[clang-tidy][use-internal-linkage] fix false positive for consteval function (#122141)
[llvm-project.git] / libclc / generic / lib / math / clc_fma.cl
blob15de4c8032a9320491b1315b50e8829d0dec54a3
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
25 #include <clc/integer/clc_abs.h>
26 #include <clc/relational/clc_isinf.h>
27 #include <clc/relational/clc_isnan.h>
28 #include <clc/shared/clc_max.h>
30 #include "config.h"
31 #include "math.h"
33 struct fp {
34 ulong mantissa;
35 int exponent;
36 uint sign;
39 _CLC_DEF _CLC_OVERLOAD float __clc_sw_fma(float a, float b, float c) {
40 /* special cases */
41 if (__clc_isnan(a) || __clc_isnan(b) || __clc_isnan(c) || __clc_isinf(a) ||
42 __clc_isinf(b))
43 return mad(a, b, c);
45 /* If only c is inf, and both a,b are regular numbers, the result is c*/
46 if (__clc_isinf(c))
47 return c;
49 a = __clc_flush_denormal_if_not_supported(a);
50 b = __clc_flush_denormal_if_not_supported(b);
51 c = __clc_flush_denormal_if_not_supported(c);
53 if (c == 0)
54 return a * b;
56 struct fp st_a, st_b, st_c;
58 st_a.exponent = a == .0f ? 0 : ((as_uint(a) & 0x7f800000) >> 23) - 127;
59 st_b.exponent = b == .0f ? 0 : ((as_uint(b) & 0x7f800000) >> 23) - 127;
60 st_c.exponent = c == .0f ? 0 : ((as_uint(c) & 0x7f800000) >> 23) - 127;
62 st_a.mantissa = a == .0f ? 0 : (as_uint(a) & 0x7fffff) | 0x800000;
63 st_b.mantissa = b == .0f ? 0 : (as_uint(b) & 0x7fffff) | 0x800000;
64 st_c.mantissa = c == .0f ? 0 : (as_uint(c) & 0x7fffff) | 0x800000;
66 st_a.sign = as_uint(a) & 0x80000000;
67 st_b.sign = as_uint(b) & 0x80000000;
68 st_c.sign = as_uint(c) & 0x80000000;
70 // Multiplication.
71 // Move the product to the highest bits to maximize precision
72 // mantissa is 24 bits => product is 48 bits, 2bits non-fraction.
73 // Add one bit for future addition overflow,
74 // add another bit to detect subtraction underflow
75 struct fp st_mul;
76 st_mul.sign = st_a.sign ^ st_b.sign;
77 st_mul.mantissa = (st_a.mantissa * st_b.mantissa) << 14ul;
78 st_mul.exponent = st_mul.mantissa ? st_a.exponent + st_b.exponent : 0;
80 // FIXME: Detecting a == 0 || b == 0 above crashed GCN isel
81 if (st_mul.exponent == 0 && st_mul.mantissa == 0)
82 return c;
84 // Mantissa is 23 fractional bits, shift it the same way as product mantissa
85 #define C_ADJUST 37ul
87 // both exponents are bias adjusted
88 int exp_diff = st_mul.exponent - st_c.exponent;
90 st_c.mantissa <<= C_ADJUST;
91 ulong cutoff_bits = 0;
92 ulong cutoff_mask = (1ul << __clc_abs(exp_diff)) - 1ul;
93 if (exp_diff > 0) {
94 cutoff_bits =
95 exp_diff >= 64 ? st_c.mantissa : (st_c.mantissa & cutoff_mask);
96 st_c.mantissa = exp_diff >= 64 ? 0 : (st_c.mantissa >> exp_diff);
97 } else {
98 cutoff_bits =
99 -exp_diff >= 64 ? st_mul.mantissa : (st_mul.mantissa & cutoff_mask);
100 st_mul.mantissa = -exp_diff >= 64 ? 0 : (st_mul.mantissa >> -exp_diff);
103 struct fp st_fma;
104 st_fma.sign = st_mul.sign;
105 st_fma.exponent = __clc_max(st_mul.exponent, st_c.exponent);
106 if (st_c.sign == st_mul.sign) {
107 st_fma.mantissa = st_mul.mantissa + st_c.mantissa;
108 } else {
109 // cutoff bits borrow one
110 st_fma.mantissa =
111 st_mul.mantissa - st_c.mantissa -
112 (cutoff_bits && (st_mul.exponent > st_c.exponent) ? 1 : 0);
115 // underflow: st_c.sign != st_mul.sign, and magnitude switches the sign
116 if (st_fma.mantissa > LONG_MAX) {
117 st_fma.mantissa = 0 - st_fma.mantissa;
118 st_fma.sign = st_mul.sign ^ 0x80000000;
121 // detect overflow/underflow
122 int overflow_bits = 3 - clz(st_fma.mantissa);
124 // adjust exponent
125 st_fma.exponent += overflow_bits;
127 // handle underflow
128 if (overflow_bits < 0) {
129 st_fma.mantissa <<= -overflow_bits;
130 overflow_bits = 0;
133 // rounding
134 ulong trunc_mask = (1ul << (C_ADJUST + overflow_bits)) - 1;
135 ulong trunc_bits = (st_fma.mantissa & trunc_mask) | (cutoff_bits != 0);
136 ulong last_bit = st_fma.mantissa & (1ul << (C_ADJUST + overflow_bits));
137 ulong grs_bits = (0x4ul << (C_ADJUST - 3 + overflow_bits));
139 // round to nearest even
140 if ((trunc_bits > grs_bits) || (trunc_bits == grs_bits && last_bit != 0))
141 st_fma.mantissa += (1ul << (C_ADJUST + overflow_bits));
143 // Shift mantissa back to bit 23
144 st_fma.mantissa = (st_fma.mantissa >> (C_ADJUST + overflow_bits));
146 // Detect rounding overflow
147 if (st_fma.mantissa > 0xffffff) {
148 ++st_fma.exponent;
149 st_fma.mantissa >>= 1;
152 if (st_fma.mantissa == 0)
153 return .0f;
155 // Flating point range limit
156 if (st_fma.exponent > 127)
157 return as_float(as_uint(INFINITY) | st_fma.sign);
159 // Flush denormals
160 if (st_fma.exponent <= -127)
161 return as_float(st_fma.sign);
163 return as_float(st_fma.sign | ((st_fma.exponent + 127) << 23) |
164 ((uint)st_fma.mantissa & 0x7fffff));
166 _CLC_TERNARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_sw_fma, float,
167 float, float)