[analyzer][NFC] Factor out SymbolManager::get<*> (#121781)
[llvm-project.git] / libclc / generic / lib / math / clc_exp10.cl
blob6ea8743e39c5f72b5cfedc9abcca7c447d4494ef
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
25 #include <clc/relational/clc_isnan.h>
27 #include "config.h"
28 #include "math.h"
29 #include "tables.h"
31 // Algorithm:
33 // e^x = 2^(x/ln(2)) = 2^(x*(64/ln(2))/64)
35 // x*(64/ln(2)) = n + f, |f| <= 0.5, n is integer
36 // n = 64*m + j, 0 <= j < 64
38 // e^x = 2^((64*m + j + f)/64)
39 // = (2^m) * (2^(j/64)) * 2^(f/64)
40 // = (2^m) * (2^(j/64)) * e^(f*(ln(2)/64))
42 // f = x*(64/ln(2)) - n
43 // r = f*(ln(2)/64) = x - n*(ln(2)/64)
45 // e^x = (2^m) * (2^(j/64)) * e^r
47 // (2^(j/64)) is precomputed
49 // e^r = 1 + r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
50 // e^r = 1 + q
52 // q = r + (r^2)/2! + (r^3)/3! + (r^4)/4! + (r^5)/5!
54 // e^x = (2^m) * ( (2^(j/64)) + q*(2^(j/64)) )
56 _CLC_DEF _CLC_OVERLOAD float __clc_exp10(float x)
58 const float X_MAX = 0x1.344134p+5f; // 128*log2/log10 : 38.53183944498959
59 const float X_MIN = -0x1.66d3e8p+5f; // -149*log2/log10 : -44.8534693539332
61 const float R_64_BY_LOG10_2 = 0x1.a934f0p+7f; // 64*log10/log2 : 212.6033980727912
62 const float R_LOG10_2_BY_64_LD = 0x1.340000p-8f; // log2/(64 * log10) lead : 0.004699707
63 const float R_LOG10_2_BY_64_TL = 0x1.04d426p-18f; // log2/(64 * log10) tail : 0.00000388665057
64 const float R_LN10 = 0x1.26bb1cp+1f;
66 int return_nan = __clc_isnan(x);
67 int return_inf = x > X_MAX;
68 int return_zero = x < X_MIN;
70 int n = convert_int(x * R_64_BY_LOG10_2);
72 float fn = (float)n;
73 int j = n & 0x3f;
74 int m = n >> 6;
75 int m2 = m << EXPSHIFTBITS_SP32;
76 float r;
78 r = R_LN10 * mad(fn, -R_LOG10_2_BY_64_TL, mad(fn, -R_LOG10_2_BY_64_LD, x));
80 // Truncated Taylor series for e^r
81 float z2 = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
83 float two_to_jby64 = USE_TABLE(exp_tbl, j);
84 z2 = mad(two_to_jby64, z2, two_to_jby64);
86 float z2s = z2 * as_float(0x1 << (m + 149));
87 float z2n = as_float(as_int(z2) + m2);
88 z2 = m <= -126 ? z2s : z2n;
91 z2 = return_inf ? as_float(PINFBITPATT_SP32) : z2;
92 z2 = return_zero ? 0.0f : z2;
93 z2 = return_nan ? x : z2;
94 return z2;
96 _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_exp10, float)
98 #ifdef cl_khr_fp64
99 _CLC_DEF _CLC_OVERLOAD double __clc_exp10(double x)
101 const double X_MAX = 0x1.34413509f79ffp+8; // 1024*ln(2)/ln(10)
102 const double X_MIN = -0x1.434e6420f4374p+8; // -1074*ln(2)/ln(10)
104 const double R_64_BY_LOG10_2 = 0x1.a934f0979a371p+7; // 64*ln(10)/ln(2)
105 const double R_LOG10_2_BY_64_LD = 0x1.3441350000000p-8; // head ln(2)/(64*ln(10))
106 const double R_LOG10_2_BY_64_TL = 0x1.3ef3fde623e25p-37; // tail ln(2)/(64*ln(10))
107 const double R_LN10 = 0x1.26bb1bbb55516p+1; // ln(10)
109 int n = convert_int(x * R_64_BY_LOG10_2);
111 double dn = (double)n;
113 int j = n & 0x3f;
114 int m = n >> 6;
116 double r = R_LN10 * fma(-R_LOG10_2_BY_64_TL, dn, fma(-R_LOG10_2_BY_64_LD, dn, x));
118 // 6 term tail of Taylor expansion of e^r
119 double z2 = r * fma(r,
120 fma(r,
121 fma(r,
122 fma(r,
123 fma(r, 0x1.6c16c16c16c17p-10, 0x1.1111111111111p-7),
124 0x1.5555555555555p-5),
125 0x1.5555555555555p-3),
126 0x1.0000000000000p-1),
127 1.0);
129 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
130 z2 = fma(tv.s0 + tv.s1, z2, tv.s1) + tv.s0;
132 int small_value = (m < -1022) || ((m == -1022) && (z2 < 1.0));
134 int n1 = m >> 2;
135 int n2 = m-n1;
136 double z3= z2 * as_double(((long)n1 + 1023) << 52);
137 z3 *= as_double(((long)n2 + 1023) << 52);
139 z2 = ldexp(z2, m);
140 z2 = small_value ? z3: z2;
142 z2 = __clc_isnan(x) ? x : z2;
144 z2 = x > X_MAX ? as_double(PINFBITPATT_DP64) : z2;
145 z2 = x < X_MIN ? 0.0 : z2;
147 return z2;
149 _CLC_UNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_exp10, double)
150 #endif