[X86] Better handling of impossibly large stack frames (#124217)
[llvm-project.git] / libclc / generic / lib / math / acos.cl
blobd71d10024b180002dff61e826d33cd7bc657b49e
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
22 #include <clc/clc.h>
23 #include <clc/clcmacro.h>
25 #include "math.h"
27 _CLC_OVERLOAD _CLC_DEF float acos(float x) {
28 // Computes arccos(x).
29 // The argument is first reduced by noting that arccos(x)
30 // is invalid for abs(x) > 1. For denormal and small
31 // arguments arccos(x) = pi/2 to machine accuracy.
32 // Remaining argument ranges are handled as follows.
33 // For abs(x) <= 0.5 use
34 // arccos(x) = pi/2 - arcsin(x)
35 // = pi/2 - (x + x^3*R(x^2))
36 // where R(x^2) is a rational minimax approximation to
37 // (arcsin(x) - x)/x^3.
38 // For abs(x) > 0.5 exploit the identity:
39 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
40 // together with the above rational approximation, and
41 // reconstruct the terms carefully.
44 // Some constants and split constants.
45 const float piby2 = 1.5707963705e+00F;
46 const float pi = 3.1415926535897933e+00F;
47 const float piby2_head = 1.5707963267948965580e+00F;
48 const float piby2_tail = 6.12323399573676603587e-17F;
50 uint ux = as_uint(x);
51 uint aux = ux & ~SIGNBIT_SP32;
52 int xneg = ux != aux;
53 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
54 float y = as_float(aux);
56 // transform if |x| >= 0.5
57 int transform = xexp >= -1;
59 float y2 = y * y;
60 float yt = 0.5f * (1.0f - y);
61 float r = transform ? yt : y2;
63 // Use a rational approximation for [0.0, 0.5]
64 float a = mad(r,
65 mad(r,
66 mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
67 -0.0565298683201845211985026327361F),
68 0.184161606965100694821398249421F);
70 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
71 float u = r * MATH_DIVIDE(a, b);
73 float s = MATH_SQRT(r);
74 y = s;
75 float s1 = as_float(as_uint(s) & 0xffff0000);
76 float c = MATH_DIVIDE(mad(s1, -s1, r), s + s1);
77 float rettn = mad(s + mad(y, u, -piby2_tail), -2.0f, pi);
78 float rettp = 2.0F * (s1 + mad(y, u, c));
79 float rett = xneg ? rettn : rettp;
80 float ret = piby2_head - (x - mad(x, -u, piby2_tail));
82 ret = transform ? rett : ret;
83 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
84 ret = ux == 0x3f800000U ? 0.0f : ret;
85 ret = ux == 0xbf800000U ? pi : ret;
86 ret = xexp < -26 ? piby2 : ret;
87 return ret;
90 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acos, float);
92 #ifdef cl_khr_fp64
94 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
96 _CLC_OVERLOAD _CLC_DEF double acos(double x) {
97 // Computes arccos(x).
98 // The argument is first reduced by noting that arccos(x)
99 // is invalid for abs(x) > 1. For denormal and small
100 // arguments arccos(x) = pi/2 to machine accuracy.
101 // Remaining argument ranges are handled as follows.
102 // For abs(x) <= 0.5 use
103 // arccos(x) = pi/2 - arcsin(x)
104 // = pi/2 - (x + x^3*R(x^2))
105 // where R(x^2) is a rational minimax approximation to
106 // (arcsin(x) - x)/x^3.
107 // For abs(x) > 0.5 exploit the identity:
108 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
109 // together with the above rational approximation, and
110 // reconstruct the terms carefully.
112 const double pi = 3.1415926535897933e+00; /* 0x400921fb54442d18 */
113 const double piby2 = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
114 const double piby2_head = 1.5707963267948965580e+00; /* 0x3ff921fb54442d18 */
115 const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
117 double y = fabs(x);
118 int xneg = as_int2(x).hi < 0;
119 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
121 // abs(x) >= 0.5
122 int transform = xexp >= -1;
124 double rt = 0.5 * (1.0 - y);
125 double y2 = y * y;
126 double r = transform ? rt : y2;
128 // Use a rational approximation for [0.0, 0.5]
129 double un = fma(r,
130 fma(r,
131 fma(r,
132 fma(r,
133 fma(r, 0.0000482901920344786991880522822991,
134 0.00109242697235074662306043804220),
135 -0.0549989809235685841612020091328),
136 0.275558175256937652532686256258),
137 -0.445017216867635649900123110649),
138 0.227485835556935010735943483075);
140 double ud = fma(r,
141 fma(r,
142 fma(r,
143 fma(r, 0.105869422087204370341222318533,
144 -0.943639137032492685763471240072),
145 2.76568859157270989520376345954),
146 -3.28431505720958658909889444194),
147 1.36491501334161032038194214209);
149 double u = r * MATH_DIVIDE(un, ud);
151 // Reconstruct acos carefully in transformed region
152 double s = sqrt(r);
153 double ztn = fma(-2.0, (s + fma(s, u, -piby2_tail)), pi);
155 double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
156 double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
157 double ztp = 2.0 * (s1 + fma(s, u, c));
158 double zt = xneg ? ztn : ztp;
159 double z = piby2_head - (x - fma(-x, u, piby2_tail));
161 z = transform ? zt : z;
163 z = xexp < -56 ? piby2 : z;
164 z = isnan(x) ? as_double((as_ulong(x) | QNANBITPATT_DP64)) : z;
165 z = x == 1.0 ? 0.0 : z;
166 z = x == -1.0 ? pi : z;
168 return z;
171 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acos, double);
173 #endif // cl_khr_fp64
175 #ifdef cl_khr_fp16
177 #pragma OPENCL EXTENSION cl_khr_fp16 : enable
179 _CLC_DEFINE_UNARY_BUILTIN_FP16(acos)
181 #endif