LL_UInt128 result2({0x02468ace00000000, 0x9abcdef013579bdf});
569 EXPECT_EQ((val2 << 32), result2);
570 LL_UInt128 val22 = val2;
571 val22 <<= 32;
572 EXPECT_EQ(val22, result2);
574 LL_UInt128 result3({0, 0x13579bdf02468ace});
575 EXPECT_EQ((val2 << 64), result3);
577 LL_UInt128 result4({0, 0x02468ace00000000});
578 EXPECT_EQ((val2 << 96), result4);
580 LL_UInt128 result5({0, 0x2468ace000000000});
581 EXPECT_EQ((val2 << 100), result5);
583 LL_UInt192 val3({1, 0, 0});
584 LL_UInt192 result7({0, 1, 0});
585 EXPECT_EQ((val3 << 64), result7);
588 TEST(LlvmLibcUIntClassTest, ShiftRightTests) {
589 LL_UInt128 val1(0x0123456789abcdef);
590 LL_UInt128 result1(0x00123456789abcde);
591 EXPECT_EQ((val1 >> 4), result1);
593 LL_UInt128 val2({0x13579bdf02468ace, 0x123456789abcdef0});
594 LL_UInt128 result2({0x9abcdef013579bdf, 0x0000000012345678});
595 EXPECT_EQ((val2 >> 32), result2);
596 LL_UInt128 val22 = val2;
597 val22 >>= 32;
598 EXPECT_EQ(val22, result2);
600 LL_UInt128 result3({0x123456789abcdef0, 0});
601 EXPECT_EQ((val2 >> 64), result3);
603 LL_UInt128 result4({0x0000000012345678, 0});
604 EXPECT_EQ((val2 >> 96), result4);
606 LL_UInt128 result5({0x0000000001234567, 0});
607 EXPECT_EQ((val2 >> 100), result5);
609 LL_UInt128 v1({0x1111222233334444, 0xaaaabbbbccccdddd});
610 LL_UInt128 r1({0xaaaabbbbccccdddd, 0});
611 EXPECT_EQ((v1 >> 64), r1);
613 LL_UInt192 v2({0x1111222233334444, 0x5555666677778888, 0xaaaabbbbccccdddd});
614 LL_UInt192 r2({0x5555666677778888, 0xaaaabbbbccccdddd, 0});
615 LL_UInt192 r3({0xaaaabbbbccccdddd, 0, 0});
616 EXPECT_EQ((v2 >> 64), r2);
617 EXPECT_EQ((v2 >> 128), r3);
618 EXPECT_EQ((r2 >> 64), r3);
620 LL_UInt192 val3({0, 0, 1});
621 LL_UInt192 result7({0, 1, 0});
622 EXPECT_EQ((val3 >> 64), result7);
625 TEST(LlvmLibcUIntClassTest, AndTests) {
626 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000});
627 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});
628 uint64_t val64 = 0xf0f0f0f00f0f0f0f;
629 int val32 = 0x0f0f0f0f;
630 LL_UInt128 result128({0xf0f0000000000f0f, 0xff00ff0000000000});
631 LL_UInt128 result64(0xf0f0000000000f0f);
632 LL_UInt128 result32(0x00000f0f);
633 EXPECT_EQ((base & val128), result128);
634 EXPECT_EQ((base & val64), result64);
635 EXPECT_EQ((base & val32), result32);
638 TEST(LlvmLibcUIntClassTest, OrTests) {
639 LL_UInt128 base({0xffff00000000ffff, 0xffffffff00000000});
640 LL_UInt128 val128({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});
641 uint64_t val64 = 0xf0f0f0f00f0f0f0f;
642 int val32 = 0x0f0f0f0f;
643 LL_UInt128 result128({0xfffff0f00f0fffff, 0xffffffff00ff00ff});
644 LL_UInt128 result64({0xfffff0f00f0fffff, 0xffffffff00000000});
645 LL_UInt128 result32({0xffff00000f0fffff, 0xffffffff00000000});
646 EXPECT_EQ((base | val128), result128);
647 EXPECT_EQ((base | val64), result64);
648 EXPECT_EQ((base | val32), result32);
651 TEST(LlvmLibcUIntClassTest, CompoundAssignments) {
652 LL_UInt128 x({0xffff00000000ffff, 0xffffffff00000000});
653 LL_UInt128 b({0xf0f0f0f00f0f0f0f, 0xff00ff0000ff00ff});
655 LL_UInt128 a = x;
656 a |= b;
657 LL_UInt128 or_result({0xfffff0f00f0fffff, 0xffffffff00ff00ff});
658 EXPECT_EQ(a, or_result);
660 a = x;
661 a &= b;
662 LL_UInt128 and_result({0xf0f0000000000f0f, 0xff00ff0000000000});
663 EXPECT_EQ(a, and_result);
665 a = x;
666 a ^= b;
667 LL_UInt128 xor_result({0x0f0ff0f00f0ff0f0, 0x00ff00ff00ff00ff});
668 EXPECT_EQ(a, xor_result);
670 a = LL_UInt128(uint64_t(0x0123456789abcdef));
671 LL_UInt128 shift_left_result(uint64_t(0x123456789abcdef0));
672 a <<= 4;
673 EXPECT_EQ(a, shift_left_result);
675 a = LL_UInt128(uint64_t(0x123456789abcdef1));
676 LL_UInt128 shift_right_result(uint64_t(0x0123456789abcdef));
677 a >>= 4;
678 EXPECT_EQ(a, shift_right_result);
680 a = LL_UInt128({0xf000000000000001, 0});
681 b = LL_UInt128({0x100000000000000f, 0});
682 LL_UInt128 add_result({0x10, 0x1});
683 a += b;
684 EXPECT_EQ(a, add_result);
686 a = LL_UInt128({0xf, 0});
687 b = LL_UInt128({0x1111111111111111, 0x1111111111111111});
688 LL_UInt128 mul_result({0xffffffffffffffff, 0xffffffffffffffff});
689 a *= b;
690 EXPECT_EQ(a, mul_result);
693 TEST(LlvmLibcUIntClassTest, UnaryPredecrement) {
694 LL_UInt128 a = LL_UInt128({0x1111111111111111, 0x1111111111111111});
695 ++a;
696 EXPECT_EQ(a, LL_UInt128({0x1111111111111112, 0x1111111111111111}));
698 a = LL_UInt128({0xffffffffffffffff, 0x0});
699 ++a;
700 EXPECT_EQ(a, LL_UInt128({0x0, 0x1}));
702 a = LL_UInt128({0xffffffffffffffff, 0xffffffffffffffff});
703 ++a;
704 EXPECT_EQ(a, LL_UInt128({0x0, 0x0}));
707 TEST(LlvmLibcUIntClassTest, EqualsTests) {
708 LL_UInt128 a1({0xffffffff00000000, 0xffff00000000ffff});
709 LL_UInt128 a2({0xffffffff00000000, 0xffff00000000ffff});
710 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f});
711 LL_UInt128 a_reversed({0xffff00000000ffff, 0xffffffff00000000});
712 LL_UInt128 a_upper(0xffff00000000ffff);
713 LL_UInt128 a_lower(0xffffffff00000000);
714 ASSERT_TRUE(a1 == a1);
715 ASSERT_TRUE(a1 == a2);
716 ASSERT_FALSE(a1 == b);
717 ASSERT_FALSE(a1 == a_reversed);
718 ASSERT_FALSE(a1 == a_lower);
719 ASSERT_FALSE(a1 == a_upper);
720 ASSERT_TRUE(a_lower != a_upper);
723 TEST(LlvmLibcUIntClassTest, ComparisonTests) {
724 LL_UInt128 a({0xffffffff00000000, 0xffff00000000ffff});
725 LL_UInt128 b({0xff00ff0000ff00ff, 0xf0f0f0f00f0f0f0f});
726 EXPECT_GT(a, b);
727 EXPECT_GE(a, b);
728 EXPECT_LT(b, a);
729 EXPECT_LE(b, a);
731 LL_UInt128 x(0xffffffff00000000);
732 LL_UInt128 y(0x00000000ffffffff);
733 EXPECT_GT(x, y);
734 EXPECT_GE(x, y);
735 EXPECT_LT(y, x);
736 EXPECT_LE(y, x);
738 EXPECT_LE(a, a);
739 EXPECT_GE(a, a);
742 TEST(LlvmLibcUIntClassTest, FullMulTests) {
743 LL_UInt128 a({0xffffffffffffffffULL, 0xffffffffffffffffULL});
744 LL_UInt128 b({0xfedcba9876543210ULL, 0xfefdfcfbfaf9f8f7ULL});
745 LL_UInt256 r({0x0123456789abcdf0ULL, 0x0102030405060708ULL,
746 0xfedcba987654320fULL, 0xfefdfcfbfaf9f8f7ULL});
747 LL_UInt128 r_hi({0xfedcba987654320eULL, 0xfefdfcfbfaf9f8f7ULL});
749 EXPECT_EQ(a.ful_mul(b), r);
750 EXPECT_EQ(a.quick_mul_hi(b), r_hi);
752 LL_UInt192 c(
753 {0x7766554433221101ULL, 0xffeeddccbbaa9988ULL, 0x1f2f3f4f5f6f7f8fULL});
754 LL_UInt320 rr({0x8899aabbccddeeffULL, 0x0011223344556677ULL,
755 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL,
756 0x1f2f3f4f5f6f7f8fULL});
758 EXPECT_EQ(a.ful_mul(c), rr);
759 EXPECT_EQ(a.ful_mul(c), c.ful_mul(a));
762 #define TEST_QUICK_MUL_HI(Bits, Error) \
763 do { \
764 LL_UInt##Bits a = ~LL_UInt##Bits(0); \
765 LL_UInt##Bits hi = a.quick_mul_hi(a); \
766 LL_UInt##Bits trunc = static_cast<LL_UInt##Bits>(a.ful_mul(a) >> Bits); \
767 uint64_t overflow = trunc.sub_overflow(hi); \
768 EXPECT_EQ(overflow, uint64_t(0)); \
769 EXPECT_LE(uint64_t(trunc), uint64_t(Error)); \
770 } while (0)
772 TEST(LlvmLibcUIntClassTest, QuickMulHiTests) {
773 TEST_QUICK_MUL_HI(128, 1);
774 TEST_QUICK_MUL_HI(192, 2);
775 TEST_QUICK_MUL_HI(256, 3);
776 TEST_QUICK_MUL_HI(512, 7);
779 TEST(LlvmLibcUIntClassTest, ConstexprInitTests) {
780 constexpr LL_UInt128 add = LL_UInt128(1) + LL_UInt128(2);
781 ASSERT_EQ(add, LL_UInt128(3));
782 constexpr LL_UInt128 sub = LL_UInt128(5) - LL_UInt128(4);
783 ASSERT_EQ(sub, LL_UInt128(1));
786 #define TEST_QUICK_DIV_UINT32_POW2(x, e) \
787 do { \
788 LL_UInt320 y({0x8899aabbccddeeffULL, 0x0011223344556677ULL, \
789 0x583715f4d3b29171ULL, 0xffeeddccbbaa9988ULL, \
790 0x1f2f3f4f5f6f7f8fULL}); \
791 LL_UInt320 d = LL_UInt320(x); \
792 d <<= e; \
793 LL_UInt320 q1 = y / d; \
794 LL_UInt320 r1 = y % d; \
795 LL_UInt320 r2 = *y.div_uint_half_times_pow_2(x, e); \
796 EXPECT_EQ(q1, y); \
797 EXPECT_EQ(r1, r2); \
798 } while (0)
800 TEST(LlvmLibcUIntClassTest, DivUInt32TimesPow2Tests) {
801 for (size_t i = 0; i < 320; i += 32) {
802 TEST_QUICK_DIV_UINT32_POW2(1, i);
803 TEST_QUICK_DIV_UINT32_POW2(13151719, i);
806 TEST_QUICK_DIV_UINT32_POW2(1, 75);
807 TEST_QUICK_DIV_UINT32_POW2(1, 101);
809 TEST_QUICK_DIV_UINT32_POW2(1000000000, 75);
810 TEST_QUICK_DIV_UINT32_POW2(1000000000, 101);
813 TEST(LlvmLibcUIntClassTest, ComparisonInt128Tests) {
814 LL_Int128 a(123);
815 LL_Int128 b(0);
816 LL_Int128 c(-1);
818 ASSERT_TRUE(a == a);
819 ASSERT_TRUE(b == b);
820 ASSERT_TRUE(c == c);
822 ASSERT_TRUE(a != b);
823 ASSERT_TRUE(a != c);
824 ASSERT_TRUE(b != a);
825 ASSERT_TRUE(b != c);
826 ASSERT_TRUE(c != a);
827 ASSERT_TRUE(c != b);
829 ASSERT_TRUE(a > b);
830 ASSERT_TRUE(a >= b);
831 ASSERT_TRUE(a > c);
832 ASSERT_TRUE(a >= c);
833 ASSERT_TRUE(b > c);
834 ASSERT_TRUE(b >= c);
836 ASSERT_TRUE(b < a);
837 ASSERT_TRUE(b <= a);
838 ASSERT_TRUE(c < a);
839 ASSERT_TRUE(c <= a);
840 ASSERT_TRUE(c < b);
841 ASSERT_TRUE(c <= b);
844 TEST(LlvmLibcUIntClassTest, BasicArithmeticInt128Tests) {
845 LL_Int128 a(123);
846 LL_Int128 b(0);
847 LL_Int128 c(-3);
849 ASSERT_EQ(a * a, LL_Int128(123 * 123));
850 ASSERT_EQ(a * c, LL_Int128(-369));
851 ASSERT_EQ(c * a, LL_Int128(-369));
852 ASSERT_EQ(c * c, LL_Int128(9));
853 ASSERT_EQ(a * b, b);
854 ASSERT_EQ(b * a, b);
855 ASSERT_EQ(b * c, b);
856 ASSERT_EQ(c * b, b);
859 #ifdef LIBC_TYPES_HAS_INT128
861 TEST(LlvmLibcUIntClassTest, ConstructorFromUInt128Tests) {
862 __uint128_t a = (__uint128_t(123) << 64) + 1;
863 __int128_t b = -static_cast<__int128_t>(a);
864 LL_Int128 c(a);
865 LL_Int128 d(b);
867 LL_Int192 e(a);
868 LL_Int192 f(b);
870 ASSERT_EQ(static_cast<int>(c), 1);
871 ASSERT_EQ(static_cast<int>(c >> 64), 123);
872 ASSERT_EQ(static_cast<uint64_t>(d), static_cast<uint64_t>(b));
873 ASSERT_EQ(static_cast<uint64_t>(d >> 64), static_cast<uint64_t>(b >> 64));
874 ASSERT_EQ(c + d, LL_Int128(a + b));
876 ASSERT_EQ(static_cast<int>(e), 1);
877 ASSERT_EQ(static_cast<int>(e >> 64), 123);
878 ASSERT_EQ(static_cast<uint64_t>(f), static_cast<uint64_t>(b));
879 ASSERT_EQ(static_cast<uint64_t>(f >> 64), static_cast<uint64_t>(b >> 64));
880 ASSERT_EQ(LL_UInt192(e + f), LL_UInt192(a + b));
883 TEST(LlvmLibcUIntClassTest, WordTypeUInt128Tests) {
884 using LL_UInt256_128 = BigInt<256, false, __uint128_t>;
885 using LL_UInt128_128 = BigInt<128, false, __uint128_t>;
887 LL_UInt256_128 a(1);
889 ASSERT_EQ(static_cast<int>(a), 1);
890 a = (a << 128) + 2;
891 ASSERT_EQ(static_cast<int>(a), 2);
892 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(2));
893 a = (a << 32) + 3;
894 ASSERT_EQ(static_cast<int>(a), 3);
895 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x2'0000'0003));
896 ASSERT_EQ(static_cast<int>(a >> 32), 2);
897 ASSERT_EQ(static_cast<int>(a >> (128 + 32)), 1);
899 LL_UInt128_128 b(__uint128_t(1) << 127);
900 LL_UInt128_128 c(b);
901 a = b.ful_mul(c);
903 ASSERT_EQ(static_cast<int>(a >> 254), 1);
905 LL_UInt256_128 d = LL_UInt256_128(123) << 4;
906 ASSERT_EQ(static_cast<int>(d), 123 << 4);
907 LL_UInt256_128 e = a / d;
908 LL_UInt256_128 f = a % d;
909 LL_UInt256_128 r = *a.div_uint_half_times_pow_2(123, 4);
910 EXPECT_TRUE(e == a);
911 EXPECT_TRUE(f == r);
914 #endif // LIBC_TYPES_HAS_INT128
916 TEST(LlvmLibcUIntClassTest, OtherWordTypeTests) {
917 using LL_UInt96 = BigInt<96, false, uint32_t>;
919 LL_UInt96 a(1);
921 ASSERT_EQ(static_cast<int>(a), 1);
922 a = (a << 32) + 2;
923 ASSERT_EQ(static_cast<int>(a), 2);
924 ASSERT_EQ(static_cast<uint64_t>(a), uint64_t(0x1'0000'0002));
925 a = (a << 32) + 3;
926 ASSERT_EQ(static_cast<int>(a), 3);
927 ASSERT_EQ(static_cast<int>(a >> 32), 2);
928 ASSERT_EQ(static_cast<int>(a >> 64), 1);
931 TEST(LlvmLibcUIntClassTest, OtherWordTypeCastTests) {
932 using LL_UInt96 = BigInt<96, false, uint32_t>;
934 LL_UInt96 a({123, 456, 789});
936 ASSERT_EQ(static_cast<int>(a), 123);
937 ASSERT_EQ(static_cast<int>(a >> 32), 456);
938 ASSERT_EQ(static_cast<int>(a >> 64), 789);
940 // Bigger word with more bits to smaller word with less bits.
941 LL_UInt128 b(a);
943 ASSERT_EQ(static_cast<int>(b), 123);
944 ASSERT_EQ(static_cast<int>(b >> 32), 456);
945 ASSERT_EQ(static_cast<int>(b >> 64), 789);
946 ASSERT_EQ(static_cast<int>(b >> 96), 0);
948 b = (b << 32) + 987;
950 ASSERT_EQ(static_cast<int>(b), 987);
951 ASSERT_EQ(static_cast<int>(b >> 32), 123);
952 ASSERT_EQ(static_cast<int>(b >> 64), 456);
953 ASSERT_EQ(static_cast<int>(b >> 96), 789);
955 // Smaller word with less bits to bigger word with more bits.
956 LL_UInt96 c(b);
958 ASSERT_EQ(static_cast<int>(c), 987);
959 ASSERT_EQ(static_cast<int>(c >> 32), 123);
960 ASSERT_EQ(static_cast<int>(c >> 64), 456);
962 // Smaller word with more bits to bigger word with less bits
963 LL_UInt64 d(c);
965 ASSERT_EQ(static_cast<int>(d), 987);
966 ASSERT_EQ(static_cast<int>(d >> 32), 123);
968 // Bigger word with less bits to smaller word with more bits
970 LL_UInt96 e(d);
972 ASSERT_EQ(static_cast<int>(e), 987);
973 ASSERT_EQ(static_cast<int>(e >> 32), 123);
975 e = (e << 32) + 654;
977 ASSERT_EQ(static_cast<int>(e), 654);
978 ASSERT_EQ(static_cast<int>(e >> 32), 987);
979 ASSERT_EQ(static_cast<int>(e >> 64), 123);
982 TEST(LlvmLibcUIntClassTest, SignedOtherWordTypeCastTests) {
983 using LL_Int64 = BigInt<64, true, uint64_t>;
984 using LL_Int96 = BigInt<96, true, uint32_t>;
986 LL_Int64 zero_64(0);
987 LL_Int96 zero_96(0);
988 LL_Int192 zero_192(0);
990 LL_Int96 plus_a({0x1234, 0x5678, 0x9ABC});
992 ASSERT_EQ(static_cast<int>(plus_a), 0x1234);
993 ASSERT_EQ(static_cast<int>(plus_a >> 32), 0x5678);
994 ASSERT_EQ(static_cast<int>(plus_a >> 64), 0x9ABC);
996 LL_Int96 minus_a(-plus_a);
998 // The reason that the numbers are inverted and not negated is that we're
999 // using two's complement. To negate a two's complement number you flip the
1000 // bits and add 1, so minus_a is {~0x1234, ~0x5678, ~0x9ABC} + {1,0,0}.
1001 ASSERT_EQ(static_cast<int>(minus_a), (~0x1234) + 1);
1002 ASSERT_EQ(static_cast<int>(minus_a >> 32), ~0x5678);
1003 ASSERT_EQ(static_cast<int>(minus_a >> 64), ~0x9ABC);
1005 ASSERT_TRUE(plus_a + minus_a == zero_96);
1007 // 192 so there's an extra block to get sign extended to
1008 LL_Int192 bigger_plus_a(plus_a);
1010 ASSERT_EQ(static_cast<int>(bigger_plus_a), 0x1234);
1011 ASSERT_EQ(static_cast<int>(bigger_plus_a >> 32), 0x5678);
1012 ASSERT_EQ(static_cast<int>(bigger_plus_a >> 64), 0x9ABC);
1013 ASSERT_EQ(static_cast<int>(bigger_plus_a >> 96), 0);
1014 ASSERT_EQ(static_cast<int>(bigger_plus_a >> 128), 0);
1015 ASSERT_EQ(static_cast<int>(bigger_plus_a >> 160), 0);
1017 LL_Int192 bigger_minus_a(minus_a);
1019 ASSERT_EQ(static_cast<int>(bigger_minus_a), (~0x1234) + 1);
1020 ASSERT_EQ(static_cast<int>(bigger_minus_a >> 32), ~0x5678);
1021 ASSERT_EQ(static_cast<int>(bigger_minus_a >> 64), ~0x9ABC);
1022 ASSERT_EQ(static_cast<int>(bigger_minus_a >> 96), ~0);
1023 ASSERT_EQ(static_cast<int>(bigger_minus_a >> 128), ~0);
1024 ASSERT_EQ(static_cast<int>(bigger_minus_a >> 160), ~0);
1026 ASSERT_TRUE(bigger_plus_a + bigger_minus_a == zero_192);
1028 LL_Int64 smaller_plus_a(plus_a);
1030 ASSERT_EQ(static_cast<int>(smaller_plus_a), 0x1234);
1031 ASSERT_EQ(static_cast<int>(smaller_plus_a >> 32), 0x5678);
1033 LL_Int64 smaller_minus_a(minus_a);
1035 ASSERT_EQ(static_cast<int>(smaller_minus_a), (~0x1234) + 1);
1036 ASSERT_EQ(static_cast<int>(smaller_minus_a >> 32), ~0x5678);
1038 ASSERT_TRUE(smaller_plus_a + smaller_minus_a == zero_64);
1040 // Also try going from bigger word size to smaller word size
1041 LL_Int96 smaller_back_plus_a(smaller_plus_a);
1043 ASSERT_EQ(static_cast<int>(smaller_back_plus_a), 0x1234);
1044 ASSERT_EQ(static_cast<int>(smaller_back_plus_a >> 32), 0x5678);
1045 ASSERT_EQ(static_cast<int>(smaller_back_plus_a >> 64), 0);
1047 LL_Int96 smaller_back_minus_a(smaller_minus_a);
1049 ASSERT_EQ(static_cast<int>(smaller_back_minus_a), (~0x1234) + 1);
1050 ASSERT_EQ(static_cast<int>(smaller_back_minus_a >> 32), ~0x5678);
1051 ASSERT_EQ(static_cast<int>(smaller_back_minus_a >> 64), ~0);
1053 ASSERT_TRUE(smaller_back_plus_a + smaller_back_minus_a == zero_96);
1055 LL_Int96 bigger_back_plus_a(bigger_plus_a);
1057 ASSERT_EQ(static_cast<int>(bigger_back_plus_a), 0x1234);
1058 ASSERT_EQ(static_cast<int>(bigger_back_plus_a >> 32), 0x5678);
1059 ASSERT_EQ(static_cast<int>(bigger_back_plus_a >> 64), 0x9ABC);
1061 LL_Int96 bigger_back_minus_a(bigger_minus_a);
1063 ASSERT_EQ(static_cast<int>(bigger_back_minus_a), (~0x1234) + 1);
1064 ASSERT_EQ(static_cast<int>(bigger_back_minus_a >> 32), ~0x5678);
1065 ASSERT_EQ(static_cast<int>(bigger_back_minus_a >> 64), ~0x9ABC);
1067 ASSERT_TRUE(bigger_back_plus_a + bigger_back_minus_a == zero_96);
1070 TEST(LlvmLibcUIntClassTest, MixedSignednessOtherWordTypeCastTests) {
1071 using LL_UInt96 = BigInt<96, false, uint32_t>;
1072 LL_UInt96 x = -123;
1073 // ensure that -123 gets extended, even though the input type is signed while
1074 // the BigInt is unsigned.
1075 ASSERT_EQ(int64_t(x), int64_t(-123));
1078 } // namespace LIBC_NAMESPACE_DECL