2 * Copyright
(c) 2014 Advanced Micro Devices
, Inc.
4 * Permission is hereby granted
, free of charge
, to any person obtaining a copy
5 * of this software and associated documentation files
(the "Software"), to deal
6 * in the Software without restriction
, including without limitation the rights
7 * to use
, copy
, modify
, merge
, publish
, distribute
, sublicense
, and
/or sell
8 * copies of the Software
, and to permit persons to whom the Software is
9 * furnished to do so
, subject to the following conditions
:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED
"AS IS", WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR
15 * IMPLIED
, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM
, DAMAGES OR OTHER
18 * LIABILITY
, WHETHER IN AN ACTION OF CONTRACT
, TORT OR OTHERWISE
, ARISING FROM
,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include
<clc
/clcmacro.h
>
29 _CLC_OVERLOAD _CLC_DEF float atan2
(float y
, float x
)
31 const float pi
= 0x1.921fb6p
+1f
;
32 const float piby2
= 0x1.921fb6p
+0f
;
33 const float piby4
= 0x1.921fb6p-1f
;
34 const float threepiby4
= 0x1.2d97c8p
+1f
;
38 float v
= min
(ax, ay
);
39 float u
= max
(ax, ay
);
41 // Scale since u could be large
, as in
"regular" divide
42 float s
= u
> 0x1.0p
+96f ?
0x1.0p-32f
: 1.0f
;
43 float vbyu
= s
* MATH_DIVIDE
(v, s
*u
);
45 float vbyu2
= vbyu
* vbyu
;
47 #define USE_2_2_APPROXIMATION
48 #if defined USE_2_2_APPROXIMATION
49 float p
= mad
(vbyu2, mad
(vbyu2, -
0x1.7e1f78p-9f
, -
0x1.7d1b98p-3f
), -
0x1.5554d0p-2f
) * vbyu2
* vbyu
;
50 float q
= mad
(vbyu2, mad
(vbyu2, 0x1.1a714cp-2f
, 0x1.287c56p
+0f
), 1.0f
);
52 float p
= mad
(vbyu2, mad
(vbyu2, -
0x1.55cd22p-5f
, -
0x1.26cf76p-2f
), -
0x1.55554ep-2f
) * vbyu2
* vbyu
;
53 float q
= mad
(vbyu2, mad
(vbyu2, mad
(vbyu2, 0x1.9f1304p-5f
, 0x1.2656fap-1f
), 0x1.76b4b8p
+0f
), 1.0f
);
57 float a
= mad
(p, MATH_RECIP
(q), vbyu
);
59 // Fix up
3 other octants
63 a
= x
< 0.0F ? at
: a
;
65 // y
== 0 => 0 for x
>= 0, pi for x
< 0
66 at
= as_int
(x) < 0 ? pi
: 0.0f
;
67 a
= y
== 0.0f ? at
: a
;
69 // if
(!FINITE_ONLY
()) {
71 at
= x
> 0.0f ? piby4
: threepiby4
;
72 a
= ax
== INFINITY
& ay
== INFINITY ? at
: a
;
75 a
= isnan
(x) | isnan
(y) ? as_float
(QNANBITPATT_SP32) : a
;
78 // Fixup sign and return
79 return copysign
(a, y
);
82 _CLC_BINARY_VECTORIZE
(_CLC_OVERLOAD _CLC_DEF
, float
, atan2
, float
, float
);
86 #pragma OPENCL EXTENSION cl_khr_fp64
: enable
88 _CLC_OVERLOAD _CLC_DEF double atan2
(double y
, double x
)
90 const double pi
= 3.1415926535897932e+00; /* 0x400921fb54442d18 */
91 const double piby2
= 1.5707963267948966e+00; /* 0x3ff921fb54442d18 */
92 const double piby4
= 7.8539816339744831e-01; /* 0x3fe921fb54442d18 */
93 const double three_piby4
= 2.3561944901923449e+00; /* 0x4002d97c7f3321d2 */
94 const double pi_head
= 3.1415926218032836e+00; /* 0x400921fb50000000 */
95 const double pi_tail
= 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
96 const double piby2_head
= 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
97 const double piby2_tail
= 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
100 int xneg
= as_int2
(x).hi
< 0;
101 int xexp
= (as_int2(x).hi
>> 20) & 0x7ff;
104 int yneg
= as_int2
(y).hi
< 0;
105 int yexp
= (as_int2(y).hi
>> 20) & 0x7ff;
107 int cond2
= (xexp < 1021) & (yexp < 1021);
108 int diffexp
= yexp - xexp
;
110 // Scale up both x and y if they are both below
1/4
111 double x1
= ldexp
(x, 1024);
112 int xexp1
= (as_int2(x1).hi
>> 20) & 0x7ff;
113 double y1
= ldexp
(y, 1024);
114 int yexp1
= (as_int2(y1).hi
>> 20) & 0x7ff;
115 int diffexp1
= yexp1 - xexp1
;
117 diffexp
= cond2 ? diffexp1
: diffexp
;
121 // General case
: take absolute values of arguments
125 // Swap u and v if necessary to obtain
0 < v
< u. Compute v
/u.
129 v
= swap_vu ? uu
: v
;
134 // General values of v
/u. Use a look-up table and series expansion.
137 double val
= vbyu
> 0.0625 ? vbyu
: 0.063;
138 int index
= convert_int
(fma(256.0
, val
, 0.5));
139 double2 tv
= USE_TABLE
(atan_jby256_tbl, index -
16);
142 double c
= (double)index
* 0x1.0p-8
;
144 // We
're going to scale u and v by
2^
(-u_exponent) to bring them close to
1
145 // u_exponent could be EMAX so we have to do it in
2 steps
146 int m
= -
((int)(as_ulong(u) >> EXPSHIFTBITS_DP64
) - EXPBIAS_DP64
);
147 //double um
= __amdil_ldexp_f64
(u, m
);
148 //double vm
= __amdil_ldexp_f64
(v, m
);
149 double um
= ldexp
(u, m
);
150 double vm
= ldexp
(v, m
);
152 // 26 leading bits of u
153 double u1
= as_double
(as_ulong(um) & 0xfffffffff8000000UL
);
156 double r
= MATH_DIVIDE
(fma(-c, u2
, fma
(-c, u1
, vm
)), fma
(c, vm
, um
));
158 // Polynomial approximation to atan
(r)
160 q2
= q2
+ fma
((s * fma
(-s, 0.19999918038989143496, 0.33333333333224095522)), -r
, r
);
172 double u1
= as_double
(as_ulong(u) & 0xffffffff00000000UL
);
174 double vu1
= as_double
(as_ulong(vbyu) & 0xffffffff00000000UL
);
175 double vu2
= vbyu - vu1
;
178 double s
= vbyu
* vbyu
;
179 q6
= vbyu
+ fma
(-vbyu * s
,
183 fma
(-s, 0.90029810285449784439E-01,
184 0.11110736283514525407),
185 0.14285713561807169030),
186 0.19999999999393223405),
187 0.33333333333333170500),
188 MATH_DIVIDE
(fma(-u, vu2
, fma
(-u2, vu1
, fma
(-u1, vu1
, v
))), u
));
192 q3
= vbyu
< 0x1.d12ed0af1a27fp-27 ? q3
: q5
;
193 q4
= vbyu
< 0x1.d12ed0af1a27fp-27 ? q4
: q6
;
195 q1
= vbyu
> 0.0625 ? q1
: q3
;
196 q2
= vbyu
> 0.0625 ? q2
: q4
;
198 // Tidy-up according to which quadrant the arguments lie in
199 double res1
, res2
, res3
, res4
;
200 q1
= swap_vu ? piby2_head - q1
: q1
;
201 q2
= swap_vu ? piby2_tail - q2
: q2
;
202 q1
= xneg ? pi_head - q1
: q1
;
203 q2
= xneg ? pi_tail - q2
: q2
;
205 res4
= yneg ? -q1
: q1
;
207 res1
= yneg ? -three_piby4
: three_piby4
;
208 res2
= yneg ? -piby4
: piby4
;
209 res3
= xneg ? res1
: res2
;
211 res3
= isinf
(x2) & isinf
(y2) ? res3
: res4
;
212 res1
= yneg ? -pi
: pi
;
214 // abs
(x)/abs
(y) > 2^
56 and x
< 0
215 res3
= (diffexp < -
56 && xneg
) ? res1
: res3
;
217 res4
= MATH_DIVIDE
(y, x
);
218 // x positive and dominant over y by a factor of
2^
28
219 res3
= diffexp
< -
28 & xneg
== 0 ? res4
: res3
;
221 // abs
(y)/abs
(x) > 2^
56
222 res4
= yneg ? -piby2
: piby2
; // atan(y/x) is insignificant compared to piby2
223 res3
= diffexp
> 56 ? res4
: res3
;
225 res3
= x2
== 0.0 ? res4
: res3
; // Zero x gives +- pi/2 depending on sign of y
226 res4
= xneg ? res1
: y2
;
228 res3
= y2
== 0.0 ? res4
: res3
; // Zero y gives +-0 for positive x and +-pi for negative x
229 res3
= isnan
(y2) ? y2
: res3
;
230 res3
= isnan
(x2) ? x2
: res3
;
235 _CLC_BINARY_VECTORIZE
(_CLC_OVERLOAD _CLC_DEF
, double
, atan2
, double
, double
);
239 _CLC_DEFINE_BINARY_BUILTIN_FP16
(atan2)