[analyzer][NFC] Factor out SymbolManager::get<*> (#121781)
[llvm-project.git] / libclc / generic / lib / math / acospi.cl
blob83a47eb27e83675c17c0faf3babc1c22c78a9d31
1 /*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
26 #include "math.h"
28 _CLC_OVERLOAD _CLC_DEF float acospi(float x) {
29 // Computes arccos(x).
30 // The argument is first reduced by noting that arccos(x)
31 // is invalid for abs(x) > 1. For denormal and small
32 // arguments arccos(x) = pi/2 to machine accuracy.
33 // Remaining argument ranges are handled as follows.
34 // For abs(x) <= 0.5 use
35 // arccos(x) = pi/2 - arcsin(x)
36 // = pi/2 - (x + x^3*R(x^2))
37 // where R(x^2) is a rational minimax approximation to
38 // (arcsin(x) - x)/x^3.
39 // For abs(x) > 0.5 exploit the identity:
40 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
41 // together with the above rational approximation, and
42 // reconstruct the terms carefully.
45 // Some constants and split constants.
46 const float pi = 3.1415926535897933e+00f;
47 const float piby2_head = 1.5707963267948965580e+00f; /* 0x3ff921fb54442d18 */
48 const float piby2_tail = 6.12323399573676603587e-17f; /* 0x3c91a62633145c07 */
50 uint ux = as_uint(x);
51 uint aux = ux & ~SIGNBIT_SP32;
52 int xneg = ux != aux;
53 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
55 float y = as_float(aux);
57 // transform if |x| >= 0.5
58 int transform = xexp >= -1;
60 float y2 = y * y;
61 float yt = 0.5f * (1.0f - y);
62 float r = transform ? yt : y2;
64 // Use a rational approximation for [0.0, 0.5]
65 float a = mad(r, mad(r, mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
66 -0.0565298683201845211985026327361F),
67 0.184161606965100694821398249421F);
68 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
69 float u = r * MATH_DIVIDE(a, b);
71 float s = MATH_SQRT(r);
72 y = s;
73 float s1 = as_float(as_uint(s) & 0xffff0000);
74 float c = MATH_DIVIDE(r - s1 * s1, s + s1);
75 // float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + (y * u - piby2_tail)), pi);
76 float rettn = 1.0f - MATH_DIVIDE(2.0f * (s + mad(y, u, -piby2_tail)), pi);
77 // float rettp = MATH_DIVIDE(2.0F * s1 + (2.0F * c + 2.0F * y * u), pi);
78 float rettp = MATH_DIVIDE(2.0f*(s1 + mad(y, u, c)), pi);
79 float rett = xneg ? rettn : rettp;
80 // float ret = MATH_DIVIDE(piby2_head - (x - (piby2_tail - x * u)), pi);
81 float ret = MATH_DIVIDE(piby2_head - (x - mad(x, -u, piby2_tail)), pi);
83 ret = transform ? rett : ret;
84 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
85 ret = ux == 0x3f800000U ? 0.0f : ret;
86 ret = ux == 0xbf800000U ? 1.0f : ret;
87 ret = xexp < -26 ? 0.5f : ret;
88 return ret;
91 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, acospi, float)
93 #ifdef cl_khr_fp64
94 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
96 _CLC_OVERLOAD _CLC_DEF double acospi(double x) {
97 // Computes arccos(x).
98 // The argument is first reduced by noting that arccos(x)
99 // is invalid for abs(x) > 1. For denormal and small
100 // arguments arccos(x) = pi/2 to machine accuracy.
101 // Remaining argument ranges are handled as follows.
102 // For abs(x) <= 0.5 use
103 // arccos(x) = pi/2 - arcsin(x)
104 // = pi/2 - (x + x^3*R(x^2))
105 // where R(x^2) is a rational minimax approximation to
106 // (arcsin(x) - x)/x^3.
107 // For abs(x) > 0.5 exploit the identity:
108 // arccos(x) = pi - 2*arcsin(sqrt(1-x)/2)
109 // together with the above rational approximation, and
110 // reconstruct the terms carefully.
112 const double pi = 0x1.921fb54442d18p+1;
113 const double piby2_tail = 6.12323399573676603587e-17; /* 0x3c91a62633145c07 */
115 double y = fabs(x);
116 int xneg = as_int2(x).hi < 0;
117 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
119 // abs(x) >= 0.5
120 int transform = xexp >= -1;
122 // Transform y into the range [0,0.5)
123 double r1 = 0.5 * (1.0 - y);
124 double s = sqrt(r1);
125 double r = y * y;
126 r = transform ? r1 : r;
127 y = transform ? s : y;
129 // Use a rational approximation for [0.0, 0.5]
130 double un = fma(r,
131 fma(r,
132 fma(r,
133 fma(r,
134 fma(r, 0.0000482901920344786991880522822991,
135 0.00109242697235074662306043804220),
136 -0.0549989809235685841612020091328),
137 0.275558175256937652532686256258),
138 -0.445017216867635649900123110649),
139 0.227485835556935010735943483075);
141 double ud = fma(r,
142 fma(r,
143 fma(r,
144 fma(r, 0.105869422087204370341222318533,
145 -0.943639137032492685763471240072),
146 2.76568859157270989520376345954),
147 -3.28431505720958658909889444194),
148 1.36491501334161032038194214209);
150 double u = r * MATH_DIVIDE(un, ud);
152 // Reconstruct acos carefully in transformed region
153 double res1 = fma(-2.0, MATH_DIVIDE(s + fma(y, u, -piby2_tail), pi), 1.0);
154 double s1 = as_double(as_ulong(s) & 0xffffffff00000000UL);
155 double c = MATH_DIVIDE(fma(-s1, s1, r), s + s1);
156 double res2 = MATH_DIVIDE(fma(2.0, s1, fma(2.0, c, 2.0 * y * u)), pi);
157 res1 = xneg ? res1 : res2;
158 res2 = 0.5 - fma(x, u, x) / pi;
159 res1 = transform ? res1 : res2;
161 const double qnan = as_double(QNANBITPATT_DP64);
162 res2 = x == 1.0 ? 0.0 : qnan;
163 res2 = x == -1.0 ? 1.0 : res2;
164 res1 = xexp >= 0 ? res2 : res1;
165 res1 = xexp < -56 ? 0.5 : res1;
167 return res1;
170 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, acospi, double)
172 #endif
174 _CLC_DEFINE_UNARY_BUILTIN_FP16(acospi)