2 * Copyright
(c) 2014 Advanced Micro Devices
, Inc.
4 * Permission is hereby granted
, free of charge
, to any person obtaining a copy
5 * of this software and associated documentation files
(the "Software"), to deal
6 * in the Software without restriction
, including without limitation the rights
7 * to use
, copy
, modify
, merge
, publish
, distribute
, sublicense
, and
/or sell
8 * copies of the Software
, and to permit persons to whom the Software is
9 * furnished to do so
, subject to the following conditions
:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED
"AS IS", WITHOUT WARRANTY OF ANY KIND
, EXPRESS OR
15 * IMPLIED
, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM
, DAMAGES OR OTHER
18 * LIABILITY
, WHETHER IN AN ACTION OF CONTRACT
, TORT OR OTHERWISE
, ARISING FROM
,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include
<clc
/clcmacro.h
>
25 #include
<clc
/math
/clc_fabs.h
>
26 #include
<clc
/math
/clc_mad.h
>
32 // compute pow using log and exp
33 // x^y
= exp
(y * log
(x))
35 // we take care not to lose precision in the intermediate steps
37 // When computing log
, calculate it in splits
,
39 // r
= f
* (p_invead + p_inv_tail
)
42 // calculate log polynomial using r
, in end addition
, do
43 // poly
= poly
+ ((rh-r) + rt
)
46 // ltt
= ((xexp * log2_t
) - poly
) + logT
49 // lh
= (xexp * log2_h
) + logH
52 // Calculate final log answer as gh and gt
,
53 // gh
= l
& higher-half bits
54 // gt
= (((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
))
56 // yh
= y
& higher-half bits
59 // Before entering computation of exp
,
60 // vs
= ((yt*gt
+ yt
*gh
) + yh
*gt
)
62 // vt
= ((yh*gh - v
) + vs
)
64 // In calculation of exp
, add vt to r that is used for poly
65 // At the end of exp
, do
66 // ((((expT * poly
) + expT
) + expH
*poly
) + expH
)
68 _CLC_DEF _CLC_OVERLOAD float __clc_powr
(float x
, float y
) {
70 int ax
= ix
& EXSIGNBIT_SP32
;
74 int ay
= iy
& EXSIGNBIT_SP32
;
77 // Extra precise log calculation
78 // First handle case that x is close to
1
79 float r
= 1.0f - as_float
(ax);
80 int near1
= __clc_fabs
(r) < 0x1.0p-4f
;
83 // Coefficients are just
1/3, 1/4, 1/5 and
1/6
84 float poly
= __clc_mad
(
87 __clc_mad
(r, __clc_mad
(r, 0x1.24924ap-3f
, 0x1.555556p-3f
),
94 float lth_near1
= -r2
* 0.5f
;
95 float ltt_near1
= -poly
;
96 float lt_near1
= lth_near1
+ ltt_near1
;
98 float l_near1
= lh_near1
+ lt_near1
;
100 // Computations for x not near
1
101 int m
= (int)(ax >> EXPSHIFTBITS_SP32
) - EXPBIAS_SP32
;
103 int ixs
= as_int
(as_float(ax |
0x3f800000) -
1.0f
);
104 float mfs
= (float)((ixs >> EXPSHIFTBITS_SP32
) -
253);
106 int ixn
= c ? ixs
: ax
;
107 float mfn
= c ? mfs
: mf
;
109 int indx
= (ixn & 0x007f0000) + ((ixn & 0x00008000) << 1);
112 float f
= as_float
(0x3f000000 | indx
) -
113 as_float
(0x3f000000 |
(ixn & MANTBITS_SP32
));
116 float2 tv
= USE_TABLE
(log_inv_tbl_ep, indx
);
117 float rh
= f
* tv.s0
;
118 float rt
= f
* tv.s1
;
121 poly
= __clc_mad
(r, __clc_mad
(r, 0x1.0p-2f
, 0x1.555556p-2f
), 0x1.0p-1f
) *
123 poly
+= (rh - r
) + rt
;
125 const float LOG2_HEAD
= 0x1.62e000p-1f
; // 0.693115234
126 const float LOG2_TAIL
= 0x1.0bfbe8p-15f
; // 0.0000319461833
127 tv
= USE_TABLE
(loge_tbl, indx
);
129 float ltt
= __clc_mad
(mfn, LOG2_TAIL
, -poly
) + tv.s1
;
130 float lt
= lth
+ ltt
;
131 float lh
= __clc_mad
(mfn, LOG2_HEAD
, tv.s0
);
134 // Select near
1 or not
135 lth
= near1 ? lth_near1
: lth
;
136 ltt
= near1 ? ltt_near1
: ltt
;
137 lt
= near1 ? lt_near1
: lt
;
138 lh
= near1 ? lh_near1
: lh
;
139 l
= near1 ? l_near1
: l
;
141 float gh
= as_float
(as_int(l) & 0xfffff000);
142 float gt
= ((ltt -
(lt - lth
)) + ((lh - l
) + lt
)) + (l - gh
);
144 float yh
= as_float
(iy & 0xfffff000);
148 float ylogx_s
= __clc_mad
(gt, yh
, __clc_mad
(gh, yt
, yt
* gt
));
149 float ylogx
= __clc_mad
(yh, gh
, ylogx_s
);
150 float ylogx_t
= __clc_mad
(yh, gh
, -ylogx
) + ylogx_s
;
152 // Extra precise exp of ylogx
153 // 64/log2
: 92.332482616893657
154 const float R_64_BY_LOG2
= 0x1.715476p
+6f
;
155 int n
= convert_int
(ylogx * R_64_BY_LOG2
);
160 int m2
= m
<< EXPSHIFTBITS_SP32
;
161 // log2
/64 lead
: 0.0108032227
162 const float R_LOG2_BY_64_LD
= 0x1.620000p-7f
;
163 // log2
/64 tail
: 0.0000272020388
164 const float R_LOG2_BY_64_TL
= 0x1.c85fdep-16f
;
165 r
= __clc_mad
(nf, -R_LOG2_BY_64_TL
, __clc_mad
(nf, -R_LOG2_BY_64_LD
, ylogx
)) +
168 // Truncated Taylor series for e^r
169 poly
= __clc_mad
(__clc_mad(__clc_mad(r, 0x1.555556p-5f
, 0x1.555556p-3f
), r
,
173 tv
= USE_TABLE
(exp_tbl_ep, j
);
176 __clc_mad
(tv.s0
, poly
, __clc_mad
(tv.s1
, poly
, tv.s1
)) + tv.s0
;
177 float sexpylogx
= expylogx
* as_float
(0x1 << (m + 149));
178 float texpylogx
= as_float
(as_int(expylogx) + m2
);
179 expylogx
= m
< -
125 ? sexpylogx
: texpylogx
;
181 // Result is
+-Inf if
(ylogx + ylogx_t
) > 128*log2
182 expylogx
= ((ylogx > 0x1.62e430p
+6f
) |
183 (ylogx == 0x1.62e430p
+6f
& ylogx_t
> -
0x1.05c610p-22f
))
184 ? as_float
(PINFBITPATT_SP32)
187 // Result is
0 if ylogx
< -
149*log2
188 expylogx
= ylogx
< -
0x1.9d1da0p
+6f ?
0.0f
: expylogx
;
191 // inty
= 0 means not an integer.
192 // inty
= 1 means odd integer.
193 // inty
= 2 means even integer.
195 int yexp
= (int)(ay >> EXPSHIFTBITS_SP32
) - EXPBIAS_SP32
+ 1;
196 int mask
= (1 << (24 - yexp
)) -
1;
197 int yodd
= ((iy >> (24 - yexp
)) & 0x1) != 0;
198 int inty
= yodd ?
1 : 2;
199 inty
= (iy & mask
) != 0 ?
0 : inty
;
200 inty
= yexp
< 1 ?
0 : inty
;
201 inty
= yexp
> 24 ?
2 : inty
;
203 float signval
= as_float
((as_uint(expylogx) ^ SIGNBIT_SP32
));
204 expylogx
= ((inty == 1) & !xpos
) ? signval
: expylogx
;
205 int ret
= as_int
(expylogx);
207 // Corner case handling
208 ret
= ax
< 0x3f800000 & iy
== NINFBITPATT_SP32 ? PINFBITPATT_SP32
: ret
;
209 ret
= ax
< 0x3f800000 & iy
== PINFBITPATT_SP32 ?
0 : ret
;
210 ret
= ax
== 0x3f800000 & ay
< PINFBITPATT_SP32 ?
0x3f800000 : ret
;
211 ret
= ax
== 0x3f800000 & ay
== PINFBITPATT_SP32 ? QNANBITPATT_SP32
: ret
;
212 ret
= ax
> 0x3f800000 & iy
== NINFBITPATT_SP32 ?
0 : ret
;
213 ret
= ax
> 0x3f800000 & iy
== PINFBITPATT_SP32 ? PINFBITPATT_SP32
: ret
;
214 ret
= ((ix < PINFBITPATT_SP32
) & (ay == 0)) ?
0x3f800000 : ret
;
215 ret
= ((ax == PINFBITPATT_SP32
) & !ypos
) ?
0 : ret
;
216 ret
= ((ax == PINFBITPATT_SP32
) & ypos
) ? PINFBITPATT_SP32
: ret
;
217 ret
= ((ax == PINFBITPATT_SP32
) & (iy == PINFBITPATT_SP32
)) ? PINFBITPATT_SP32
219 ret
= ((ax == PINFBITPATT_SP32
) & (ay == 0)) ? QNANBITPATT_SP32
: ret
;
220 ret
= ((ax == 0) & !ypos
) ? PINFBITPATT_SP32
: ret
;
221 ret
= ((ax == 0) & ypos
) ?
0 : ret
;
222 ret
= ((ax == 0) & (ay == 0)) ? QNANBITPATT_SP32
: ret
;
223 ret
= ((ax != 0) & !xpos
) ? QNANBITPATT_SP32
: ret
;
224 ret
= ax
> PINFBITPATT_SP32 ? ix
: ret
;
225 ret
= ay
> PINFBITPATT_SP32 ? iy
: ret
;
227 return as_float
(ret);
229 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, float
, __clc_powr
, float
, float
)
232 _CLC_DEF _CLC_OVERLOAD double __clc_powr
(double x
, double y
) {
233 const double real_log2_tail
= 5.76999904754328540596e-08;
234 const double real_log2_lead
= 6.93147122859954833984e-01;
236 long ux
= as_long
(x);
237 long ax
= ux
& (~SIGNBIT_DP64
);
240 long uy
= as_long
(y);
241 long ay
= uy
& (~SIGNBIT_DP64
);
244 // Extended precision log
247 int exp
= (int)(ax >> 52) -
1023;
248 int mask_exp_1023
= exp
== -
1023;
249 double xexp
= (double)exp
;
250 long mantissa
= ax
& 0x000FFFFFFFFFFFFFL
;
252 long temp_ux
= as_long
(as_double(0x3ff0000000000000L | mantissa
) -
1.0);
253 exp
= ((temp_ux & 0x7FF0000000000000L
) >> 52) -
2045;
254 double xexp1
= (double)exp
;
255 long mantissa1
= temp_ux
& 0x000FFFFFFFFFFFFFL
;
257 xexp
= mask_exp_1023 ? xexp1
: xexp
;
258 mantissa
= mask_exp_1023 ? mantissa1
: mantissa
;
260 long rax
= (mantissa & 0x000ff00000000000) +
261 ((mantissa & 0x0000080000000000) << 1);
262 int index
= rax
>> 44;
264 double F
= as_double
(rax |
0x3FE0000000000000L
);
265 double Y
= as_double
(mantissa |
0x3FE0000000000000L
);
267 double2 tv
= USE_TABLE
(log_f_inv_tbl, index
);
268 double log_h
= tv.s0
;
269 double log_t
= tv.s1
;
270 double f_inv
= (log_h + log_t
) * f
;
271 double r1
= as_double
(as_long(f_inv) & 0xfffffffff8000000L
);
272 double r2
= fma
(-F, r1
, f
) * (log_h + log_t
);
276 r
, fma
(r, fma
(r, fma
(r, 1.0 / 7.0, 1.0 / 6.0), 1.0 / 5.0), 1.0 / 4.0),
278 poly
= poly
* r
* r
* r
;
280 double hr1r1
= 0.5 * r1
* r1
;
281 double poly0h
= r1
+ hr1r1
;
282 double poly0t
= r1 - poly0h
+ hr1r1
;
283 poly
= fma
(r1, r2
, fma
(0.5
* r2
, r2
, poly
)) + r2
+ poly0t
;
285 tv
= USE_TABLE
(powlog_tbl, index
);
289 double resT_t
= fma
(xexp, real_log2_tail
, +log_t
) - poly
;
290 double resT
= resT_t - poly0h
;
291 double resH
= fma
(xexp, real_log2_lead
, log_h
);
292 double resT_h
= poly0h
;
294 double H
= resT
+ resH
;
295 double H_h
= as_double
(as_long(H) & 0xfffffffff8000000L
);
296 double T
= (resH - H
+ resT
) + (resT_t -
(resT + resT_h
)) + (H - H_h
);
299 double y_head
= as_double
(uy & 0xfffffffff8000000L
);
300 double y_tail
= y - y_head
;
302 double temp
= fma
(y_tail, H
, fma
(y_head, T
, y_tail
* T
));
303 v
= fma
(y_head, H
, temp
);
304 vt
= fma
(y_head, H
, -v
) + temp
;
307 // Now calculate exp of
(v,vt
)
311 const double max_exp_arg
= 709.782712893384;
312 const double min_exp_arg
= -
745.1332191019411;
313 const double sixtyfour_by_lnof2
= 92.33248261689366;
314 const double lnof2_by_64_head
= 0.010830424260348081;
315 const double lnof2_by_64_tail
= -
4.359010638708991e-10;
317 double temp
= v
* sixtyfour_by_lnof2
;
319 double dn
= (double)n
;
320 int j
= n
& 0x0000003f;
323 double2 tv
= USE_TABLE
(two_to_jby64_ep_tbl, j
);
328 double r1
= fma
(dn, -lnof2_by_64_head
, v
);
329 double r2
= dn
* lnof2_by_64_tail
;
330 double r
= (r1 + r2
) + vt
;
336 fma
(r, 1.38889490863777199667e-03, 8.33336798434219616221e-03),
337 4.16666666662260795726e-02),
338 1.66666666665260878863e-01),
339 5.00000000000000008883e-01);
340 q
= fma
(r * r
, q
, r
);
342 expv
= fma
(f, q
, f2
) + f1
;
343 expv
= ldexp
(expv, m
);
345 expv
= v
> max_exp_arg ? as_double
(0x7FF0000000000000L) : expv
;
346 expv
= v
< min_exp_arg ?
0.0 : expv
;
349 // See whether y is an integer.
350 // inty
= 0 means not an integer.
351 // inty
= 1 means odd integer.
352 // inty
= 2 means even integer.
356 int yexp
= (int)(ay >> EXPSHIFTBITS_DP64
) - EXPBIAS_DP64
+ 1;
357 inty
= yexp
< 1 ?
0 : 2;
358 inty
= yexp
> 53 ?
2 : inty
;
359 long mask
= (1L << (53 - yexp
)) -
1L;
360 int inty1
= (((ay & ~mask
) >> (53 - yexp
)) & 1L) == 1L ?
1 : 2;
361 inty1
= (ay & mask
) != 0 ?
0 : inty1
;
362 inty
= !(yexp < 1) & !(yexp > 53) ? inty1
: inty
;
365 expv
*= ((inty == 1) & !xpos
) ? -
1.0 : 1.0;
367 long ret
= as_long
(expv);
369 // Now all the edge cases
370 ret
= ax
< 0x3ff0000000000000L
& uy
== NINFBITPATT_DP64 ? PINFBITPATT_DP64
372 ret
= ax
< 0x3ff0000000000000L
& uy
== PINFBITPATT_DP64 ?
0L : ret
;
373 ret
= ax
== 0x3ff0000000000000L
& ay
< PINFBITPATT_DP64 ?
0x3ff0000000000000L
375 ret
= ax
== 0x3ff0000000000000L
& ay
== PINFBITPATT_DP64 ? QNANBITPATT_DP64
377 ret
= ax
> 0x3ff0000000000000L
& uy
== NINFBITPATT_DP64 ?
0L : ret
;
378 ret
= ax
> 0x3ff0000000000000L
& uy
== PINFBITPATT_DP64 ? PINFBITPATT_DP64
380 ret
= ux
< PINFBITPATT_DP64
& ay
== 0L ?
0x3ff0000000000000L
: ret
;
381 ret
= ((ax == PINFBITPATT_DP64
) & !ypos
) ?
0L : ret
;
382 ret
= ((ax == PINFBITPATT_DP64
) & ypos
) ? PINFBITPATT_DP64
: ret
;
383 ret
= ((ax == PINFBITPATT_DP64
) & (uy == PINFBITPATT_DP64
)) ? PINFBITPATT_DP64
385 ret
= ((ax == PINFBITPATT_DP64
) & (ay == 0L)) ? QNANBITPATT_DP64
: ret
;
386 ret
= ((ax == 0L) & !ypos
) ? PINFBITPATT_DP64
: ret
;
387 ret
= ((ax == 0L) & ypos
) ?
0L : ret
;
388 ret
= ((ax == 0L) & (ay == 0L)) ? QNANBITPATT_DP64
: ret
;
389 ret
= ((ax != 0L) & !xpos
) ? QNANBITPATT_DP64
: ret
;
390 ret
= ax
> PINFBITPATT_DP64 ? ux
: ret
;
391 ret
= ay
> PINFBITPATT_DP64 ? uy
: ret
;
393 return as_double
(ret);
395 _CLC_BINARY_VECTORIZE
(_CLC_DEF _CLC_OVERLOAD
, double
, __clc_powr
, double
, double
)