[clang-tidy][use-internal-linkage] fix false positive for consteval function (#122141)
[llvm-project.git] / libclc / generic / lib / math / clc_pow.cl
blob2e2dade0d6b8faac6906e666ea11706c18f047ec
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
25 #include <clc/math/clc_fabs.h>
27 #include "config.h"
28 #include "math.h"
29 #include "tables.h"
32 compute pow using log and exp
33 x^y = exp(y * log(x))
35 we take care not to lose precision in the intermediate steps
37 When computing log, calculate it in splits,
39 r = f * (p_invead + p_inv_tail)
40 r = rh + rt
42 calculate log polynomial using r, in end addition, do
43 poly = poly + ((rh-r) + rt)
45 lth = -r
46 ltt = ((xexp * log2_t) - poly) + logT
47 lt = lth + ltt
49 lh = (xexp * log2_h) + logH
50 l = lh + lt
52 Calculate final log answer as gh and gt,
53 gh = l & higher-half bits
54 gt = (((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh))
56 yh = y & higher-half bits
57 yt = y - yh
59 Before entering computation of exp,
60 vs = ((yt*gt + yt*gh) + yh*gt)
61 v = vs + yh*gh
62 vt = ((yh*gh - v) + vs)
64 In calculation of exp, add vt to r that is used for poly
65 At the end of exp, do
66 ((((expT * poly) + expT) + expH*poly) + expH)
69 _CLC_DEF _CLC_OVERLOAD float __clc_pow(float x, float y)
72 int ix = as_int(x);
73 int ax = ix & EXSIGNBIT_SP32;
74 int xpos = ix == ax;
76 int iy = as_int(y);
77 int ay = iy & EXSIGNBIT_SP32;
78 int ypos = iy == ay;
80 /* Extra precise log calculation
81 * First handle case that x is close to 1
83 float r = 1.0f - as_float(ax);
84 int near1 = __clc_fabs(r) < 0x1.0p-4f;
85 float r2 = r*r;
87 /* Coefficients are just 1/3, 1/4, 1/5 and 1/6 */
88 float poly = mad(r,
89 mad(r,
90 mad(r,
91 mad(r, 0x1.24924ap-3f, 0x1.555556p-3f),
92 0x1.99999ap-3f),
93 0x1.000000p-2f),
94 0x1.555556p-2f);
96 poly *= r2*r;
98 float lth_near1 = -r2 * 0.5f;
99 float ltt_near1 = -poly;
100 float lt_near1 = lth_near1 + ltt_near1;
101 float lh_near1 = -r;
102 float l_near1 = lh_near1 + lt_near1;
104 /* Computations for x not near 1 */
105 int m = (int)(ax >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32;
106 float mf = (float)m;
107 int ixs = as_int(as_float(ax | 0x3f800000) - 1.0f);
108 float mfs = (float)((ixs >> EXPSHIFTBITS_SP32) - 253);
109 int c = m == -127;
110 int ixn = c ? ixs : ax;
111 float mfn = c ? mfs : mf;
113 int indx = (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
115 /* F - Y */
116 float f = as_float(0x3f000000 | indx) - as_float(0x3f000000 | (ixn & MANTBITS_SP32));
118 indx = indx >> 16;
119 float2 tv = USE_TABLE(log_inv_tbl_ep, indx);
120 float rh = f * tv.s0;
121 float rt = f * tv.s1;
122 r = rh + rt;
124 poly = mad(r, mad(r, 0x1.0p-2f, 0x1.555556p-2f), 0x1.0p-1f) * (r*r);
125 poly += (rh - r) + rt;
127 const float LOG2_HEAD = 0x1.62e000p-1f; /* 0.693115234 */
128 const float LOG2_TAIL = 0x1.0bfbe8p-15f; /* 0.0000319461833 */
129 tv = USE_TABLE(loge_tbl, indx);
130 float lth = -r;
131 float ltt = mad(mfn, LOG2_TAIL, -poly) + tv.s1;
132 float lt = lth + ltt;
133 float lh = mad(mfn, LOG2_HEAD, tv.s0);
134 float l = lh + lt;
136 /* Select near 1 or not */
137 lth = near1 ? lth_near1 : lth;
138 ltt = near1 ? ltt_near1 : ltt;
139 lt = near1 ? lt_near1 : lt;
140 lh = near1 ? lh_near1 : lh;
141 l = near1 ? l_near1 : l;
143 float gh = as_float(as_int(l) & 0xfffff000);
144 float gt = ((ltt - (lt - lth)) + ((lh - l) + lt)) + (l - gh);
146 float yh = as_float(iy & 0xfffff000);
148 float yt = y - yh;
150 float ylogx_s = mad(gt, yh, mad(gh, yt, yt*gt));
151 float ylogx = mad(yh, gh, ylogx_s);
152 float ylogx_t = mad(yh, gh, -ylogx) + ylogx_s;
154 /* Extra precise exp of ylogx */
155 const float R_64_BY_LOG2 = 0x1.715476p+6f; /* 64/log2 : 92.332482616893657 */
156 int n = convert_int(ylogx * R_64_BY_LOG2);
157 float nf = (float) n;
159 int j = n & 0x3f;
160 m = n >> 6;
161 int m2 = m << EXPSHIFTBITS_SP32;
163 const float R_LOG2_BY_64_LD = 0x1.620000p-7f; /* log2/64 lead: 0.0108032227 */
164 const float R_LOG2_BY_64_TL = 0x1.c85fdep-16f; /* log2/64 tail: 0.0000272020388 */
165 r = mad(nf, -R_LOG2_BY_64_TL, mad(nf, -R_LOG2_BY_64_LD, ylogx)) + ylogx_t;
167 /* Truncated Taylor series for e^r */
168 poly = mad(mad(mad(r, 0x1.555556p-5f, 0x1.555556p-3f), r, 0x1.000000p-1f), r*r, r);
170 tv = USE_TABLE(exp_tbl_ep, j);
172 float expylogx = mad(tv.s0, poly, mad(tv.s1, poly, tv.s1)) + tv.s0;
173 float sexpylogx = expylogx * as_float(0x1 << (m + 149));
174 float texpylogx = as_float(as_int(expylogx) + m2);
175 expylogx = m < -125 ? sexpylogx : texpylogx;
177 /* Result is +-Inf if (ylogx + ylogx_t) > 128*log2 */
178 expylogx = (ylogx > 0x1.62e430p+6f) | (ylogx == 0x1.62e430p+6f & ylogx_t > -0x1.05c610p-22f) ? as_float(PINFBITPATT_SP32) : expylogx;
180 /* Result is 0 if ylogx < -149*log2 */
181 expylogx = ylogx < -0x1.9d1da0p+6f ? 0.0f : expylogx;
183 /* Classify y:
184 * inty = 0 means not an integer.
185 * inty = 1 means odd integer.
186 * inty = 2 means even integer.
189 int yexp = (int)(ay >> EXPSHIFTBITS_SP32) - EXPBIAS_SP32 + 1;
190 int mask = (1 << (24 - yexp)) - 1;
191 int yodd = ((iy >> (24 - yexp)) & 0x1) != 0;
192 int inty = yodd ? 1 : 2;
193 inty = (iy & mask) != 0 ? 0 : inty;
194 inty = yexp < 1 ? 0 : inty;
195 inty = yexp > 24 ? 2 : inty;
197 float signval = as_float((as_uint(expylogx) ^ SIGNBIT_SP32));
198 expylogx = ((inty == 1) & !xpos) ? signval : expylogx;
199 int ret = as_int(expylogx);
201 /* Corner case handling */
202 ret = (!xpos & (inty == 0)) ? QNANBITPATT_SP32 : ret;
203 ret = ax < 0x3f800000 & iy == NINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
204 ret = ax > 0x3f800000 & iy == NINFBITPATT_SP32 ? 0 : ret;
205 ret = ax < 0x3f800000 & iy == PINFBITPATT_SP32 ? 0 : ret;
206 ret = ax > 0x3f800000 & iy == PINFBITPATT_SP32 ? PINFBITPATT_SP32 : ret;
207 int xinf = xpos ? PINFBITPATT_SP32 : NINFBITPATT_SP32;
208 ret = ((ax == 0) & !ypos & (inty == 1)) ? xinf : ret;
209 ret = ((ax == 0) & !ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
210 int xzero = xpos ? 0 : 0x80000000;
211 ret = ((ax == 0) & ypos & (inty == 1)) ? xzero : ret;
212 ret = ((ax == 0) & ypos & (inty != 1)) ? 0 : ret;
213 ret = ((ax == 0) & (iy == NINFBITPATT_SP32)) ? PINFBITPATT_SP32 : ret;
214 ret = ((ix == 0xbf800000) & (ay == PINFBITPATT_SP32)) ? 0x3f800000 : ret;
215 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty == 1)) ? 0x80000000 : ret;
216 ret = ((ix == NINFBITPATT_SP32) & !ypos & (inty != 1)) ? 0 : ret;
217 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty == 1)) ? NINFBITPATT_SP32 : ret;
218 ret = ((ix == NINFBITPATT_SP32) & ypos & (inty != 1)) ? PINFBITPATT_SP32 : ret;
219 ret = ((ix == PINFBITPATT_SP32) & !ypos) ? 0 : ret;
220 ret = ((ix == PINFBITPATT_SP32) & ypos) ? PINFBITPATT_SP32 : ret;
221 ret = (ax > PINFBITPATT_SP32) ? ix : ret;
222 ret = (ay > PINFBITPATT_SP32) ? iy : ret;
223 ret = ay == 0 ? 0x3f800000 : ret;
224 ret = ix == 0x3f800000 ? 0x3f800000 : ret;
226 return as_float(ret);
228 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_pow, float, float)
230 #ifdef cl_khr_fp64
231 _CLC_DEF _CLC_OVERLOAD double __clc_pow(double x, double y)
233 const double real_log2_tail = 5.76999904754328540596e-08;
234 const double real_log2_lead = 6.93147122859954833984e-01;
236 long ux = as_long(x);
237 long ax = ux & (~SIGNBIT_DP64);
238 int xpos = ax == ux;
240 long uy = as_long(y);
241 long ay = uy & (~SIGNBIT_DP64);
242 int ypos = ay == uy;
244 // Extended precision log
245 double v, vt;
247 int exp = (int)(ax >> 52) - 1023;
248 int mask_exp_1023 = exp == -1023;
249 double xexp = (double) exp;
250 long mantissa = ax & 0x000FFFFFFFFFFFFFL;
252 long temp_ux = as_long(as_double(0x3ff0000000000000L | mantissa) - 1.0);
253 exp = ((temp_ux & 0x7FF0000000000000L) >> 52) - 2045;
254 double xexp1 = (double) exp;
255 long mantissa1 = temp_ux & 0x000FFFFFFFFFFFFFL;
257 xexp = mask_exp_1023 ? xexp1 : xexp;
258 mantissa = mask_exp_1023 ? mantissa1 : mantissa;
260 long rax = (mantissa & 0x000ff00000000000) + ((mantissa & 0x0000080000000000) << 1);
261 int index = rax >> 44;
263 double F = as_double(rax | 0x3FE0000000000000L);
264 double Y = as_double(mantissa | 0x3FE0000000000000L);
265 double f = F - Y;
266 double2 tv = USE_TABLE(log_f_inv_tbl, index);
267 double log_h = tv.s0;
268 double log_t = tv.s1;
269 double f_inv = (log_h + log_t) * f;
270 double r1 = as_double(as_long(f_inv) & 0xfffffffff8000000L);
271 double r2 = fma(-F, r1, f) * (log_h + log_t);
272 double r = r1 + r2;
274 double poly = fma(r,
275 fma(r,
276 fma(r,
277 fma(r, 1.0/7.0, 1.0/6.0),
278 1.0/5.0),
279 1.0/4.0),
280 1.0/3.0);
281 poly = poly * r * r * r;
283 double hr1r1 = 0.5*r1*r1;
284 double poly0h = r1 + hr1r1;
285 double poly0t = r1 - poly0h + hr1r1;
286 poly = fma(r1, r2, fma(0.5*r2, r2, poly)) + r2 + poly0t;
288 tv = USE_TABLE(powlog_tbl, index);
289 log_h = tv.s0;
290 log_t = tv.s1;
292 double resT_t = fma(xexp, real_log2_tail, + log_t) - poly;
293 double resT = resT_t - poly0h;
294 double resH = fma(xexp, real_log2_lead, log_h);
295 double resT_h = poly0h;
297 double H = resT + resH;
298 double H_h = as_double(as_long(H) & 0xfffffffff8000000L);
299 double T = (resH - H + resT) + (resT_t - (resT + resT_h)) + (H - H_h);
300 H = H_h;
302 double y_head = as_double(uy & 0xfffffffff8000000L);
303 double y_tail = y - y_head;
305 double temp = fma(y_tail, H, fma(y_head, T, y_tail*T));
306 v = fma(y_head, H, temp);
307 vt = fma(y_head, H, -v) + temp;
310 // Now calculate exp of (v,vt)
312 double expv;
314 const double max_exp_arg = 709.782712893384;
315 const double min_exp_arg = -745.1332191019411;
316 const double sixtyfour_by_lnof2 = 92.33248261689366;
317 const double lnof2_by_64_head = 0.010830424260348081;
318 const double lnof2_by_64_tail = -4.359010638708991e-10;
320 double temp = v * sixtyfour_by_lnof2;
321 int n = (int)temp;
322 double dn = (double)n;
323 int j = n & 0x0000003f;
324 int m = n >> 6;
326 double2 tv = USE_TABLE(two_to_jby64_ep_tbl, j);
327 double f1 = tv.s0;
328 double f2 = tv.s1;
329 double f = f1 + f2;
331 double r1 = fma(dn, -lnof2_by_64_head, v);
332 double r2 = dn * lnof2_by_64_tail;
333 double r = (r1 + r2) + vt;
335 double q = fma(r,
336 fma(r,
337 fma(r,
338 fma(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
339 4.16666666662260795726e-02),
340 1.66666666665260878863e-01),
341 5.00000000000000008883e-01);
342 q = fma(r*r, q, r);
344 expv = fma(f, q, f2) + f1;
345 expv = ldexp(expv, m);
347 expv = v > max_exp_arg ? as_double(0x7FF0000000000000L) : expv;
348 expv = v < min_exp_arg ? 0.0 : expv;
351 // See whether y is an integer.
352 // inty = 0 means not an integer.
353 // inty = 1 means odd integer.
354 // inty = 2 means even integer.
356 int inty;
358 int yexp = (int)(ay >> EXPSHIFTBITS_DP64) - EXPBIAS_DP64 + 1;
359 inty = yexp < 1 ? 0 : 2;
360 inty = yexp > 53 ? 2 : inty;
361 long mask = (1L << (53 - yexp)) - 1L;
362 int inty1 = (((ay & ~mask) >> (53 - yexp)) & 1L) == 1L ? 1 : 2;
363 inty1 = (ay & mask) != 0 ? 0 : inty1;
364 inty = !(yexp < 1) & !(yexp > 53) ? inty1 : inty;
367 expv *= (inty == 1) & !xpos ? -1.0 : 1.0;
369 long ret = as_long(expv);
371 // Now all the edge cases
372 ret = !xpos & (inty == 0) ? QNANBITPATT_DP64 : ret;
373 ret = ax < 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
374 ret = ax > 0x3ff0000000000000L & uy == NINFBITPATT_DP64 ? 0L : ret;
375 ret = ax < 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? 0L : ret;
376 ret = ax > 0x3ff0000000000000L & uy == PINFBITPATT_DP64 ? PINFBITPATT_DP64 : ret;
377 long xinf = xpos ? PINFBITPATT_DP64 : NINFBITPATT_DP64;
378 ret = ((ax == 0L) & !ypos & (inty == 1)) ? xinf : ret;
379 ret = ((ax == 0L) & !ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
380 long xzero = xpos ? 0L : 0x8000000000000000L;
381 ret = ((ax == 0L) & ypos & (inty == 1)) ? xzero : ret;
382 ret = ((ax == 0L) & ypos & (inty != 1)) ? 0L : ret;
383 ret = ((ax == 0L) & (uy == NINFBITPATT_DP64)) ? PINFBITPATT_DP64 : ret;
384 ret = ((ux == 0xbff0000000000000L) & (ay == PINFBITPATT_DP64)) ? 0x3ff0000000000000L : ret;
385 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty == 1)) ? 0x8000000000000000L : ret;
386 ret = ((ux == NINFBITPATT_DP64) & !ypos & (inty != 1)) ? 0L : ret;
387 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty == 1)) ? NINFBITPATT_DP64 : ret;
388 ret = ((ux == NINFBITPATT_DP64) & ypos & (inty != 1)) ? PINFBITPATT_DP64 : ret;
389 ret = (ux == PINFBITPATT_DP64) & !ypos ? 0L : ret;
390 ret = (ux == PINFBITPATT_DP64) & ypos ? PINFBITPATT_DP64 : ret;
391 ret = ax > PINFBITPATT_DP64 ? ux : ret;
392 ret = ay > PINFBITPATT_DP64 ? uy : ret;
393 ret = ay == 0L ? 0x3ff0000000000000L : ret;
394 ret = ux == 0x3ff0000000000000L ? 0x3ff0000000000000L : ret;
396 return as_double(ret);
398 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_pow, double, double)
399 #endif