[X86] Better handling of impossibly large stack frames (#124217)
[llvm-project.git] / libclc / generic / lib / math / atan2pi.cl
blobe631918f7539e2e81e5269756a36eaa0c82b278f
1 /*
2 * Copyright (c) 2014,2015 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
26 #include "math.h"
27 #include "tables.h"
29 _CLC_OVERLOAD _CLC_DEF float atan2pi(float y, float x) {
30 const float pi = 0x1.921fb6p+1f;
32 float ax = fabs(x);
33 float ay = fabs(y);
34 float v = min(ax, ay);
35 float u = max(ax, ay);
37 // Scale since u could be large, as in "regular" divide
38 float s = u > 0x1.0p+96f ? 0x1.0p-32f : 1.0f;
39 float vbyu = s * MATH_DIVIDE(v, s*u);
41 float vbyu2 = vbyu * vbyu;
43 float p = mad(vbyu2, mad(vbyu2, -0x1.7e1f78p-9f, -0x1.7d1b98p-3f), -0x1.5554d0p-2f) * vbyu2 * vbyu;
44 float q = mad(vbyu2, mad(vbyu2, 0x1.1a714cp-2f, 0x1.287c56p+0f), 1.0f);
46 // Octant 0 result
47 float a = MATH_DIVIDE(mad(p, MATH_RECIP(q), vbyu), pi);
49 // Fix up 3 other octants
50 float at = 0.5f - a;
51 a = ay > ax ? at : a;
52 at = 1.0f - a;
53 a = x < 0.0F ? at : a;
55 // y == 0 => 0 for x >= 0, pi for x < 0
56 at = as_int(x) < 0 ? 1.0f : 0.0f;
57 a = y == 0.0f ? at : a;
59 // if (!FINITE_ONLY()) {
60 // x and y are +- Inf
61 at = x > 0.0f ? 0.25f : 0.75f;
62 a = ax == INFINITY & ay == INFINITY ? at : a;
64 // x or y is NaN
65 a = isnan(x) | isnan(y) ? as_float(QNANBITPATT_SP32) : a;
66 // }
68 // Fixup sign and return
69 return copysign(a, y);
72 _CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, float, atan2pi, float, float)
74 #ifdef cl_khr_fp64
75 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
77 _CLC_OVERLOAD _CLC_DEF double atan2pi(double y, double x) {
78 const double pi = 3.1415926535897932e+00; /* 0x400921fb54442d18 */
79 const double pi_head = 3.1415926218032836e+00; /* 0x400921fb50000000 */
80 const double pi_tail = 3.1786509547056392e-08; /* 0x3e6110b4611a6263 */
81 const double piby2_head = 1.5707963267948965e+00; /* 0x3ff921fb54442d18 */
82 const double piby2_tail = 6.1232339957367660e-17; /* 0x3c91a62633145c07 */
84 double x2 = x;
85 int xneg = as_int2(x).hi < 0;
86 int xexp = (as_int2(x).hi >> 20) & 0x7ff;
88 double y2 = y;
89 int yneg = as_int2(y).hi < 0;
90 int yexp = (as_int2(y).hi >> 20) & 0x7ff;
92 int cond2 = (xexp < 1021) & (yexp < 1021);
93 int diffexp = yexp - xexp;
95 // Scale up both x and y if they are both below 1/4
96 double x1 = ldexp(x, 1024);
97 int xexp1 = (as_int2(x1).hi >> 20) & 0x7ff;
98 double y1 = ldexp(y, 1024);
99 int yexp1 = (as_int2(y1).hi >> 20) & 0x7ff;
100 int diffexp1 = yexp1 - xexp1;
102 diffexp = cond2 ? diffexp1 : diffexp;
103 x = cond2 ? x1 : x;
104 y = cond2 ? y1 : y;
106 // General case: take absolute values of arguments
107 double u = fabs(x);
108 double v = fabs(y);
110 // Swap u and v if necessary to obtain 0 < v < u. Compute v/u.
111 int swap_vu = u < v;
112 double uu = u;
113 u = swap_vu ? v : u;
114 v = swap_vu ? uu : v;
116 double vbyu = v / u;
117 double q1, q2;
119 // General values of v/u. Use a look-up table and series expansion.
122 double val = vbyu > 0.0625 ? vbyu : 0.063;
123 int index = convert_int(fma(256.0, val, 0.5));
124 double2 tv = USE_TABLE(atan_jby256_tbl, (index - 16));
125 q1 = tv.s0;
126 q2 = tv.s1;
127 double c = (double)index * 0x1.0p-8;
129 // We're going to scale u and v by 2^(-u_exponent) to bring them close to 1
130 // u_exponent could be EMAX so we have to do it in 2 steps
131 int m = -((int)(as_ulong(u) >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64);
132 double um = ldexp(u, m);
133 double vm = ldexp(v, m);
135 // 26 leading bits of u
136 double u1 = as_double(as_ulong(um) & 0xfffffffff8000000UL);
137 double u2 = um - u1;
139 double r = MATH_DIVIDE(fma(-c, u2, fma(-c, u1, vm)), fma(c, vm, um));
141 // Polynomial approximation to atan(r)
142 double s = r * r;
143 q2 = q2 + fma((s * fma(-s, 0.19999918038989143496, 0.33333333333224095522)), -r, r);
147 double q3, q4;
149 q3 = 0.0;
150 q4 = vbyu;
153 double q5, q6;
155 double u1 = as_double(as_ulong(u) & 0xffffffff00000000UL);
156 double u2 = u - u1;
157 double vu1 = as_double(as_ulong(vbyu) & 0xffffffff00000000UL);
158 double vu2 = vbyu - vu1;
160 q5 = 0.0;
161 double s = vbyu * vbyu;
162 q6 = vbyu + fma(-vbyu * s,
163 fma(-s,
164 fma(-s,
165 fma(-s,
166 fma(-s, 0.90029810285449784439E-01,
167 0.11110736283514525407),
168 0.14285713561807169030),
169 0.19999999999393223405),
170 0.33333333333333170500),
171 MATH_DIVIDE(fma(-u, vu2, fma(-u2, vu1, fma(-u1, vu1, v))), u));
175 q3 = vbyu < 0x1.d12ed0af1a27fp-27 ? q3 : q5;
176 q4 = vbyu < 0x1.d12ed0af1a27fp-27 ? q4 : q6;
178 q1 = vbyu > 0.0625 ? q1 : q3;
179 q2 = vbyu > 0.0625 ? q2 : q4;
181 // Tidy-up according to which quadrant the arguments lie in
182 double res1, res2, res3, res4;
183 q1 = swap_vu ? piby2_head - q1 : q1;
184 q2 = swap_vu ? piby2_tail - q2 : q2;
185 q1 = xneg ? pi_head - q1 : q1;
186 q2 = xneg ? pi_tail - q2 : q2;
187 q1 = MATH_DIVIDE(q1 + q2, pi);
188 res4 = yneg ? -q1 : q1;
190 res1 = yneg ? -0.75 : 0.75;
191 res2 = yneg ? -0.25 : 0.25;
192 res3 = xneg ? res1 : res2;
194 res3 = isinf(y2) & isinf(x2) ? res3 : res4;
195 res1 = yneg ? -1.0 : 1.0;
197 // abs(x)/abs(y) > 2^56 and x < 0
198 res3 = (diffexp < -56 && xneg) ? res1 : res3;
200 res4 = MATH_DIVIDE(MATH_DIVIDE(y, x), pi);
201 // x positive and dominant over y by a factor of 2^28
202 res3 = diffexp < -28 & xneg == 0 ? res4 : res3;
204 // abs(y)/abs(x) > 2^56
205 res4 = yneg ? -0.5 : 0.5; // atan(y/x) is insignificant compared to piby2
206 res3 = diffexp > 56 ? res4 : res3;
208 res3 = x2 == 0.0 ? res4 : res3; // Zero x gives +- pi/2 depending on sign of y
209 res4 = xneg ? res1 : y2;
211 res3 = y2 == 0.0 ? res4 : res3; // Zero y gives +-0 for positive x and +-pi for negative x
212 res3 = isnan(y2) ? y2 : res3;
213 res3 = isnan(x2) ? x2 : res3;
215 return res3;
219 _CLC_BINARY_VECTORIZE(_CLC_OVERLOAD _CLC_DEF, double, atan2pi, double, double)
221 #endif
223 #ifdef cl_khr_fp16
225 #pragma OPENCL EXTENSION cl_khr_fp16 : enable
227 _CLC_DEFINE_BINARY_BUILTIN_FP16(atan2pi)
229 #endif