[X86] Better handling of impossibly large stack frames (#124217)
[llvm-project.git] / libclc / generic / lib / math / clc_fmod.cl
blob5d101373178dd1f32f2ce17b0252a68e3d74bffa
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
25 #include <clc/math/clc_floor.h>
26 #include <clc/math/clc_trunc.h>
27 #include <clc/shared/clc_max.h>
29 #include <math/clc_remainder.h>
30 #include "config.h"
31 #include "math.h"
33 _CLC_DEF _CLC_OVERLOAD float __clc_fmod(float x, float y)
35 int ux = as_int(x);
36 int ax = ux & EXSIGNBIT_SP32;
37 float xa = as_float(ax);
38 int sx = ux ^ ax;
39 int ex = ax >> EXPSHIFTBITS_SP32;
41 int uy = as_int(y);
42 int ay = uy & EXSIGNBIT_SP32;
43 float ya = as_float(ay);
44 int ey = ay >> EXPSHIFTBITS_SP32;
46 float xr = as_float(0x3f800000 | (ax & 0x007fffff));
47 float yr = as_float(0x3f800000 | (ay & 0x007fffff));
48 int c;
49 int k = ex - ey;
51 while (k > 0) {
52 c = xr >= yr;
53 xr -= c ? yr : 0.0f;
54 xr += xr;
55 --k;
58 c = xr >= yr;
59 xr -= c ? yr : 0.0f;
61 int lt = ex < ey;
63 xr = lt ? xa : xr;
64 yr = lt ? ya : yr;
67 float s = as_float(ey << EXPSHIFTBITS_SP32);
68 xr *= lt ? 1.0f : s;
70 c = ax == ay;
71 xr = c ? 0.0f : xr;
73 xr = as_float(sx ^ as_int(xr));
75 c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
76 xr = c ? as_float(QNANBITPATT_SP32) : xr;
78 return xr;
81 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_fmod, float, float);
83 #ifdef cl_khr_fp64
84 _CLC_DEF _CLC_OVERLOAD double __clc_fmod(double x, double y)
86 ulong ux = as_ulong(x);
87 ulong ax = ux & ~SIGNBIT_DP64;
88 ulong xsgn = ux ^ ax;
89 double dx = as_double(ax);
90 int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
91 int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64);
92 xexp1 = xexp < 1 ? xexp1 : xexp;
94 ulong uy = as_ulong(y);
95 ulong ay = uy & ~SIGNBIT_DP64;
96 double dy = as_double(ay);
97 int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
98 int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64);
99 yexp1 = yexp < 1 ? yexp1 : yexp;
101 // First assume |x| > |y|
103 // Set ntimes to the number of times we need to do a
104 // partial remainder. If the exponent of x is an exact multiple
105 // of 53 larger than the exponent of y, and the mantissa of x is
106 // less than the mantissa of y, ntimes will be one too large
107 // but it doesn't matter - it just means that we'll go round
108 // the loop below one extra time.
109 int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
110 double w = ldexp(dy, ntimes * 53);
111 w = ntimes == 0 ? dy : w;
112 double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
114 // Each time round the loop we compute a partial remainder.
115 // This is done by subtracting a large multiple of w
116 // from x each time, where w is a scaled up version of y.
117 // The subtraction must be performed exactly in quad
118 // precision, though the result at each stage can
119 // fit exactly in a double precision number.
120 int i;
121 double t, v, p, pp;
123 for (i = 0; i < ntimes; i++) {
124 // Compute integral multiplier
125 t = __clc_trunc(dx / w);
127 // Compute w * t in quad precision
128 p = w * t;
129 pp = fma(w, t, -p);
131 // Subtract w * t from dx
132 v = dx - p;
133 dx = v + (((dx - v) - p) - pp);
135 // If t was one too large, dx will be negative. Add back one w.
136 dx += dx < 0.0 ? w : 0.0;
138 // Scale w down by 2^(-53) for the next iteration
139 w *= scale;
142 // One more time
143 // Variable todd says whether the integer t is odd or not
144 t = __clc_floor(dx / w);
145 long lt = (long)t;
146 int todd = lt & 1;
148 p = w * t;
149 pp = fma(w, t, -p);
150 v = dx - p;
151 dx = v + (((dx - v) - p) - pp);
152 i = dx < 0.0;
153 todd ^= i;
154 dx += i ? w : 0.0;
156 // At this point, dx lies in the range [0,dy)
157 double ret = as_double(xsgn ^ as_ulong(dx));
158 dx = as_double(ax);
160 // Now handle |x| == |y|
161 int c = dx == dy;
162 t = as_double(xsgn);
163 ret = c ? t : ret;
165 // Next, handle |x| < |y|
166 c = dx < dy;
167 ret = c ? x : ret;
169 // We don't need anything special for |x| == 0
171 // |y| is 0
172 c = dy == 0.0;
173 ret = c ? as_double(QNANBITPATT_DP64) : ret;
175 // y is +-Inf, NaN
176 c = yexp > BIASEDEMAX_DP64;
177 t = y == y ? x : y;
178 ret = c ? t : ret;
180 // x is +=Inf, NaN
181 c = xexp > BIASEDEMAX_DP64;
182 ret = c ? as_double(QNANBITPATT_DP64) : ret;
184 return ret;
186 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_fmod, double, double);
187 #endif