[ORC-RT][LoongArch] Add initial support for loongarch64 in ELFNixPlatform (#123575)
[llvm-project.git] / libcxx / src / memory_resource.cpp
blobe1a9e1a8fac49d139856ece5d180aa31eff5a847
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include <cstddef>
10 #include <memory>
11 #include <memory_resource>
13 #if _LIBCPP_HAS_ATOMIC_HEADER
14 # include <atomic>
15 #elif _LIBCPP_HAS_THREADS
16 # include <mutex>
17 # if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB)
18 # pragma comment(lib, "pthread")
19 # endif
20 #endif
22 _LIBCPP_BEGIN_NAMESPACE_STD
24 namespace pmr {
26 // memory_resource
28 memory_resource::~memory_resource() = default;
30 // new_delete_resource()
32 #if !_LIBCPP_HAS_ALIGNED_ALLOCATION
33 static bool is_aligned_to(void* ptr, size_t align) {
34 void* p2 = ptr;
35 size_t space = 1;
36 void* result = std::align(align, 1, p2, space);
37 return (result == ptr);
39 #endif
41 class _LIBCPP_EXPORTED_FROM_ABI __new_delete_memory_resource_imp : public memory_resource {
42 void* do_allocate(size_t bytes, size_t align) override {
43 #if _LIBCPP_HAS_ALIGNED_ALLOCATION
44 return std::__libcpp_allocate<std::byte>(__element_count(bytes), align);
45 #else
46 if (bytes == 0)
47 bytes = 1;
48 std::byte* result = std::__libcpp_allocate<std::byte>(__element_count(bytes), align);
49 if (!is_aligned_to(result, align)) {
50 std::__libcpp_deallocate<std::byte>(result, __element_count(bytes), align);
51 __throw_bad_alloc();
53 return result;
54 #endif
57 void do_deallocate(void* p, size_t bytes, size_t align) override {
58 std::__libcpp_deallocate<std::byte>(static_cast<std::byte*>(p), __element_count(bytes), align);
61 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
64 // null_memory_resource()
66 class _LIBCPP_EXPORTED_FROM_ABI __null_memory_resource_imp : public memory_resource {
67 void* do_allocate(size_t, size_t) override { __throw_bad_alloc(); }
68 void do_deallocate(void*, size_t, size_t) override {}
69 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
72 namespace {
74 union ResourceInitHelper {
75 struct {
76 __new_delete_memory_resource_imp new_delete_res;
77 __null_memory_resource_imp null_res;
78 } resources;
79 char dummy;
80 constexpr ResourceInitHelper() : resources() {}
81 ~ResourceInitHelper() {}
84 // Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority
85 // attribute with a value that's reserved for the implementation (we're the implementation).
86 #include "memory_resource_init_helper.h"
88 } // namespace
90 memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; }
92 memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; }
94 // default_memory_resource()
96 static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept {
97 #if _LIBCPP_HAS_ATOMIC_HEADER
98 static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res};
99 if (set) {
100 new_res = new_res ? new_res : new_delete_resource();
101 // TODO: Can a weaker ordering be used?
102 return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel);
103 } else {
104 return std::atomic_load_explicit(&__res, memory_order_acquire);
106 #elif _LIBCPP_HAS_THREADS
107 static constinit memory_resource* res = &res_init.resources.new_delete_res;
108 static mutex res_lock;
109 if (set) {
110 new_res = new_res ? new_res : new_delete_resource();
111 lock_guard<mutex> guard(res_lock);
112 memory_resource* old_res = res;
113 res = new_res;
114 return old_res;
115 } else {
116 lock_guard<mutex> guard(res_lock);
117 return res;
119 #else
120 static constinit memory_resource* res = &res_init.resources.new_delete_res;
121 if (set) {
122 new_res = new_res ? new_res : new_delete_resource();
123 memory_resource* old_res = res;
124 res = new_res;
125 return old_res;
126 } else {
127 return res;
129 #endif
132 memory_resource* get_default_resource() noexcept { return __default_memory_resource(); }
134 memory_resource* set_default_resource(memory_resource* __new_res) noexcept {
135 return __default_memory_resource(true, __new_res);
138 // 23.12.5, mem.res.pool
140 static size_t roundup(size_t count, size_t alignment) {
141 size_t mask = alignment - 1;
142 return (count + mask) & ~mask;
145 struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer {
146 __chunk_footer* __next_;
147 char* __start_;
148 size_t __align_;
149 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
152 void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) {
153 while (__first_ != nullptr) {
154 __chunk_footer* next = __first_->__next_;
155 upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_);
156 __first_ = next;
160 void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) {
161 const size_t footer_size = sizeof(__chunk_footer);
162 const size_t footer_align = alignof(__chunk_footer);
164 if (align < footer_align)
165 align = footer_align;
167 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
169 void* result = upstream->allocate(aligned_capacity, align);
171 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
172 h->__next_ = __first_;
173 h->__start_ = (char*)result;
174 h->__align_ = align;
175 __first_ = h;
176 return result;
179 void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate(
180 memory_resource* upstream, void* p, size_t bytes, size_t align) {
181 _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator");
182 if (__first_->__start_ == p) {
183 __chunk_footer* next = __first_->__next_;
184 upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_);
185 __first_ = next;
186 } else {
187 for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) {
188 if (h->__next_->__start_ == p) {
189 __chunk_footer* next = h->__next_->__next_;
190 upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_);
191 h->__next_ = next;
192 return;
195 // The request to deallocate memory ends up being a no-op, likely resulting in a memory leak.
196 _LIBCPP_ASSERT_VALID_DEALLOCATION(false, "deallocating a block that was not allocated with this allocator");
200 class unsynchronized_pool_resource::__fixed_pool {
201 struct __chunk_footer {
202 __chunk_footer* __next_;
203 char* __start_;
204 size_t __align_;
205 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
208 struct __vacancy_header {
209 __vacancy_header* __next_vacancy_;
212 __chunk_footer* __first_chunk_ = nullptr;
213 __vacancy_header* __first_vacancy_ = nullptr;
215 public:
216 explicit __fixed_pool() = default;
218 void __release_ptr(memory_resource* upstream) {
219 __first_vacancy_ = nullptr;
220 while (__first_chunk_ != nullptr) {
221 __chunk_footer* next = __first_chunk_->__next_;
222 upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_);
223 __first_chunk_ = next;
227 void* __try_allocate_from_vacancies() {
228 if (__first_vacancy_ != nullptr) {
229 void* result = __first_vacancy_;
230 __first_vacancy_ = __first_vacancy_->__next_vacancy_;
231 return result;
233 return nullptr;
236 void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) {
237 _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, "");
238 static_assert(__default_alignment >= alignof(std::max_align_t), "");
239 static_assert(__default_alignment >= alignof(__chunk_footer), "");
240 static_assert(__default_alignment >= alignof(__vacancy_header), "");
242 const size_t footer_size = sizeof(__chunk_footer);
243 const size_t footer_align = alignof(__chunk_footer);
245 size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size;
247 void* result = upstream->allocate(aligned_capacity, __default_alignment);
249 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
250 h->__next_ = __first_chunk_;
251 h->__start_ = (char*)result;
252 h->__align_ = __default_alignment;
253 __first_chunk_ = h;
255 if (chunk_size > block_size) {
256 __vacancy_header* last_vh = this->__first_vacancy_;
257 for (size_t i = block_size; i != chunk_size; i += block_size) {
258 __vacancy_header* vh = (__vacancy_header*)((char*)result + i);
259 vh->__next_vacancy_ = last_vh;
260 last_vh = vh;
262 this->__first_vacancy_ = last_vh;
264 return result;
267 void __evacuate(void* p) {
268 __vacancy_header* vh = (__vacancy_header*)(p);
269 vh->__next_vacancy_ = __first_vacancy_;
270 __first_vacancy_ = vh;
273 size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; }
275 static const size_t __default_alignment = alignof(max_align_t);
278 size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); }
280 int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); }
282 int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const {
283 if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_))
284 return __num_fixed_pools_;
285 else {
286 int i = 0;
287 bytes = (bytes > align) ? bytes : align;
288 bytes -= 1;
289 bytes >>= __log2_smallest_block_size;
290 while (bytes != 0) {
291 bytes >>= 1;
292 i += 1;
294 return i;
298 unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream)
299 : __res_(upstream), __fixed_pools_(nullptr) {
300 size_t largest_block_size;
301 if (opts.largest_required_pool_block == 0)
302 largest_block_size = __default_largest_block_size;
303 else if (opts.largest_required_pool_block < __smallest_block_size)
304 largest_block_size = __smallest_block_size;
305 else if (opts.largest_required_pool_block > __max_largest_block_size)
306 largest_block_size = __max_largest_block_size;
307 else
308 largest_block_size = opts.largest_required_pool_block;
310 if (opts.max_blocks_per_chunk == 0)
311 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
312 else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk)
313 __options_max_blocks_per_chunk_ = __min_blocks_per_chunk;
314 else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk)
315 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
316 else
317 __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk;
319 __num_fixed_pools_ = 1;
320 size_t capacity = __smallest_block_size;
321 while (capacity < largest_block_size) {
322 capacity <<= 1;
323 __num_fixed_pools_ += 1;
327 pool_options unsynchronized_pool_resource::options() const {
328 pool_options p;
329 p.max_blocks_per_chunk = __options_max_blocks_per_chunk_;
330 p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1);
331 return p;
334 void unsynchronized_pool_resource::release() {
335 __adhoc_pool_.__release_ptr(__res_);
336 if (__fixed_pools_ != nullptr) {
337 const int n = __num_fixed_pools_;
338 for (int i = 0; i < n; ++i)
339 __fixed_pools_[i].__release_ptr(__res_);
340 __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
341 __fixed_pools_ = nullptr;
345 void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) {
346 // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes.
347 // The size and alignment of the allocated memory shall meet the requirements for
348 // a class derived from memory_resource (23.12).
349 // If the pool selected for a block of size bytes is unable to satisfy the memory request
350 // from its own internal data structures, it will call upstream_resource()->allocate()
351 // to obtain more memory. If bytes is larger than that which the largest pool can handle,
352 // then memory will be allocated using upstream_resource()->allocate().
354 int i = __pool_index(bytes, align);
355 if (i == __num_fixed_pools_)
356 return __adhoc_pool_.__do_allocate(__res_, bytes, align);
357 else {
358 if (__fixed_pools_ == nullptr) {
359 __fixed_pools_ =
360 (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
361 __fixed_pool* first = __fixed_pools_;
362 __fixed_pool* last = __fixed_pools_ + __num_fixed_pools_;
363 for (__fixed_pool* pool = first; pool != last; ++pool)
364 ::new ((void*)pool) __fixed_pool;
366 void* result = __fixed_pools_[i].__try_allocate_from_vacancies();
367 if (result == nullptr) {
368 auto min = [](size_t a, size_t b) { return a < b ? a : b; };
369 auto max = [](size_t a, size_t b) { return a < b ? b : a; };
371 size_t prev_chunk_size_in_bytes = __fixed_pools_[i].__previous_chunk_size_in_bytes();
372 size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i);
374 size_t chunk_size_in_blocks;
376 if (prev_chunk_size_in_blocks == 0) {
377 size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk);
378 chunk_size_in_blocks = min_blocks_per_chunk;
379 } else {
380 static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible");
381 chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4);
384 size_t max_blocks_per_chunk =
385 min((__max_bytes_per_chunk >> __log2_pool_block_size(i)),
386 min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_));
387 if (chunk_size_in_blocks > max_blocks_per_chunk)
388 chunk_size_in_blocks = max_blocks_per_chunk;
390 size_t block_size = __pool_block_size(i);
392 size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i));
393 result = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes);
395 return result;
399 void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) {
400 // Returns the memory at p to the pool. It is unspecified if,
401 // or under what circumstances, this operation will result in
402 // a call to upstream_resource()->deallocate().
404 int i = __pool_index(bytes, align);
405 if (i == __num_fixed_pools_)
406 return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align);
407 else {
408 _LIBCPP_ASSERT_NON_NULL(
409 __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator");
410 __fixed_pools_[i].__evacuate(p);
414 bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; }
416 // 23.12.6, mem.res.monotonic.buffer
418 constexpr size_t __default_growth_factor = 2;
420 static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) {
421 if (size > space)
422 return nullptr;
424 char* p1 = static_cast<char*>(ptr);
425 char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1));
427 if (new_ptr < (p1 - space))
428 return nullptr;
430 ptr = new_ptr;
431 space -= p1 - new_ptr;
433 return ptr;
436 template <bool is_initial, typename Chunk>
437 void* __try_allocate_from_chunk(Chunk& self, size_t bytes, size_t align) {
438 if constexpr (is_initial) {
439 // only for __initial_descriptor.
440 // if __initial_descriptor.__cur_ equals nullptr, means no available buffer given when ctor.
441 // here we just return nullptr, let the caller do the next handling.
442 if (!self.__cur_)
443 return nullptr;
445 void* new_ptr = static_cast<void*>(self.__cur_);
446 size_t new_capacity = (self.__cur_ - self.__start_);
447 void* aligned_ptr = align_down(align, bytes, new_ptr, new_capacity);
448 if (aligned_ptr != nullptr)
449 self.__cur_ = static_cast<char*>(new_ptr);
450 return aligned_ptr;
453 void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) {
454 const size_t footer_size = sizeof(__chunk_footer);
455 const size_t footer_align = alignof(__chunk_footer);
457 auto previous_allocation_size = [&]() {
458 if (__chunks_ != nullptr)
459 return __chunks_->__allocation_size();
461 size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_;
463 return roundup(newsize, footer_align) + footer_size;
466 if (void* result = __try_allocate_from_chunk<true, __initial_descriptor>(__initial_, bytes, align))
467 return result;
468 if (__chunks_ != nullptr) {
469 if (void* result = __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align))
470 return result;
473 // Allocate a brand-new chunk.
475 if (align < footer_align)
476 align = footer_align;
478 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
479 size_t previous_capacity = previous_allocation_size();
481 if (aligned_capacity <= previous_capacity) {
482 size_t newsize = __default_growth_factor * (previous_capacity - footer_size);
483 aligned_capacity = roundup(newsize, footer_align) + footer_size;
486 char* start = (char*)__res_->allocate(aligned_capacity, align);
487 auto end = start + aligned_capacity - footer_size;
488 __chunk_footer* footer = (__chunk_footer*)(end);
489 footer->__next_ = __chunks_;
490 footer->__start_ = start;
491 footer->__cur_ = end;
492 footer->__align_ = align;
493 __chunks_ = footer;
495 return __try_allocate_from_chunk<false, __chunk_footer>(*__chunks_, bytes, align);
498 } // namespace pmr
500 _LIBCPP_END_NAMESPACE_STD