2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
26 __libclc__sincos_piby4(double x
, double xx
)
28 // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
29 // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
31 // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
32 // We use a minimax approximation of (f(w) - 1) / w
33 // because this produces an expansion in even powers of x.
34 // If xx (the tail of x) is non-zero, we add a correction
35 // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
36 // is an approximation to cos(x)*sin(xx) valid because
37 // xx is tiny relative to x.
39 // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
41 // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
42 // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
43 // because this produces an expansion in even powers of x.
44 // If xx (the tail of x) is non-zero, we subtract a correction
45 // term g(x,xx) = x*xx to the result, where g(x,xx)
46 // is an approximation to sin(x)*sin(xx) valid because
47 // xx is tiny relative to x.
49 const double sc1
= -0.166666666666666646259241729;
50 const double sc2
= 0.833333333333095043065222816e-2;
51 const double sc3
= -0.19841269836761125688538679e-3;
52 const double sc4
= 0.275573161037288022676895908448e-5;
53 const double sc5
= -0.25051132068021699772257377197e-7;
54 const double sc6
= 0.159181443044859136852668200e-9;
56 const double cc1
= 0.41666666666666665390037e-1;
57 const double cc2
= -0.13888888888887398280412e-2;
58 const double cc3
= 0.248015872987670414957399e-4;
59 const double cc4
= -0.275573172723441909470836e-6;
60 const double cc5
= 0.208761463822329611076335e-8;
61 const double cc6
= -0.113826398067944859590880e-10;
68 double sp
= fma(fma(fma(fma(sc6
, x2
, sc5
), x2
, sc4
), x2
, sc3
), x2
, sc2
);
70 double cp
= t
+ fma(fma(fma(fma(fma(fma(cc6
, x2
, cc5
), x2
, cc4
), x2
, cc3
), x2
, cc2
), x2
, cc1
),
71 x2
*x2
, fma(x
, xx
, (1.0 - t
) - r
));
74 ret
.lo
= x
- fma(-x3
, sc1
, fma(fma(-x3
, sp
, 0.5*xx
), x2
, -xx
));
81 __clc_tan_piby4(double x
, double xx
)
83 const double piby4_lead
= 7.85398163397448278999e-01; // 0x3fe921fb54442d18
84 const double piby4_tail
= 3.06161699786838240164e-17; // 0x3c81a62633145c06
86 // In order to maintain relative precision transform using the identity:
87 // tan(pi/4-x) = (1-tan(x))/(1+tan(x)) for arguments close to pi/4.
88 // Similarly use tan(x-pi/4) = (tan(x)-1)/(tan(x)+1) close to -pi/4.
92 double transform
= ca
? 1.0 : 0.0;
93 transform
= cb
? -1.0 : transform
;
95 double tx
= fma(-transform
, x
, piby4_lead
) + fma(-transform
, xx
, piby4_tail
);
100 // Core Remez [2,3] approximation to tan(x+xx) on the interval [0,0.68].
102 double r
= fma(2.0, x
*xx
, x
*x
);
105 fma(r
, 0.224044448537022097264602535574e-3, -0.229345080057565662883358588111e-1),
106 0.372379159759792203640806338901e0
);
110 fma(r
, -0.232371494088563558304549252913e-3, 0.260656620398645407524064091208e-1),
111 -0.515658515729031149329237816945e0
),
112 0.111713747927937668539901657944e1
);
114 double t2
= fma(MATH_DIVIDE(a
, b
), x
*r
, xx
);
118 // Compute -1.0/(t1 + t2) accurately
119 double z1
= as_double(as_long(tp
) & 0xffffffff00000000L
);
120 double z2
= t2
- (z1
- t1
);
121 double trec
= -MATH_RECIP(tp
);
122 double trec_top
= as_double(as_long(trec
) & 0xffffffff00000000L
);
124 double tpr
= fma(fma(trec_top
, z2
, fma(trec_top
, z1
, 1.0)), trec
, trec_top
);
126 double tpt
= transform
* (1.0 - MATH_DIVIDE(2.0*tp
, 1.0 + tp
));
127 double tptr
= transform
* (MATH_DIVIDE(2.0*tp
, tp
- 1.0) - 1.0);
130 ret
.lo
= c
? tpt
: tp
;
131 ret
.hi
= c
? tptr
: tpr
;