[analyzer][NFC] Factor out SymbolManager::get<*> (#121781)
[llvm-project.git] / libclc / generic / lib / math / sincos_helpers.cl
blob0adecf6978bcab3d0876bcb46cb8d69a62cbb1e2
1 /*
2 * Copyright (c) 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
5 * of this software and associated documentation files (the "Software"), to deal
6 * in the Software without restriction, including without limitation the rights
7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
8 * copies of the Software, and to permit persons to whom the Software is
9 * furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
20 * THE SOFTWARE.
23 #include <clc/clc.h>
24 #include <clc/shared/clc_max.h>
26 #include "math.h"
27 #include "tables.h"
28 #include "sincos_helpers.h"
30 #define bitalign(hi, lo, shift) \
31 ((hi) << (32 - (shift))) | ((lo) >> (shift));
33 #define bytealign(src0, src1, src2) \
34 ((uint) (((((long)(src0)) << 32) | (long)(src1)) >> (((src2) & 3)*8)))
36 _CLC_DEF float __clc_sinf_piby4(float x, float y) {
37 // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
38 // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
39 // = x * f(w)
40 // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
41 // We use a minimax approximation of (f(w) - 1) / w
42 // because this produces an expansion in even powers of x.
44 const float c1 = -0.1666666666e0f;
45 const float c2 = 0.8333331876e-2f;
46 const float c3 = -0.198400874e-3f;
47 const float c4 = 0.272500015e-5f;
48 const float c5 = -2.5050759689e-08f; // 0xb2d72f34
49 const float c6 = 1.5896910177e-10f; // 0x2f2ec9d3
51 float z = x * x;
52 float v = z * x;
53 float r = mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2);
54 float ret = x - mad(v, -c1, mad(z, mad(y, 0.5f, -v*r), -y));
56 return ret;
59 _CLC_DEF float __clc_cosf_piby4(float x, float y) {
60 // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
61 // = f(w)
62 // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
63 // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
64 // because this produces an expansion in even powers of x.
66 const float c1 = 0.416666666e-1f;
67 const float c2 = -0.138888876e-2f;
68 const float c3 = 0.248006008e-4f;
69 const float c4 = -0.2730101334e-6f;
70 const float c5 = 2.0875723372e-09f; // 0x310f74f6
71 const float c6 = -1.1359647598e-11f; // 0xad47d74e
73 float z = x * x;
74 float r = z * mad(z, mad(z, mad(z, mad(z, mad(z, c6, c5), c4), c3), c2), c1);
76 // if |x| < 0.3
77 float qx = 0.0f;
79 int ix = as_int(x) & EXSIGNBIT_SP32;
81 // 0.78125 > |x| >= 0.3
82 float xby4 = as_float(ix - 0x01000000);
83 qx = (ix >= 0x3e99999a) & (ix <= 0x3f480000) ? xby4 : qx;
85 // x > 0.78125
86 qx = ix > 0x3f480000 ? 0.28125f : qx;
88 float hz = mad(z, 0.5f, -qx);
89 float a = 1.0f - qx;
90 float ret = a - (hz - mad(z, r, -x*y));
91 return ret;
94 _CLC_DEF float __clc_tanf_piby4(float x, int regn)
96 // Core Remez [1,2] approximation to tan(x) on the interval [0,pi/4].
97 float r = x * x;
99 float a = mad(r, -0.0172032480471481694693109f, 0.385296071263995406715129f);
101 float b = mad(r,
102 mad(r, 0.01844239256901656082986661f, -0.51396505478854532132342f),
103 1.15588821434688393452299f);
105 float t = mad(x*r, native_divide(a, b), x);
106 float tr = -MATH_RECIP(t);
108 return regn & 1 ? tr : t;
111 _CLC_DEF void __clc_fullMulS(float *hi, float *lo, float a, float b, float bh, float bt)
113 if (HAVE_HW_FMA32()) {
114 float ph = a * b;
115 *hi = ph;
116 *lo = fma(a, b, -ph);
117 } else {
118 float ah = as_float(as_uint(a) & 0xfffff000U);
119 float at = a - ah;
120 float ph = a * b;
121 float pt = mad(at, bt, mad(at, bh, mad(ah, bt, mad(ah, bh, -ph))));
122 *hi = ph;
123 *lo = pt;
127 _CLC_DEF float __clc_removePi2S(float *hi, float *lo, float x)
129 // 72 bits of pi/2
130 const float fpiby2_1 = (float) 0xC90FDA / 0x1.0p+23f;
131 const float fpiby2_1_h = (float) 0xC90 / 0x1.0p+11f;
132 const float fpiby2_1_t = (float) 0xFDA / 0x1.0p+23f;
134 const float fpiby2_2 = (float) 0xA22168 / 0x1.0p+47f;
135 const float fpiby2_2_h = (float) 0xA22 / 0x1.0p+35f;
136 const float fpiby2_2_t = (float) 0x168 / 0x1.0p+47f;
138 const float fpiby2_3 = (float) 0xC234C4 / 0x1.0p+71f;
139 const float fpiby2_3_h = (float) 0xC23 / 0x1.0p+59f;
140 const float fpiby2_3_t = (float) 0x4C4 / 0x1.0p+71f;
142 const float twobypi = 0x1.45f306p-1f;
144 float fnpi2 = trunc(mad(x, twobypi, 0.5f));
146 // subtract n * pi/2 from x
147 float rhead, rtail;
148 __clc_fullMulS(&rhead, &rtail, fnpi2, fpiby2_1, fpiby2_1_h, fpiby2_1_t);
149 float v = x - rhead;
150 float rem = v + (((x - v) - rhead) - rtail);
152 float rhead2, rtail2;
153 __clc_fullMulS(&rhead2, &rtail2, fnpi2, fpiby2_2, fpiby2_2_h, fpiby2_2_t);
154 v = rem - rhead2;
155 rem = v + (((rem - v) - rhead2) - rtail2);
157 float rhead3, rtail3;
158 __clc_fullMulS(&rhead3, &rtail3, fnpi2, fpiby2_3, fpiby2_3_h, fpiby2_3_t);
159 v = rem - rhead3;
161 *hi = v + ((rem - v) - rhead3);
162 *lo = -rtail3;
163 return fnpi2;
166 _CLC_DEF int __clc_argReductionSmallS(float *r, float *rr, float x)
168 float fnpi2 = __clc_removePi2S(r, rr, x);
169 return (int)fnpi2 & 0x3;
172 #define FULL_MUL(A, B, HI, LO) \
173 LO = A * B; \
174 HI = mul_hi(A, B)
176 #define FULL_MAD(A, B, C, HI, LO) \
177 LO = ((A) * (B) + (C)); \
178 HI = mul_hi(A, B); \
179 HI += LO < C
181 _CLC_DEF int __clc_argReductionLargeS(float *r, float *rr, float x)
183 int xe = (int)(as_uint(x) >> 23) - 127;
184 uint xm = 0x00800000U | (as_uint(x) & 0x7fffffU);
186 // 224 bits of 2/PI: . A2F9836E 4E441529 FC2757D1 F534DDC0 DB629599 3C439041 FE5163AB
187 const uint b6 = 0xA2F9836EU;
188 const uint b5 = 0x4E441529U;
189 const uint b4 = 0xFC2757D1U;
190 const uint b3 = 0xF534DDC0U;
191 const uint b2 = 0xDB629599U;
192 const uint b1 = 0x3C439041U;
193 const uint b0 = 0xFE5163ABU;
195 uint p0, p1, p2, p3, p4, p5, p6, p7, c0, c1;
197 FULL_MUL(xm, b0, c0, p0);
198 FULL_MAD(xm, b1, c0, c1, p1);
199 FULL_MAD(xm, b2, c1, c0, p2);
200 FULL_MAD(xm, b3, c0, c1, p3);
201 FULL_MAD(xm, b4, c1, c0, p4);
202 FULL_MAD(xm, b5, c0, c1, p5);
203 FULL_MAD(xm, b6, c1, p7, p6);
205 uint fbits = 224 + 23 - xe;
207 // shift amount to get 2 lsb of integer part at top 2 bits
208 // min: 25 (xe=18) max: 134 (xe=127)
209 uint shift = 256U - 2 - fbits;
211 // Shift by up to 134/32 = 4 words
212 int c = shift > 31;
213 p7 = c ? p6 : p7;
214 p6 = c ? p5 : p6;
215 p5 = c ? p4 : p5;
216 p4 = c ? p3 : p4;
217 p3 = c ? p2 : p3;
218 p2 = c ? p1 : p2;
219 p1 = c ? p0 : p1;
220 shift -= (-c) & 32;
222 c = shift > 31;
223 p7 = c ? p6 : p7;
224 p6 = c ? p5 : p6;
225 p5 = c ? p4 : p5;
226 p4 = c ? p3 : p4;
227 p3 = c ? p2 : p3;
228 p2 = c ? p1 : p2;
229 shift -= (-c) & 32;
231 c = shift > 31;
232 p7 = c ? p6 : p7;
233 p6 = c ? p5 : p6;
234 p5 = c ? p4 : p5;
235 p4 = c ? p3 : p4;
236 p3 = c ? p2 : p3;
237 shift -= (-c) & 32;
239 c = shift > 31;
240 p7 = c ? p6 : p7;
241 p6 = c ? p5 : p6;
242 p5 = c ? p4 : p5;
243 p4 = c ? p3 : p4;
244 shift -= (-c) & 32;
246 // bitalign cannot handle a shift of 32
247 c = shift > 0;
248 shift = 32 - shift;
249 uint t7 = bitalign(p7, p6, shift);
250 uint t6 = bitalign(p6, p5, shift);
251 uint t5 = bitalign(p5, p4, shift);
252 p7 = c ? t7 : p7;
253 p6 = c ? t6 : p6;
254 p5 = c ? t5 : p5;
256 // Get 2 lsb of int part and msb of fraction
257 int i = p7 >> 29;
259 // Scoot up 2 more bits so only fraction remains
260 p7 = bitalign(p7, p6, 30);
261 p6 = bitalign(p6, p5, 30);
262 p5 = bitalign(p5, p4, 30);
264 // Subtract 1 if msb of fraction is 1, i.e. fraction >= 0.5
265 uint flip = i & 1 ? 0xffffffffU : 0U;
266 uint sign = i & 1 ? 0x80000000U : 0U;
267 p7 = p7 ^ flip;
268 p6 = p6 ^ flip;
269 p5 = p5 ^ flip;
271 // Find exponent and shift away leading zeroes and hidden bit
272 xe = clz(p7) + 1;
273 shift = 32 - xe;
274 p7 = bitalign(p7, p6, shift);
275 p6 = bitalign(p6, p5, shift);
277 // Most significant part of fraction
278 float q1 = as_float(sign | ((127 - xe) << 23) | (p7 >> 9));
280 // Shift out bits we captured on q1
281 p7 = bitalign(p7, p6, 32-23);
283 // Get 24 more bits of fraction in another float, there are not long strings of zeroes here
284 int xxe = clz(p7) + 1;
285 p7 = bitalign(p7, p6, 32-xxe);
286 float q0 = as_float(sign | ((127 - (xe + 23 + xxe)) << 23) | (p7 >> 9));
288 // At this point, the fraction q1 + q0 is correct to at least 48 bits
289 // Now we need to multiply the fraction by pi/2
290 // This loses us about 4 bits
291 // pi/2 = C90 FDA A22 168 C23 4C4
293 const float pio2h = (float)0xc90fda / 0x1.0p+23f;
294 const float pio2hh = (float)0xc90 / 0x1.0p+11f;
295 const float pio2ht = (float)0xfda / 0x1.0p+23f;
296 const float pio2t = (float)0xa22168 / 0x1.0p+47f;
298 float rh, rt;
300 if (HAVE_HW_FMA32()) {
301 rh = q1 * pio2h;
302 rt = fma(q0, pio2h, fma(q1, pio2t, fma(q1, pio2h, -rh)));
303 } else {
304 float q1h = as_float(as_uint(q1) & 0xfffff000);
305 float q1t = q1 - q1h;
306 rh = q1 * pio2h;
307 rt = mad(q1t, pio2ht, mad(q1t, pio2hh, mad(q1h, pio2ht, mad(q1h, pio2hh, -rh))));
308 rt = mad(q0, pio2h, mad(q1, pio2t, rt));
311 float t = rh + rt;
312 rt = rt - (t - rh);
314 *r = t;
315 *rr = rt;
316 return ((i >> 1) + (i & 1)) & 0x3;
319 _CLC_DEF int __clc_argReductionS(float *r, float *rr, float x)
321 if (x < 0x1.0p+23f)
322 return __clc_argReductionSmallS(r, rr, x);
323 else
324 return __clc_argReductionLargeS(r, rr, x);
327 #ifdef cl_khr_fp64
329 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
331 // Reduction for medium sized arguments
332 _CLC_DEF void __clc_remainder_piby2_medium(double x, double *r, double *rr, int *regn) {
333 // How many pi/2 is x a multiple of?
334 const double two_by_pi = 0x1.45f306dc9c883p-1;
335 double dnpi2 = trunc(fma(x, two_by_pi, 0.5));
337 const double piby2_h = -7074237752028440.0 / 0x1.0p+52;
338 const double piby2_m = -2483878800010755.0 / 0x1.0p+105;
339 const double piby2_t = -3956492004828932.0 / 0x1.0p+158;
341 // Compute product of npi2 with 159 bits of 2/pi
342 double p_hh = piby2_h * dnpi2;
343 double p_ht = fma(piby2_h, dnpi2, -p_hh);
344 double p_mh = piby2_m * dnpi2;
345 double p_mt = fma(piby2_m, dnpi2, -p_mh);
346 double p_th = piby2_t * dnpi2;
347 double p_tt = fma(piby2_t, dnpi2, -p_th);
349 // Reduce to 159 bits
350 double ph = p_hh;
351 double pm = p_ht + p_mh;
352 double t = p_mh - (pm - p_ht);
353 double pt = p_th + t + p_mt + p_tt;
354 t = ph + pm; pm = pm - (t - ph); ph = t;
355 t = pm + pt; pt = pt - (t - pm); pm = t;
357 // Subtract from x
358 t = x + ph;
359 double qh = t + pm;
360 double qt = pm - (qh - t) + pt;
362 *r = qh;
363 *rr = qt;
364 *regn = (int)(long)dnpi2 & 0x3;
367 // Given positive argument x, reduce it to the range [-pi/4,pi/4] using
368 // extra precision, and return the result in r, rr.
369 // Return value "regn" tells how many lots of pi/2 were subtracted
370 // from x to put it in the range [-pi/4,pi/4], mod 4.
372 _CLC_DEF void __clc_remainder_piby2_large(double x, double *r, double *rr, int *regn) {
374 long ux = as_long(x);
375 int e = (int)(ux >> 52) - 1023;
376 int i = __clc_max(23, (e >> 3) + 17);
377 int j = 150 - i;
378 int j16 = j & ~0xf;
379 double fract_temp;
381 // The following extracts 192 consecutive bits of 2/pi aligned on an arbitrary byte boundary
382 uint4 q0 = USE_TABLE(pibits_tbl, j16);
383 uint4 q1 = USE_TABLE(pibits_tbl, (j16 + 16));
384 uint4 q2 = USE_TABLE(pibits_tbl, (j16 + 32));
386 int k = (j >> 2) & 0x3;
387 int4 c = (int4)k == (int4)(0, 1, 2, 3);
389 uint u0, u1, u2, u3, u4, u5, u6;
391 u0 = c.s1 ? q0.s1 : q0.s0;
392 u0 = c.s2 ? q0.s2 : u0;
393 u0 = c.s3 ? q0.s3 : u0;
395 u1 = c.s1 ? q0.s2 : q0.s1;
396 u1 = c.s2 ? q0.s3 : u1;
397 u1 = c.s3 ? q1.s0 : u1;
399 u2 = c.s1 ? q0.s3 : q0.s2;
400 u2 = c.s2 ? q1.s0 : u2;
401 u2 = c.s3 ? q1.s1 : u2;
403 u3 = c.s1 ? q1.s0 : q0.s3;
404 u3 = c.s2 ? q1.s1 : u3;
405 u3 = c.s3 ? q1.s2 : u3;
407 u4 = c.s1 ? q1.s1 : q1.s0;
408 u4 = c.s2 ? q1.s2 : u4;
409 u4 = c.s3 ? q1.s3 : u4;
411 u5 = c.s1 ? q1.s2 : q1.s1;
412 u5 = c.s2 ? q1.s3 : u5;
413 u5 = c.s3 ? q2.s0 : u5;
415 u6 = c.s1 ? q1.s3 : q1.s2;
416 u6 = c.s2 ? q2.s0 : u6;
417 u6 = c.s3 ? q2.s1 : u6;
419 uint v0 = bytealign(u1, u0, j);
420 uint v1 = bytealign(u2, u1, j);
421 uint v2 = bytealign(u3, u2, j);
422 uint v3 = bytealign(u4, u3, j);
423 uint v4 = bytealign(u5, u4, j);
424 uint v5 = bytealign(u6, u5, j);
426 // Place those 192 bits in 4 48-bit doubles along with correct exponent
427 // If i > 1018 we would get subnormals so we scale p up and x down to get the same product
428 i = 2 + 8*i;
429 x *= i > 1018 ? 0x1.0p-136 : 1.0;
430 i -= i > 1018 ? 136 : 0;
432 uint ua = (uint)(1023 + 52 - i) << 20;
433 double a = as_double((uint2)(0, ua));
434 double p0 = as_double((uint2)(v0, ua | (v1 & 0xffffU))) - a;
435 ua += 0x03000000U;
436 a = as_double((uint2)(0, ua));
437 double p1 = as_double((uint2)((v2 << 16) | (v1 >> 16), ua | (v2 >> 16))) - a;
438 ua += 0x03000000U;
439 a = as_double((uint2)(0, ua));
440 double p2 = as_double((uint2)(v3, ua | (v4 & 0xffffU))) - a;
441 ua += 0x03000000U;
442 a = as_double((uint2)(0, ua));
443 double p3 = as_double((uint2)((v5 << 16) | (v4 >> 16), ua | (v5 >> 16))) - a;
445 // Exact multiply
446 double f0h = p0 * x;
447 double f0l = fma(p0, x, -f0h);
448 double f1h = p1 * x;
449 double f1l = fma(p1, x, -f1h);
450 double f2h = p2 * x;
451 double f2l = fma(p2, x, -f2h);
452 double f3h = p3 * x;
453 double f3l = fma(p3, x, -f3h);
455 // Accumulate product into 4 doubles
456 double s, t;
458 double f3 = f3h + f2h;
459 t = f2h - (f3 - f3h);
460 s = f3l + t;
461 t = t - (s - f3l);
463 double f2 = s + f1h;
464 t = f1h - (f2 - s) + t;
465 s = f2l + t;
466 t = t - (s - f2l);
468 double f1 = s + f0h;
469 t = f0h - (f1 - s) + t;
470 s = f1l + t;
472 double f0 = s + f0l;
474 // Strip off unwanted large integer bits
475 f3 = 0x1.0p+10 * fract(f3 * 0x1.0p-10, &fract_temp);
476 f3 += f3 + f2 < 0.0 ? 0x1.0p+10 : 0.0;
478 // Compute least significant integer bits
479 t = f3 + f2;
480 double di = t - fract(t, &fract_temp);
481 i = (float)di;
483 // Shift out remaining integer part
484 f3 -= di;
485 s = f3 + f2; t = f2 - (s - f3); f3 = s; f2 = t;
486 s = f2 + f1; t = f1 - (s - f2); f2 = s; f1 = t;
487 f1 += f0;
489 // Subtract 1 if fraction is >= 0.5, and update regn
490 int g = f3 >= 0.5;
491 i += g;
492 f3 -= (float)g;
494 // Shift up bits
495 s = f3 + f2; t = f2 -(s - f3); f3 = s; f2 = t + f1;
497 // Multiply precise fraction by pi/2 to get radians
498 const double p2h = 7074237752028440.0 / 0x1.0p+52;
499 const double p2t = 4967757600021510.0 / 0x1.0p+106;
501 double rhi = f3 * p2h;
502 double rlo = fma(f2, p2h, fma(f3, p2t, fma(f3, p2h, -rhi)));
504 *r = rhi + rlo;
505 *rr = rlo - (*r - rhi);
506 *regn = i & 0x3;
510 _CLC_DEF double2 __clc_sincos_piby4(double x, double xx) {
511 // Taylor series for sin(x) is x - x^3/3! + x^5/5! - x^7/7! ...
512 // = x * (1 - x^2/3! + x^4/5! - x^6/7! ...
513 // = x * f(w)
514 // where w = x*x and f(w) = (1 - w/3! + w^2/5! - w^3/7! ...
515 // We use a minimax approximation of (f(w) - 1) / w
516 // because this produces an expansion in even powers of x.
517 // If xx (the tail of x) is non-zero, we add a correction
518 // term g(x,xx) = (1-x*x/2)*xx to the result, where g(x,xx)
519 // is an approximation to cos(x)*sin(xx) valid because
520 // xx is tiny relative to x.
522 // Taylor series for cos(x) is 1 - x^2/2! + x^4/4! - x^6/6! ...
523 // = f(w)
524 // where w = x*x and f(w) = (1 - w/2! + w^2/4! - w^3/6! ...
525 // We use a minimax approximation of (f(w) - 1 + w/2) / (w*w)
526 // because this produces an expansion in even powers of x.
527 // If xx (the tail of x) is non-zero, we subtract a correction
528 // term g(x,xx) = x*xx to the result, where g(x,xx)
529 // is an approximation to sin(x)*sin(xx) valid because
530 // xx is tiny relative to x.
532 const double sc1 = -0.166666666666666646259241729;
533 const double sc2 = 0.833333333333095043065222816e-2;
534 const double sc3 = -0.19841269836761125688538679e-3;
535 const double sc4 = 0.275573161037288022676895908448e-5;
536 const double sc5 = -0.25051132068021699772257377197e-7;
537 const double sc6 = 0.159181443044859136852668200e-9;
539 const double cc1 = 0.41666666666666665390037e-1;
540 const double cc2 = -0.13888888888887398280412e-2;
541 const double cc3 = 0.248015872987670414957399e-4;
542 const double cc4 = -0.275573172723441909470836e-6;
543 const double cc5 = 0.208761463822329611076335e-8;
544 const double cc6 = -0.113826398067944859590880e-10;
546 double x2 = x * x;
547 double x3 = x2 * x;
548 double r = 0.5 * x2;
549 double t = 1.0 - r;
551 double sp = fma(fma(fma(fma(sc6, x2, sc5), x2, sc4), x2, sc3), x2, sc2);
553 double cp = t + fma(fma(fma(fma(fma(fma(cc6, x2, cc5), x2, cc4), x2, cc3), x2, cc2), x2, cc1),
554 x2*x2, fma(x, xx, (1.0 - t) - r));
556 double2 ret;
557 ret.lo = x - fma(-x3, sc1, fma(fma(-x3, sp, 0.5*xx), x2, -xx));
558 ret.hi = cp;
560 return ret;
563 #endif