[analyzer][NFC] Factor out SymbolManager::get<*> (#121781)
[llvm-project.git] / libclc / generic / lib / math / asin.cl
blob443dec830eb2f87ef4d33419899e14ce16eb98cd
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
26 #include "math.h"
28 _CLC_OVERLOAD _CLC_DEF float asin(float x) {
29 // Computes arcsin(x).
30 // The argument is first reduced by noting that arcsin(x)
31 // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
32 // For denormal and small arguments arcsin(x) = x to machine
33 // accuracy. Remaining argument ranges are handled as follows.
34 // For abs(x) <= 0.5 use
35 // arcsin(x) = x + x^3*R(x^2)
36 // where R(x^2) is a rational minimax approximation to
37 // (arcsin(x) - x)/x^3.
38 // For abs(x) > 0.5 exploit the identity:
39 // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
40 // together with the above rational approximation, and
41 // reconstruct the terms carefully.
43 const float piby2_tail = 7.5497894159e-08F; /* 0x33a22168 */
44 const float hpiby2_head = 7.8539812565e-01F; /* 0x3f490fda */
45 const float piby2 = 1.5707963705e+00F; /* 0x3fc90fdb */
47 uint ux = as_uint(x);
48 uint aux = ux & EXSIGNBIT_SP32;
49 uint xs = ux ^ aux;
50 float spiby2 = as_float(xs | as_uint(piby2));
51 int xexp = (int)(aux >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
52 float y = as_float(aux);
54 // abs(x) >= 0.5
55 int transform = xexp >= -1;
57 float y2 = y * y;
58 float rt = 0.5f * (1.0f - y);
59 float r = transform ? rt : y2;
61 // Use a rational approximation for [0.0, 0.5]
62 float a = mad(r,
63 mad(r,
64 mad(r, -0.00396137437848476485201154797087F, -0.0133819288943925804214011424456F),
65 -0.0565298683201845211985026327361F),
66 0.184161606965100694821398249421F);
68 float b = mad(r, -0.836411276854206731913362287293F, 1.10496961524520294485512696706F);
69 float u = r * MATH_DIVIDE(a, b);
71 float s = MATH_SQRT(r);
72 float s1 = as_float(as_uint(s) & 0xffff0000);
73 float c = MATH_DIVIDE(mad(-s1, s1, r), s + s1);
74 float p = mad(2.0f*s, u, -mad(c, -2.0f, piby2_tail));
75 float q = mad(s1, -2.0f, hpiby2_head);
76 float vt = hpiby2_head - (p - q);
77 float v = mad(y, u, y);
78 v = transform ? vt : v;
80 float ret = as_float(xs | as_uint(v));
81 ret = aux > 0x3f800000U ? as_float(QNANBITPATT_SP32) : ret;
82 ret = aux == 0x3f800000U ? spiby2 : ret;
83 ret = xexp < -14 ? x : ret;
85 return ret;
88 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, asin, float);
90 #ifdef cl_khr_fp64
92 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
94 _CLC_OVERLOAD _CLC_DEF double asin(double x) {
95 // Computes arcsin(x).
96 // The argument is first reduced by noting that arcsin(x)
97 // is invalid for abs(x) > 1 and arcsin(-x) = -arcsin(x).
98 // For denormal and small arguments arcsin(x) = x to machine
99 // accuracy. Remaining argument ranges are handled as follows.
100 // For abs(x) <= 0.5 use
101 // arcsin(x) = x + x^3*R(x^2)
102 // where R(x^2) is a rational minimax approximation to
103 // (arcsin(x) - x)/x^3.
104 // For abs(x) > 0.5 exploit the identity:
105 // arcsin(x) = pi/2 - 2*arcsin(sqrt(1-x)/2)
106 // together with the above rational approximation, and
107 // reconstruct the terms carefully.
109 const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
110 const double hpiby2_head = 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
111 const double piby2 = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
113 double y = fabs(x);
114 int xneg = as_int2(x).hi < 0;
115 int xexp = (as_int2(y).hi >> 20) - EXPBIAS_DP64;
117 // abs(x) >= 0.5
118 int transform = xexp >= -1;
120 double rt = 0.5 * (1.0 - y);
121 double y2 = y * y;
122 double r = transform ? rt : y2;
124 // Use a rational approximation for [0.0, 0.5]
126 double un = fma(r,
127 fma(r,
128 fma(r,
129 fma(r,
130 fma(r, 0.0000482901920344786991880522822991,
131 0.00109242697235074662306043804220),
132 -0.0549989809235685841612020091328),
133 0.275558175256937652532686256258),
134 -0.445017216867635649900123110649),
135 0.227485835556935010735943483075);
137 double ud = fma(r,
138 fma(r,
139 fma(r,
140 fma(r, 0.105869422087204370341222318533,
141 -0.943639137032492685763471240072),
142 2.76568859157270989520376345954),
143 -3.28431505720958658909889444194),
144 1.36491501334161032038194214209);
146 double u = r * MATH_DIVIDE(un, ud);
148 // Reconstruct asin carefully in transformed region
149 double s = sqrt(r);
150 double sh = as_double(as_ulong(s) & 0xffffffff00000000UL);
151 double c = MATH_DIVIDE(fma(-sh, sh, r), s + sh);
152 double p = fma(2.0*s, u, -fma(-2.0, c, piby2_tail));
153 double q = fma(-2.0, sh, hpiby2_head);
154 double vt = hpiby2_head - (p - q);
155 double v = fma(y, u, y);
156 v = transform ? vt : v;
158 v = xexp < -28 ? y : v;
159 v = xexp >= 0 ? as_double(QNANBITPATT_DP64) : v;
160 v = y == 1.0 ? piby2 : v;
162 return xneg ? -v : v;
165 _CLC_UNARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, asin, double);
167 #endif // cl_khr_fp64