[X86] Better handling of impossibly large stack frames (#124217)
[llvm-project.git] / libclc / generic / lib / math / clc_remainder.cl
blob8a0ce8816fcb38de116bd3c60cac6f7b69acead8
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/clcmacro.h>
25 #include <clc/math/clc_floor.h>
26 #include <clc/math/clc_trunc.h>
27 #include <clc/shared/clc_max.h>
29 #include <math/clc_remainder.h>
30 #include "config.h"
31 #include "math.h"
33 _CLC_DEF _CLC_OVERLOAD float __clc_remainder(float x, float y)
35 int ux = as_int(x);
36 int ax = ux & EXSIGNBIT_SP32;
37 float xa = as_float(ax);
38 int sx = ux ^ ax;
39 int ex = ax >> EXPSHIFTBITS_SP32;
41 int uy = as_int(y);
42 int ay = uy & EXSIGNBIT_SP32;
43 float ya = as_float(ay);
44 int ey = ay >> EXPSHIFTBITS_SP32;
46 float xr = as_float(0x3f800000 | (ax & 0x007fffff));
47 float yr = as_float(0x3f800000 | (ay & 0x007fffff));
48 int c;
49 int k = ex - ey;
51 uint q = 0;
53 while (k > 0) {
54 c = xr >= yr;
55 q = (q << 1) | c;
56 xr -= c ? yr : 0.0f;
57 xr += xr;
58 --k;
61 c = xr > yr;
62 q = (q << 1) | c;
63 xr -= c ? yr : 0.0f;
65 int lt = ex < ey;
67 q = lt ? 0 : q;
68 xr = lt ? xa : xr;
69 yr = lt ? ya : yr;
71 c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1));
72 xr -= c ? yr : 0.0f;
73 q += c;
75 float s = as_float(ey << EXPSHIFTBITS_SP32);
76 xr *= lt ? 1.0f : s;
78 c = ax == ay;
79 xr = c ? 0.0f : xr;
81 xr = as_float(sx ^ as_int(xr));
83 c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0;
84 xr = c ? as_float(QNANBITPATT_SP32) : xr;
86 return xr;
89 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, float, __clc_remainder, float, float);
91 #ifdef cl_khr_fp64
92 _CLC_DEF _CLC_OVERLOAD double __clc_remainder(double x, double y)
94 ulong ux = as_ulong(x);
95 ulong ax = ux & ~SIGNBIT_DP64;
96 ulong xsgn = ux ^ ax;
97 double dx = as_double(ax);
98 int xexp = convert_int(ax >> EXPSHIFTBITS_DP64);
99 int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64);
100 xexp1 = xexp < 1 ? xexp1 : xexp;
102 ulong uy = as_ulong(y);
103 ulong ay = uy & ~SIGNBIT_DP64;
104 double dy = as_double(ay);
105 int yexp = convert_int(ay >> EXPSHIFTBITS_DP64);
106 int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64);
107 yexp1 = yexp < 1 ? yexp1 : yexp;
109 int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1;
111 // First assume |x| > |y|
113 // Set ntimes to the number of times we need to do a
114 // partial remainder. If the exponent of x is an exact multiple
115 // of 53 larger than the exponent of y, and the mantissa of x is
116 // less than the mantissa of y, ntimes will be one too large
117 // but it doesn't matter - it just means that we'll go round
118 // the loop below one extra time.
119 int ntimes = __clc_max(0, (xexp1 - yexp1) / 53);
120 double w = ldexp(dy, ntimes * 53);
121 w = ntimes == 0 ? dy : w;
122 double scale = ntimes == 0 ? 1.0 : 0x1.0p-53;
124 // Each time round the loop we compute a partial remainder.
125 // This is done by subtracting a large multiple of w
126 // from x each time, where w is a scaled up version of y.
127 // The subtraction must be performed exactly in quad
128 // precision, though the result at each stage can
129 // fit exactly in a double precision number.
130 int i;
131 double t, v, p, pp;
133 for (i = 0; i < ntimes; i++) {
134 // Compute integral multiplier
135 t = __clc_trunc(dx / w);
137 // Compute w * t in quad precision
138 p = w * t;
139 pp = fma(w, t, -p);
141 // Subtract w * t from dx
142 v = dx - p;
143 dx = v + (((dx - v) - p) - pp);
145 // If t was one too large, dx will be negative. Add back one w.
146 dx += dx < 0.0 ? w : 0.0;
148 // Scale w down by 2^(-53) for the next iteration
149 w *= scale;
152 // One more time
153 // Variable todd says whether the integer t is odd or not
154 t = __clc_floor(dx / w);
155 long lt = (long)t;
156 int todd = lt & 1;
158 p = w * t;
159 pp = fma(w, t, -p);
160 v = dx - p;
161 dx = v + (((dx - v) - p) - pp);
162 i = dx < 0.0;
163 todd ^= i;
164 dx += i ? w : 0.0;
166 // At this point, dx lies in the range [0,dy)
168 // For the fmod function, we're done apart from setting the correct sign.
170 // For the remainder function, we need to adjust dx
171 // so that it lies in the range (-y/2, y/2] by carefully
172 // subtracting w (== dy == y) if necessary. The rigmarole
173 // with todd is to get the correct sign of the result
174 // when x/y lies exactly half way between two integers,
175 // when we need to choose the even integer.
177 int al = (2.0*dx > w) | (todd & (2.0*dx == w));
178 double dxl = dx - (al ? w : 0.0);
180 int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w));
181 double dxg = dx - (ag ? w : 0.0);
183 dx = dy < 0x1.0p+1022 ? dxl : dxg;
185 double ret = as_double(xsgn ^ as_ulong(dx));
186 dx = as_double(ax);
188 // Now handle |x| == |y|
189 int c = dx == dy;
190 t = as_double(xsgn);
191 ret = c ? t : ret;
193 // Next, handle |x| < |y|
194 c = dx < dy;
195 ret = c ? x : ret;
197 c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy);
198 // we could use a conversion here instead since qsgn = +-1
199 p = qsgn == 1 ? -1.0 : 1.0;
200 t = fma(y, p, x);
201 ret = c ? t : ret;
203 // We don't need anything special for |x| == 0
205 // |y| is 0
206 c = dy == 0.0;
207 ret = c ? as_double(QNANBITPATT_DP64) : ret;
209 // y is +-Inf, NaN
210 c = yexp > BIASEDEMAX_DP64;
211 t = y == y ? x : y;
212 ret = c ? t : ret;
214 // x is +=Inf, NaN
215 c = xexp > BIASEDEMAX_DP64;
216 ret = c ? as_double(QNANBITPATT_DP64) : ret;
218 return ret;
220 _CLC_BINARY_VECTORIZE(_CLC_DEF _CLC_OVERLOAD, double, __clc_remainder, double, double);
221 #endif